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Abstract: Consistency of model selection hinges on the correlation between sig-

nificant and insignificant predictors for “large p, small n” problems. Thus, Ir-

representable Conditions play an important role in consistency, that insignificant

predictors are irrepresentable by significant ones. In this paper, we provide Ir-

representable Conditions when the Dantzig selector is applied; they ensure that

the Dantzig selector consistently selects the true model with fixed p and diverg-

ing p (number of predictors) even at an exponential rate of n. Our conditions are

sufficient for a strong sign consistency and Weak Irrepresentable Conditions are

necessary for a weak sign consistency. Strong sign consistency leads to the con-

ventional consistency of the estimation. As a by-product, the results also show the

difference between the Dantzig selector and the Lasso when consistency is at issoe.

Simulation studies are performed to examine the theoretical results.
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1. Introduction

There are a large number of references referring to variable selection due to

its importance in applications. The aim of variable selection is to select a subset

of significant predictors of a given outcome from a large collection of candidate

predictors so that the low dimensional sub-model can be regarded as a working

model.

Penalized likelihood methods have been extensively studied as useful tools.

Examples include the Lasso (Tibshirani (1996)), the SCAD (Fan (1997); Fan and

Li (2001)) and the Elastic-Net (Zou and Hastie (2005)). For all existing methods,

consistency of model selection and estimation have been investigated. It is well

known that consistency hinges critically on the correlation between significant

and insignificant predictors. For instance, the Lasso estimator is in general biased

(Zou (2006)), especially when the number of significant entries is relatively large.

However, there are few works about this, particularly for “large p, small n”

paradigms. To the best of our knowledge, Zhao and Yu (2006) first proposed an

almost necessary and sufficient condition to guarantee the consistency of model

selection by the Lasso. They called it the Irrepresentable Condition.

http://dx.doi.org/10.5705/ss.2012.061
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Although the Dantzig selector (Candes and Tao (2007)) is in a certain sense
asymptotically equivalent to the Lasso (Bickel, Ritov, and Tsybakov (2009); Asif
and Romberg (2010)), their estimation consistency requires different conditions
on the correlations between predictors because the Dantzig selector is related to
an estimating equation, whereas the Lasso requires a specific likelihood or an
objective function. We will see this very clearly when we compare the corre-
sponding results for the Lasso, Zhao and Yu (2006), and the Dantzig selector.
The two methods depend on different correlation structures of predictors for sign
consistency. Dicker and Lin (2009, 2011) considered random design of predictors
and suggested Irrepresentable Conditions for the Dantzig selector in the fixed p
case. Their method, however, cannot be extended to handle the case of p grow-
ing with n or the p > n paradigm. In this paper, we consider fixed design with
both fixed p and diverging p, even p = exp(nc) for some constant c > 0. Irrep-
resentable Conditions are provided for the sign consistency of model selection.
These conditions are sufficient for a strong sign consistency and necessary for a
weak sign consistency. These two consistencies are defined in the next section.
Moreover, after shrinking the ultra-high dimension to a value that is smaller than
the sample size, we also provide the conventional consistency of estimation when
the dimension q of significant predictors is of a rate of o(n).

The rest of this paper is organized as follows. In Section 2, we provide
Irrepresentable Conditions that are sufficient for a strong sign consistency and
necessary for a weak sign consistency when p is fixed. When p grows at a poly-
nomial rate in n, or even at an exponential rate, we prove that the Dantzig
estimator is still strongly sign consistent under Irrepresentable Conditions. The
conventional consistency of estimation is shown at the end of Section 2. Section 3
contains numerical studies that examine the theoretical results. Some concluding
remarks are included in Section 4. The proofs of theorems are postponed to the
Appendix.

2. Irrepresentable Conditions and Sign Consistencies

Consider the linear regression model

y = Xβ + ε, (2.1)

where y = (Y1, . . . , Yn)
τ is a n× 1 response, X = (X1, . . . , Xn)

τ=(X1, . . . , Xp) is
a n× p fixed design matrix with Xi as the ith row of X, Xj as the jth column of
X, and ε = (ε1, . . . , εn)

τ an n-vector of i.i.d random errors with E(ε1) = 0 and
E(ε21) = σ2. Here τ stands for transposition of vector or matrix.

For simplicity, we assume the response y = (Y1, . . . , Yn)
τ is centralized and

the design matrix is standardized so that

1n × y = 0, 1n ×Xj = 0,
(Xj)τ (Xj)

n
= 1, j = 1, . . . , p, (2.2)
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where 1n is a n× 1 vector of all components 1.
The Dantzig selector estimator β̂D is defined as

β̂D = argmin β∥β∥1 s.t. ∥XT (y −Xβ)∥∞ ≤ λ. (2.3)

Let T ∗ = {j : βj ̸= 0} and T̂ = {j : β̂j ̸= 0}. We refer to T ∗ as the true model.
Let |T ∗| = q with |T ∗| the number of elements in the set T ∗.

As Asif and Romberg (2010) commented, a dual problem to (2.3) is to have
a maximizer µ̂ over all µ of the following function

−(λ∥µ∥1+ < µ,XT y >) s.t. ∥XTXµ∥∞ ≤ 1; (2.4)

both β̂D and µ̂ are for a given value of λ. Asif and Romberg (2010) showed that
(2.5)-(2.8) are necessary and sufficient for (β̂D, µ̂) to be the unique primal-dual
solution pair to (2.3) and (2.4):

∥Xτ
Ē(y −Xβ̂D)∥∞ < λ, (2.5)

∥Xτ
T̄Xµ̂∥∞ < 1, (2.6)

Xτ
T ∗Xµ̂ = sign(β̂D

T ∗), (2.7)

Xτ
E(y −Xβ̂D) = λ sign(µ̂E), (2.8)

In this section, we study the consistency of β̂D. Following the notations in
Zhao and Yu (2006) and Wainwright (2006), β̂D =s β means that both β̂D and
β have the same sign element-wise.

Definition 1. The solution of (2.3) β̂D is strongly sign consistent if there exists
λ = λ(n) such that

lim
n→∞

P (β̂D(λ) =s β) = 1. (2.9)

Definition 2. The solution of (2.3) β̂D is weakly sign consistent if

lim
n→∞

P (∃λ ≥ 0, β̂D(λ) =s β) = 1. (2.10)

We need some notation. Let C = (1/n)XτX. For any subset T ⊂ {1, . . . , p},
|T | denotes the number of elements in subset T , T̄ is the complement of T in the
set {1, . . . , p}. Let βT = (βj)j∈T be the |T | × 1 vector whose entries are those of
β indexed by T . Similarly, XT is defined as the n×|T | matrix whose columns are
those of X indexed by T . Given a p×p matrix C and subsets T1, T2 ⊆ {1, . . . , p},
let CT1,T2 be the |T1|×|T2| sub-matrix from C with rows corresponding to T1 and
columns corresponding to T2. Let diag(β) be the diagonal matrix with diagonal
β. For β ∈ Rp, sign(β) = (sign(β1), . . . , sign(βp))

τ is the signal function of β,
where

sign(βi) =


1, βi > 0,

0, βi = 0,

−1, βi < 0.

(2.11)
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Assume CT ∗,E is invertible for some E ⊂ {1, . . . , p} with |E| = |T ∗|.

Irrepresentable Conditions. The inequality

|CT̄ ∗,EC
−1
T ∗,Esign(βT ∗)| < 1 (2.12)

holds and there exists a positive constant vector η satisfying∣∣∣CĒ,T ∗C−1
E,T ∗sign

(
C−1
T ∗,Esign(βT ∗)

)∣∣∣ ≤ 1− η, (2.13)

where 1 is a (p − q) × 1 vector of all components 1 and | · | means the two
inequalities hold element-wise in absolute value.

Weak Irrepresentable Conditions. The inequalities

|CT̄ ∗,EC
−1
T ∗,Esign(βT ∗)| < 1, (2.14)∣∣∣CĒ,T ∗C−1

E,T ∗sign
(
C−1
T ∗,Esign(βT ∗)

)∣∣∣ < 1 (2.15)

hold, where 1 is the (p− q)× 1 vector of all components 1 and | · | means the two
inequalities hold element-wise in absolute value.

We note that the Irrepresentable Conditions for the Dantzig selector are
different from those for the Lasso. The former are much more complex than the
latter because of the differences in the Karush-Kuhn-Tucker (KKT) conditions
for the two problems. The conditions we provide are different from those in
Dicker and Lin (2009) for random design; their conditions cannot be extended
to handle p > n or the diverging dimension of the true model.

Proposition 1. The Irrepresentable Condition yields

P (β̂D =s β) ≥ P (An ∩Bn) (2.16)

for

An = {|ZĒ − CĒ,T ∗C−1
E,T ∗ZE | ≤

λη√
n
},

Bn = {|DC−1
E,T ∗ZE | <

√
n{|βT ∗ | − λ

n
|DC−1

E,T ∗sign(µ̃E)|}},

where ZE = (
√
n)−1Xτ

Eε, ZĒ = (
√
n)−1Xτ

Ē
ε, D = diag(sign(βT∗)), and µ̃E =

(Xτ
T ∗XE)

−1sign(βT∗).

In the following, we show that the Irrepresentable Conditions are sufficient for
strong sign consistency, and the Weak Irrepresentable Conditions are necessary
for weak sign consistency.

2.1. Sign consistency with fixed p and q

For insight, we consider the case with fixed p and q first. In this setting, it
is natural to assume the regularity conditions
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(a) C = C(n) → C∗as n → ∞, where C∗ is a positive definite matrix,

(b)
1

n
max
1≤i≤n

Xi
τXi → 0, as n → ∞.

When theXi’s are i.i.d. with a finite variance and p is fixed, then C = C(n) → C∗

with C∗ = EX1
τX1 and max1≤i≤nXi

τXi = op(n) (see Owen (2001)). Hence (a)

and (b) hold trivially.

Theorem 1. If p and q are fixed and (a), (b), and the Irrepresentable Conditions

hold, for positive λ satisfying λ/n → 0 and λ/n(c+1)/2 → ∞ with 0 ≤ c < 1,

P (β̂D(λ) =s β) = 1− o(e−nc
) → 1 as n → ∞.

Theorem 1 states that, for fixed p and q, under some mild conditions and

the Irrepresentable Conditions, the probability that the Dantzig selector selects

the true model approaches 1 at an exponential rate. Moreover, the Weak Irrep-

resentable Conditions are necessary for the weak sign consistency.

Theorem 2. For fixed p and q, if (a) and (b) hold, and if the Dantzig selector

based estimator is weakly sign consistent, then there exists an N such that Weak

Irrepresentable Conditions hold for n ≥ N .

2.2. Sign consistency when both p and q → ∞
Now we turn to the case where both p and q grow with n. Here we need new

conditions. Let κn1 be the largest eigenvalue of B, B = C−1
E,T ∗CE,EC

−1
T ∗,E , with

E satisfying the Irrepresentable Conditions, and let τn1 be the largest eigen-

value of the semi-positive definite matrix (I − K)(I − K)τ with idempotent

K = XT ∗(Xτ
EXT ∗)−1Xτ

E . Assume that there exist 0 ≤ d1 < d2 ≤ 1 such

that

(C1) q = O(nd1),

(C2) n(1−d2)/2 min
i∈T ∗

|βi| ≥ M1 > 0,

(C3) ∥CE,T ∗α∥22 ≥ M2 > 0 for any unit vector α, with E satisfying Irrepre-

sentable Conditions,

(C4) 0 < κn1 ≤ κ1 < ∞,

(C5) τn1 ≤ τ1 < ∞.

Under these conditions and certain conditions on the moments of the error,

the Dantzig selector of (2.3) can select the true model consistently provided that

the Irrepresentable Conditions hold.
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Theorem 3. Assume the εi are i.i.d. random variables with E(εi)
2k < ∞ for

some integer k > 0. If (C1)−(C5) hold, p = o(n(d2−d1)k) for d2 > d1, and λ

satisfies λ/
√
n = o(n(d2−d1)/2), and (λ/

√
n)2k/p → ∞, then the Irrepresentable

Conditions imply that

P (β̂D(λ) =s β) ≥ 1−O
(pnk

λ2k

)
→ 1 as n → ∞. (2.17)

When E in the Irrepresentable Conditions satisfies E = T ∗, (C4) is implied

by (C3), and (C5) is satisfied automatically, since (I − K)(I − K)τ is then a

symmetric idempotent matrix whose eigenvalue is at most 1.

Corollary 1. If the conditions of Theorem 3 hold with the exception of (C4) and

(C5), and if the Irrepresentable Conditions hold for E = T ∗,

P (β̂D(λ) =s β) ≥ 1−O
(pnk

λ2k

)
→ 1 as n → ∞. (2.18)

2.3. Sign consistency for p = exp(nc) and q → ∞
From Theorem 3, we have that sign consistency for the Dantzig selector

can be obtained under the assumption that the errors have finite (2k)-th order

moment for an integer k > 0. However, even if all orders of moments of the error

exist, p can only grow at a polynomial rate in n. In this section, we consider

that p grows exponentially with n. As the cost for doing this, we assume a

sub-Gaussian tail for the error.

Theorem 4. Let (C1)−(C5) hold, and suppose the εi are i.i.d. random variables

that, for some constants 1≤d≤2, C>0 and K, satisfy P (|εi|>x)≤K exp(−Cxd)

for all x ≥ 0 and i = 1, 2, . . .. When p = en
d3 , (1/logn)I{d=1}(λ/

√
n)d = O(nd4),

and 0 < d3 < d4 < d2d/2, the Irrepresentable Conditions imply that

P (β̂D(λ) =s β) ≥ 1−O(e−nδ
) → 1 as n → ∞, (2.19)

where δ = min{d4 − d3, d2d/2}.

Corollary 2. Assume the conditions of Theorem 4 except for (C4) and (C5).

Then the Irrepresentable Conditions with E = T ∗ yield

P (β̂D(λ) =s β) = 1−O(e−nδ
) → 1 as n → ∞, (2.20)

where δ = min{d4 − d3, d2d/2}.

Compared with Theorem 3, Theorem 4 and Corollary 2 tell us that p expo-

nential in n is possible if the error terms have lighter tails, such as sub-Gaussian.
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2.4. Conventional consistency of estimation after variable selection

In this section, we investigate the conventional consistency of the estimator

after variable selection, with q = o(n).

Write the n×|T̂ | design matrix as XT̂,(X1T̂ , . . . , XnT̂ )
τ . The post-selection

least squares estimator β̂ of β is

β̂T̂ = C−1

T̂ ,T̂
{ 1
n
Xτ

T̂
Y } = C−1

T̂ ,T̂
{ 1
n

n∑
i=1

XiT̂Yi}, β̂ ¯̂
T
= 0. (2.21)

Theorem 5. Assume that the Dantzig selector estimator is strongly sign con-

sistent, and the max
1≤i≤n,1≤j≤q

x2iT ∗,j < ∞ holds, where Xτ
iT ∗ = (xiT ∗,1, . . . , xiT ∗,q)

corresponding to the ith row of matrix XT ∗. Then

∥β̂ − β∥2 = Op

(√ q

n

)
. (2.22)

Consistency here is quite different from that of the classical least squares

estimator, since the dimension of XT̂ is |T̂ |, also random.

3. Numerical Studies

Simulation studies were conducted to examine the role of Irrepresentable

Conditions in model selection consistency. For this purpose, we considered three

examples. In the first example, the sample size was 1,000 and p and q were

comparably small; the second featured a relatively large dimension p. In the

third example, the dimension p was greater than the sample size, and we also

considered a dataset analysed by Tibshirani (1996) using the Lasso. We use it

to see, in practice, how we can check estimation consistency when the Dantzig

selector is applied.

Consider p = 6 and q = 5 with the sample size 1,000. x1, x2, x3, x4, x5, e,

and ε were standard normal, then x6 was generated as

x6 =
1

8
x1 +

1

4
x2 +

1

2
x3 +

1

2
x4 +

1

2
x5 +

√
11

8
e. (3.1)

The regression model was

Y = β1x1 + β2x2 + β3x3 + β4x4 + β5x5 + ε. (3.2)

And we took two cases: (a) β = (4, 2, 0.5,−0.6,−0.7)τ ; (b) β = (−4,−2, 0.5, 0.6,

0.7)τ . Here T ∗ = {1, 2, 3, 4, 5}. It is easy to check that for (a), with E =

T ∗, CT̄ ∗,EC
−1
T ∗,E = CĒ,T ∗C−1

E,T ∗ = (1/8, 1/4, 1/2, 1/2, 1/2)τ , both Irrepresentable
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Figure 1. the Dantzig selector solution paths for settings (a) and (b). The
left is for setting (a), and the right for setting (b).

Conditions and Weak Irrepresentable Conditions hold. For (b), the Irrepre-

sentable Conditions do not hold, whatever be E. Figure 1 plots the estimated

coefficients for various values of λ with the L1 norm of the coefficient vector on

the X−axis. The largest L1 norm is attained when λ = 0 because this does no

shrinkage of coefficients. For each plot, we here divided the original estimated

coefficients by the corresponding largest L1 norm among them. Figure 1 shows

results that accord with our theoretical results. We conclude that in case (a),

the Dantzig selector can select significant components successfully, while in case

(b) it fails, as in a certain range of λ, X6 is included in the working model.

Here p = 50, 100, and 200, with sample size 1,000. x1, x2, e, and ε were

standard normal. x3 was generated as

x3 =
2

3
x1 +

2

3
x2 +

1

3
e,

with the true model assumed to be

Y = x1β1 + x2β2 + ε. (3.3)

We generated i.i.d. x4, . . . , xp as standard normal and considered (a’) β =

(−2, 3, 0, . . . , 0)τ ; and (b’) β = (2, 3, 0, . . . , 0)τ .

Take E=T ∗={1, 2}. It is easy to obtain that CT ∗,E = I2 and CT̄ ∗,EC
−1
T ∗,E =

CĒ,T ∗C−1
E,T ∗ = (2/3, 2/3). Then for case (a’), both the Irrepresentable and Weak

Irrepresentable Conditions hold. For case (b’), whatever be E, at least one of
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Figure 2. the Dantzig selector solution paths for settings (a’) and (b’) when
p = 50. The left one is for setting (a’), and the right one for setting (b’).

Figure 3. the Dantzig selector solution paths for settings (a’) and (b’) when
p = 100. The left one is for setting (a’), and the right one for setting (b’).

the equalities in the Weak Irrepresentable Conditions fails. Figures 2−4 show

results that coincide with the theoretical analysis, all three values of p. Thus, in

case (a’), the Dantzig selector selects the true model while for case (b’) it does

not, as X3 is often included when λ is in a certain range.

Here we consider p > n with n = 30, p = 50, and q = 3, and with n =

50, p = 100, and q = 8. The design matrix X was generated as multivariate

standard normal, and β = [βτ
(1), β

τ
(2)]

τ , where β(1) was a q−dimensional vector

with all entries 1 and β(2) a (p− q)-dimensional zero vector. The true model was

Y = Xβ + ε, with ε being generated as the standard normal.

It is easy to verify that the Irrepresentable Conditions hold. Thus the

Dantzig selector can select the significant predictors successfully. The selection
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Figure 4. the Dantzig selector solution paths for settings (a’) and (b’) when
p = 200. The left one is for setting (a’), and the right one for setting (b’).

Figure 5. the Dantzig selector solution paths when p > n. The left hand
side is with n = 30, p = 50, q = 3, and the right hand side is with n = 50, p =
100, q = 8.

paths are shown in Figure 5.

Data Example. We applied the Dantzig selector to the Prostate Cancer Data

on which Tibshirani (1996) used the Lasso for variable selection. The data come

from a study of the correlation between the level of prostate specific antigen and a

number of clinical measures in men about to receive a radical prostatectomy. The

data frame was 97 rows and 9 columns. As Tibshirani (1996) did, a linear model

was fitted to log(prostate specific antigen) after standardizing the predictors.

To check both the Irrepresentable and Weak Irrepresentable Conditions, we
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Figure 6. the Dantzig selector solution paths for Prostate Cancer Data.

find T ∗ and sign(β∗
T) first, then compute the estimators of the coefficients by fit-

ting the linear model of Y against the predictors x1, . . . , x8. Sorting the absolute

values of the estimators in decreasing order, we have an order of {1, 5, 2, 4, 6, 3, 8,
7}. With T ∗ = {1, 5, 2}, the signs of β∗

T are taken as those of the estimators.

Then it is easy to check that both the Irrepresentable and Weak Irrepresentable

Conditions hold when E = T ∗. Thus when the Dantzig selector is applied, the-

oretically, it is possible to correctly select the true model. From the selection

path shown in Figure 6, we can see that the Dantzig selector does work. This

selection is exactly as that of Tibshirani (1996). Based on this analysis, we can

see that in practice, the Irrepresentable Conditions can be used as a tool to check

whether the Dantzig selector works or not. As we have done , we can select the

predictors first and assume them to be the significant ones to obtain the set T ∗.

Subsequently, we can check the Irrepresentable Conditions. Should the condi-

tions not be satisfied, we may need a check for the rationality of the selection to

see whether we need to try another variable selection method.

4. Concluding Remarks

We have investigated the model selection consistency of the Dantzig selector,

and have found the dimension can be as much as exponential in sample size.

Thus there are difference between the Lasso and the Dantzig selector as far as

consistency is concerned. The Irrepresentable Conditions (ICs) for the Dantzig

selector are more complex than those for the Lasso.
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Whereas there are a couple of papers discussing the equivalence between

the Lasso and the Dantzig selector in the literature, we suggest that such an

equivalence only holds in some special scenarios. Asif and Romberg (2010) proved

that the Lasso and the Dantzig Selector share the same homotopy path under

some conditions, and the ICs for the dantzig selector are then identical to that

for the Lasso. James, Radchenko, and Lv (2009) provided two types of design

matrix X for which, under proper conditions, equivalence also holds. However,

in general, the Danyzig selector is not equivalent to the Lasso.

When p > n and the Irrepresentable Conditions are not satisfied, how to

construct an adaptive Dantzig selector deserves further study.
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Appendix: Proofs

Proof of Proposition 1. For some subset E ⊂ {1, . . . , p} that satisfies the

Irrepresentable Conditions, let

µ̃E = (Xτ
T ∗XE)

−1sign(βT∗), µ̃Ē = 0, (A.1)

β̃T ∗ = (Xτ
EXT ∗)−1Xτ

Ey − λ(Xτ
EXT ∗)−1sign(µ̃E), β̃T̄∗ = 0. (A.2)

We have that if (µ̃, β̃) satisfies (2.5)−(2.8), then β̃ is the unique solution

to (2.3). Thus, we only need to prove that when both An and Bn happen,

Proposition 2.1, (µ̃, β̃) as (A.1) and (A.2) satisfy conditions (2.5) through (2.8).

We check these conditions one by one. plugging (A.2) into (2.5), we have

Xτ
E(y −Xβ̃) = Xτ

E(y −XT ∗ β̃T ∗) = λsign(µ̃E). (A.3)
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Meanwhile, by (2.13), we have

An =
{
|ZĒ − CĒ,T ∗C−1

E,T ∗ZE | ≤
λη√
n

}
⊆

{
∥ZĒ − CĒ,T ∗C−1

E,T ∗ZE∥∞ <
λ√
n
(1− ∥CĒ,T ∗C−1

E,T ∗sign(µ̃E)∥∞)
}

=
{
∥Xτ

Ē(I −XT ∗(Xτ
EXT ∗)−1XE)ε∥∞

+λ∥Xτ
ĒXT ∗(Xτ

EXT ∗)−1sign(µ̃E)∥∞ < λ
}

⊆
{
∥Xτ

Ē(I −XT ∗(Xτ
EXT ∗)−1Xτ

E)y + λXτ
ĒXT ∗(Xτ

EXT ∗)−1sign(µ̃E)∥∞ < λ
}

=
{
∥Xτ

Ē(y −XT ∗ β̃T ∗)∥∞ < λ
}
. (A.4)

Thus An implies {∥Xτ
Ē
(y −XT ∗ β̃T )∥∞ < λ}.

Noting that Xτ
E(y−Xβ̃) = Xτ

E(y−XT ∗ β̃T ∗) = λsign(µ̃E), (2.8) holds. Also,

(2.12) implies ∥Xτ
T̄ ∗Xµ̃∥∞ < 1.

For (2.7), on the one hand,

Xτ
T ∗Xµ̃ = Xτ

T ∗XEµ̃E = sign(βT∗), (A.5)

and on the other hand,

Bn =
{
|DC−1

E,T ∗ZE | <
√
n
{
|βT ∗ | − λ

n
|DC−1

E,T ∗sign(µ̃E)|
}}

⊆
{
−DC−1

E,T ∗ZE <
√
n
{
|βT ∗ | − λ

n
|DC−1

E,T ∗sign(µ̃E)|
}}

⊆
{
−DC−1

E,T ∗ZE <
√
n
{
DβT ∗ − λ

n
DC−1

E,T ∗sign(µ̃E)
}}

=
{
D(Xτ

EXT ∗)−1Xτ
Eε+DβT ∗ > λD(Xτ

EXT ∗)−1sign(µ̃E)
}

=
{
D(Xτ

EXT ∗)−1Xτ
Ey − λD(Xτ

EXT ∗)−1sign(µ̃E) > 0
}

≡ {Dβ̃T ∗ > 0}. (A.6)

Since {Dβ̃T ∗ > 0} = {diag(sign(βT∗))β̃T∗ > 0} ⊆ {sign(βT∗) = sign(β̃T∗)},
together with (A.5) and (A.6), it is clear that Bn implies (2.7).

Thus, under the Irrepresentable Conditions, when An and Bn hold simulta-

neously, (µ̃, β̃) as (A.1) and (A.2) satisfy (2.5)−(2.8).

This completes the proof.

Proof of Theorem 1. Let ζ = (ζ1, . . . , ζp−q)
τ = CĒ,T ∗C−1

E,T ∗ZE − ZĒ , ξ =

(ξ1, . . . , ξq)
τ = DC−1

E,T ∗ZE , andh = (h1, . . . , hn)
τ = DC−1

E,T ∗sign(µ̃E). By Propo-
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sition 2.1, P (β̂D =s β) ≥ P (An ∩Bn). Thus we have

1− P (β̂D =s β) ≤ 1− P (An ∩Bn)

= P (Ac
n ∪Bc

n)

≤ P (Ac
n) + P (Bc

n)

≤
p−q∑
i=1

P
(
|ζi| ≥

λ√
n
ηi

)
+

q∑
j=1

P
(
|ξj | ≥

√
n(|βj | −

λ

n
hj)

)
. (A.7)

Since ε is an n-dimensional vector of i.i.d. random variables, under (a) and (b),

we have

ζ → dN
(
0, σ2

(
C∗
Ē,T̄ ∗(C

∗)−1
E,T ∗C

∗
E,E(C

∗)−1
T ∗,EC

∗
T ∗,Ē − C∗

Ē,T̄ ∗(C
∗)−1

E,T ∗C
∗
E,Ē −

C∗
Ē,E(C

∗)−1
T ∗,EC

∗
T ∗,Ē + C∗

Ē,Ē

))
, (A.8)

ξ →d N
(
0, σ2

(
D(C∗)−1

E,T ∗C
∗
E,E(C

∗)−1
T ∗,ED

))
.

It follows that all ζi’s and ξj ’s converge in distribution to normal random variables

with mean 0 and finite variances.

Assume that ∀i, j, and E(ζi)
2 ≤ t20, E(ξi)

2 ≤ t20 for some constant t0 >

0. Then for x > 0, it follows that the tail probability bound of the Gaussian

distribution implies

P (ζi > x) < x−1e−x2/2, P (ξj > x) < x−1e−x2/2 (A.9)

for i = 1, . . . , p − q, j = 1, . . . , q. Therefore, when λ/n → 0, λ/n(c+1)/2 → ∞
with 0 ≤ c < 1, and p and q are fixed, we obtain that

p−q∑
i=1

P
(
|ζi| ≥

λ√
n
ηi

)
< 2

p−q∑
i=1

( λ√
nt0

ηi

)−1
exp

(
− 1

2

λ2

nt0
η2i

)
= o(e−nc

), (A.10)

q∑
j=1

P
(
|ξj | ≥

√
n(|βj | −

λ

n
hj)

)
=

q∑
j=1

P
(
|ξj | ≥

√
n|βj |+ o(

√
n|βj |)

)
≤ 2

q∑
j=1

(√
n|βj |(1 + o(1))

)−1
exp

(
− 1

2

(√
n|βj |(1 + o(1))

)2)
= o(e−nc

). (A.11)
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Combining (A.10) and (A.11) with (A.7), Theorem 1 follows immediately.

Proof of Theorem 2. Refer to T ∗ as the true model. Consider the event

C1 = {∃ λ s.t. β̂D(λ) =s β}. The duality of the Dantzig selector implies that

there exists µ̄ ∈ Rp with {j : µ̄j ̸= 0} , E satisfied (2.5)−(2.8). Then on C1, we
have

Xτ
T ∗XEµ̄E = sign(β̂D

T ∗) = sign(βT ∗). (A.12)

By (2.8), Xτ
EXT ∗ β̂D

T ∗ = Xτ
Ey − λ sign(µ̄E). Since X′

EXT is invertible, plugging

µ̄E and β̂D
T ∗ , solved by (A.12) and (2.7), into (2.5) and (2.6), respectively, and

recalling that C = (1/n)XτX, ZT ∗ = (1/
√
n)Xτ

T ∗ε, ZT̄ ∗ = (1/
√
n)Xτ

T̄ ∗ε, we get

C1 ⊂ C2 :=
{
|CT̄ ∗,EC

−1
T ∗,Esign(βT ∗)| < 1,∣∣∣CĒ,T ∗C−1

E,T ∗ZE − ZĒ − λ√
n
CĒ,T ∗C−1

E,T ∗sign
(
C−1
T ∗,Esign(βT ∗)

)∣∣∣ < λ√
n
1
}

∧
= H1 ∩H2, (A.13)

Rewrite H2 = {|CĒ,T ∗C−1
E,T ∗ZE − ZĒ − (λ/

√
n)CĒ,T ∗C−1

E,T ∗sign(C
−1
T ∗,Esign(βT ∗))|

< (λ/
√
n)1} as { λ√

n
L < CĒ,T ∗C−1

E,T ∗ZE − ZĒ <
λ√
n
R
}
,

where

L = CĒ,T ∗C−1
E,T ∗sign

(
C−1
T ∗,Esign(βT ∗)

)
− 1,

R = CĒ,T ∗C−1
E,T ∗sign

(
C−1
T ∗,Esign(βT ∗)

)
+ 1.

To prove the necessity of the Irrepresentable Conditions, we proceed by

contradiction. If the Irrepresentable Conditions fail, then for any inte-

ger N there always exists n, n > N , such that at least one component of

|CĒ,T ∗C−1
E,T ∗sign(C

−1
T ∗,Esign(βT ∗))| is no less than 1. Without loss of generality,

assume it is the first component and vice versa for the less than -1 case. Then

(CĒ,T ∗C−1
E,T ∗ZE − ZĒ)1 ∈

[ λ√
n
L1,

λ√
n
R1

]
⊆ [0,∞). (A.14)

On the other hand, by (A.8), as n increases, with a nonzero probability

(CĒ,TC
−1
E,TZE − ZĒ)1 is negative and the probability of C2 does not tend to 1;

hence we have

lim inf P (C1) ≤ lim inf P (C2) < 1, (A.15)

which conflicts with weak sign consistency. Therefore, the Weak Irrepresentable

Conditions are necessary for weak sign consistency. This completes the proof.
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Lemma A.1. Let θ = (θ1, . . . , θn)
τ be a random vector with i.i.d. entries, and

such that E(θ1)
2k < ∞ for some integer k > 0. Then, for constant vector α,

E(ατθ)2k ≤ (2k − 1)!!∥α∥22E(θ1)
2k. (A.16)

Proof of Theorem 3. By Proposition 1, P (β̂D =s β) ≥ P (An ∩Bn). Thus we

have

1− P (β̂D =s β) ≤ 1− P (An ∩Bn)

= P (Ac
n ∪Bc

n)

≤ P (Ac
n) + P (Bc

n)

≤
p−q∑
i=1

P
(
|ζ1i | ≥

λ√
n
η
)
+

q∑
j=1

P
(
|ξ1j | ≥

√
n(|βj | −

λ

n
hj)

)
, (A.17)

where ζ1 = (ζ11 , ζ
1
2 , . . . , ζ

1
p−q)

τ = CĒ,T ∗C−1
E,T ∗ZE − ZĒ , ξ1 = (ξ11 , . . . , ξ

1
q )

τ =

DC−1
E,T ∗ZE , and h = (h1, . . . , hn)

τ = DC−1
E,T ∗sign(µ̃E). Write ζ1 = Gτε with

Gτ = (G1, . . . , Gp−q)
τ = (1/

√
n)(CĒ,T ∗C−1

E,T ∗Xτ
E −Xτ

Ē
). Then

GτG =
1

n
(CĒ,T ∗C−1

E,T ∗X
τ
E −Xτ

Ē)(XEC
−1
T ∗,ECT ∗,Ē −XĒ)

= CĒ,T ∗C−1
E,T ∗CE,EC

−1
T ∗,ECT,Ē−CĒ,T ∗C−1

E,T ∗CE,Ē−CĒ,EC
−1
T ∗,ECT ∗,Ē+CĒ,Ē

=
1

n
Xτ

Ē

(
I −K −Kτ +KKτ

)
XĒ

=
1

n
Xτ

Ē(I −K)(I −K)τXĒ ,

where K = XT ∗(Xτ
EXT ∗)−1Xτ

E .

Therefore, by (C5) and using (Xj)τ (Xj)/n = 1, we have

∥Gi∥22 = Gτ
iGi = eτiG

τGei ≤ τ1 < +∞, (A.18)

for any i = 1, . . . , p− q.

Similarly, let ξ1 = Hτε with Hτ = (H1,H2, . . . , Hq)
τ = (1/

√
n)DC−1

E,T ∗Xτ
E .

Then

HτH =
1

n
DC−1

E,T ∗X
τ
EXEC

−1
T ∗,ED = DC−1

E,T ∗CE,EC
−1
T ∗,ED.

By (C4) and the fact that D2 = I, we have ξ1j = Hτ
j ε with

∥Hj∥22 ≤ κ1 < +∞ (A.19)

for any j = 1, . . . , q.
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Given (A.18), (A.19), and E(ε1)
2k < ∞, Lemma A.1 implies

E(ζ1i )
2k < ∞, i = 1, . . . , p− q,

E(ξ1j )
2k < ∞, j = 1, . . . , q,

which gives

P (|ζ1i | > t) = O(t−2k), P (|ξ1j | > t) = O(t−2k), (A.20)

for any i = 1, . . . , p− q, j = 1, . . . , q, by the Chebyshev inequality.
By making use of the first equation in (A.20) we have

p−q∑
i=1

P
(
|ζ1i | ≥

λη√
n

)
= (p− q)O

( nk

λ2k

)
= O

(pnk

λ2k

)
. (A.21)

Besides, (C3) has∥∥∥λ
n
h
∥∥∥
∞

=
∥∥∥λ
n
DC−1

E,T ∗sign(µ̃E)
∥∥∥
∞

≤
∥∥∥λ
n
DC−1

E,T∗sign(µ̃E)
∥∥∥
2
≤

λ
√
q

n
√
M2

.

When λ/
√
n = o(n(d2−d1)/2), (C1) yields

∥λ
n
h∥∞ = o(n(d2−1)/2). (A.22)

Therefore, when λ/
√
n = o(n(d2−d1)/2) and (C1) and (C2) both hold, using (A.22)

and the second equation in (A.20), we have

q∑
j=1

P
(
|ξ1j | ≥

√
n(|βj | −

λ

n
hj)

)
=

q∑
j=1

P
(
|ξ1j | ≥

√
n|βj |+ o(

√
n|βj |))

)
= qO(n−kd2) = o(

pnk

λ2k
). (A.23)

For p = o(n(d2−d1)k) and (λ/
√
n)2k/p → ∞, combining (A.21) and (A.23) with

(A.17), we have

P (β̂D =s β) ≥ 1−O
(pnk

λ2k

)
. (A.24)

Lemma A.2 (Huang, Ma, and Zhang (2008)). Suppose that ε1, . . . , εn are i.i.d.
random variables with Eεi = 0 and V ar(εi) = σ2. Further, suppose that P (|εi| >
x) ≤ K exp(−Cxd), i = 1, . . . for positive constants C and K, and for 1 ≤ d ≤ 2.
Then, for all constants ki satisfying

∑n
i=1 k

2
i = 1, we have

fn(t) = sup∑n
i=1 k

2
i=1

P
{
|

n∑
i=1

kiεi| > t
}
≤

exp
(
− td

M

)
, 1 < d ≤ 2,

exp
(
− td

{M(1+logn)}

)
, d = 1,

(A.25)
for a positive constant M depending only on {d,K,C} .
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Proof of Theorem 4. In the proof of Theorem 3, we have

1− P (β̂D =s β) ≤ 1− P (An ∩Bn)

= P (Ac
n ∪Bc

n)

≤ P (Ac
n) + P (Bc

n). (A.26)

By the proof of Theorem 3, GτG = (1/n)Xτ
Ē
(I − K)(I − K)τXĒ , where K =

XT ∗(Xτ
EXT ∗)−1Xτ

E . Then ζ1i = Gτ
i ε = eτiG

τε, where ei is an unit vector with the

ith component 1, others 0. By (C5), we have ∥Gi∥22 = Gτ
iGi = eτiG

τGei ≤ τn1,

i = 1, . . . , p− q. Hence under the conditions p = en
d3 , (1/log n)I{d=1}(λ/

√
n)d =

O(nd4), and 0 < d3 < d4 < d2d/2, 1 ≤ d ≤ 2, Lemma A.2 implies

P (Ac
n) =

p−q∑
i=1

P
{
|ζ1i | >

λ√
n
η
}

=

p−q∑
i=1

P
{
| 1
√
τn1

Gτ
i ε| >

λ
√
nτn1

η
}

≤ (p− q)P
{
| 1

∥G1∥2
Gτ

1ε| >
λ

√
nτ1

η
}

≤ (p− q)fn(
λ

√
nτ1

η) = O(en
d3−d4

). (A.27)

Similarly, by (C4), we have ∥Hj∥22 ≤ κn1, j = 1, . . . , q. Therefore, under (C1),

(C2), (C4), and 0 < d3 < min{d4, d2d/2}, by Lemma A.2 again, we have

P (Bc
n) =

q∑
j=1

P
(
|ξ1j | ≥

√
n(|βj | −

λ

n
hj)

)
=

q∑
j=1

P
(
|Hτ

j ε| ≥
√
n|βj |(1 + o(1))

)
=

q∑
j=1

P
(
| 1
√
κn1

Hτ
j ε| ≥

√
n

κn1
|βj |(1 + o(1))

)
≤ qP

(
| 1

∥H1∥
Hτ

1 ε| ≥
√

n

κ1
|βj |(1 + o(1))

)
≤ qfn

(M1n
d2/2

√
κ1

(1 + o(1))
)
= O(e−nd2d/2

). (A.28)

Combining (A.26) and (A.27) with (A.28), and invoking δ = min{d4−d3, d2d/2},
we obtain that

P (β̂D =s β) ≥ 1−O(e−nδ
) → 1, as n → ∞. (A.29)
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Proof of Theorem 5. Take ∆n = {sign(β̂) = sign(β)}. On ∆n, T̂ = T ∗ is

fixed. For any τ > 0,

P (|β̂ − β| > τ) = P (|β̂T̂ − βT ∗ | > τ)

≤ P
(
|β̂T̂ − βT ∗ | > τ,∆n

)
+ P (∆c

n)

= P
(
|β̂T̂ − βT ∗ | > τ | ∆n

)
P (∆n) + P (∆c

n).

Under sign consistency, we know that P (∆c
n) goes to zero as n tends to infinity.

Thus it is sufficient to prove P
(
|β̂T̂ − βT̂ | > τ |∆n

)
tends to zero. For this, it

suffices to prove that, on ∆n,∥∥∥C−1
T ∗,T ∗

{ 1

n

n∑
i=1

XiT ∗εi

}∥∥∥
2
= Op

(√ q

n

)
. (A.30)

Since max
1≤i≤n,1≤j≤q

x2iT ∗,j < ∞, we have

E
∥∥∥{ 1

n

n∑
i=1

XiT ∗εi

}∥∥∥2
2
=

1

n2

n∑
i=1

∥XiT ∗∥22E{ε2i }

= O
( q

n

)
.

By the Markov inequality, we get that∥∥∥( 1

n

n∑
i=1

XiT ∗εi

)∥∥∥2
2
= Op

( q

n

)
, (A.31)

And it follows that∥∥∥C−1
T ∗,T ∗

{ 1

n

n∑
i=1

XiT ∗εi

}∥∥∥2
2
= trace

((1
n

n∑
i=1

XiT∗εi

)τ
C−1
T∗,T∗C

−1
T∗,T∗

(1
n

n∑
i=1

XiT∗εi

))
= O

(∥∥∥( 1

n

n∑
i=1

XiT ∗εi

)∥∥∥2
2

)
= Op

( q

n

)
.

The second equality holds because of (C2). Hence, (A.30) holds.
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