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Abstract: Self-weighted two-stage sampling designs are popular in practice as they
simplify field-work. It is common in practice to compute variance estimates only
from the first sampling stage, neglecting the second stage. This omission may induce
a bias in variance estimation; especially in situations where there is low variabil-
ity between clusters or when sampling fractions are non-negligible. We propose a
design-consistent jackknife variance estimator that takes account of all stages via
deletion of clusters and observations within clusters. The proposed jackknife can
be used for a wide class of point estimators. It does not need joint-inclusion prob-
abilities and naturally includes finite population corrections. A simulation study
shows that the proposed estimator can be more accurate than standard jackknifes
(Rao, Wu, and Yud (997)) for self-weighted two-stage sampling designs.

Key words and phrases: Linearisation, pseudovalues, Sen-Yates-Grundy form, smooth
function of means, stratification.

1. Introduction

In survey sampling, accuracy of point estimates are assessed using variance
estimates. Variance estimation becomes difficult when we have non-linear point
estimators and complex sampling designs. This is a well-known problem which
has been broadly covered in the survey sampling literature, e.g., Kish-and Frankel
(r974), Sarndal, Swensson, and Wretman (T992), and Waolfer (2007). Resampling
techniques for variance estimation often overcome these difficulties. The Jack-
knife was first introduced by Quenouilld (T956) for bias reduction and later by
Tukey (T958) for variance estimation. This resampling technique has been widely
studied, e.g. Krewski_and Rad ([981), Kovar, Rao, and Wu (IU88), Rao, Wul
and Yue (1997), and Shao and Tu (I995), among others.

Campbell (T980) proposed a totally different generalised jackknife variance
estimator based on the analogy between linearisation and jackknife techniques.
Berger and Skinner (2005) showed its design consistency for single stage designs
under a set of regularity conditions. They also compared the empirical perfor-
mance of Campbell’s jackknife (in a single stage context) with standard single
stage jackknifes such as in [Tukey (T95R), Kish-and Frankel (1T974), and Rao, Wul
and Yue (1992). Further, Berger and Rad (2006) extended Campbell’s approach
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for imputation. Bergey (2007) proposed a modified Campbell’s estimator which
incorporates the HajeK (I'964) approximation for the joint inclusion probabilities.

The regularity conditions in Berger and Skinner (2005) for the design-con-
sistency of the Campbell estimator are too restrictive for two-stage sampling. For
example, in two-stage simple random sampling the total number of sampled units
would need to be fixed as population size tends to infinity for the Berger and
Skinner (2005) regularity conditions to hold. In Section 3, we propose new and
less restrictive regularity conditions that accommodate two-stage sampling. We
also propose a Sen (T953) and [Yates and Grundy (T953) version of Campbell’s
jackknife that overcomes the possibility of getting negative variance estimates.
Further, the asymptotic design-consistency of these jackknife estimators is estab-
lished under two-stage sampling.

In Section 4, we propose a jackknife variance estimator for self-weighted
two-stage (stratified) without replacement sampling. These sampling designs
are common in practice; examples include the Youth Risk Behavior Survey in
the U.S.A., the Labour Force Survey for Sao Paulo in Brazil, and the Living
Standards Survey for countries like South Africa, Ghana, and Co6te d’Ivoire.
We focus on self-weighted two-stage designs. However, there are different self-
weighted designs that are widely used in practice. Some utilise three or more
stages, and others use unequal probabilities at the final stage. Examples include
the US National Health and Nutrition Examination Survey (NHANES) and the
Australian and New Zealand Labour Force Surveys.

The proposed jackknife for self-weighted two-stage sampling involves dele-
tion of both, clusters and observations. The proposed jackknife estimator does
not have double sums and does not need joint inclusion probabilities. Further,
we show that this novel estimator is asymptotically design-consistent. To ease
computing efforts, a subsampling version is also proposed in Subsection 4.2 for
its most computer intensive part that involves deleting observations.

In Section 5, Monte-Carlo simulations show that the proposed jackknife can
be more accurate than customary jackknife estimators for more than one stage
such as the Rao, Wu, and Yud (I992) stratified multi-stage delete-cluster jack-
knife.

2. The Class of Point Estimators

Let U denote a finite population of size N whose elements are grouped into
Ny clusters of size M;, ¢ = 1,..., N;. Consider a without replacement sample
s of elements drawn according to a self-weighted two-stage fixed sample size
design. That is, n; clusters are drawn using a without-replacement probability
proportional to the size of the clusters, then a simple random sample without-
replacement of m fixed elements is drawn within each sampled cluster. Therefore,
the sample size is fixed and given by n = nym elements grouped in n; clusters.
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Let m7; > 0 and 7p;; denote, respectively, the first and the second order
inclusion probabilities for the clusters 7,7 = 1,..., Ny; let m; > 0 and 7¢ denote
the inclusion probabilities for the elements k,/ = 1,..., N. For a self-weighted
sampling design the clusters inclusion probabilities are 7j; = nyM; /N, and thus
7 = f where f =n/N.

Let yqi, denote the value of the survey variable ¢ (¢ = 1,...,Q) for k € U.
Suppose we are interested in the population parameter

0= g(lu’la"":u'Q)7

a smooth and differentiable function of population means

1
MqZNquk, g=1,...,Q.
keU

Further, assume 6 is estimated by the substitution point estimator

0= g(/jb s 7/3’Q)>
[‘q :Zﬁ)k‘qua q= 17"'7Qa
kes
with fi, the HajeK (T971) mean estimator for j; with normalised sampling weights
Wy, = wi/N, where N =, - wy and wy, = 1/7p,.

3. Generalised Jackknife Variance Estimators

The Campbell (TU80) generalised jackknife variance estimator of 0 is (see
Berger and Skinner (2005))

V%\I‘(é)HT = Z Z Dkg €(k) E(g), (3.1)

keEs Les

with . S
k¢ — TETY ~ A A
Dy = ———, ey = (1 —wp) (0 — Oy), (3.2)
Tke
where 0ty = g(f1(k)s - - - AQR))s Fg(k) = Dres—{k} De(k)Yats Deky = We(Xpes— k)
we)~!, and s — {k} denoting s after deleting the k-th observation. Clearly the
expression (B7) may take negative values. To overcome this issue, we propose

the alternative Sen (1953) and [Yates and Grundyl (T953) form,
A -1 2
var(f)sye = —- DY Die (e — e (3.3)
kes les

which is always positive if the Sen-Yates-Grundy condition, Dyy < 0, holds. Note
that (B33) is suitable for unequal-probability fixed sample size designs.
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For single-stage sampling, Berger and Skinner (2005) showed the asymptotic
design-consistency of (BIl) and also illustrated the better empirical performance
of (B1) in comparison with standard jackknifes such as in [[ukey| (I958), in Kish
and _Frankel (1974), and in Rao, Wu, and Yu€ (1992). Further, Berger and
Rad (2006) extended (B) for imputation, and Bergey (2007) proposed a modi-
fied version incorporating the Héjek (1964) approximation for the joint inclusion
probabilities. Note that under uni-stage simple random sampling, both (81) and
(B33) reduce to the standard jackknife (e.g., Shao and Tu (995, p.239); Walter

(2007)),

A nyn—1 A A
@r(0)sro = (1= 1) == (0 — 00))*,
where é() = Tl_l Zkes é(k)

3.1. Consistency of the generalised jackknifes for two-stage sampling

The consistency of var(f) g and var(f)syc is now to be set under new and
less restrictive regularity conditions than those specified by Berger and Skinner
(2005). These new conditions allow two-stage sampling.

We use the Isaki_and Fulled (I987) asymptotic framework that considers a
sequence of nested populations of size Ny (0 < Ny < Nj4q)), and a sequence of
samples of size ny (ny < npq,ny < Ny, for all t). To simplify notation, we
drop the index ¢ in what follows. Thus, ¢ — oo implies: N — oo, n — oo, and
ny — oo. We consider that f = n/N, fr = ny/Ny, and m are constants free of
the limiting process.

For the vector of means p = (1, ..., MQ)T and the vector of point estimators
o= (fg,-.., ,&Q)T, the multivariate Horvitz-Thompson and Sen-Yates-Grundy
design variances and variance estimators of fi are approximated by (see Sarndall

Swensson, and Wretman (1992, Secs. 5.5 and 5.7))

var(fi) g = Z ZDM The 2k 2 »

keU (€U
var(f)pr =Y > Dre % %
kes les
N .1
var(fi)sye = —- DN Die mie {2 — 2}z — 2},
keU (e
. .1 . . -
var(fi)sye = —- 3 Due {2 — 2z — 27,
kes les

with 2z = N wi(yr—p), 21 = Wp(ye— 1), ye = Y1, - - - ,ka)T. Now, consider
our regularity conditions.



JACKKNIFE FOR SELF-WEIGHTED TWO-STAGE SAMPLES 599

C1. var(9)y, /var(0);, —p 1, var(f), # 0, where

—~ A N . . 3.4
var(0), = V()" var(p) yr V(j); @4)
for fixed sample-size designs,

var(6), = V()" var(@)sve V(h). .

var(f), = V()" var()sye V (i),

where V(x) = (ag(p,)/ﬁul,...,ag(u)/ﬁuQ);{:;t is the gradient of g(-) at
x € R, with g(-) continuous and differentiable at .

C2. |1 —wg| > a >0, forall k € U, ais a constant.

C3. lim inf {n var(6).} > 0.

Cd. n Y W7 |y — |7 = Op(n™7) for all 7 > 2, where ||A|| = tr(ATA)Y/2
denotes the Euclidean norm.

C5. Gy =n"P 303 i syes(Dip)* = Op(1), with 0 < 3 < 1, where Dy, = —Djy if
Dre < 0 and 0 otherwise.

C6. Hy = n_ﬁzz(k#)es(l?&)z = Op(1), with 0 < B < 1, where D}, = Dy if
Dy > 0 and 0 otherwise.

C7. V() is Lipschitz continuous, |V (1) — V(2)|| < A|j1 — 22]°, A > 0 and
0 > 0 constants, 0 < /2 < §, &1 and x3 in the neighbourhood of w.

C8. V(@) = Op(1).

Conditions C1 and C5 to C7 are similar, though different, to those in Berger
and Skinner (2005); these conditions now allow two stage sampling. C1 sets the
consistency of the linearisation variance estimator recalling the Robinson and
Sarndal (T983) approach (see Sarndal, Swensson, and Wretman (19927, Secs. 5.5
and 5.7))). C2 to C4 are typical (e.g., Shaoand Tu (1994, p.258)): C2 has that
none of the normalised weights reach 1; C3 implies var(é) 1, decreases with rate
n~!; C4 is a Lyapunov-type condition for the existence of moments. C5 and C6
are mild conditions on the design, similar to ones in [saki_and Fullexd (I982). C7
and C8 are standard smoothness requirements for the jackknife. Note that for
two stage-sampling, 8 < 1 means that there are more observations than clusters
in s.

Theorem 1. For sampling designs of fized size, if C1 to C8 hold, then the
generalised jackknife variance estimator var(0)syq at (B3R) is asymptotically
design-consistent for the approzimate linearised variance var(d)y # 0 at (B3),
var(f)syc/var(f), —p 1.
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A proof of Theorem 1 is given in Appendix A.

A~

Corollary 1. If C1 to C8 hold, then var(0)yr at (B) is asymptotically
design-consistent for the approzimate linearised variance var(0)r # 0 at (B4),
var(0) g /var(0)r, —p 1.

Corollary 1 can be shown with the Berger and Skinner (2005) proof, taking
into account the changes in the conditions C5 to C7. From Theorem 1, Corollary
1, and Slutsky’s Theorem, when 6 is asymptotically normal,

-0
(vax(0) grr)'/?

>

—0

(vat(0) sy )/

Thus, allowing valid confidence intervals for 6.

—4 N(0,1) and —q N(0,1). (3.6)

4. The Proposed Jackknife for Self-weighted Two-stage Sampling

For self-weighted two-stage sampling we have n;; = nyM;/N and 7, =
n/N = f. Now, by using the Hajek’s approximation (Hajek (1964, eq. 5.27))
the clusters’ joint inclusion probabilities 7y;; can be approximated by

mrj = o {1 — d7H(1 =) (1 - my)}

with d = >, 7ri(1 — 77;). This approximation was originally developed for
d — 00, in our case Ny — oo, under the maximum entropy sampling design (see
HajeK (1981, Them. 3.3, Chap. 3 and 6)), the Rejective Sampling design; a. k. a.
the Conditional Poisson Sampling design. It requires that the utilised sampling
design (of clusters) be of large entropy. An overview can be found in Berger and
Tilld (2009). An account of different sampling designs, 77;;’s approximations, and
approximate variances under large-entropy designs can be found in [Iilld (2008),
Brewer_and Donadid (2003), and Haziza, Mecatti, and Rad (2008). Recently,
Bergey (2011) gave sufficient conditions under which Héjek’s results still hold for
large entropy sampling designs that are not the maximum entropy one.

Low entropy sampling designs, such as the systematic probability pro-
portional-to-size design, are not suitable for the above approximation. How-
ever, the randomized systematic sampling is suitable as it is of large entropy
(e.g., Brewer and Gregoird (2009); Berger and T1illg (2009)).

Now, given the conditional inclusion probabilities 7y ;; = m/M; and ) ; =
m(m — 1)/M;(M; — 1), the elements’ joint inclusion probabilities 7y, are

Tri T = [ if (k=10) € s,
Ty = W[iﬂkg‘]i:f(m—l)/(Mi—l) if (]{7&5) € S,
T T wory = A1 —d7 (1 —mp) (1= 7)Y if k€ si,0 € 85,1 # J,
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where s; denotes the observations from the i-th cluster. Therefore, by substitut-
ing for Dy in (B2), we obtain

1—f if (k= 10) € s,
Dy =1{ 1 -3, if (k#Y¢) € s,
(1 —W[i)(l—ﬂ'[j){(l —W[i)(].—ﬂ'[j) —d}_l if k€s;,le Sj,i;éj,

x ‘ m Mi—l
T = T4 m—1 MZ .

Thus, it can be shown (see Appendix C) that by substituting the values of Dy
into (B33), it reduces to a jackknife variance estimator suitable for self-weighted
two-stage sampling designs,

where

@(é)pmp = VUely + Vobs, (4.1)

where

2
) 1
vaw = Y (L=75) s(fay — p (Z(l — 1) C(n)) : (4.2)

1€5 €S
Vobs = Z d)k 5(]%)7 (43)
kes
with ¢y, = 75, (M; —m)(M;—1)~! for k € s;. Here the delete cluster pseudo-values

S(1i) are given by

ngr—1 ~ &
! (0 = 014)), (4.4)

SIi) = n
where 0(ri) = g(fa(riys - RQuiy) With Qg = Dpes(rn Wr(ri)Yaks Wr(ri) =
wk(zk@(”)wk)*l, and s([i) = s — s; denoting the sample without observations
from the i-th cluster; the delete observation pseudo-values €, , see Section 3, are

given by
n—1

) = — (0 — )

The proposed variance estimator (1) has two terms, one that deletes ob-
servations within clusters and another that deletes clusters. The term wvgy, in
(E22) computes variability between clusters, and v, in (EZ3) computes vari-
ability of observations within clusters. If d is unknown we can replace it by
d = Sies(—=mri). As ¢ o< f(My — m)(m — 1)1, The term vgs is zero if
m = M;, and it diminishes for small f. Conversely, it may become large if f is
large, if the sampling fractions within clusters are small, or if the M; vary.

To simplify notation, we consider (B-) for non-stratified designs. This can
be generalised by treating the strata separately. The number of strata has to be
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bounded, and large sample regularity conditions must hold within each stratum.
Therefore, the applicability of the proposed jackknife variance estimator excludes
highly-stratified sampling designs with very few sampling units per stratum.

4.1. Consistency of the proposed jackknife

Let var(0) iz, denote the Hajek approximation to the approximate linearised

A

variance var()r,.

Theorem 2. IfCl1, C3, C4, C7, and C8 hold, and if M; > m > 2, then 0ar(0)prop
at (BD) is asymptotically design-consistent for the Hdajek approrimate linearised
variance var(0) pr, = var(0)r # 0, 0ar(0)prop/var(0)r, —p 1.

A proof of Theorem 2 is given in Appendix B. Furthermore, (818) also holds
for (E21) when 6 is asymptotically normal.

4.2. A less computationally intensive version of the proposed jackknife

The delete-observation term vy at (=3) can be laborious for large datasets.
To ease computing, we propose to treat v, as a total that can be estimated
from a subsample via the Horvitz and Thompson (I957) estimator. Hence we
subsample . elements from the sample s, §, and let 75, be the first order inclusion
probabilities of 5. We estimate v,y using the unbiased Horvitz-Thompson point
estimator

. Pk €3y
Vobs = E 7~rk;( ) (45)
kes

Thus, a less computationally intensive estimator than (B-T) is given by
‘ﬁ(é)pmp = Vclu + Uobs- (4.6)
We recommend using 7y, = n¢y/®, where ® = 3", - ¢y, implying

n

(z)k 82 o n
~Tps (k) 2
e =2 R >

k=1 k=1

Note that 75 should be approximately proportional to gbke%k). Hence, this gives
an efficient Horvitz-Thompson estimator.

In the context of two-phase sampling, Kim and Siffer (2003) also proposed
a less computationally intensive approach. In further research, it would be good
to explore the applicability of (E@) for two-phase sampling designs.
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4.3. Customary jackknife variance estimator

A customary jackknife variance estimator for sampling designs of more than
one stage is the stratified multi-stage delete cluster jackknife estimator of Rao!l
Wu, and Yud (T992), originally purposed for functions of totals and for with-
replacement sampling designs, thus for negligible sampling fractions. Their esti-
mator is .

@(Q)RWY = Z §(12i), (4'7)
€S
where ¢(z;) is defined as (). When the sampling fraction is large, this is usually
adjusted by an overall clusters’ finite population correction (FPC),

— (A\FPC nr 2
var(0) pivy = Z (1 - NI> S(1i)- (4.8)
1€8
Comparing (B0) with (BR), we note that var(8)prp adds the term v,y which
computes variability of observations within clusters, and var(6),,.p uses a differ-
ent FPC (1 — 7};) for each cluster i, whereas var(0)5LS uses the fixed FPC

(1 — n[/N[).

5. Simulation Study

We illustrate with two datasets: the Labour Force Population from [Valliant]
Dorfman, and Royall (2000, Appendix B.5) and the MU284 Swedish Municipali-
ties Population from Sarndal, Swensson, and Wretmar (T992, Appendix B). For
each, we duplicated 3 times the number of clusters and 3 times the number of
observations within each cluster. We therefore used two population frames of
N = 4,302 and 2,556 observations, grouped into N; = 345 and 150 clusters,
respectively. The minimum/maximum cluster sizes were: 6/39 and 15/27, re-
spectively. We used two variables from each population frame: weekly wages
(y1) and number of hours worked per week (y2) from the first population frame,
the number of Social-Democratic seats in municipal council (y3) and the number
of Conservative seats in municipal council (y4) from the second. The homogeneity
measures U(-) defined in Sarndal, Swensson, and Wretman (1992, Secs. 3.4.3 and
4.2.2), for each of the variables of interest were: U(y1) = 0.2965, O(y2) = 0.1951,
U(y3) = 0.3181, and U(y4) = 0.4958. The parameters of interest were the ratios
Rio = p1/pe = 7.697 and R3y = ps/pg = 2.439, estimated by Ris = fi1/fi2 and
]:234 = i3/ [14, where f[i1, ..., fiq are Horvitz-Thompson point estimators.

Clusters were selected using the Brewerd (I975) unequal-probability sampling
design with clusters’ inclusion probabilities proportional to the cluster size; then,
a simple random without replacement sample of individuals was selected within
clusters using sample size m = 2, 4, and 6. For the labour force population frame,
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it is important to note that 20.34% of the clusters are of the minimum cluster
size, with m = 6 we are selecting all the elements within many clusters. For
the estimator (E), we used the Brewer (I975) unequal probability design with
subsampling rate 0.25 and with subsampling inclusion probabilities proportional
to ¢, as defined in Subsection 4.2.

For each simulation and each simulation example, Ng;m»,1 = 100,000 and
Ngimo = 1,000,000 samples were selected to compute the empirical rela-

tive bias RB = B(var(Ru))/var(Rap), where B(var(Rgy)) = E(var(Ra)) —
var(Rab), the empirical relative root mean square error defined by RRMSE =
{MSE(var(Rg))}'/? /var(Rq), and the coverage at a 95% confidence level. The
var(Rab) is the empirical variance computed from the Ng;,1 (and Ngjm2) ob-
served values of Ry (ab =12 and 34). These quantities were computed for the

estimators (£1), (A4), (£27) and (E-R).

5.1. Example 1: point estimator Ris

Results for this example are summarised in Table 1 which illustrates, in terms
of RB, that the customary estimators (A21) and (A=), respectively, over-estimate
and under-estimate the variance for increasing values of f (f;). In general, this
effect is more pronounced for small second-stage sampling sizes m = 2,4, and less
so with m = 6 (census within several clusters) for the FPC-adjusted customary
estimator (ER). On the other hand, the RB for the proposed variance estimator
(ED) and its subsampling version (E) remains close to zero as the sampling
fractions increases, regardless of the second-stage sample sizes. The reason for
this is that the proposed estimators correctly incorporate the finite population
corrections at both stages. Note that there is a particular FPC for each cluster
at (E0) and (£3).

In terms of RRMSE, it can be seen in Table 1 that the proposed estimator
(20) had always the smallest RRMSE followed by the FPC-adjusted Rao, Wul
and _Yud (1992) from (ER), and by the subsampling version of the proposed
estimator (E6H). It can also be seen in Table 1 that the original Rao, Wu, and
Yue (1997) (B=7) had the correct coverage for small sampling fractions, although
this variance estimator had the worst performance in terms of RB and RRMSE.
Hence, discarding (B=7), the proposed estimator (E) has presumably the best
coverage for increasing sampling fractions. In general, this also happens for the
subsampling version (278) which has similar RB, RRMSE, and coverage as (£1).

Finally, Table 1 suggests that, although the FPC corrections improves the
Rao, Wu, and Yud (I997) estimator in terms of bias and stability, these artificial
corrections are not always the best way to proceed; particularly, for situations
where the second stage sampling may use small sampling fractions within certain
clusters.
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Table 1. RB, RRMSE, and Coverage at 95% confidence level of variance
estimators for the point estimator Ryo, where U(y1) = 0.2965 and U(ys2) =

0.1951.

m ny n fr f RB% for egs. RRMSE% for egs. Coverage% for egs.
% % (E3) (£3) (E2) (13) (27) (E5) (E2) (£3) (1) (23) (22) (E3)
2 20 40 6 1 -44 -44 45 -1.5 46.1 46.4 51.5 484 91.9 91.8 92.9 92.1
40 8012 2 -1.7 -1.7 9.1 -3.6 31.9 32.9 38.0 32.9 934 93.3 94.5 93.1
60 120 17 3 -1.8 -1.8 129 -6.8 253 27.2 33.5 26.4 93.8 93.7 95.3 93.1
80 160 23 4 -1.3 -1.3 181 -9.3 21.0 244 329 23.1 94.2 94.0 96.0 93.1
100 200 29 5 -0.6 -0.7 24.3 -11.8 18.3 23.4 35.3 21.6 94.4 94.0 96.5 92.7
120 240 35 6 -0.8 -0.8 30.1 -15.1 16.0 23.1 38.5 21.8 94.4 94.1 97.0 924
140 280 41 7 -0.6 -0.6 37.2 -18.5 14.4 23.9 43.7 23.0 94.7 94.2 97.5 91.9
160 320 46 7 -0.5 -0.5 44.8 -22.4 13.1 25.5 50.1 254 94.7 94.0 97.9 91.3
4 20 80 6 2 -4.8 -48 55 -0.6 42.1 42.2 47.2 44.2 92.1 92.1 93.3 92.6
40 160 12 4 -3.1 -3.1 10.6 -2.3 29.2 29.3 35.5 30.0 93.5 93.4 94.9 93.5
60 240 17 6 -2.7 -2.7 16.6 -3.7 23.2 23.4 33.0 23.9 939 93.9 95.8 93.7
80 320 23 7 -1.8 -1.8 247 -42 19.6 19.9 35.8 20.3 94.2 94.2 96.5 93.9
100 400 29 9 -0.9 -0.9 34.1 -4.7 170 174 41.9 17.8 94.4 94.4 97.3 93.9
120 480 3511 0.0 0.0 45.1 -5.4 15.1 15.8 50.7 16.2 94.7 94.6 97.8 93.9
140 560 41 13 0.0 0.0 56.4 -7.1 13.4 14.5 60.7 15.2 94.7 94.7 98.3 93.8

160 640 46 15 -1.2 -1.2 67.5-10.2 11.9 13.6 71.1 15.6 94.7 94.6 98.7 934

6 20120 6 3 -49 -49 6.0 -0.1 40.1 40.1 45.0 42.0 92.1 92.1 934 92.7
40240 12 6 -3.0 -3.0 12.2 -0.8 27.7 27.7 34.4 285 93.5 93.5 95.1 93.7
60 360 17 8 -1.3 -1.3 209 -0.1 22.1 22.1 34.6 22.7 94.1 94.1 96.2 94.2
80 480 23 11  -1.3 -1.3 29.3 -0.7 18.4 18.5 38.3 18.9 943 94.3 96.9 94.4
100 600 29 14 -0.8 -0.8 39.9 -0.7 16.2 16.3 46.2 16.6 94.5 94.5 97.6 94.5
120 720 35 17 -14 -14 509 -1.6 14.2 14.3 55.5 14.6 94.5 944 98.1 944
140 840 41 20 -0.2 -0.2 66.9 -0.8 12.6 129 704 13.0 94.6 94.6 98.6 94.5
160 960 46 22 -1.1 -1.1 82.7 -2.0 11.3 11.7 854 11.7 94.5 94.5 99.0 944

5.2. Example 2: point estimator Rsy

The results for this example are summarised in Table 2. In terms of RB, it
can be seen that the FPC-adjusted Rao, Wu, and Yud (1997) (E=8) estimator has
the best performance when the sampling fractions are very small. This might
be useful for highly stratified sampling designs. However, for increasing sam-
pling fractions, the estimators (2=7) and (E=8) tend, respectively, to increasingly
over- and under-estimate the variance. Again, this is more noticeable with small
sample sizes at the second stage (small values of m).

On the other hand, in terms of RB, the variance estimators (1) and (£0)
tend consistently to zero for increasing sampling fractions, regardless of the
utilised sample size at the second stage. This is something desirable in busi-
ness surveys, for example, where sampling fractions are large or in situations
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Table 2. RB, RRMSE, and Coverage at 95% confidence level of variance
estimators for the point estimator Rsy, where U(ys3) = 0.3181 and U(y4) =

0.4958.

mmny n fr f RB% for egs. RRMSE% for egs. Coverage% for egs.
% % (E3) (£3) (E2) (13) (27) (B5) (2) (£3) () (23) (E32) (23)
218 3612 1 -3.5 -3.5 12.8 -0.8 42.2 43.0 51.7 44.1 93.1 93.0 94.8 93.3
26 5217 2 -24 -24 173 -3.0 33.6 35.1 449 34.4 93.7 93.6 95.7 93.6
356 7023 3 -1.7 -1.7 23,5 -5.3 27.8 30.5 43.2 28.3 94.1 93.9 96.4 93.5
44 8829 3 -14 -14 305 -7.8 238 27.8 44.9 24.6 94.3 94.0 97.0 93.4
53 106 35 4 -1.1 -1.1 38.8-10.3 20.9 27.0 49.6 22.5 94.4 94.1 97.5 93.2
62 124 41 5 -1.1 -1.1 47.8 -13.3 18.5 26.8 56.2 21.8 94.5 94.0 98.0 92.8
69 13846 5 -0.9 -0.9 56.2 -15.7 17.0 27.7 63.1 22.1 94.6 94.0 98.3 924
418 7212 3 -3.8 -3.8 14.1 04 399 399 49.5 41.7 929 929 94.8 93.4
26 104 17 4 -26 -2.6 19.9 -09 31.9 32.0 44.2 32.6 93.6 93.6 95.8 93.8
3514023 5 -2.0 -2.0 274 -2.3 26.4 26.6 44.2 26.6 94.0 94.0 96.6 94.0
44 176 29 7 -1.7 -1.6 36.3 -3.7 22.7 22.9 48.2 22.7 94.2 94.2 97.3 93.9
5321235 8 -14 -1.5 46.7 -5.1 19.8 20.3 55.4 20.0 94.4 94.3 97.9 93.9
62 248 41 10 -1.2 -1.2 59.1 -6.7 17.6 18.3 65.7 18.2 94.5 94.5 98.4 93.8
69 276 46 11 -1.0 -1.0 70.4 -8.0 16.2 17.1 759 17.2 94.5 94.5 98.7 93.6
6 18 108 12 4 -4.1 -4.1 146 0.8 38.9 389 485 40.8 92.9 929 94.9 93.5
26 156 17 6 -2.9 -29 20.7 -0.2 31.1 31.1 43.8 31.9 93.6 93.6 95.9 93.9
3521023 8 -1.9 -1.9 29.3 -0.8 25.8 25.8 44.9 26.1 94.0 94.0 96.8 94.1
44 264 29 10 -1.6 -1.6 39.0 -1.7 22.1 22.2 50.0 22.1 94.2 94.2 974 94.2
53 318 35 12 -1.7 -1.7 49.9 -3.0 19.3 194 579 19.2 94.3 94.3 98.0 94.2
62 372 41 15 -1.5 -1.5 63.7 -4.0 17.1 17.2 69.7 17.0 94.4 94.4 98.5 94.1
69 414 46 16 -1.0 -1.0 77.0 -4.4 15.7 159 81.8 15.7 94.5 94.5 98.9 94.1

where stratification is moderate. Note that the RB for the proposed estima-
tors always showed a slight negative bias. This is something expected and well-
documented when using the HajeK (T964) approximations (see Haziza, Mecattil
and Raao ('2[)(]8); Brewer and Donadid (7003))_

As to stability of the studied variance estimators, Table 2 shows that the
proposed estimator (E) has the smallest RRMSE in all considered situations.
It can also be seen that the subsampling version (-8) has small but slightly higher
RRMSE. In terms of coverage, it can be seen that the estimator (2=7) has better
coverage than the FPC-adjusted (E=). The coverage of the proposed estimators
(1) and (21) become closer to 95% for increasing sampling fractions. Overall,
the worst coverage was showed by the estimator (E8). This suggests again that
the fixed ad hoc FPC correction might not be suitable.

6. Conclusion

Self-weighted two-stage sampling designs are common in practice. Besides
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their popularity, it is also common practice to compute variance estimates relying
only on the first sampling stage (e.g., Sarndal, Swensson, and Wretman (992,
Chap. 4)). A customary jackknife variance estimator for sampling designs of more
than one stage is the Rao, Wu, and Yué (T997) estimator, originally designed for
functions of totals and for negligible sampling fractions. This jackknife would
work well when most of the variability is between clusters and with very small
sampling fractions (highly stratified samples), but this may not necessarily be
the case.

First, we propose an alternative Sen-Yates-Grundy form of the generalised
unequal-probability without-replacement jackknife variance estimator (Campbell
(980)). This estimator is extended to two-stage sampling by proposing new less
restrictive regularity conditions than those from Berger and Skinner (2005), thus
allowing two-stage sampling for the Horvitz-Thompson (original) form of the
Campbell (I980) generalised jackknife as well.

Secondly, we propose a novel design-consistent jackknife variance estimator
for self-weighted two-stage without-replacement sampling. The proposed estima-
tor does not need joint-inclusion probabilities, allows stratification, naturally in-
cludes FPC, and comprises a wide class of point estimators (functions of means).
Monte-Carlo simulations show that the proposed estimator can be more accurate
than customary jackknife estimators, specially in situations where the first stage
sampling fraction is large, or in cases where the second stage sampling fractions
are small. The proposed estimator incorporates not only clustering effects but
also the underlying unequal-probabilities of both, clusters and observations.
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Appendix
A. Proof of Theorem 1

The proof uses standard arguments in proving jackknife variance estimators
design consistency (see Miller (1964); Shao and Tu (T995, Sec. 2.1.1)). Hence,
from the mean value theorem we have that é—é(k) =g(f)—9(hw) = V()T (-
Ay) = Vi) (p— f(ry) + 7, where & denotes a point between fi and fi(,
and where 7}, = (V (&) — V()" (i — fux)) is the remainder term. Thus, () =
V()" (1 —@p)(fr — ry) + rr, where

Ty = (1 — QIJ]C)TZ (Al)



608 EMILIO L. ESCOBAR AND YVES G. BERGER

It can be shown that

(1 — g) (8 — fa(ry) = Dr(yr — 1), (A.2)
implying that
ey = V() 0k (yr — B) + 7 (A.3)
Furthermore, the Cauchy inequality together with (AT) and (A=) imply
il < NIV (&) = V(@) lwk]lyx — All- (A.4)

The regularity condition C7 implies that there are constants A > 0, J, and
0 < 8 < 1, where 3/2 < ¢, such that

IV (&k) — V()| < Nl&x — all°. (A.5)

As & is between f1 and fi(), we have that [[€; — ff| < || — figy||. Combining
this with (E32), we obtain ||&; — a|| < ||(1 — @) '@k (yx — @)]|, which by (B3)
gives ||V (&) — V(@)|| < A1 — wg| %@ |lyx — fa||°. Then, by C2 this becomes
IV (&) — V()] < Aa™%0?||lyx — f1||° which, combined with (B), imply

[kl < Ma™0my " lyi — ]|, (A-6)
Moreover, C3 implies that
{n var(d)L} "2 = O(1). (A7)

By substituting (A3) in (83), we obtain var(f)syg = A+ 2(E — C) + D — B,
where

A=V (p)" var(p)sye V (i),

B=>"> Dy ri e,

kes Les

C=Y"> D ri io(ye— )" V (),
kes Les

D=)" Dy}, (A.8)
kes Les

E=Y" Dy i wrlyr — )" V(i) (A.9)

kes Les
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Hence, Theorem 1 follows if we show

A (A.10)
var(0)r,

B o (A.11)
var(0)r,

¢ 5,0, (A.12)
var(0)r,
LA —p 0, (A.13)
var(0)r,
LA —p 0, (A.14)
var(0)r

Now C1 implies (AT0), whereas (A1) and (AT2) can be shown by following
the Berger and Skinner (2005) proof and taking into account the changes in
regularity conditions C5 to C7. Hence, it remains to show (AT3) and (A=d).
We start with (BA—L3). By the triangle and the Cauchy inequalities, (A=8) implies

D] <S5 Dielral? = Dy + Dy < (GY2 + HY?) DY,
kes les

1/2 ~1/2 1/2 ~1/2
where Dl_ZZkées ke|7’k\2<G/D3/ D, _ZZkZES ke‘rk|2<H/D/

and
D3 =n’ Z Z [r|* = nttP Z 73] 2. (A.15)

k€s Les kes

Thus, (AT3) follows from C5 and C6 if we show Ds{var(d);}~2 —, 0. Using the
expression (A) in (ATH), we have that

D 2 nAth 1 ~4 5) .
3:2 S B el o ||y — o) (A.16)
var(6); @ {n var(f)r}> \ 1

kes

Conditions C3, C4, and (A7) and (BTH) imply Ds{var(d)}2 = nf0O ,(n~49).
From C7, § < 4. Thus D3{var();}~2 —, 0, implying (AT3). We now show
(ATT2). Using the triangle and the Cauchy inequalities in (A=) gives

Bl <3 Duellrelliel = By + Bz < (GY? + HY?) By,
kes les

where B1 = Y037 sc Diglrillinl, B2 = X2 Y ses Diglrel9rl, and
B3 =nP Y " il = 0" el el (A.17)

kes Les kes
k= Or(ye — )TV (f), (A.18)
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Thus, (E14) follows from C5 and C6 if we show Es{var(d);}~2 —, 0. Using
the Cauchy inequality in (ATR), we have that || < wg||lyr — £|| ||V (@)]]. This
inequality together with (A™6) and (A=T7) imply that
A2 nAth 1 - .

< > @ |y - u||4+2‘5> . (A19)

n
kes

Fs e A
i SIVOIP s

From C7, 8 <25. This, together with (A19), (A=7), C4, and C8 imply
Es{var(6)}~2 —, 0, completing the proof.

B. Proof of Theorem 2

Theorem 1 asserts the consistency of the variance estimator var(f)syq at
(B3), used to develop the proposed variance estimator var(d),nop, from (ED).
Hence, given conditions C1, C3, C4, C7, and C8, it remains to show that M; >
m > 2, for all ¢ = 1,..., Ny, implies that C2, C5, and C6 hold. From self-
weighting, it can be shown that C2 holds. We now consider C5 and C6. Let
qri = 1 — 7 and ¢j;, = 1 — 7}, and let 5 = Log(nr)/Log(n) < 1 be such that
n” = n;. It can be shown that |¢};| = O(1) for M; > m > 2, foralli = 1,..., Ny,
and that d = O(Nyp) as ¢qr; = O(1).

If g7; > 0, we have from C5 and C6 that D,, = qr; qrj/d = (’)p(NI_l) for
k € si,l € sj,i# j, and that D}, = ¢}, for (k # () € s;. Thus,

m m

1 nr ny i N\ 2 2 2 —
Gom 2 D0 X 3 (M) = 0D = O,

i=1 j=1,#j k=1 (=1

nr m

Ho=23 ) > (ai? = m(m = 1)O,(D)

i=1 j=li=j k=1 =1kl

where fr = ny/N; and m are constants. Moreover, if d was used instead of d in
(E32), then G5 = mQOp(nfl). Now, if ¢7; < 0, we have that D, = qr; qr;/d =
(’)p(NI_l) for k € s;,0 € 55,1 # j, Dy, = qj; for (k # £) € s;, and D,:rg = 0.
Hence, Gs = f2m?0,(n;') + m(m —1)Op(1) and Hy = 0. Again, if d was used
instead of d, G5 = m?Op(n;*) +m(m — 1)O,(1).

Thus, G and H, are Op(1) completing the proof.

C. Proof of (&)

We need some results and approximations. For the designs and estimators
defined in Sections 2 and 4, we have that

Sy = ) k- (A.1)

kes;
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We show (B) by recalling that the sampling design is self weighted. Hence,
n=nm, 0 =n"", Wyy = (n — 1)~1, and Wiy = (0 — m)~!, implying

nr— 1 R R 1 " nr— 1
n (Mq - Mq(h')) = 771 {(nl - 1)Mq - m(T (njm,uq kezs qu)]
_ (n—Vfig —nfig +ygr _n—1 5o h
- Z n T Z(l‘q*/‘q(k))'
kJESi kESi

Then, as g(-) is linearisable, we obtain (A=). Now, under the asymptotic frame-
work from Subsection 3.1 (Isaki and Fullen (T982)) we have that N — oo, imply-
ing Ny — oo as m is assumed fixed. Then we have that d — oo and ¢r; = O(1).
Letting qr; = 1 —my; and ¢j; = 1 —7J;, we introduce the approximations that are
suitable for large values of d:

qri qrj {ari qrj —d}y ' = *%, (A.2)
(d—qni) .
— =1 A.
) 2, (A3
qu . %
qr; + - (A.4)

Hence, from (B3), we have that

var (6 SYG_Z Z Dy Ek)E(0) — Z Z Dy 6(Ic

kes les l#£k kes bes l#£k

=Y D> > > Duewew+t), Y XD Duewen

i€s jEs,j=i k€s; L€s; LFk 1€s jEs,j#£i kEs; LEs;

22> > Ducly2 > D) Dusy

i€s j€s,j=1i kes; L€sj f#£k i€s j€s,jF#i kes; L€s;

Then, substituting for Dy; (see Section 4), and using (AI) and (A=), we obtain

var(d) syg= th[ S(ri) Z Z ]—Z Z q”qujg(]i)g(Ij)

€S ke€s; besibl=k 1€S jES,jFT
2 qri 41;
—(m=1)) i) ey +rmy, > T
€S kes; 1€S jES,jFT k’Esl
q —d1;
—Z [fm h} S(riy — [Z(Hﬂ(h ] ‘HTLZ [(Hz : qh} Z €k
€S €S €S kes;

Now, by using (A=3) and (A=), combined with qr; — ¢}, = (7r; — f)/(m — 1) =
7ri(M; —m)/M;(m — 1), we obtain the estimator var()pyop from (ET).
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