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Abstract: There is a long history of testing the equality of two multivariate means.

A popular test is the Hotelling T 2, but in large dimensions it performs poorly due

to the possible inconsistency of sample covariance estimation. Bai and Saranadasa

(1996) and Chen and Qin (2010) proposed tests not involving the sample covari-

ance, and derived asymptotic limits, which depend on whether the dimension is

fixed or diverges, under a specific multivariate model. In this paper, we propose

a jackknife empirical likelihood test that has a chi-square limit independent of the

dimension. The conditions are much weaker than those needed in existing methods.

A simulation study shows that the proposed new test has a very robust size across

dimensions and has good power.

Key words and phrases: High dimensional mean, hypothesis test, Jackknife empir-

ical likelihood.

1. Introduction

Let X1 = (X1,1, . . . , X1,d)
T , . . . , Xn1 = (Xn1,1, . . . , Xn1,d)

T and Y1 = (Y1,1,

. . . , Y1,d)
T , . . . , Yn2 = (Yn2,1, . . . , Yn2,d)

T be two independent random samples

with means µ1 and µ2, respectively. The testing of H0 : µ1 = µ2 against

Ha : µ1 ̸= µ2 for a fixed dimension d has a long history. When both X1 and

Y1 are multivariate normal and with equal covariance, the well-known test is the

Hotelling T 2 test based on

T 2 = η(X̄− Ȳ)TA−1
n (X̄− Ȳ), (1.1)

where η=(n1 + n2−2)n1n2/(n1 + n2), X̄=(1/n1)
∑n1

i=1Xi, Ȳ = (1/n2)
∑n2

i=1 Yi
and An =

∑n1
i=1(Xi−X̄)(Xi−X̄)T +

∑n2
i=1(Yi−Ȳ)(Yi−Ȳ)T . However when d =

d(n1, n2) → ∞, the test performs poorly due to possible inconsistency of sample

covariance estimation. When d/(n1 + n2) → c ∈ (0, 1), Bai and Saranadasa

(1996) derived the asymptotic power of T 2. To overcome the restriction c < 1,

they proposed

Mn = (X̄− Ȳ)T (X̄− Ȳ)− η−1tr(An)
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as an alternative. Under a special multivariate model that did not assume mul-

tivariate normality but kept the condition of equal covariance, they derived the

asymptotic limits as d/n → c > 0. Recently Chen and Qin (2010) proposed using

CQ =

∑n1
i̸=j X

T
i Xj

n1(n1 − 1)
+

∑n2
i̸=j Y

T
i Yj

n2(n2 − 1)
− 2

∑n1
i=1

∑n2
j=1X

T
i Yj

n1n2
(1.2)

and allowed d to be of a possibly larger order than that in Bai and Saranadasa

(1996). The asymptotic limit of CQ depends on whether the dimension is fixed

or diverges, and results in either a normal or a chi-square limit, with special

models for {Xi} and {Yi} being employed. Another modification of the T 2 test is

proposed by Srivastava and Du (2008) and Srivastava (2009) with the covariance

matrix replaced by a diagonal matrix. Rates of convergence for high-dimensional

means were studied by Kuelbs and Vidyashankar (2010). For nonasymptotic

studies of high dimensional means, we refer to Arlot, Blanchard, and Roquain

(2010a,b). Here, we are interested in finding a test that does not distinguish

between fixed and divergent dimensions.

By noting that µ1 = µ2 is equivalent to (µ1 − µ2)
T (µ1 − µ2) = 0, one

may think of applying an empirical likelihood test to the estimating equation

E {(Xi1−Yj1)
T (Xi2−Yj2)} = 0 for i1 ̸= i2 and j1 ̸= j2. If one applies the empirical

likelihood method of Qin and Lawless (1994) to the samples X1, . . . , Xn1 and

Y1, . . . , Yn2 , the empirical likelihood function is

sup

{{ n1∏
i=1

(n1pi)
}{ n2∏

j=1
(n2qj)

}
: p1 ≥ 0, . . . , pn1 ≥ 0, q1 ≥ 0, . . . , qn2 ≥ 0,

n1∑
i=1

pi = 1,
n2∑
j=1

qj = 1,

n1∑
i1=1

∑
i2 ̸=i1

n2∑
j1=1

∑
j2 ̸=j1

(pi1Xi1 − qj1Yj1)
T (pi2Xi2 − qj2Yj2) = 0

}
,

but the estimating equation defines a nonlinear functional and, in general, one

has to linearize it before applying the method. For more details on empirical

likelihood methods, we refer to Owen (2001) and the review paper of Chen and

Van Keilegom (2009). Recently, Jing, Yuan, and Zhou (2009) proposed a jack-

knife empirical likelihood method to construct confidence regions for nonlinear

functionals with a particular focus on U-statistics. Using this idea, one needs

to construct a jackknife sample based on the estimator n−1
1 (n1 − 1)−1n−1

2 (n2 −
1)−1

∑n1
i1 ̸=i2

∑n2
j1 ̸=j2

(Xi1 −Yj1)
T (Xi2 −Yj2), the statistic CQ given as (1.2). How-

ever, in order to have the jackknife empirical likelihood method work, one has to

show that
√
n1n2n

−1
1 (n1−1)−1n−1

2 (n2−1)−1
∑n1

i1 ̸=i2

∑n2
j1 ̸=j2

(Xi1−Yj1)
T (Xi2−Yj2)
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has a normal limit when µ1 = µ2. If n1 = n2 = n, d = 1, and µ1 = µ2, it is easy

to see that

n−1(n− 1)−2
n∑

i1 ̸=i2

n∑
j1 ̸=j2

(Xi1 − Yj1)
T (Xi2 − Yj2)

=
1

n− 1
{

n∑
i=1

(Xi − Yi)}2 −
1

n− 1

n∑
i=1

(Xi − Yi)
2 +

2

n(n− 1)

n∑
i=1

Xi

n∑
j=1

Yj

− 2

(n− 1)

n∑
i=1

XiYi

d→ (χ2
1 − 1)E (X1 − Y1)

2

as n → ∞, where χ2
1 denotes a random variable having a chi-square distribution

with 1 degree of freedom. Obviously, the above limit is not normal. Hence a

direct application of the jackknife empirical likelihood method to the statistic

CQ does not lead to a chi-square limit.

In this paper, we formulate a jackknife empirical likelihood test for testing

H0 : µ1 = µ2 against Ha : µ1 ̸= µ2 by dividing the samples into two parts. The

proposed new test has no need to distinguish whether the dimension is fixed or

goes to infinity. It turns out that the asymptotic limit of the new test under H0

is a chi-square limit independent of the dimension, the conditions on p and the

random vectors {Xi} and {Yj} are weaker as well. A simulation study shows

that the size of the new test is quite stable with respect to the dimension and

that the proposed test has good power.

We organize this paper as follows. In Section 2, the new methodology and

main results are given. Section 3 presents a simulation study and a data analysis.

All proofs are in Section 4.

2. Methodology

Throughout, take Xi = (Xi,1, . . . , Xi,d)
T and Yj = (Yj,1, . . . , Yj,d)

T for i =

1, . . . , n1, j = 1, . . . , n2 to be independent random samples with means µ1 and

µ2, respectively. With min{n1, n2} going to infinity, we wish to test H0 : µ1 = µ2

against Ha : µ1 ̸= µ2. Since µ1 = µ2 is equivalent to (µ1 − µ2)
T (µ1 − µ2) = 0

and E (Xi1 − Yj1)
T (Xi2 − Yj2) = (µ1 − µ2)

T (µ1 − µ2) for i1 ̸= i2 and j1 ̸= j2,

we propose to apply the jackknife empirical likelihood method to this estimating

equation, but a direct application of it fails to have a chi-square limit. Here we

propose to split the samples into two groups, as follows.
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Take m1 = [n1/2], m2 = [n2/2], m = m1 + m2, X̄i = Xi+m1 for i =

1, . . . ,m1, and Ȳj = Yj+m2 for j = 1, . . . ,m2. First estimate (µ1 − µ2)
T (µ1 − µ2)

by

1

m1m2

m1∑
i=1

m2∑
j=1

(Xi − Yj)
T (X̄i − Ȳj). (2.1)

This is less efficient than the statistic CQ, but it allows us to add more estimating

equations and to employ the empirical likelihood method without estimating the

asymptotic covariance. By noting that E {(Xi−Yj)
T (X̄i−Ȳj)} = (µ1−µ2)

T (µ1−
µ2) = ||µ1−µ2||2 instead of O(||µ1−µ2||), one expects that a test based on (2.1)

is as powerful for small values of ||µ1−µ2||; this is confirmed by a brief simulation

study. In order to improve power, we propose to apply the jackknife empirical

likelihood method in Jing, Yuan, and Zhou (2009) to (2.1) and a linear functional

such as

1

m1m2

m1∑
i=1

m2∑
j=1

{αT (Xi − Yj) + αT (X̄i − Ȳj)} (2.2)

rather than only (2.1), where α ∈ Rd is a vector chosen based on prior infor-

mation. Theoretically, when no additional information is available, any linear

functional is a possible choice and α = (1, . . . , 1)T ∈ Rd is a convenient one.

Note that more linear functionals can be added at (2.2), with different choices of

α, to further improve the power. In the simulation study we applied the jackknife

empirical likelihood to (2.1) and (2.2) with α = (1, . . . , 1) ∈ Rd, which resulted

in a test with good power and quite robust size with respect to the dimension.

As in Jing, Yuan, and Zhou (2009), based on (2.1) and (2.2), we formulate

the jackknife sample as Zk = (Zk,1, Zk,2)
T for k = 1, . . . ,m, where

Zk,1 =
m1 +m2

m1m2

m1∑
i=1

m2∑
j=1

(Xi − Yj)
T (X̄i − Ȳj)

−m1 +m2 − 1

(m1 − 1)m2

m1∑
i̸=k,i=1

m2∑
j=1

(Xi − Yj)
T (X̄i − Ȳj),

Zk,2 =
m1 +m2

m1m2

m1∑
i=1

m2∑
j=1

{αT (Xi − Yj) + αT (X̄i − Ȳj)}

−m1 +m2 − 1

(m1 − 1)m2

m1∑
i̸=k,i=1

m2∑
j=1

{αT (Xi − Yj) + αT (X̄i − Ȳj)},
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for k = 1, . . . ,m1, and

Zk,1 =
m1 +m2

m1m2

m1∑
i=1

m2∑
j=1

(Xi − Yj)
T (X̄i − Ȳj)

−m1 +m2 − 1

m1(m2 − 1)

m1∑
i=1

m2∑
j ̸=k−m1,j=1

(Xi − Yj)
T (X̄i − Ȳj),

Zk,2 =
m1 +m2

m1m2

m1∑
i=1

m2∑
j=1

{αT (Xi − Yj) + αT (X̄i − Ȳj)}

−m1 +m2 − 1

m1(m2 − 1)

m1∑
i=1

m2∑
j ̸=k−m1,j=1

{αT (Xi − Yj) + αT (X̄i − Ȳj)},

for k = m1 + 1, . . . ,m. Based on this sample, the jackknife empirical likelihood

ratio function for testing H0 : µ1 = µ2 is defined as

Lm = sup
{ m∏

i=1

(mpi) : p1 ≥ 0, . . . , pm ≥ 0,
m∑
i=1

pi = 1,
m∑
i=1

piZi = (0, 0)T
}
.

By the Lagrange multiplier technique, we have pi = m−1{1 + βTZi}−1 for i =

1, . . . ,m, and

lm := −2 logLm = 2

m∑
i=1

log{1 + βTZi},

where β satisfies

1

m

m∑
i=1

Zi

1 + βTZi
= (0, 0)T . (2.3)

Write Σ = (σi,j)1≤i≤d,1≤j≤d = E {(X1 − µ1)(X1 − µ1)
T }, the covariance

matrix of X1, and use λ1 ≤ · · · ≤ λd to denote the d eigenvalues of the matrix

Σ. Similarly, write Σ̄ = (σ̄i,j)1≤i≤d,1≤j≤d = E {(Y1 − µ2)(Y1 − µ2)
T } and use

λ̄1 ≤ · · · ≤ λ̄d to denote the d eigenvalues of the matrix Σ̄. Also write

ρ1 =

d∑
i,j=1

σ2
i,j = tr(Σ2), ρ2 =

d∑
i,j=1

σ̄2
i,j = tr(Σ̄2), τ1 = 2αTΣα, τ2 = 2αT Σ̄α.

(2.4)

Here tr means trace for a matrix. Note that ρ1 = E [(X1 − µ1)
T (X2 − µ1)]

2,

ρ2 = E [(Y1−µ2)
T (Y2−µ2)]

2, τ1 = 2E [αT (X1−µ1)]
2 and τ2 = 2E [αT (Y1−µ2)]

2,

and these quantities may depend on n1, n2 since d does.

Theorem 1. Suppose τ1 and τ2 in (2.4) are positive, and for some δ > 0,

E |(X1 − µ1)
T (X̄1 − µ1)|2+δ

ρ
(2+δ)/2
1

= o(m
(δ+min(δ,2))/4
1 ), (2.5)
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E |(Y1 − µ2)
T (Ȳ1 − µ2)|2+δ

ρ
(2+δ)/2
2

= o(m
(δ+min(δ,2))/4
2 ), (2.6)

E |αT (X1 + X̄1 − 2µ1)|2+δ

τ
(2+δ)/2
1

= o(m
(δ+min(δ,2))/4
1 ), (2.7)

E |αT (Y1 + Ȳ1 − 2µ2)|2+δ

τ
(2+δ)/2
2

= o(m
(δ+min(δ,2))/4
2 ). (2.8)

Then, under H0 : µ1 = µ2, lm converges in distribution to a chi-square distribu-

tion with two degrees of freedom as min{n1, n2} → ∞.

Based on this result, one can test H0 : µ1 = µ2 against Ha : µ1 ̸= µ2

by rejecting H0 when lm ≥ χ2
2,γ , where χ2

2,γ denotes the (1 − γ)−quantile of a

chi-square distribution with two degrees of freedom and γ is the significant level.

Remark 1. In equations (2.5)−(2.8), the restrictions are put on E [|W |2+δ/

(EW 2)(2+δ)/2] for some random variables W ; they are necessary for the CLT

to hold for random arrays. Later we will see that the restrictions are satisfied

by imposing some conditions on the higher-order moments or the dependence

structure.

Remark 2. The proposed test has the following merits:

1. The limiting distribution is always chi-square, and does not require estimation

of the asymptotic covariance.

2. It does not require a specific structure such as the one used in Bai and

Saranadasa (1996) and Chen and Qin (2010).

3. With a higher-order moment condition or a special dependence structure of

{Xi} and {Yi}, d can be very large.

4. There is no restriction imposed on the relation between n1 and n2 except that

min{n1, n2} → ∞. Moreover, no assumptions are needed on ρ1/ρ2 or τ1/τ2.

Hence the covariance matrices Σ1 and Σ2 can be arbitrary as long as τ1 and

τ2 are positive, so that αTX1 and αTY1 are non-degenerate.

We verify Theorem 1 by imposing conditions on the moments and dimension

of the random vectors.

A1: 0 < lim inf
n1→∞

λ1 ≤ lim sup
n1→∞

λd < ∞ and 0 < lim inf
n2→∞

λ̄1 ≤ lim sup
n2→∞

λ̄d < ∞;

A2: For some δ > 0, (1/d)
∑d

i=1 E {|X1,i − µ1,i|2+δ + |Y1,i − µ2,i|2+δ} = O(1);

A3: d = o(m[δ+min(δ,2)]/[2(2+δ)]).
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Corollary 1. If min{n1, n2} → ∞ and A1−A3 hold, under H0 : µ1 = µ2,

Theorem 1 holds.

Condition A3 is a somewhat restrictive condition on the dimension d. Note

that A1 and A2 are related only to the covariance matrices and some higher

moments off the components of the random vectors: higher the moments, less

the restriction on d. Condition A3 can be removed for models with some special

dependence structure. For comparisons, we prove the Wilks Theorem for the

proposed jackknife empirical likelihood test under a model considered by Bai

and Saranadasa (1996), Chen, Peng, and Qin (2009), and Chen and Qin (2010):

B (Factor model). Xi = Γ1Bi + µ1 for i = 1, . . . , n1, Yj = Γ2B̄j + µ2 for

j = 1, . . . , n2, where Γ1, Γ2 are d × k matrices with Γ1Γ
T
1 = Σ, Γ2Γ

T
2 = Σ̄,

{Bi = (Bi,1, . . . , Bi,k)
T }n1

i=1 and {B̄j = (B̄j,1, . . . , B̄j,k)
T }n2

i=1 are two independent

random samples satisfying EBi = E B̄i = 0, Var (Bi) = Var (B̄i) = Ik×k, EB4
i,j =

3 + ξ1 < ∞, E B̄4
i,j = 3 + ξ2 < ∞, E

∏k
l=1B

νl
i,l =

∏k
l=1 EBνl

i,l and E
∏k

l=1 B̄
νl
i,l =∏k

l=1 E B̄νl
i,l whenever ν1 + · · ·+ νk = 4 for distinct nonnegative integers νl’s.

Theorem 2. Suppose τ1 and τ2 in (2.4) are positive. Under B and H0 : µ1 =

µ2, lm converges in distribution to a chi-square distribution with two degrees of

freedom as min{n1, n2} → ∞.

Remark 3. It can be seen from the proof of Theorem 2 that the assumptions

EB4
i,j = 3 + ξ1 < ∞ and E B̄4

i,j = 3 + ξ2 < ∞ in model B can be replaced

by the much weaker conditions max1≤j≤k EB4
1,j = o(m) and max1≤j≤k E B̄4

1,j =

o(m). Unlike Bai and Saranadasa (1996) and Chen and Qin (2010), there is no

restriction on d and k for our proposed method. The only constraint imposed

on matrices Γ1 and Γ2 is that both αTΣα and αT Σ̄α are positive, which is very

weak.

3. Simulation Study and Data Analysis

3.1. Simulation study

We investigated the finite sample behavior of the proposed jackknife empiri-

cal likelihood test (JEL) and compared it with the test statistic in (1.2) proposed

by Chen and Qin (2010) in terms of both size and power.

Let W1, . . . ,Wd be iid N(0, 1) random variables, and let W̄1, . . . , W̄d, inde-

pendent of the W ′
is be iid t(8) random variables. Put X1,1 = W1, X1,2 = W1 +

W2, . . . , X1,d = Wd−1 +Wd, Y1,1 = W̄1 + µ2,1, Y1,2 = W̄1 + W̄2 + µ2,2, . . . , Y1,d =

W̄d−1 + W̄d + µ2,d, where µ2,i = c1 if i ≤ [c2d], and µ2,i = 0 if i > [c2d]. Thus,

100c2% of the components of Y1 have a shifted mean compared to that of X1.
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Table 1. Sizes and powers of the proposed jackknife empirical likelihood
test (JEL) and the test in Chen and Qin (2010) (CQ) are reported for the
case of (n1, n2) = (30, 30) at level 5%.

d JEL CQ JEL CQ JEL CQ
c1 = 0 c1 = 0 c1 = 0.1 c1 = 0.1 c1 = 0.1 c1 = 0.1

c2 = 0.25 c2 = 0.25 c2 = 0.25 c2 = 0.25 c2 = 0.75 c2 = 0.75
10 0.070 0.049 0.071 0.049 0.072 0.062
20 0.056 0.037 0.057 0.049 0.096 0.060
30 0.064 0.047 0.066 0.049 0.113 0.066
40 0.070 0.052 0.069 0.058 0.116 0.072
50 0.067 0.049 0.083 0.054 0.138 0.067
60 0.063 0.039 0.069 0.043 0.174 0.055
70 0.053 0.053 0.076 0.065 0.190 0.081
80 0.056 0.059 0.063 0.067 0.191 0.082
90 0.056 0.044 0.080 0.054 0.204 0.071
100 0.066 0.060 0.082 0.064 0.229 0.091
300 0.056 0.045 0.114 0.054 0.537 0.092
500 0.049 0.051 0.160 0.063 0.731 0.110

Since we test H0 : EX1 = EY1 against Ha : EX1 ̸= EY1, the case of

c1 = 0 denotes the size of tests. After drawing 1, 000 random samples of sizes

n1 = 30, 100, 150 from X = (X1,1, . . . , X1,d)
T and independently drawing 1, 000

random samples of sizes n2 = 30, 100, 200 from Y = (Y1,1, . . . , Y1,d)
T with d =

10, 20, . . . , 100, 300, 500, c1 = 0, 0.1, and c2 = 0.25, 0.75, we calculated the powers

of the two tests mentioned above.

In Tables 1−3, we report the empirical sizes and powers for the proposed

jackknife empirical likelihood test with α = (1, . . . , 1)T ∈ Rd and the test in

Chen and Qin (2010), at level 5%. Results for level 10% are similar. From the

tables we observe that the sizes of both tests are comparable and quite stable

with respect to the dimension d; the proposed jackknife empirical likelihood test

is more powerful than the test in Chen and Qin (2010) for the case c2 = 0.75,

and the case when the data is sparse but d is large. Since equation (2.2) has

nothing to do with sparsity, it is expected that the proposed jackknife empirical

likelihood method is not powerful when the data is sparse. Hence, it would be

of interest to connect sparsity with some estimating equations so as to improve

the power of the proposed jackknife empirical likelihood test.

In conclusion, we have good evidence that the proposed jackknife empirical

likelihood test has a very stable size with respect to the dimension and is powerful

as well. Moreover, the new test is easy to compute, flexible enough to take other

information into account, and works for both fixed and divergent dimension. In

comparison with the test in Chen and Qin (2010), the new test has a comparable
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Table 2. Sizes and powers of the proposed jackknife empirical likelihood test
(JEL) and the test in Chen and Qin (2010) (CQ) are reported for the case
of (n1, n2) = (100, 100) at level 5%.

d JEL CQ JEL CQ JEL CQ
c1 = 0 c1 = 0 c1 = 0.1 c1 = 0.1 c1 = 0.1 c1 = 0.1

c2 = 0.25 c2 = 0.25 c2 = 0.25 c2 = 0.25 c2 = 0.75 c2 = 0.75
10 0.074 0.054 0.072 0.063 0.099 0.090
20 0.043 0.047 0.053 0.055 0.145 0.098
30 0.047 0.047 0.056 0.063 0.191 0.115
40 0.051 0.050 0.063 0.062 0.264 0.125
50 0.055 0.040 0.077 0.061 0.326 0.131
60 0.055 0.044 0.077 0.067 0.374 0.151
70 0.043 0.051 0.063 0.086 0.395 0.150
80 0.042 0.059 0.082 0.079 0.474 0.171
90 0.043 0.040 0.098 0.065 0.527 0.163
100 0.049 0.054 0.091 0.088 0.575 0.194
300 0.048 0.054 0.217 0.102 0.974 0.389
500 0.049 0.041 0.353 0.115 0.999 0.544

Table 3. Sizes and powers of the proposed jackknife empirical likelihood test
(JEL) and the test in Chen and Qin (2010) (CQ) are reported for the case
of (n1, n2) = (150, 200) at level 5%.

d JEL CQ JEL CQ JEL CQ
c1 = 0 c1 = 0 c1 = 0.1 c1 = 0.1 c1 = 0.1 c1 = 0.1

c2 = 0.25 c2 = 0.25 c2 = 0.25 c2 = 0.25 c2 = 0.75 c2 = 0.75
10 0.048 0.054 0.054 0.062 0.129 0.116
20 0.055 0.042 0.078 0.075 0.237 0.166
30 0.052 0.054 0.079 0.081 0.330 0.207
40 0.039 0.035 0.070 0.068 0.430 0.212
50 0.039 0.048 0.071 0.094 0.480 0.231
60 0.047 0.051 0.092 0.095 0.598 0.273
70 0.046 0.051 0.086 0.107 0.658 0.309
80 0.042 0.047 0.113 0.109 0.753 0.327
90 0.046 0.043 0.148 0.098 0.781 0.346
100 0.048 0.059 0.141 0.117 0.821 0.365
300 0.044 0.040 0.370 0.163 1 0.703
500 0.047 0.045 0.555 0.235 1 0.899

size, but is more powerful when the data is not very sparse. Some further research

on formulating sparsity into estimating equations will be pursued in future.

3.2. Data analysis

We applied the proposed method to the Colon data with 2,000 gene ex-
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Figure 1. Colon data: differences of the sample means are plotted against
each gene.

pression levels on 22 (n1) normal colon tissues and 40 (n2) tumor colon tissues.

This data set is available from the R package ’plsgenomics’, and has been an-

layzed by Alon et al. (1999) and Srivastava and Du (2008). The p-values of

three tests proposed by Srivastava and Du (2008) equal to 1.38e-06, 4.48e-11 and

0.00000, which clearly reject the null hypothesis that the tumor group has the

same gene expression levels as the normal group. A direct application of the

proposed jackknife empirical likelihood method and the CQ test for testing the

equality of means gives p-values 1.36e-01 and 5.06e-09, respectively, contradic-

tory results. Although the test in Chen and Qin (2010) and the three tests in

Srivastava and Du (2008) clearly reject the null hypothesis, the p-values are sig-

nificantly different. A closer look at the difference of sample means (see Figure

1) shows that some genes have a significant difference of sample means and a

high variability; this may play an important role in the CQ test, and (2.2) with

α = (1, . . . , 1)T ∈ Rd for the proposed jackknife empirical likelihood method. To

examine this effect, we applied the methods to those genes without the signifi-

cant difference in sample means and the logarithms of the 2,000 gene expression

levels.

First we applied the proposed jackknife empirical likelihood method and the

CQ test to those genes satisfying |n−1
1

∑n1
i=1Xi,j − n−1

2

∑n2
i=1 Yi,j | ≤ c3 for some

given threshold c3 > 0. In Table 4, we report the p-values for different c3; this

confirms the fact that some genes play an important role in rejecting the equality

of means in the CQ test.
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Table 4. Colon data: p-values for testing equal means of those genes with
the absolute difference of sample means less than the threshold c3.

c3 number of genes CQ JEL
50 1158 2.94e-01 2.13e-01
100 1501 5.63e-01 2.82e-01
200 1742 7.21e-01 3.87e-01
500 1913 2.71e-02 3.75e-01

1000 1978 6.79e-05 3.40e-01
3000 2000 5.06e-09 1.36e-01

Figure 1 clearly shows that some genes have a large positive mean and some

genes have a large negative mean, and the equation (2.2) with the simple a =

(1, 1, . . . , 1) can not catch this characteristic. Here, we propose to replace (2.2)

by

1

m1m2

m1∑
i=1

m2∑
j=1

(Xi − Yj)
T {I(X̄i − Ȳj > 0)− I(X̄i − Ȳj < 0)}, (3.1)

which results in the P-value 2.63e-03, and so we reject the null hypothesis that the

tumor group has the same gene expression levels as the normal group. Note that

I(X̄i − Ȳi > 0) means (I(X̄i,1 − Ȳi,1 > 0), . . . , I(X̄i,d − Ȳi,d > 0))T . Although the

derived theorems based on (2.1) and (2.2) can not be applied to (2.1) and (3.1)

directly, results hold under some similar conditions by noting the boundedness

of I(X̄i − Ȳj > 0)− I(X̄i − Ȳj < 0).

It is well known that gene expression data are quite noisy and some trans-

formation and normalization are needed before doing statistical analysis; see

Chapter 6 of Lee (2004). Here we applied the CQ test and the proposed empir-

ical likelihood methods based on (2.1) and (2.2), and (2.1) and (3.1) to testing

the equality of means of the logarithms of the 2000 gene expression levels on nor-

mal colon tissues and tumor colon tissues, which give p-values 0.184, 0.206 and

0.148, respectively. We plot the differences of sample means of the logarithms in

Figure 2, and note much less volatility than for the differences of sample means

in Figure 1.

In summary, carefully choosing α in the empirical likelihood method is

needed when it is applied to the colon data, which has a small sample size and

a large variation. Simply choosing α = (1, . . . , 1)T in the empirical likelihood

method gives a similar result as the test in Chen and Qin (2010) for testing the

equal means of the logarithms of Colon data.

4. Proofs

In the proofs we use || · || to denote the L2 norm of a vector or matrix. Under

the null hypothesis µ1 − µ2 = 0, without loss of generality we take µ1 = µ2 = 0.
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Figure 2. Colon data: differences of the sample means of logarithms of gene
expression levels are plotted against each gene.

Write uij = (Xi−Yj)
T (X̄i− Ȳj) and vij = αT (Xi−Yj)+αT (X̄i− Ȳj) for 1 ≤ i ≤

m1, 1 ≤ j ≤ m2. Then it is easily verified that for 1 ≤ i, k ≤ m1, 1 ≤ j, l ≤ m2,

E (uij) = E (vkl) = E (uijvkl) = 0,

Var (ukl) =

d∑
i,j=1

(σ2
i,j + σ̄2

i,j) = ρ1 + ρ2,

Var (vkl) = 2αT (Σ + Σ̄)α = τ1 + τ2.

Lemma 1. Under the conditions of Theorem 1 we have, as min{n1, n2} → ∞,

1
√
m1

m1∑
i=1

XT
i X̄i√
ρ1

d→N(0, 1), (4.1)

1
√
m2

m2∑
j=1

Y T
j Ȳj
√
ρ2

d→N(0, 1), (4.2)

1
√
m1

m1∑
i=1

αT (Xi + X̄i)√
τ1

d→N(0, 1), (4.3)

and
1

√
m2

m2∑
j=1

αT (Yj + Ȳj)√
τ2

d→N(0, 1). (4.4)
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Proof. Since Var (XT
i X̄i) = ρ1 and XT

1 X̄1, . . . , X
T
m1

X̄m1 are i.i.d. for fixed m1,

(4.1) follows from (2.5) and the Lyapunov Central Limit Theorem. The rest can

be shown in the same way.

From now on we write

ρ =
m

m1
ρ1 +

m

m2
ρ2 and τ =

m

m1
τ1 +

m

m2
τ2.

Lemma 2. Under the conditions of Theorem 1 we have, as min{n1, n2} → ∞,

√
m

m1m2
√
ρ

m1∑
i=1

XT
i

m2∑
j=1

Ȳj
p→ 0, (4.5)

1

m1
√
τ

m1∑
i=1

αTXi
p→ 0, (4.6)

1

m2
√
τ

m2∑
j=1

αTYj
p→ 0, (4.7)

1

m1

m1∑
i=1

(XT
i X̄i)

2

ρ1

p→ 1, (4.8)

1

m2

m2∑
j=1

(Y T
j Ȳj)

2

ρ2

p→ 1, (4.9)

1

m1

m1∑
i=1

[αT (Xi + X̄i)]
2

τ1

p→ 1, (4.10)

1

m2

m2∑
j=1

[αT (Yj + Ȳj)]
2

τ2

p→ 1, (4.11)

1

m1

m1∑
i=1

XT
i X̄i[α

T (Xi + X̄i)]√
ρ1τ1

p→ 0, (4.12)

1

m2

m2∑
i=1

Y T
j Ȳj [α

T (Yj + Ȳj)]
√
ρ2τ2

p→ 0. (4.13)

Proof. (4.5) follows from the fact that

Var (

√
m

m1m2
√
ρ

m1∑
i=1

XT
i

m2∑
j=1

Yj) = E
[ m

m2
1m

2
2ρ

( m1∑
i=1

m2∑
j=1

XT
i Yj

)2]
= E

[ m

m2
1m

2
2ρ

m1∑
i=1

m2∑
j=1

(XT
i Yj)

2
]
= E

[ m

m1m2ρ
(XT

1 Y1)
2
]
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=
m

m1m2ρ

d∑
i,j=1

σij σ̄ij ≤
m

m1 +m2

ρ1 + ρ2
2ρ

≤ 1

2
(
1

m1
+

1

m2
) = o(1).

In the same way, we can show (4.6) and (4.7).

To show (4.8), write ui = XT
i X̄i. We need to estimate E |

∑m1
i=1 u

2
i

−m1ρ1|(2+δ)/2. Note that ρ1 = Eu21. When 0 < δ ≤ 2, it follows from von Bahr

and Esseen (1965) that

E
∣∣∣ m1∑
i=1

u2i −m1ρ1

∣∣∣(2+δ)/2
≤ 2m1E |u21 − E (u21)|(2+δ)/2 = O(m1E |u1|2+δ). (4.14)

When δ > 2, it follows from Dharmadhikari and Jogdeo (1969) that

E
∣∣∣ m1∑
i=1

u2i −m1ρ1

∣∣∣(2+δ)/2
= O(m

(2+δ)/4
1 E |u21 − E (u21)|(2+δ)/2)

= O(m
(2+δ)/4
1 E |u1|2+δ). (4.15)

Therefore, by (4.14), (4.15) and (2.5), we have for any ε > 0,

P
(
|
∑m1

i=1 u
2
i

m1ρ1
− 1| > ε

)
≤ ε−(2+δ)/2E |

∑m1
i=1 u

2
i −mρ1|(2+δ)/2

(m1ρ1)(2+δ)/2

= O
(
m

−(δ+min(δ,2))/4
1 E | u1√

ρ1
|2+δ

)
= o(1),

which implies (4.8). The rest can be shown in the same way.

Lemma 3. Under the conditions of Theorem 1 we have, as min{n1, n2} → ∞,

√
m

m1m2

m2∑
j=1

m1∑
i=1

( uij√
ρ

vij√
τ

)
d→N(0, I2), (4.16)

m

m2
1m

2
2ρ

m1∑
k=1

( m2∑
j=1

ukj

)2
− mρ1

m1ρ

p→ 0, (4.17)

m

m2
1m

2
2ρ

m2∑
k=1

( m1∑
i=1

uik

)2
− mρ2

m2ρ

p→ 0, (4.18)

m

m2
1m

2
2τ

m1∑
k=1

( m2∑
j=1

vkj

)2
− mτ1

m1τ

p→ 0, (4.19)

m

m2
1m

2
2τ

m2∑
k=1

( m1∑
i=1

vik

)2
− mτ2

m1τ

p→ 0, (4.20)
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m

m2
1m

2
2
√
ρτ

m1∑
k=1

( m2∑
i=1

uki

m2∑
j=1

vkj

)
p→ 0, (4.21)

m

m2
1m

2
2
√
ρτ

m2∑
k=1

( m1∑
i=1

uik

m1∑
j=1

vjk

)
p→ 0, (4.22)

where I2 is the 2× 2 identity matrix.

Proof. It follows from Lemma 2 that

√
m

m1m2

m2∑
j=1

m1∑
i=1

uij√
ρ
=

√
m

m1m2
√
ρ

m2∑
j=1

m1∑
i=1

(XT
i X̄i + Y T

j Ȳj −XT
i Ȳj − Y T

j X̄i)

=

√
m

m1
√
ρ

m1∑
i=1

XT
i X̄i+

√
m

m2
√
ρ

m2∑
j=1

Y T
j Ȳj−

√
m

m1m2
√
ρ

m2∑
j=1

m1∑
i=1

(XT
i Ȳj+Y T

j X̄i)

=

√
mρ1√
m1ρ

1
√
m1

m1∑
i=1

XT
i X̄i√
ρ1

+

√
mρ2√
m2ρ

1
√
m2

m2∑
j=1

Y T
j Ȳj
√
ρ2

+ op(1)

= amAm + bmBm + op(1),

where am =
√
mρ1/

√
m1ρ, bm =

√
mρ2/

√
m2ρ, Am = (1/

√
m1)

∑m1
i=1X

T
i X̄i/

√
ρ1

d→ N(0, 1) and Bm = (1/
√
m2)

∑m2
j=1 Y

T
j Ȳj/

√
ρ2

d→ N(0, 1). Obviously a2m+b2m =

1 and Am, Bm are independent. Denote the characteristic functions of Am and

Bm by Φm and Ψm, respectively. Then,

E exp(it(amAm + bmBm)) = E exp(itamAm)E exp(itbmBm) = Φm(tam)Ψm(tbm)

= [exp(−(tam)2

2
) + o(1)][exp(−(tbm)2

2
) + o(1)]

= exp(− t2

2
) + o(1),

i.e., √
m

m1m2

m2∑
j=1

m1∑
i=1

uij√
ρ

d→ N(0, 1). (4.23)

Similarly, we have

√
m

m1m2

m2∑
j=1

m1∑
i=1

vij√
τ
=

√
mτ1√
m1τ

1
√
m1

m1∑
i=1

αT (Xi + X̄i)√
τ1

−
√
mτ2√
m2τ

1
√
m2

m2∑
j=1

αT (Yj + Ȳj)√
τ2

d→ N(0, 1).
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Let a and b be two real numbers with a2 + b2 ̸= 0. Note that

√
m

m1m2

m2∑
j=1

m1∑
i=1

(a
uij√
ρ
+ b

vij√
τ
)

= a
(√mρ1√

m1ρ

1
√
m1

m1∑
i=1

XT
i X̄i√
ρ1

−
√
mρ2√
m2ρ

1
√
m2

m2∑
j=1

Y T
j Ȳj
√
ρ2

)
+b
(√mτ1√

m1τ

1
√
m1

m1∑
i=1

αT (Xi + X̄i)√
τ1

+

√
mτ2√
m2τ

1
√
m2

m2∑
j=1

αT (Yj + Ȳj)√
τ2

)
+ op(1)

=
(a√mρ1√

m1ρ

1
√
m1

m1∑
i=1

XT
i X̄i√
ρ1

+
b
√
mτ1√
m1τ

1
√
m1

m1∑
i=1

αT (Xi + X̄i)√
τ1

)
+
(a√mρ2√

m2ρ

1
√
m2

m2∑
j=1

Y T
j Ȳj
√
ρ2

−
b
√
mτ2√
m2τ

1
√
m2

m2∑
j=1

αT (Yj + Ȳj)√
τ2

)
+ op(1)

= I1 + I2 + op(1).

Since
√
mρ1/

√
m1ρ,

√
mρ2/

√
m2ρ,

√
mτ1/

√
m1τ ,

√
mτ2/

√
m2τ are all bounded

by one, it is easy to check that I1 and I2 satisfy the Lyapunov condition by

(2.5)−(2.8). Therefore{
a2

mρ1
m1ρ

+ b2
mτ1
m1τ

}−1/2
I1

d→N(0, 1)

and {
a2

mρ2
m2ρ

+ b2
mτ2
m2τ

}−1/2
I2

d→N(0, 1).

Since the X ′
is are independent of the Y ′

i s, it follows from the arguments used in

proving (4.23) that I1 + I2
d→ N(0, a2 + b2), i.e., (4.16) holds.

To prove (4.17), we write

m

m2
1m

2
2ρ

m1∑
k=1

( m2∑
j=1

ukj

)2
=

m

m2
1m

2
2ρ

m1∑
k=1

( m2∑
j=1

(XT
k X̄k + Y T

j Ȳj − Y T
j X̄k −XT

k Ȳj)
)2

=
m

m2
1ρ

m1∑
k=1

(
XT

k X̄k +
1

m2

m2∑
j=1

Y T
j Ȳj −

1

m2

m2∑
j=1

Y T
j X̄k −XT

k

1

m2

m2∑
j=1

Ȳj

)2
. (4.24)

Since mρ1/m1ρ ≤ 1, it follows from Lemma 2 that

m

m2
1ρ

m1∑
k=1

(XT
k X̄k)

2 − mρ1
m1ρ

p→ 0. (4.25)
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By Lemma 1, we have

m

m2
1ρ

m1∑
k=1

( 1

m2

m2∑
j=1

Y T
j Ȳj

)2
= Op

( mρ2
m1m2ρ

)
= op(1). (4.26)

A direct calculation shows that

E
{ 1

m2

m2∑
j=1

Y T
j X̄k

}2
= E

{( 1

m2

m2∑
j=1

Y T
j

)
X̄kX̄

T
k

( 1

m2

m2∑
j=1

Yj

)}
= E tr

{ 1

m2

m2∑
j=1

Y T
j X̄kX̄

T
k

( 1

m2

m2∑
j=1

Yj

)}
= E tr{X̄kX̄

T
k

( 1

m2

m2∑
j=1

Yj

)( 1

m2

m2∑
i=1

Y T
i )
}

= trE
{
X̄kX̄

T
k

( 1

m2

m2∑
j=1

Yj

)( 1

m2

m2∑
i=1

Y T
i

)}
= tr

{
Σ

1

m2
Σ̄
}
= O

(ρ1 + ρ2
m2

)
= O

( m1ρ

m2m

)
+O

( ρ2
m2

)
= o
(m1ρ

m

)
,

which implies that

m

m2
1ρ

m1∑
k=1

{ 1

m2

m2∑
j=1

Y T
j X̄k

}2
= op(1). (4.27)

Similarly we have

m

m2
1ρ

m1∑
k=1

{
XT

k

1

m2

m2∑
j=1

Ȳj

}2
= op(1). (4.28)

It follows from (4.25) and (4.27) that∣∣∣ m

m2
1ρ

m1∑
k=1

(XT
k X̄k)

( 1

m2

m2∑
j=1

Y T
j X̄k

)∣∣∣
≤
{ m

m2
1ρ

m1∑
k=1

(XT
k X̄k)

2
}1/2{ m

m2
1ρ

m1∑
k=1

( 1

m2

m2∑
j=1

Y T
j X̄k

)2}1/2

= Op(1)op(1) = op(1). (4.29)
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Similarly we can show that

m

m2
1ρ

m1∑
k=1

(XT
k X̄k)

( 1

m2

m2∑
j=1

Y T
j Ȳj

)
= op(1)

m

m2
1ρ

m1∑
k=1

(XT
k X̄k)(X

T
k

1

m2

m2∑
j=1

Ȳ T
j ) = op(1)

m

m2
1ρ

m1∑
k=1

( 1

m2

m2∑
j=1

Y T
j Ȳj

)( 1

m2

m2∑
i=1

Y T
i X̄k

)
= op(1)

m

m2
1ρ

m1∑
k=1

( 1

m2

m2∑
j=1

Y T
j Ȳj

)(
XT

k

1

m2

m2∑
i=1

Ȳi

)
= op(1)

m

m2
1ρ

m1∑
k=1

( 1

m2

m2∑
j=1

Y T
j X̄k

)(
XT

k

1

m2

m2∑
i=1

Yi

)
= op(1).

(4.30)

Hence (4.17) follows from (4.24)–(4.30). The rest can be shown in the same way

as was (4.17).

Lemma 4. Under the conditions of Theorem 1 we have, as min{n1, n2} → ∞,

1√
m

m∑
k=1

( Zk,1√
ρ

Zk,2√
τ

)
d→N(0, I2), (4.31)

1

mρ

m∑
k=1

Z2
k,1 − 1

p→ 0, (4.32)

1

mτ

m∑
k=1

Z2
k,2 − 1

p→ 0, (4.33)

1

m
√
ρτ

m∑
k=1

Zk,1Zk,2
p→ 0. (4.34)

Moreover,

max
1≤k≤m

|
Zk,1√

ρ
| = op(m

1/2) and max
1≤k≤m

|
Zk,2√

τ
| = op(m

1/2). (4.35)

Proof. Note that for 1 ≤ k ≤ m1,

Zk,1 =
−1

(m1 − 1)m1

m2∑
j=1

m1∑
i=1

uij +
m1 +m2 − 1

(m1 − 1)m2

m2∑
j=1

ukj ,

Zk,2 =
−1

(m1 − 1)m1

m2∑
j=1

m1∑
i=1

vij +
m1 +m2 − 1

(m1 − 1)m2

m2∑
j=1

vkj ,
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and for m1 + 1 ≤ k ≤ m,

Zk,1 =
−1

(m2 − 1)m2

m2∑
j=1

m1∑
i=1

uij +
m1 +m2 − 1

(m2 − 1)m1

m1∑
i=1

ui,k−m1 ,

Zk,2 =
−1

(m2 − 1)m2

m2∑
j=1

m1∑
i=1

uij +
m1 +m2 − 1

(m2 − 1)m1

m1∑
i=1

vi,k−m1 .

Thus

1√
m

m∑
k=1

Zk,1√
ρ
=

1√
m

( −1

m2−1
+

−1

m1−1
+
m1+m2−1

(m1−1)m2
+

m1+m2−1

(m2 − 1)m1

) m2∑
j=1

m1∑
i=1

uij√
ρ

=

√
m

m1m2

m2∑
j=1

m1∑
i=1

uij√
ρ
,

and similarly

1√
m

m∑
k=1

Zk,2√
τ

=

√
m

m1m2

m2∑
j=1

m1∑
i=1

vij√
τ
.

This implies (4.31) by using Lemma 3.

It follows from Lemma 3 that

1

mρ

m∑
k=1

Z2
k,1

=
1

mρ

m1∑
k=1

( −1

(m1 − 1)m1

m2∑
j=1

m1∑
i=1

uij +
m1 +m2 − 1

(m1 − 1)m2

m2∑
j=1

ukj

)2
+

1

mρ

m2∑
k=1

( −1

(m2 − 1)m2

m2∑
j=1

m1∑
i=1

uij +
m1 +m2 − 1

(m2 − 1)m1

m1∑
i=1

uik

)2
=
{ 1

(m1 − 1)
√
m1mρ

m2∑
j=1

m1∑
i=1

uij

}2
+

(m− 1)2

(m1 − 1)2m2
2mρ

m1∑
k=1

( m2∑
j=1

ukj

)2
−2
{( m− 1

mρ(m1 − 1)2m1m2

)1/2 m2∑
j=1

m1∑
i=1

uij}2 +
{ 1

(m2 − 1)
√
m2mρ

m2∑
j=1

m1∑
i=1

uij

}2

+
(m− 1)2

mρ(m2 − 1)2m2
1

m2∑
k=1

( m1∑
i=1

uik

)2
− 2
{( m− 1

mρ(m2 − 1)2m2m1

)1/2 m2∑
j=1

m1∑
i=1

uij

}2

=
{
Op

( 1

m1
√
m1m

m1m2√
m

)}2
+

(m− 1)2m2
1

(m1 − 1)2m2

{mρ1
m1ρ

+ op(1)
}

+
{
Op

( 1

m1
√
m1m2

m1m2√
m

)}2
+
{
Op

( 1

m2
√
m2m

m1m2√
m

)}2
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+
(m− 1)2m2

2

m2(m2 − 1)2

{mρ2
m2ρ

+ op(1)
}
+
{
Op

( 1

m2
√
m2m1

m1m2√
m

)}2

=
mρ1
m1ρ

+
mρ2
m2ρ

+ op(1)

= 1 + op(1),

so (4.32) holds. Similarly we can show (4.33) and (4.34).

Since E ((
∑m1

i=1 uij)
2) = Var (

∑m1
i=1 uij) = m1(ρ1 + ρ2), we have

E
(

max
1≤j≤m2

( m1∑
i=1

uij

)2)
≤

m2∑
j=1

E
(( m1∑

i=1

uij

)2)
= m1m2(ρ1 + ρ2)

which implies that

max
1≤j≤m2

∣∣∣ m1∑
i=1

uij

∣∣∣ = Op(
√
m2m1(ρ1 + ρ2)).

Similarly we have

max
1≤1≤m1

∣∣∣ m2∑
j=1

uij

∣∣∣ = Op(
√

m2m1(ρ1 + ρ2)).

Hence by Lemma 3 and the expression for Zk,1, we have

max
1≤k≤m

|
Zk,1√

ρ
| ≤ 1

(m1 − 1)m1

∣∣∣ m1∑
i=1

m2∑
j=1

uij√
ρ

∣∣∣+ max
1≤k≤m1

∣∣∣ m− 1

(m1 − 1)m2

m2∑
j=1

ukj√
ρ

∣∣∣
+

1

(m2 − 1)m2

∣∣∣ m1∑
i=1

m2∑
j=1

uij√
ρ

∣∣∣+ max
1≤k≤m2

∣∣∣ m− 1

(m2 − 1)m1

m1∑
j=1

ujk√
ρ

∣∣∣
= op(1) +Op

( m− 1

(m1 − 1)m2
√
ρ
{m1m2(ρ1 + ρ2)}1/2

)
+op(1) +Op

( m− 1

(m2 − 1)m1
√
ρ
{m1m2(ρ1 + ρ2)}1/2

)
= op(1) +Op

( m1/2

(min(m1,m2))1/2

)
= op(m

1/2).

Similarly we can show that

max
1≤k≤m

∣∣∣Zk,2√
τ

∣∣∣ = op(m
1/2).
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Proof of Theorem 1. This follows from Lemma 4 and standard arguments in
the empirical likelihood method (see Owen (1990)).

To show Corollary 1 and Theorem 2, we first prove two lemmas.

Lemma 5. tr(Σ4) = O
(
(tr(Σ2))2

)
, ρ1 =

∑d
j=1 λ

2
j , and 2||α||2λ1 ≤ τ1 ≤

2||α||2λd.

Proof. Since tr(Σj) =
∑d

i=1 λ
j
i for any positive integer j, the first equality

follows immediately. The second equality follows since ρ1 = tr(Σ2). The third
pair of inequalities on τ1 come from the definition of τ1.

Lemma 6. For any δ > 0

E |XT
1 X̄1|2+δ ≤ dδ

( d∑
i=1

E |X1,i|2+δ
)2

,

E |αT (X1 + X̄1)|2+δ ≤ 24+δ||α||2+δdδ/2
d∑

i=1

E |X1,i|2+δ.

Proof. It follows from the Cauchy-Schwarz inequality that |XT
1 X̄1|2 ≤ ||X1||2||X̄1||2.

Then by using the Cr inequality we conclude that

E |XT
1 X̄1|2+δ ≤ E

( d∑
i=1

X2
1,i

)(2+δ)/2
E
( d∑

i=1

X̄2
1,i

)(2+δ)/2

=
(
E
( d∑

i=1

X2
1,i

)(2+δ)/2)2
≤
(
dδ/2

d∑
i=1

E |X1,i|2+δ
)2

= dδ
( d∑

i=1

E |X1,i|2+δ
)2

.

Similarly, from the Cr inequality we have

E |αT (X1 + X̄1)|2+δ ≤ 24+δE |αTX1|2+δ ≤ 24+δ||α||2+δE (||X1||2+δ)

= 24+δ||α||2+δE
∣∣∣ d∑
i=1

|X1,i|2
∣∣∣1+δ/2

≤ 24+δ||α||2+δdδ/2
d∑

i=1

E |X1,i|2+δ.

This completes the proof.

Proof of Corollary 1. Equations (2.5) and (2.7) follow from A1−A3 by using
Lemmas 5 and 6, as do (2.6) and (2.8), since we have the same assumptions on
{Xi} and {Yj}.
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Proof of Theorem 2. If suffices to verify conditions (2.5) and (2.7) with δ = 2

in Theorem 1. Recall that µ1 = µ2 = 0, and note that Var (X1) = Σ = Γ1Γ
T
1 .

With αTΓ1 = (a1, . . . , ak) and Σ′ = ΓT
1 Γ1 = (σ′

j,l)1≤j,l≤k,

XT
1 X̄1 =

k∑
j=1

k∑
l=1

σ′
j,lB1,jB1+m1,l,

αT (X1 + X̄1) =
k∑

j=1

aj(B1,j +B1+m1,j).

Set δj1,j2,j3,j4 = E(B1,j1B1,j2B1,j3B1,j4). Then δj1,j2,j3,j4 is 3+ ξ1 if j1 = j2 =

j3 = j4, is 1 if j1, j2, j3 and j4 form two different pairs of integers, and is zero

otherwise. By Lemma 5, we have

E (XT
1 X̄1)

4 =

k∑
j1,j2,j3,j4=1

k∑
l1,l2,l3,l4=1

σ′
j1,l1σ

′
j2,l2σ

′
j3,l3σ

′
j4,l4δj1,j2,j3,j4δl1,l2,l3,l4

= O
(
|
∑
j1 ̸=j2

∑
l1 ̸=l2

σ′
j1,l1σ

′
j1,l2σ

′
j2,l1σ

′
j2,l2 |

)
+O

( ∑
j1 ̸=j2

k∑
l=1

σ′2
j1,lσ

′2
j2,l

)

+O
( k∑

j=1

∑
l1 ̸=l2

σ′2
j,l1σ

′2
j,l2

)
+O

( k∑
j=1

k∑
l=1

σ′4
j,l

)

= O
(
|

k∑
j1=1

k∑
j2=1

k∑
l1=1

k∑
l2=1

σ′
j1,l1σ

′
j1,l2σ

′
j2,l1σ

′
j2,l2 |

)

+O
( k∑

j1=1

k∑
j2=1

k∑
l=1

σ′2
j1,lσ

′2
j2,l

)
+O

( k∑
j=1

k∑
l=1

σ′4
j,l

)

= O
(
tr(Σ′4)

)
+O

( k∑
j=1

k∑
l=1

σ′2
j,l)

2
)

= O
(
tr(Σ′4)

)
+O

(
(tr(Σ′2))2

)
= O

(
tr(Σ4)

)
+O

(
(tr(Σ2))2

)
= O(ρ21),

so (2.5) holds with δ = 2.

Similarly we have

E (αT (X1 + X̄1))
4 ≤ 24E

( k∑
j=1

ajB1,j

)4
= O

( k∑
j1,j2=1

a2j1a
2
j2

)
+O

( k∑
j=1

a4j

)
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= O

(( k∑
j=1

a2j

)2)

= O

((
αTΓ1Γ

T
1 α
)2)

= O
(
τ21
)
,

which yields (2.7) with δ = 2. Equations (2.6) and (2.8) can be shown in the

same way. Hence Theorem 2 follows from Theorem 1.
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