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Abstract: Penalized likelihood density estimation provides an effective approach to

the nonparametric fitting of graphical models, with conditional independence struc-

tures characterized via selective term elimination in functional ANOVA decomposi-

tions of the log density. A bottleneck in the approach has been the cost of numerical

integration, which has limited its application to low-dimensional problems. In Jeon

and Lin (2006), a reformulation was proposed to replace multi-dimensional inte-

grals by sums of products of univariate integrals, greatly reducing the numerical

burden in high-dimensional problems. In this article, we derive a cross-validation

score for use with the reformulation that delivers effective smoothing parameter

selection at a manageable computational cost, introduce a geometric inference tool

for the “testing” of model terms, and calculate the asymptotic convergence rates of

the estimates. An assortment of practical issues are investigated through empirical

studies, and open-source software is illustrated with data examples.

Key words and phrases: Cross-validation, graphical models, penalized likelihood,

projection, smoothing parameter.

1. Introduction

Consider the nonparametric estimation of a probability density p(x) on a

domain X based on independent samples Xi, i = 1, . . . , n. Numerous methods

have been developed over the years, but most have found little practical success

in dimensions beyond two or three. The immediate challenge in high dimensions

is the curse of dimensionality, as multivariate functions are intrinsically difficult

to estimate. One approach to easing the curse of dimensionality is via the elim-

ination of higher order terms in certain ANOVA decompositions of multivariate

functions.

On a product domain, say X =
∏d

j=1Xj , one may decompose a function η as

η(x) = η(x1, . . . , xd) = η∅ +
∑

j ηj(xj) +
∑

j<k ηj,k(xj , xk) + . . . , (1.1)

with the constant in η∅, the main effects in ηj , the two-way interactions in ηj,k,

etc.; the function is easier to estimate when higher order interactions are not
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involved. Such an ANOVA decomposition can be built into penalized likelihood

density estimation that minimizes

− 1

n

n∑
i=1

η(Xi) + log

∫
X
eη(x)dx+

λ

2
J(η), (1.2)

where p(x) = eη(x)/
∫
X eη(x)dx, J(η) is a quadratic roughness functional, and the

smoothing parameter λ controls the tradeoff between the smoothness of η(x) and

its fidelity to the data.

The formulation of (1.2) can be found in Gu and Qiu (1993), which evolved

from the original proposal of Good and Gaskins (1971) through works by Leonard

(1978), Silverman (1982), and O’Sullivan (1988). The computation of (1.2) with

cross-validated λ has been studied in Gu (1993) and Gu and Wang (2003), where

integrals of form
∫
X h(x)eη(x)dx have to be calculated while η(x) is being up-

dated iteratively. Numerical integration can be computationally prohibitive on

high dimensional domains, however, limiting the practical applicability of the

method.

To circumvent the computational hurdle associated with (1.2) while main-

taining the versatility of the modular ANOVA structure in log density, Jeon and

Lin (2006) proposed to minimize

1

n

n∑
i=1

e−η(Xi) +

∫
X
η(x)ρ(x)dx+

λ

2
J(η) (1.3)

for ρ(x) some known density satisfying
∫
X ρ(x)dx = 1, with the resulting density

estimate p̂(x) ∝ eη̂(x)ρ(x). With proper choices of ρ(x), the integral
∫
X η(x)ρ(x)dx

appearing in (1.3) can be decomposed into sums of products of univariate inte-

grals, permitting fast computation.

For (1.3) to work in practice, a critical aspect is the automatic selection of

λ that delivers reasonable performance. A simple five-fold cross-validation was

used for the purpose in the examples of Jeon and Lin (2006), which required

the evaluation of the normalizing constant
∫
X eη(x)ρ(x)dx, the very operation

(1.3) was designed to avoid. The primary objective here is to develop a cross-

validation scheme for use with (1.3) that does not involve
∫
X eη(x)ρ(x)dx or the

like. Also presented is an asymptotic theory concerning the convergence rates of

the minimizers of (1.3) that contributes to the understanding of the method and

also helps its implementation.

Selective elimination of interaction terms in ANOVA decompositions of log

density η(x) may imply conditional independence structures, and estimation via

(1.2) or (1.3) provides a means to the nonparametric fitting of graphical models.

For example, on X1 × X2 × X3 for p(x) = eη(x)/
∫
X eη(x)dx, η(x) = η∅ + η1 +
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η2+η3+η1,2+η1,3 implies the conditional independence of X2 and X3 given X1,

or X2⊥X3|X1. To infer such ANOVA structures, Kullback-Leibler projection

was proposed in Gu (2004) for the “testing” of insignificant interactions in log

density, which however involved integrals of the form
∫
X h(x)eη(x)dx. A certain

squared error projection is also implemented here to accomplish the task without

the offending numerical operation.

The rest of the article is organized as follows. In Section 2, technical details

are filled in concerning the formulation and computation of (1.3). Smoothing

parameter selection is discussed in Section 3, where a cross-validation score is

derived to work in tandem with (1.3). Squared error projection is introduced in

Section 4 for the “testing” of ANOVA terms. Simulation studies are conducted in

Section 5 to assess an assortment of practical issues. In Section 6, data examples

are presented to showcase potential applications of the techniques using open-

source software. Asymptotic convergence is studied in Section 7, followed by

miscellaneous remarks in Section 8.

2. Preliminaries

We fill in some specifics in the formulation, discuss basic properties, and set

up the notation. Some of these were treated in greater details in Jeon and Lin

(2006)

2.1. Reproducing kernel Hilbert spaces

The minimization of (1.3) is implicitly in a Hilbert space H ⊆ {f : J(f) <

∞} in which J(f) is a square semi-norm with a finite dimensional null space

NJ = {f : J(f) = 0}. A Hilbert space has a metric and a geometry that facilitate

analysis and computation, and a finite dimensional NJ prevents interpolation.

Function evaluations appear in (1.3), so one also needs the evaluation functional

[x]f = f(x) to be continuous in f ∈ H, ∀x ∈ X .

A Hilbert space in which evaluation functional is continuous is a reproduc-

ing kernel Hilbert space with a reproducing kernel R(·, ·), a non-negative def-

inite bivariate function on X such that R(x, ·) = R(·, x) ∈ H, ∀x ∈ X , and

⟨R(x, ·), f(·)⟩ = f(x) (the reproducing property), ∀f ∈ H, where ⟨·, ·⟩ is the in-

ner product in H. A reproducing kernel Hilbert space can be generated from

its reproducing kernel R, for which any non-negative definite function qualifies,

as the “column space” span{R(x, ·), x ∈ X}. A general theory can be found in

Aronszajn (1950).

In the settings of (1.2) and (1.3), one can write ⟨·, ·⟩ = J(·, ·) + J̃(·, ·), where
J(·, ·) is the semi inner product associated with J(f) and J̃(·, ·) is an inner

product in NJ . One has a tensor-sum decomposition H = NJ ⊕HJ , with J(f)

being a square full norm in HJ . For computation, one needs a basis of NJ and
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the reproducing kernel RJ in HJ satisfying J(RJ(x, ·), f(·)) = f(x), ∀f ∈ HJ ,

∀x ∈ X .

For an example, consider the cubic smoothing spline on X = [0, 1] with

J(f) =
∫ 1
0

(
f ′′(x)

)2
dx. Taking J̃(f, f) =

( ∫ 1
0 f(x)dx

)2
+

( ∫ 1
0 f ′(x)dx

)2
, the

reproducing kernel in HJ = {f : J(f) < ∞,
∫ 1
0 f(x)dx =

∫ 1
0 f ′(x)dx = 0} is

given by RJ(x1, x2) = k2(x1)k2(x2)− k4(|x1 − x2|), where kν = Bν/ν! are scaled

Bernoulli polynomials. Combining with NJ = {1} ⊕
{
k1(x)

}
, where k1(x) =

x − 0.5, one has a one-way ANOVA decomposition η = η∅ + ηx, with ηx ∈{
k1(x)

}
⊕ HJ satisfying the side condition

∫ 1
0 ηx(x)dx = 0. The construction

provides building blocks for tensor-product cubic splines, to be discussed below,

for which one writes H = H00⊕H01⊕H1 with reproducing kernels R00(x1, x2) =

1, R01(x1, x2) = k1(x1)k1(x2), and R1(x1, x2) = k2(x1)k2(x2)− k4(|x1 − x2|).
On X = U×V = [0, 1]2, one may construct tensor-product cubic splines using

the marginal construction given above, with nine tensor-sum termsHµ,ν = H(u)
µ ⊗

H(v)
ν on X , µ, ν = 00, 01, 1, generated from reproducing kernels Rµ,ν(x1, x2) =

Rµ(u1, u2)Rν(v1, v2). The four subspaces with µ, ν = 00, 01 are of one-dimension

each, and can be lumped together as NJ . The other five subspaces can be put

together as HJ with the reproducing kernel

RJ = θ00,1R00,1 + θ1,00R1,00 + θ01,1R01,1 + θ1,01R1,01 + θ1,1R1,1, (2.1)

where θµ,ν are a set of extra smoothing parameters adjusting the relative weights

of the roughness of different components; the roughness penalty associated with

RJ in (2.1) is of the form J(f) =
∑

µ,ν θ
−1
µ,νJµ,ν(fµ.ν), where Jβ(fβ) is associated

with Rβ for fβ ∈ Hβ. The nine subspaces readily define the ANOVA decom-

position of (1.1), with η∅ ∈ H00,00, ηu ∈ H01,00 ⊕ H1,00, ηv ∈ H00,01 ⊕ H00,1,

and ηu,v ∈ H01,01 ⊕ H1,01 ⊕ H01,1 ⊕ H1,1. To obtain an additive model, one re-

moves H01,01 from NJ and sets θ1,01 = θ01,1 = θ1,1 = 0. Note that for any given

x̃ ∈ X , ξ(x) = RJ(x̃, x) is a linear combination of functions of form f(u)g(v); the

same holds for functions in NJ . Constructions in higher dimensions can be done

recursively.

For a one-to-one mapping p(x) ↔ η(x) in (1.2), one can set η∅ = 0.

2.2. Choice of ρ(x)

The motivation for (1.3) is to avoid numerical integrations in high dimen-

sions, and one aims to factorize the integral
∫
X η(x)ρ(x)dx into sums of products

of univariate integrals. It is thus necessary for ρ(x) to factorize into a product

of univariate densities; as an added benefit, conditional independence structures

can be characterized via selective elimination of ANOVA terms in η(x), just as

with (1.2).
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Obvious choices for the factors of ρ(x) are marginal density estimates, for

which one can use parametric fits such as the beta distributions used in Jeon

and Lin (2006), or nonparametric fits such as the minimizers of (1.2) with cross-

validated λ; the latter is used in our implementation.

2.3. Existence

Let {ϕν}mν=1 be a basis of NJ and S be the n ×m matrix with the (i, ν)th

entry ϕν(Xi). Define L(f) = n−1
∑n

i=1 e
−f(Xi) +

∫
X f(x)ρ(x)dx.

Lemma 1. If S is of full column rank, then L(f) is strictly convex in NJ and

L(f) + λJ(f) is strictly convex in H.

Proof. For f, g ∈ H and α ∈ (0, 1), define A(α) = L(g + α(f − g)). It is easy

to verify that d2A/dα2 = n−1
∑n

i=1 e
−(g+α(f−g))(Xi)(f − g)2(Xi) ≥ 0, where the

equality holds if and only if (f − g)(Xi) = 0, i = 1, . . . , n; for f − g ∈ NJ , the

equality implies f = g as S is of full column rank. This, combined with the strict

convexity of J(f) in HJ , establishes the lemma.

Theorem 1. Suppose S is of full column rank. If L(f) has a unique minimizer

in NJ , then L(f) + λJ(f) has a unique minimizer in H.

The theorem follows Lemma 1 and Theorem 2.9 in Gu (2002).

2.4. Equivalent formulation and computation

Suppose J(f) annihilates constant and consider a tensor-sum decomposition

H = {1} ⊕ G; in the ANOVA decomposition of (1.1), η∅ ∈ {1} and
∑

j ηj(xj) +∑
j<k ηj,k(xj , xk)+ · · · ∈ G. Writing η = d+ g with g ∈ G and d a constant, (1.3)

becomes
1

n

n∑
i=1

e−g(Xi)−d +

∫
X

{
g(x) + d

}
ρ(x)dx+

λ

2
J(g). (2.2)

Fixing g(x), the d that minimizes (2.2) is given by ed = n−1
∑n

i=1 e
−g(Xi), noting

that
∫
X ρ(x)dx = 1; in effect, (1.3) “normalizes” η to satisfy n−1

∑n
i=1 e

−η(Xi) =

1. Plugging this back into (2.2) and dropping terms not involving g(x), one has

a “profile” functional

log
{ 1

n

n∑
i=1

e−g(Xi)
}
+

∫
X
g(x)ρ(x)dx+

λ

2
J(g). (2.3)

Without loss of inferential efficiency, one can minimize (1.3) in a space

H∗ = NJ ⊕ span
{
RJ(Zj , ·), j = 1, . . . , q

}
, (2.4)
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where {Zj} is a random subset of {Xi}; see Section 7.3. One has an expression

g(x) =
∑
ν

d̆νϕν(x) +
∑
j

c̆jRJ(Zj , x) = d̆
T
ϕ(x) + c̆T ξ̆(x) = cT ξ(x), (2.5)

where {ϕν} is a basis of NJ ⊖ {1} and ξ̆j(x) = RJ(Zj , x). Plugging (2.5) into

(2.3), one has

log
{ 1

n

n∑
i=1

e−c
T ξi

}
+

∫
X
cT ξ(x)ρ(x)dx+

λ

2
cTQc, (2.6)

where ξi = ξ(Xi) and Q = diag(O, Q̆) for Q̆ with (j, k)th entry J(ξ̆j , ξ̆k) =

RJ(Zj , Zk). Note that b =
∫
X ξ(x)ρ(x)dx can be computed as sums of products

of univariate integrals, for the ϕν and RJ in the tensor-product cubic splines

of Section 2.1 and for the choice of ρ(x) as specified in Section 2.2; the involved

univariate integrals and their products only need to be computed once, with only

the sums to be performed for the updating of b when the θ’s in (2.1) vary.

Fixing smoothing parameters, one can minimize (2.6) via the Newton itera-

tion. Let c̃T ξ be the current iterate and define µ(f) =
∑n

i=1 uif(Xi)/
∑n

i=1 ui,

where ui = e−c̃
T
ξi . The Newton updating formula is seen to be (V +λQ)(c−c̃) =

µ− b− λQc̃, where µ = µ(ξ) and V = µ(ξξT )− µµT .

3. Smoothing Parameter Selection

With varying smoothing parameters that include the λ in front of J(η) and

the θ’s hidden in the reproducing kernel RJ as seen in (2.1), the minimizer ηλ of

(1.3) provides a collection of estimates to choose from. The proper selection of

smoothing parameters is crucial in practical estimation. For notational simplicity,

λ here represents all smoothing parameters, not just the λ in front of J(η).

In the examples of Jeon and Lin (2006), smoothing parameters were selected

by a simple 5-fold cross-validation targeting the Kullback-Leibler loss. The nor-

malizing constant
∫
X eηλ(x)ρ(x)dx was needed, for which Monte Carlo integration

was employed.

A certain delete-one cross-validation can be derived in the setting; it pro-

duces more consistent results at less computational cost than any k-fold cross-

validation. The real challenge here is the normalizing constant, as the very

motivation of (1.3) was to avoid integrals of form
∫
X h(x)eη(x)dx; Monte-Carlo

integration offers no relief as it is even less preferable to a regular quadrature for

the purpose.

As an alternative to the Kullback-Leibler, consider a loss

LK(η, ηλ) =

∫
X

{
e(η−ηλ)(x) − (η − ηλ)(x)− 1

}
ρ(x)dx; (3.1)
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note that ey − y − 1 has a unique minimum at y = 0. Dropping terms not

involving ηλ, one has

RLK(η, ηλ) =

∫
X
e−ηλ(x)p(x)dx+

∫
X
ηλ(x)ρ(x)dx, (3.2)

where p(x) = eη(x)ρ(x); the first term may be estimated by a cross-validated

sample mean, n−1
∑n

i=1 e
−η

[i]
λ (Xi), where η

[i]
λ minimizes some delete-one version

of (1.3).

Write η = d + g = d + ξTc in (1.3) and denote its minimizer by ηλ = η̃ =

d̃+ g̃ = d̃+ ξT c̃. Fixing d̃, consider the quadratic approximation of (1.3) at η̃ as

a function of c,

1

n

n∑
i=1

wi

{
1− ξTi (c− c̃) +

1

2
(c− c̃)T ξiξ

T
i (c− c̃)

}
+ d̃+ bTc+

λ

2
cTQc, (3.3)

where wi = e−η̃(Xi), ξi = ξ(Xi), and b =
∫
X ξ(x)ρ(x)dx. The solution of (3.3)

is of course c̃, with c̃ = A−1d, where A = n−1
∑n

i=1wiξiξ
T
i + λQ and d =

n−1
∑n

i=1wi(1 + g̃i)ξi − b for g̃i = ξTi c̃ = gλ(Xi). Solving a delete-one version of

(3.3),

1

n

∑
j ̸=i

wj

{
1− ξTj (c− c̃) +

1

2
(c− c̃)T ξjξ

T
j (c− c̃)

}
+ d̃+ bTc+

λ

2
cTQc,

one has c̃[i] =
(
A− n−1wiξiξ

T
i

)−1(
d− n−1wi(1 + g̃i)ξi

)
. We use g̃

[i]
i = ξTi c̃

[i] for

g
[i]
λ (Xi). Since

(
A− n−1wiξiξ

T
i

)−1
= A−1 +

n−1wiA
−1ξiξ

T
i A

−1

1− n−1wiξTi A
−1ξi

,

η̃
[i]
i = η̃i−ai/(1−ai) following straightforward algebra, where ai = n−1wiξ

T
i A

−1ξi.

Substituting n−1
∑

i η̃
[i]
i for the first term in (3.2), one obtains a cross-validation

score

V (λ) =
1

n

n∑
i=1

e−ηλ(Xi) +

∫
X
ηλ(x)ρ(x)dx+ α

1

n

n∑
i=1

e−ηλ(Xi)
(
eai/(1−ai) − 1

)
(3.4)

for α = 1, which is the “pseudo likelihood” in (1.3) plus an extra term; in parallel

settings such as (1.2), a fudge factor α ≈ 1.4 in front of the extra term in cross-

validation scores proved to be effective in curbing severe undersmoothing with

“bad” samples while suffering minimal performance degradation with “good”

ones.
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With a cross-validation score involving multiple smoothing parameters (λ, θβ),

one may use Algorithm 3.2 of Gu and Wahba (1991) to locate good initial values

of θβ, which involves two passes of fixed-θ minimization, then perform quasi-

Newton iteration to minimize the score. The initial value algorithm is highly

effective, typically leaving only the “last 20% performance” for the quasi-Newton

to pick up, thus it is often a good idea to skip the time-consuming quasi-Newton

iteration. For the score V (λ) of (3.4), however, one must skip the quasi-Newton

step but for a different reason: to salvage performance; computational savings

only count as afterthoughts in this situation. As a univariate function of λ, V (λ)

of (3.4) appears to be reasonably effective in tracking the loss, as is shown in

the simulations of Section 5, but as a multivariate function of the θ’s, it often

loses track of the target it is designed to follow, delivering in the process poor

performances or even outright disasters.

4. Squared Error Projection

To infer conditional independence structures characterized by selective elim-

ination of interactions in log density η, one needs to assess the practical signifi-

cance of ANOVA terms. The task resembles hypothesis testing, with H0 : η ∈ H0

versus Ha : η ∈ H0 ⊕H1, say.

Lacking a sampling distribution in settings with infinite-dimensional nulls,

the classical testing approach is of little help here. Instead, an approach based

on the Kullback-Leibler geometry was developed in Gu (2004). For density esti-

mation via (1.2), one calculates an estimate η̂ ∈ H0 ⊕H1, obtains its Kullback-

Leibler projection η̃ ∈ H0 by minimizing KL(η̂, η) over η ∈ H0, then inspects the

“entropy decomposition” KL(η̂, ηu) = KL(η̂, η̃) + KL(η̃, ηu), where ηu = 0 is the

uniform distribution. When KL(η̂, η̃) is only a small portion of KL(η̂, ηu), say

2-3%, one loses little by cutting out H1.

The calculation of Kullback-Leibler projection also involves integrals of form∫
X h(x)eη(x)dx as with (1.2), so is numerically impractical in the setting. As

an alternative, one can consider Ṽ (η̂ − η) =
∫
X (η̂ − η)2(x)ρ(x)dx −

{ ∫
X (η̂ −

η)(x)ρ(x)dx
}2

for η̂ ∈ H0 ⊕H1, and calculate the squared error projection of η̂

in H0 by minimizing Ṽ (η̂− η) over η ∈ H0; Ṽ (η̂− η) can be viewed as a proxy of

the symmetrized Kullback-Leibler discrepancy, KL(η̂, η)+KL(η, η̂), as discussed

in Section 7.4. Note also that Ṽ (η̂ − η) is invariant to the normalizing constant.

Let η̃ be the squared error projection of η̂ in H0 and consider Aη̃,h(α) =

Ṽ
(
η̂ − (η̃ + αh)

)
for h ∈ H0. Since dAη̃,h/dα|α=0 = 0, Ṽ (η̂ − η̃, h) = 0, ∀h ∈ H0.

The uniform distribution corresponds to ηu = − log ρ(x) and, when ηu ∈ H0,

Ṽ (η̂ − η̃, η̃ − ηu) = 0, so Ṽ (η̂ − ηu) = Ṽ (η̂ − η̃) + Ṽ (η̃ − ηu). When the ratio

Ṽ (η̂ − η̃)/Ṽ (η̂ − ηu) is small, one may safely cut out H1.
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For ρ(x) a product of marginal densities, as prescribed in Section 2.2, the

calculations involved are sums of products of univariate integrals, and ηu ∈ H0

when H0 includes all the main effects.

5. Simulation Studies

The simulation studies presented here address various practical issues con-

cerning the method being developed. Numerical experiments have been done on

domains of dimensions three and five.

For the trivariate simulations on [0, 1]3, samples were taken from

f3(x1, x2, x3) ∝ f1(x1−0.3x3+0.1)f1(x2−0.2x3+0.1)e−12.5(x3−0.5)2I[0<x1,x2,x3<1],

(5.1)

where f1(x) ∝ e−50(x−0.3)2 + 2e−50(x−0.7)2 is the 1:2 mixture of N (0.3, 0.12) and

N (0.7, 0.12). Note that X1⊥X2|X3 here, so the correct model has log density of

form η = η∅ + η1 + η2 + η3 + η1,3 + η2,3.

For the five-dimensional simulations, we took (X2, X3, X4)
T ∼ N (µ,Σ) with

µ = (0.5)1 and Σ−1 =
(

62 −15 0
−15 62 −30
0 −30 62

)
, X1 = Y1 − 0.4X2 − 0.1, and X5 = Y2 +

0.3X4 − 0.1, then truncated to X = [0, 1]5, with Y1, Y2 ∼ f1(y) the normal

mixture given above, independent of (X2, X3, X4)
T , and of each other. Note

that Xi⊥Xj |(the rest) for (i, j) = (1, 3), (1, 4), (1, 5), (2, 4), (2, 5), (3, 5), and the

correct model has log density of form η = η∅ + η1 + η2 + η3 + η4 + η5 + η1,2 +

η2,3 + η3,4 + η4,5.

5.1. Empirical performance of cross-validation

To assess the practical performance of cross-validation, samples of size n =

300 were generated in the three-dimensional setting and tensor-product cubic

splines were used to estimate the density under the correct model specification. A

safe choice of q = 100 was used in (2.4); see Section 5.3 for simulations concerning

the practical choice of q. For each of the one hundred replicates, three estimates

were calculated via (1.3), two with the smoothing parameters λv “minimizing”

the cross-validation score (3.4) with α = 1, 1.4, respectively, and the other with

λo minimizing the Kullback-Leibler loss

L(λ) = KL(η, ηλ) =

∫
X
(η − ηλ)(x)e

η(x)ρ(x)dx =

∫
X
(η − ηλ)(x)p(x)dx;

only two passes of fixed-θ minimization were performed to locate λv as noted in

Section 3, but λo did minimize L(λ) as a multivariate function. Parallel results

in the five-dimensional setting were also obtained for sample size n = 600 and

q = 100. The standard KL(η, ηλ) loss was calculated for all estimates as the
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Figure 1. Performance of Cross-Validation. Left: L(λv) with α = 1 versus
L(λv) with α = 1.4. Right: L(λv) via (1.2) versus L(λv) via (1.3). Center:
L(λo)/L(λv) in the left half; L(λv) via (1.2) over that via (1.3) in the right
half. Results on [0, 1]3 with n = 300 are in solid and those on [0, 1]5 with
n = 600 in faded.

performance measure, despite the use of the LK loss of (3.1) in the technical

derivation of (3.4).

Plotted in the left frame of Figure 1 are L(λv) with α = 1 versus L(λv)

with α = 1.4, suggesting a slight preference for α = 1.4. The relative efficacy

L(λo)/L(λv) for α = 1.4 is shown in the left half of the center frame in boxplots.

The relative efficacy of V (λ) in (3.4) is mediocre but acceptable; by using (1.3),

we were ready to take a hit in performance in the first place, and the key here is

to make things work reliably.

5.2. Comparisons against penalized likelihood

We now compare estimation via (1.3) with estimation via (1.2) in terms of

performance and timing. For each of the samples, cross-validated estimates were

calculated via (1.2) and (1.3), respectively, with the same {Zj} of size q = 10n2/9

in (2.4) and the default α = 1.4 in their respective cross-validation scores; the

quasi-Newton step was skipped for the estimates via (1.2) to put things on an

equal footing.

Shown in the right frame of Figure 1 are L(λv) via (1.2) versus L(λv) via

(1.3), using one hundred replicates each with n = 300 on [0, 1]3, and with n = 600

on [0, 1]5; the ratios of L(λv) via (1.2) over that via (1.3) are summarized in

the right half of the center frame. As expected, (1.3) is no match to (1.2) in

performance, but the degradation can still be measured.

To visually inspect the performances of the estimates, we pick the first repli-

cate on [0, 1]3, which has L(λv) = 0.1012 via (1.3) and L(λv) = 0.0867 via

(1.2). Shown in Figure 2 are the conditional densities f(x1, x2|x3 = 0.5) and

f(x1, x2|x3 = 0.8); note that f(x1, x2|x3) = f(x1|x3)f(x2|x3) for the test density
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Figure 2. Estimation on [0, 1]3: A Fitted f(x1, x2|x3) = f(x1|x3)f(x2|x3).
Estimates via (1.3) are in solid, those via (1.2) in faded, and the test density
in dashed lines.

and the estimates. The mode of marginal density f(x3) is at x3 = 0.5 and it is
reassuring to see that f(x1, x2|x3 = 0.5) is estimated well, whereas less data are
available near x3 = 0.8 where the estimates are less accurate.

For the one hundred replicates on [0, 1]3 with n = 300 and q = 36, the
estimates via (1.3) took 62.5 CPU seconds on a linux server, the estimates via
(1.2) using a 2527-point quadrature took 296.4 CPU seconds, and (1.2) with a
3679-point quadrature took 405.9 CPU seconds. For the one hundred replicates
on [0, 1]5 with n = 600 and q = 42, the estimates via (1.3) took 180.3 CPU
seconds, the estimates via (1.2) using a 10063-point quadrature took 1839.7 CPU
seconds, and (1.2) with a 17103-point quadrature took 3232.8 CPU seconds.

The computational savings here are moderate, probably not worth the per-
formance degradation, but it is evident that the computation of (1.3) is roughly
O(nq2) whereas that of (1.2) largely depends on the quadrature size. As the di-
mension goes up, adequate quadrature sizes quickly become astronomical, forcing
(1.2) out of consideration. When (1.2) is numerically feasible, it is preferred to
(1.3), though the latter remains a convenient exploratory tool, say for a quick
check of the rough shape of p(x1|the rest) or for an exploration of conditional
independence structures.

5.3. Practical Choice of q

The computational cost increases with the dimension of H∗ in (2.4) at a rate
proportional to q2, thus a small q is preferable, while too small a q could lead
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Figure 3. Effect of q on Estimation Consistency. Boxplots of 30 L(λv) for
each of q = kn2/9; from high to low, n = 300, 600, 1,200 on [0, 1]3 (Left) or
n = 600, 1,200 on [0, 1]5 (Right).

to undesirable model bias. A proper balance is needed. As noted in Section 7.4,

the optimal convergence rates Op

(
n−rp/(rp+1)

)
are achieved as qn−2/(rp+1) →

∞ which, for tensor-product cubic splines (with 4 − ϵ < r < 4, ∀ϵ > 0) and

“supersmooth” η0 (with p = 2), translates into q ≍ n2/9+ϵ, ∀ϵ > 0. For practical

estimation, one may use q = kn2/9 with k = 10, as suggested by the following

simulations.

In the three-dimensional setting, three samples were drawn from the test

density, of sizes n = 300, 600, and 1, 200. For each sample and every k on the

grid 5(1)15, 30 different random subsets {Zj} ⊂ {Xi} of size q = kn2/9 were

generated to form 30 different H∗, yielding 30 different cross-validated estimates

under the correct model specification. The 30 L(λv) for each k are summarized

in the boxplots in the left frame of Figure 3. For the n = 300 and n = 1, 200

samples, things settled down around or before k = 10. The n = 600 sample

appeared to be a “difficult” one, and things did not quite settle down until later.

One factor at play here is that the random subsets {Zj} were also used for the

estimation of the marginal densities that form the ρ(x) function, thus (1.3) itself

also varies with {Zj}. We set q = 10n2/9 as default in software implementation,

which is appropriate for the “estimation” of ρ(x); it can be easily overridden if a

larger q is desired.

Parallel results in the five-dimensional setting are shown in the right frame

of Figure 3, for samples of sizes n = 600 and 1,200.

Note that the use of q = 100 ≈ 28(300)2/9 ≈ 24(600)2/9 in the simulations

of Section 5.1 kept to a minimum the effect of the choice of H∗.

5.4. Squared error projection

For a quick check on the squared error projection of Section 4, one hundred

replicates were drawn for each of n = 300, 600 in the three-dimensional setting.
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Table 1. Quantiles of Ṽ (η̂ − η̃)/Ṽ (η̂ − ηu) for n = 300, 600 on [0, 1]3 and
n = 600, 1,200 on [0, 1]5.

50% 90% 95% 99% 100%
[0, 1]3 n = 300 0.0124 0.0342 0.0421 0.0644 0.1095

n = 600 0.0124 0.0332 0.0412 0.0657 0.0761
[0, 1]5 n = 600 0.0080 0.0187 0.0202 0.0306 0.0376

n = 1200 0.0045 0.0083 0.0107 0.0129 0.0130

Cross-validated estimates were calculated with the default q = 10n2/9 and α =

1.4 under a model specification involving all interactions,

η̂ = η∅ + η1 + η2 + η3 + η1,2 + η1,3 + η2,3 + η1,2,3,

and squared error projections were obtained in the correct model space, of the

form

η̃ = η∅ + η1 + η2 + η3 + η1,3 + η2,3.

The ratios Ṽ (η̂ − η̃)/Ṽ (η̂ − ηu) are summarized in the first two rows of Table 1.

Parallel results in the five-dimensional setting were also obtained, for one

hundred replicates each with n = 600 and 1,200, a model specification involving

all two-way interactions,

η̂ = η∅+η1+η2+η3+η4+η5+η1,2+η1,3+η1,4+η1,5+η2,3+η2,4+η2,5+η3,4+η3,5+η4,5,

and projections of the form

η̃ = η∅ + η1 + η2 + η3 + η4 + η5 + η1,2 + η2,3 + η3,4 + η4,5.

The ratios Ṽ (η̂ − η̃)/Ṽ (η̂− ηu) are summarized in the last two rows of Table 1.

The [0, 1]3, n = 300 line and the [0, 1]5, n = 600 line in Table 1 are based on

the same replicates and the same {Zj} as the estimates shown in the right frame

of Figure 1. The projection appears to be informative even if the estimation may

be inaccurate.

6. Examples

The techniques being developed have been implemented in a suite of R func-

tions included in the gss package. We now use the software tools to analyze a few

data sets. Instead of the density estimates themselves which are less perceptible

in high dimensions, we focus on the conditional independence structures, which

can be depicted as undirected graphs.
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6.1. Air pollution and road traffic

We first reanalyze an example in Jeon and Lin (2006). The data are found in

the StatLib Datasets Archive at http://lib.stat.cmu.edu/datasets/ under

the heading NO2. It consists of a subset of 500 hourly observations collected at

Alnabru in Oslo, Norway, between October 2001 and August 2003. The data

are included in gss as a data frame NO2 with elements no2 (NO2 concentration),

cars (traffic volume), temp (temperature 2 meters above ground), wind (wind

speed), temp2 (temperature difference between 25 and 2 meters above ground),

and wind2 (wind direction).

To fit a joint density of the variables via (1.3), one can use:

library(gss); data(NO2); set.seed(5732)

fit <- ssden1(~(no2+cars+temp+wind+temp2+wind2)^2,data=NO2,

nbasis=100)

where all main effects and two-way interactions are included; set.seed ensures

reproducible results and nbasis sets q = 100. To explore conditional indepen-

dence structures, one can screen the significance of the interaction terms:

label <- fit$terms$labels[7:21]

ratio <- project(fit,include=label,drop1=TRUE)$ratio

where label lists the 15 interaction terms, and squared error projections are cal-

culated with the terms removed one at a time. Normally, the argument include

in the call to project specifies the terms included in H0 (all main effects are

automatically included internally), but drop1=TRUE here asks for 15 projections

each with 14 interaction terms in H0, with ratio containing the 15 “drop-one-

term” Ṽ (η̂− η̃)/Ṽ (η̂− ηu) ratios labeled by the dropped interaction; these ratios

indicate how irreplaceable the terms are in the fit, thus may be referred to as the

“strengths” of the respective interaction terms. Putting things in a decreasing

order:

rev(order(ratio))

one has 1, 8, 4, 3, 7, 2, 15, 6, 9, . . . . Projecting into spaces containing the first 8

and 9 terms, respectively, one has Ṽ (η̂ − η̃)/Ṽ (η̂ − ηu) = 3.3%, 2.0%:

project(fit,include=label[c(1,8,4,3,7,2,15,6)])

project(fit,include=label[c(1,8,4,3,7,2,15,6,9)])

A graph depicting the 9 interactions in label[c(1,8,4,3,7,2,15,6,9)] is shown

in Figure 4, where the labels on the edges mark the “strengths” of the links in

the form of the “drop-one-term” Ṽ (η̂ − η̃)/Ṽ (η̂ − ηu) ratios. Given (no2,cars),

(temp,wind) and (temp2,wind2) are conditionally independent.
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temp2 no2 temp

wind2 cars wind

33.4%21.8%

6.6%

3.8%

3.4%

2.1%

1.6%

1.2%

1.3%

Figure 4. Graphical Model Fitted to NO2 Data. The labels on the edges
indicate how irreplaceable the interactions are in the fit.

6.2. Transcription factor association

Transcription factors play important roles in the study of gene expression.

Some transcription factor association strength scores, normalized to be between

0 and 5.132242, were compiled by Ouyang, Zhou, and Wong (2009) for 12 tran-

scription factors on 18936 genes, with the data available at

http://www.pnas.org/content/suppl/2009/12/04/0904863106.

DCSupplemental/SD2.txt

One may read the data into R as a data frame:

SD2 <- read.table("SD2.txt",header=TRUE)

with elements E2f1, Mycn, Zfx, Myc, Klf4, Tcfcp2l1, Esrrb, Nanog, Oct4, Sox2,

Stat3, and Smad1. A log density involving all main effects and two-way interac-

tions was fitted to SD2:

set.seed(5732)

fit.sd2 <- ssden1(~(E2f1+Mycn+Zfx+Myc+Klf4+Tcfcp2l1+Esrrb

+Nanog+Oct4+Sox2+Stat3+Smad1)^2,domain=domain,data=SD2)

where domain is a data frame with elements E2f1=c(0,5.132242),

Mycn=c(0,5.132242), etc. specifying the domain X = [0, 5.132242]12 to be used

in (1.3). Checking the “strengths” of the interaction terms and putting things in

decreasing order:

lab.sd2 <- fit.sd2$terms$labels[-(1:12)]

r.sd2 <- project(fit.sd2,lab.sd2,TRUE)$ratio

rev(order(r.sd2))

one has 13, 3, 1, 2, 12, 46, 39, . . . . Projecting into spaces with the first 5 and 6

interactions, respectively, one has Ṽ (η̂ − η̃)/Ṽ (η̂ − ηu) = 3.3%, 2.9%:

http://www.pnas.org/content/suppl/2009/12/04/0904863106.DCSupplemental/SD2.txt
http://www.pnas.org/content/suppl/2009/12/04/0904863106.DCSupplemental/SD2.txt
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4.41%

1.60%

1.25%

0.92%

0.54%

0.38%

Zfx Mycn Klf4 Esrrb

E2f1
Myc Oct4 Tcfcp2l1

Nanog Sox2 Smad1 Stat3

Figure 5. Graphical Model Fitted to SD2 Data. The labels on the edges
indicate how irreplaceable the interactions are in the fit.

project(fit.sd2,lab.sd2[rev(order(r.sd2))[1:5]])

project(fit.sd2,lab.sd2[rev(order(r.sd2))[1:6]])

A graph illustrating the 6 terms in lab.sd2[c(13,3,1,2,12,46)] is shown in

Figure 5. Apart from the first 6 terms, the rest of the terms all have “strengths”

no better than 0.21%. The overall “weakness” of the interaction terms in this

example suggest weak correlations among the transcription factors.

6.3. Protein signaling network

Measurements of 11 phosphorylated proteins/phospholipid components in

7466 human immune system cells were obtained by Sachs et al. (2005) and used

to build maps of causal signaling pathways using Bayesian networks. We now

fit a log density via (1.3) to the logorithms (base 10) of the measurements; the

data are included in gss as a data frame Sachs with elements praf, pmek, plcg,

pip2, pip3, p44.42, pakts473, pka, pkc, p38, and pjnk. A model involving all

main effects and two-way interactions are fitted to the data, and the interactions

are screened for their “strengths:”

data(Sachs); mn <- apply(Sachs[,-12],2,min);

mx <- apply(Sachs[,-12],2,max)

domain <- data.frame(rbind(mn,mx)); set.seed(5732)

fit.sachs <- ssden1(~(praf+pmek+plcg+pip2+pip3+p44.42+pakts473

+pka+pkc+p38+pjnk)^2,domain=domain,data=Sachs)

lab.sachs <- fit.sachs$terms$labels[-(1:11)]

r.sachs <- project(fit.sachs,lab.sachs,TRUE)$ratio

Projecting into spaces with the first 14 and 22 terms, respectively:
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0.91%
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0.77%

0.63%

0.54%

0.54%

0.52%

0.51%

0.48%

0.45%

0.44%

0.38%

pakts473
pkc p38
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p44.42 pka pip2 pip3

Figure 6. Graphical Model Fitted to SACHS Data. The labels on the edges
indicate how irreplaceable the interactions are in the fit.

project(fit.sachs,lab.sachs[rev(order(r.sachs))[1:14]])

project(fit.sachs,lab.sachs[rev(order(r.sachs))[1:22]])

one has Ṽ (η̂ − η̃)/Ṽ (η̂ − ηu) = 6.8%, 2.9%. The terms in

lab.sachs[rev(order(ratio))[1:22]] are shown in the graph of Figure 6,

where the 8 faded links have “strengths” no better than 0.54%. The structure

appears to be much more complex than the one seen in Figure 5, with many

more links irreplaceable.

Compared to the maps in Sachs et al. (2005), the undirected links here

can only indicate associations, not causal pathways, though nodes “indirectly”

associated do not have links between them. The results are obtained from a single

fit following a top-down approach instead of model-averaging from hundreds of

bottom-up estimates.

7. Asymptotic Convergence

We now analyze the asymptotic convergence properties of the minimizer η̂

of (1.3). Denote by eη0(x)ρ(x) the true density satisfying
∫
eη0(x)ρ(x)dx = 1,

and take V (f) =
∫
X f2(x)ρ(x)dx. Assuming J(η0) < ∞, convergence rates will

be established in terms of V (η̂ − η0). The analysis parallels that of (1.2) by

Gu and Qiu (1993) using similar techniques, of which a slightly more polished

presentation can be found in Gu (2002, Sec. 8.2).

The asymptotic analysis is based on an eigenvalue analysis of V (f) with

respect to J(f), which is permitted by the following assumption.
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Assumption A.1 V is completely continuous with respect to V + J .

Under A.1, there exist ϕν satisfying V (ϕν , ϕµ) = δν.µ, J(ϕν , ϕµ) = ρνδν,µ, and

0 ≤ ρν ↑ ∞, where δν,µ is the Kronecker delta. The convergence rates are

governed by the rate of growth of ρν .

Assumption A.2 For some r > 1, c > 0, and ν sufficiently large, ρν > cνr.

For the cubic spline of Section 2.1, r = 4. For tensor-product cubic splines,

4− ϵ < r < 4, ∀ϵ > 0.

7.1. Linear approximation

Consider the minimization of the quadratic functional

− 1

n

n∑
i=1

e−η0(Xi)η(Xi) +

∫
X
η(x)ρ(x)dx+

1

2
V (η − η0) +

λ

2
J(η); (7.1)

the minimizer η̃ of (7.1) is linear in data. Plugging η(x) =
∑

ν ηνϕν(x), η0(x) =∑
ν ην,0ϕν(x) into (7.1), where ην = V (η, ϕν) and ην,0 = V (η0, ϕν), one solves

η̃ν = (βν+ην,0)/(1+λρν), where βν = n−1
∑n

i=1 e
−η0(Xi)ϕν(Xi)−

∫
X ϕν(x)ρ(x)dx.

Note that E[βν ] = 0 and E[β2
ν ] ≤ n−1

∫
X ϕ2

ν(x)e
−η0(x)ρ(x)dx. Following the

lines of Gu (2002, Sec. 8.2.1), one has, as n → ∞ and λ → 0,

(V + λJ)(η̃ − η0) = Op(λ+ n−1λ−1/r); (7.2)

a further assumption is needed, which holds when η0(x) is bounded from below

as V (ϕν) = 1.

Assumption A.3 For some c3 < ∞,
∫
ϕ2
ν(x)e

−η0(x)ρ(x)dx < c3, ∀ν.

7.2. Approximation error

Denote the minimizer of (1.3) by η̂. Setting η = η̃+αg in (7.1) and η = η̂+αg

in (1.3), differentiating with respect to α, and evaluating the derivatives at α = 0,

one has, ∀g ∈ H,

− 1

n

n∑
i=1

e−η0(Xi)g(Xi) +

∫
X
g(x)ρ(x)dx+ V (g, η̃ − η0) + λJ(g, η̃) = 0, (7.3)

− 1

n

n∑
i=1

e−η̂(Xi)g(Xi) +

∫
X
g(x)ρ(x)dx+ λJ(g, η̂) = 0. (7.4)
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Subtracting (7.3) from (7.4) and setting g = η̂ − η̃, one has

λJ(η̂ − η̃)− 1

n

n∑
i=1

{
e−η̂(Xi) − e−η̃(Xi)

}
(η̂ − η̃)(Xi)

=
1

n

n∑
i=1

{
e−η̃(Xi) − e−η0(Xi)

}
(η̂ − η̃)(Xi) + V (η̂ − η̃, η̃ − η0). (7.5)

Further assumptions are needed to proceed; see Section 7.4 below for remarks.

Assumption A.4 For some 0 < c1 < c2 < ∞, and η in a convex neighborhood

of η0 containing η̃, η̂, and η∗ and η̂∗ to be introduced in Section 7.3, c1 <

e−η0(x)+η(x) < c2, ∀x ∈ X .

Assumption A.5 For some c4 < ∞,
∫
X ϕ2

ν(x)ϕ
2
µ(x)e

−η0(x)ρ(x)dx < c4, ∀ν, µ.

Under A.4, by the Mean Value Theorem, one has, for c1 as in A.4 and some

c ∈ (c1, c2),

c1
1

n

n∑
i=1

e−η0(Xi)(η̂ − η̃)2(Xi)

≤ − 1

n

n∑
i=1

{
e−η̂(Xi) − e−η̃(Xi)

}
(η̂ − η̃)(Xi), (7.6)

− c

n

n∑
i=1

e−η0(Xi)(η̂ − η̃)(Xi)(η̃ − η0)(Xi)

=
1

n

n∑
i=1

{
e−η̃(Xi) − e−η0(Xi)

}
(η̂ − η̃)(Xi). (7.7)

Under A.5, for g(x) =
∑

ν gνϕν(x) and h(x) =
∑

ν hνϕν(x), one has∣∣∣ 1
n

n∑
i=1

e−η0(Xi)g(Xi)h(Xi)− V (g, h)
∣∣∣

=
∣∣∣∑

ν

∑
µ

gνhµ

{ 1

n

∑
i

e−η0(Xi)ϕν(Xi)ϕµ(Xi)−
∫
X
ϕν(x)ϕµ(x)ρ(x)dx

}∣∣∣
≤

{∑
ν

∑
µ

1

1 + λρν

1

1 + λρµ

{ 1

n

∑
i

e−η0(Xi)ϕν(Xi)ϕµ(Xi)

−
∫
X
ϕν(x)ϕµ(x)ρ(x)dx

}2}1/2{∑
ν

∑
µ

(1 + λρν)(1 + λρµ)g
2
νh

2
µ

}1/2

= (V + λJ)1/2(g)(V + λJ)1/2(h)Op(n
−1/2λ−1/r). (7.8)
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Substituting (7.6), (7.7), and (7.8) into (7.5), some manipulations yield, as λ → 0

and nλ2/r → ∞,

(c1V + λJ)(η̂ − η̃) ≤
(
|1− c|+ op(1)

)
(V + λJ)1/2(η̂ − η̃)(V + λJ)1/2(η̃ − η0)

which, in combination with (7.2), establishes the following.

Theorem 2. Under Assumptions A.1−A.5, as λ → 0 and nλ2/r → ∞,

(V + λJ)(η̂ − η0) = Op(λ+ n−1λ−1/r).

7.3. Semiparametric approximation

The minimizer η̂ of (1.3) in H is in general not computable. For practical

applications, one needs computable approximations that do not sacrifice perfor-

mance. We now consider the minimization of (1.3) in H∗ = NJ ⊕span
{
RJ(Zj , ·),

j = 1, . . . , q
}
, where {Zj} is a random subset of {Xi}.

Let η∗ be the projection of η̂ in H∗; J(η∗, η̂ − η∗) = 0. Setting g = η̂ − η∗ in

(7.4), one has

− 1

n

n∑
i=1

e−η̂(Xi)(η̂ − η∗)(Xi) +

∫
X
(η̂ − η∗)(x)ρ(x)dx+ λJ(η̂ − η∗, η̂) = 0. (7.9)

This can be rearranged as

λJ(η̂ − η∗) =
1

n

∑
i

{
e−η̂(Xi) − e−η0(Xi)

}
(η̂ − η∗)(Xi)

+
1

n

∑
i

e−η0(Xi)(η̂ − η∗)(Xi)−
∫
X
(η̂ − η∗)(x)ρ(x)dx. (7.10)

The first term on the right-hand side of (7.10) is
(
c+ op(1)

)
V (η̂− η0, η̂− η∗) for

some c by (7.8); the second term can be shown to be of the order (V +λJ)1/2(η̂−
η∗)Op(n

−1/2λ−1/2r) using the same technique as in (7.8). For h ∈ H ⊖ H∗, one

has V (h) = Op(q
−1/2λ−1/r)(V + λJ)(h) (cf., Gu (2002, Lemma 8.5)), thus for

q−1/2λ−1/r → 0, V (η̂ − η∗) = op
(
λJ(η̂ − η∗)

)
. Substituting these into (7.10) one

has, as λ → 0 and q1/2λ1/r → ∞,

(V + λJ)(η̂ − η∗) = Op(λ+ n−1λ−1/r). (7.11)

Let η̂∗ be the minimizer of (1.3) in H∗. Setting g = η̂− η̂∗ in (7.4), one has

− 1

n

n∑
i=1

e−η̂(Xi)(η̂ − η̂∗)(Xi) +

∫
(η̂ − η̂∗)(x)ρ(x) + λJ(η̂ − η̂∗, η̂) = 0. (7.12)
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Replacing η̂ in (7.4) by η̂∗ and setting g = η̂∗ − η∗, one has

− 1

n

n∑
i=1

e−η̂∗(Xi)(η̂∗− η∗)(Xi)+

∫
(η̂∗− η∗)(x)ρ(x)+λJ(η̂∗− η∗, η̂∗) = 0. (7.13)

Adding (7.12), (7.13) and subtracting (7.9), noting that J(η̂∗ − η∗, η̂ − η∗) = 0,

some algebra yields

λJ(η̂∗ − η∗)− 1

n

n∑
i=1

{
e−η̂∗(Xi) − e−η∗(Xi)

}
(η̂∗ − η∗)(Xi)

= − 1

n

n∑
i=1

{
e−η̂(Xi) − e−η∗(Xi)

}
(η̂∗ − η∗)(Xi). (7.14)

The left-hand side of (7.14) is no less than
(
c1 + op(1)

)
V (η̂∗ − η∗) + λJ(η̂∗ − η∗);

the right-hand side is
(
c+ op(1)

)
V (η̂ − η∗, η̂∗ − η∗). These, in combination with

(7.11) and Theorem 2, lead to the following.

Theorem 3. Under Assumptions A.1−A.5, as λ → 0 and q1/2λ1/r → ∞,

(V + λJ)(η̂∗ − η0) = Op(λ+ n−1λ−1/r).

7.4. Remarks

The rate Op(λ+n−1λ1/r) was established in (7.2) under the assumption that

J(η0) =
∑

ν ρνη
2
ν,0 < ∞, then propagated through subsequent analysis. When η0

is “supersmooth” in the sense that
∑

ν ρ
p
νη2ν,0 < ∞ for some p ∈ (1, 2], the rate

can be improved to Op(λ
p + n−1λ−1/r).

The optimal rate Op

(
n−rp/(rp+1)

)
is achieved at λ ≍ n−r/(rp+1), which does

satisfy nλ2/r → ∞ for r > 1 and p ∈ [1, 2]. For q1/2λ1/r → ∞ with the optimal

λ, one needs qn−2/(rp+1) → ∞.

Assumptions A.3 and A.4 hold automatically when η0(x) is bounded on X
from below and above. Assumption A.5 is plausible in light of A.3, since ϕµ(x)

generally increases in “frequency” but not in magnitude as µ → ∞.

Define Ṽ (f) =
∫
X
{
f(x)−

∫
X f(x)ρ(x)dx

}2
ρ(x)dx < V (f). Ṽ (η − η0) takes

care of the normalizing constant, and rates in V (η−η0) imply rates in Ṽ (η−η0).

For densities p(x) ∝ eη(x)ρ(x) and p′(x) ∝ eη
′(x)ρ(x), the symmetrized Kullback-

Leibler discrepancy between them is seen to be equal to
∫
X
{
(η−η′)(x)−

∫
X (η−

η′)(x)p̃(x)dx
}2

p̃(x)dx, with p̃(x) ∝ eη̃(x)ρ(x) for η̃(x) a convex combination of

η(x) and η′(x).

In the analysis of (1.2) by Gu and Qiu (1993), convergence rates were calcu-

lated in terms of V ∗(η − η0) =
∫
X (η − η0)

2(x)p(x)dx−
{ ∫

X (η − η0)(x)p(x)dx
}2

,



1152 CHONG GU, YONGHO JEON, AND YI LIN

where p(x) = eη0(x)/
∫
X eη0(x)dx is the true density and eη(x)/

∫
X eη(x)dx is the

estimate; this agrees with Ṽ (η − η0) above for ρ(x) = p(x).

8. Summary and Discussion

We have studied various aspects of an approach initiated by Jeon and Lin

(2006) to nonparametric density estimation in high dimensions. Of primary con-

cern is the effective smoothing parameter selection at a manageable computa-

tional cost, which makes or breaks the method. Also discussed are the “testing”

of conditional independence structures and the asymptotic convergence of the es-

timates. Incorporating results from the theoretical, algorithmic, and simulation

studies, a suite of R functions is made available for public use.

In our initial simulation studies, the performance of V (λ) in (3.4) could be

best described as hit-and-miss, highly unreliable even with the fudge factor. We

were forced to explore numerous alternatives, but to no avail, as the only reliable

alternative required the normalizing constant. The developments were set aside

for a few years, until it was discovered, by sheer luck, that the score V (λ), when

“stopped” early, could be effective after all.

The formulation under study avoids the numerical burden of multi-

dimensional integration in (1.2) at the cost of performance degradation, but it

does not make the task of estimation any easier. Selective inclusion of ANOVA

terms helps one to battle the curse of dimensionality, but large samples are

needed for any estimation to be reliable in high dimensions. The squared error

projection is similar to but different from a statistical test; see Gu (2004) for

discussion concerning the similarities and philosophical differences.

In the simulation settings of Section 5, the savings in computational time

may not be worth the performance degradation, and we do recommend the use of

(1.2) when it is feasible. Adequate quadrature size grows quickly as the dimen-

sion goes up, however, and when the sample sizes are large enough to warrant

density estimation in high dimensions, (1.2) quickly becomes infeasible numeri-

cally. Coupled with (3.4), (1.3) fills the void, and the squared error projection of

Section 4 allows one to explore conditional independence structures even if the

estimation may not be accurate.
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