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Abstract: Self-weighted two-stage sampling designs are popular in practice as they

simplify field-work. It is common in practice to compute variance estimates only

from the first sampling stage, neglecting the second stage. This omission may induce

a bias in variance estimation; especially in situations where there is low variabil-

ity between clusters or when sampling fractions are non-negligible. We propose a

design-consistent jackknife variance estimator that takes account of all stages via

deletion of clusters and observations within clusters. The proposed jackknife can

be used for a wide class of point estimators. It does not need joint-inclusion prob-

abilities and naturally includes finite population corrections. A simulation study

shows that the proposed estimator can be more accurate than standard jackknifes

(Rao, Wu, and Yue (1992)) for self-weighted two-stage sampling designs.

Key words and phrases: Linearisation, pseudovalues, Sen-Yates-Grundy form, smooth

function of means, stratification.

1. Introduction

In survey sampling, accuracy of point estimates are assessed using variance

estimates. Variance estimation becomes difficult when we have non-linear point

estimators and complex sampling designs. This is a well-known problem which

has been broadly covered in the survey sampling literature, e.g., Kish and Frankel

(1974), Särndal, Swensson, and Wretman (1992), and Wolter (2007). Resampling

techniques for variance estimation often overcome these difficulties. The Jack-

knife was first introduced by Quenouille (1956) for bias reduction and later by

Tukey (1958) for variance estimation. This resampling technique has been widely

studied, e.g. Krewski and Rao (1981), Kovar, Rao, and Wu (1988), Rao, Wu,

and Yue (1992), and Shao and Tu (1995), among others.

Campbell (1980) proposed a totally different generalised jackknife variance

estimator based on the analogy between linearisation and jackknife techniques.

Berger and Skinner (2005) showed its design consistency for single stage designs

under a set of regularity conditions. They also compared the empirical perfor-

mance of Campbell’s jackknife (in a single stage context) with standard single

stage jackknifes such as in Tukey (1958), Kish and Frankel (1974), and Rao, Wu,

and Yue (1992). Further, Berger and Rao (2006) extended Campbell’s approach
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for imputation. Berger (2007) proposed a modified Campbell’s estimator which
incorporates the Hájek (1964) approximation for the joint inclusion probabilities.

The regularity conditions in Berger and Skinner (2005) for the design-con-
sistency of the Campbell estimator are too restrictive for two-stage sampling. For
example, in two-stage simple random sampling the total number of sampled units
would need to be fixed as population size tends to infinity for the Berger and
Skinner (2005) regularity conditions to hold. In Section 3, we propose new and
less restrictive regularity conditions that accommodate two-stage sampling. We
also propose a Sen (1953) and Yates and Grundy (1953) version of Campbell’s
jackknife that overcomes the possibility of getting negative variance estimates.
Further, the asymptotic design-consistency of these jackknife estimators is estab-
lished under two-stage sampling.

In Section 4, we propose a jackknife variance estimator for self-weighted
two-stage (stratified) without replacement sampling. These sampling designs
are common in practice; examples include the Youth Risk Behavior Survey in
the U.S.A., the Labour Force Survey for São Paulo in Brazil, and the Living
Standards Survey for countries like South Africa, Ghana, and Côte d’Ivoire.
We focus on self-weighted two-stage designs. However, there are different self-
weighted designs that are widely used in practice. Some utilise three or more
stages, and others use unequal probabilities at the final stage. Examples include
the US National Health and Nutrition Examination Survey (NHANES) and the
Australian and New Zealand Labour Force Surveys.

The proposed jackknife for self-weighted two-stage sampling involves dele-
tion of both, clusters and observations. The proposed jackknife estimator does
not have double sums and does not need joint inclusion probabilities. Further,
we show that this novel estimator is asymptotically design-consistent. To ease
computing efforts, a subsampling version is also proposed in Subsection 4.2 for
its most computer intensive part that involves deleting observations.

In Section 5, Monte-Carlo simulations show that the proposed jackknife can
be more accurate than customary jackknife estimators for more than one stage
such as the Rao, Wu, and Yue (1992) stratified multi-stage delete-cluster jack-
knife.

2. The Class of Point Estimators

Let U denote a finite population of size N whose elements are grouped into
NI clusters of size Mi, i = 1, . . . , NI . Consider a without replacement sample
s of elements drawn according to a self-weighted two-stage fixed sample size
design. That is, nI clusters are drawn using a without-replacement probability
proportional to the size of the clusters, then a simple random sample without-
replacement ofm fixed elements is drawn within each sampled cluster. Therefore,
the sample size is fixed and given by n = nIm elements grouped in nI clusters.
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Let πIi > 0 and πIij denote, respectively, the first and the second order

inclusion probabilities for the clusters i, j = 1, . . . , NI ; let πk > 0 and πkℓ denote

the inclusion probabilities for the elements k, ℓ = 1, . . . , N . For a self-weighted

sampling design the clusters inclusion probabilities are πIi = nIMi/N , and thus

πk = f where f = n/N .

Let yqk denote the value of the survey variable q (q = 1, . . . , Q) for k ∈ U .

Suppose we are interested in the population parameter

θ = g(µ1, . . . , µQ),

a smooth and differentiable function of population means

µq =
1

N

∑
k∈U

yqk, q = 1, . . . , Q.

Further, assume θ is estimated by the substitution point estimator

θ̂ = g(µ̂1, . . . , µ̂Q),

µ̂q =
∑
k∈s

w̃kyqk, q = 1, . . . , Q,

with µ̂q the Hájek (1971) mean estimator for µq with normalised sampling weights

w̃k = wk/N̂ , where N̂ =
∑

k∈swk and wk = 1/πk.

3. Generalised Jackknife Variance Estimators

The Campbell (1980) generalised jackknife variance estimator of θ̂ is (see

Berger and Skinner (2005))

v̂ar(θ̂)HT =
∑
k∈s

∑
ℓ∈s

Dkℓ ε(k) ε(ℓ), (3.1)

with

Dkℓ =
πkℓ − πkπℓ

πkℓ
, ε(k) = (1− w̃k)(θ̂ − θ̂(k)), (3.2)

where θ̂(k) = g(µ̂1(k), . . . , µ̂Q(k)), µ̂q(k) =
∑

ℓ∈s−{k} w̃ℓ(k)yqℓ, w̃ℓ(k) = wℓ(
∑

ℓ∈s−{k}
wℓ)

−1, and s − {k} denoting s after deleting the k-th observation. Clearly the

expression (3.1) may take negative values. To overcome this issue, we propose

the alternative Sen (1953) and Yates and Grundy (1953) form,

v̂ar(θ̂)SY G =
−1

2

∑
k∈s

∑
ℓ∈s

Dkℓ (ε(k) − ε(ℓ))
2, (3.3)

which is always positive if the Sen-Yates-Grundy condition, Dkℓ < 0, holds. Note

that (3.3) is suitable for unequal-probability fixed sample size designs.
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For single-stage sampling, Berger and Skinner (2005) showed the asymptotic

design-consistency of (3.1) and also illustrated the better empirical performance

of (3.1) in comparison with standard jackknifes such as in Tukey (1958), in Kish

and Frankel (1974), and in Rao, Wu, and Yue (1992). Further, Berger and

Rao (2006) extended (3.1) for imputation, and Berger (2007) proposed a modi-

fied version incorporating the Hájek (1964) approximation for the joint inclusion

probabilities. Note that under uni-stage simple random sampling, both (3.1) and

(3.3) reduce to the standard jackknife (e.g., Shao and Tu (1995, p.239); Wolter

(2007)),

v̂ar(θ̂)STD =
(
1− n

N

) n− 1

n

∑
k∈s

(θ̂(k) − θ̂(·))
2,

where θ̂(·) = n−1
∑

k∈s θ̂(k).

3.1. Consistency of the generalised jackknifes for two-stage sampling

The consistency of v̂ar(θ̂)HT and v̂ar(θ̂)SY G is now to be set under new and

less restrictive regularity conditions than those specified by Berger and Skinner

(2005). These new conditions allow two-stage sampling.

We use the Isaki and Fuller (1982) asymptotic framework that considers a

sequence of nested populations of size N[t] (0 < N[t] < N[t+1]), and a sequence of

samples of size n[t] (n[t] < n[t+1], n[t] < N[t], for all t). To simplify notation, we

drop the index t in what follows. Thus, t → ∞ implies: N → ∞, n → ∞, and

nI → ∞. We consider that f = n/N , fI = nI/NI , and m are constants free of

the limiting process.

For the vector of means µ = (µ1, . . . , µQ)
T and the vector of point estimators

µ̂ = (µ̂1, . . . , µ̂Q)
T , the multivariate Horvitz-Thompson and Sen-Yates-Grundy

design variances and variance estimators of µ̂ are approximated by (see Särndal,

Swensson, and Wretman (1992, Secs. 5.5 and 5.7))

var(µ̂)HT
.
=
∑
k∈U

∑
ℓ∈U

Dkℓ πkℓ zk zT
ℓ ,

v̂ar(µ̂)HT
.
=
∑
k∈s

∑
ℓ∈s

Dkℓ žk žT
ℓ ,

var(µ̂)SY G
.
=

−1

2

∑
k∈U

∑
ℓ∈U

Dkℓ πkℓ {zk − zℓ}{zk − zℓ}T ,

v̂ar(µ̂)SY G
.
=

−1

2

∑
k∈s

∑
ℓ∈s

Dkℓ {žk − žℓ}{žk − žℓ}T ,

with zk = N−1wk(yk−µ), žk = w̃k(yk−µ̂), yk = (y1k, . . . , yQk)
T . Now, consider

our regularity conditions.
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C1. v̂ar(θ̂)L/var(θ̂)L →p 1, var(θ̂)L ̸= 0, where

var(θ̂)L = ∇(µ)T var(µ̂)HT ∇(µ),
(3.4)

v̂ar(θ̂)L = ∇(µ̂)T v̂ar(µ̂)HT ∇(µ̂);

for fixed sample-size designs,

var(θ̂)L = ∇(µ)T var(µ̂)SY G∇(µ),
(3.5)

v̂ar(θ̂)L = ∇(µ̂)T v̂ar(µ̂)SY G∇(µ̂),

where ∇(x) = (∂g(µ)/∂µ1, . . . , ∂g(µ)/∂µQ)
T
µ=x is the gradient of g(·) at

x ∈ ℜQ, with g(·) continuous and differentiable at µ.

C2. |1− w̃k| ≥ α > 0, for all k ∈ U , α is a constant.

C3. lim inf {n var(θ̂)L} > 0.

C4. n−1
∑

k∈s w̃
τ
k ∥yk − µ̂∥τ = Op(n

−τ ) for all τ ≥ 2, where ∥A∥ = tr(ATA)1/2

denotes the Euclidean norm.

C5. Gs = n−β
∑∑

(k ̸=ℓ)∈s(D
−
kℓ)

2 = Op(1), with 0 ≤ β < 1, where D−
kℓ = −Dkℓ if

Dkℓ < 0 and 0 otherwise.

C6. Hs = n−β
∑∑

(k ̸=ℓ)∈s(D
+
kℓ)

2 = Op(1), with 0 ≤ β < 1, where D+
kℓ = Dkℓ if

Dkℓ ≥ 0 and 0 otherwise.

C7. ∇(x) is Lipschitz continuous, ∥∇(x1)−∇(x2)∥ ≤ λ ∥x1 − x2∥δ, λ > 0 and

δ > 0 constants, 0 ≤ β/2 < δ, x1 and x2 in the neighbourhood of µ.

C8. ∥∇(µ̂)∥ = Op(1).

Conditions C1 and C5 to C7 are similar, though different, to those in Berger

and Skinner (2005); these conditions now allow two stage sampling. C1 sets the

consistency of the linearisation variance estimator recalling the Robinson and

Särndal (1983) approach (see Särndal, Swensson, and Wretman (1992, Secs. 5.5

and 5.7))). C2 to C4 are typical (e.g., Shao and Tu (1995, p.258)): C2 has that

none of the normalised weights reach 1; C3 implies var(θ̂)L decreases with rate

n−1; C4 is a Lyapunov-type condition for the existence of moments. C5 and C6

are mild conditions on the design, similar to ones in Isaki and Fuller (1982). C7

and C8 are standard smoothness requirements for the jackknife. Note that for

two stage-sampling, β < 1 means that there are more observations than clusters

in s.

Theorem 1. For sampling designs of fixed size, if C1 to C8 hold, then the

generalised jackknife variance estimator v̂ar(θ̂)SY G at (3.3) is asymptotically

design-consistent for the approximate linearised variance var(θ̂)L ̸= 0 at (3.5),

v̂ar(θ̂)SY G/var(θ̂)L →p 1.
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A proof of Theorem 1 is given in Appendix A.

Corollary 1. If C1 to C8 hold, then v̂ar(θ̂)HT at (3.1) is asymptotically

design-consistent for the approximate linearised variance var(θ̂)L ̸= 0 at (3.4),

v̂ar(θ̂)HT /var(θ̂)L →p 1.

Corollary 1 can be shown with the Berger and Skinner (2005) proof, taking

into account the changes in the conditions C5 to C7. From Theorem 1, Corollary

1, and Slutsky’s Theorem, when θ̂ is asymptotically normal,

θ̂ − θ

(v̂ar(θ̂)SY G)1/2
→d N(0, 1) and

θ̂ − θ

(v̂ar(θ̂)HT )1/2
→d N(0, 1). (3.6)

Thus, allowing valid confidence intervals for θ.

4. The Proposed Jackknife for Self-weighted Two-stage Sampling

For self-weighted two-stage sampling we have πIi = nIMi/N and πk =

n/N = f . Now, by using the Hájek’s approximation (Hájek (1964, eq. 5.27))

the clusters’ joint inclusion probabilities πIij can be approximated by

πIij
.
= πIi πIj {1 − d−1(1− πIi)(1− πIj)},

with d =
∑

Ii∈U πIi(1 − πIi). This approximation was originally developed for

d → ∞, in our case NI → ∞, under the maximum entropy sampling design (see

Hájek (1981, Them. 3.3, Chap. 3 and 6)), the Rejective Sampling design; a. k. a.

the Conditional Poisson Sampling design. It requires that the utilised sampling

design (of clusters) be of large entropy. An overview can be found in Berger and

Tillé (2009). An account of different sampling designs, πIij ’s approximations, and

approximate variances under large-entropy designs can be found in Tillé (2006),

Brewer and Donadio (2003), and Haziza, Mecatti, and Rao (2008). Recently,

Berger (2011) gave sufficient conditions under which Hájek’s results still hold for

large entropy sampling designs that are not the maximum entropy one.

Low entropy sampling designs, such as the systematic probability pro-

portional-to-size design, are not suitable for the above approximation. How-

ever, the randomized systematic sampling is suitable as it is of large entropy

(e.g., Brewer and Gregoire (2009); Berger and Tillé (2009)).

Now, given the conditional inclusion probabilities πk|Ii = m/Mi and πkℓ|Ii =

m(m− 1)/Mi(Mi − 1), the elements’ joint inclusion probabilities πkℓ are

πkℓ
.
=


πIi πk|Ii = f if (k = ℓ) ∈ si,

πIi πkℓ|Ii = f(m− 1)/(Mi − 1) if (k ̸= ℓ) ∈ si,

πIij πk|Ii πℓ|Ij
.
= f2{1− d−1(1− πIi)(1− πIj)} if k ∈ si, ℓ ∈ sj , i ̸= j,
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where si denotes the observations from the i-th cluster. Therefore, by substitut-

ing for Dkℓ in (3.2), we obtain

Dkℓ
.
=


1− f if (k = ℓ) ∈ si,

1− π∗
Ii if (k ̸= ℓ) ∈ si,

(1− πIi)(1− πIj){(1− πIi)(1− πIj)− d}−1 if k ∈ si, ℓ ∈ sj , i ̸= j,

where

π∗
Ii = πIi

(
m

m− 1

)(
Mi − 1

Mi

)
.

Thus, it can be shown (see Appendix C) that by substituting the values of Dkℓ

into (3.3), it reduces to a jackknife variance estimator suitable for self-weighted

two-stage sampling designs,

v̂ar(θ̂)prop = vclu + vobs, (4.1)

where

vclu =
∑
i∈s

(1− π∗
Ii) ς

2
(Ii) − 1

d

(∑
i∈s

(1− πIi) ς(Ii)

)2

, (4.2)

vobs =
∑
k∈s

ϕk ε 2
(k), (4.3)

with ϕk = π∗
Ii(Mi−m)(Mi−1)−1 for k ∈ si. Here the delete cluster pseudo-values

ς(Ii) are given by

ς(Ii) =
nI − 1

nI
(θ̂ − θ̂(Ii)), (4.4)

where θ̂(Ii) = g(µ̂1(Ii), . . . , µ̂Q(Ii)) with µ̂q(Ii) =
∑

k∈s(Ii)w̃k(Ii)yqk, w̃k(Ii) =

wk(
∑

k∈s(Ii)wk)
−1, and s(Ii) = s− si denoting the sample without observations

from the i-th cluster; the delete observation pseudo-values ε(k), see Section 3, are

given by

ε(k) =
n− 1

n
(θ̂ − θ̂(k)).

The proposed variance estimator (4.1) has two terms, one that deletes ob-

servations within clusters and another that deletes clusters. The term vclu in

(4.2) computes variability between clusters, and vobs in (4.3) computes vari-

ability of observations within clusters. If d is unknown we can replace it by

d̂ =
∑

i∈s(1− πIi). As ϕk ∝ f(Mi − m)(m − 1)−1. The term vobs is zero if

m = Mi, and it diminishes for small f . Conversely, it may become large if f is

large, if the sampling fractions within clusters are small, or if the Mi vary.

To simplify notation, we consider (4.1) for non-stratified designs. This can

be generalised by treating the strata separately. The number of strata has to be
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bounded, and large sample regularity conditions must hold within each stratum.

Therefore, the applicability of the proposed jackknife variance estimator excludes

highly-stratified sampling designs with very few sampling units per stratum.

4.1. Consistency of the proposed jackknife

Let var(θ̂)HL denote the Hájek approximation to the approximate linearised

variance var(θ̂)L.

Theorem 2. If C1, C3, C4, C7, and C8 hold, and if Mi ≥ m ≥ 2, then v̂ar(θ̂)prop
at (4.1) is asymptotically design-consistent for the Hájek approximate linearised

variance var(θ̂)HL
.
= var(θ̂)L ̸= 0, v̂ar(θ̂)prop/var(θ̂)L →p 1.

A proof of Theorem 2 is given in Appendix B. Furthermore, (3.6) also holds

for (4.1) when θ̂ is asymptotically normal.

4.2. A less computationally intensive version of the proposed jackknife

The delete-observation term vobs at (4.3) can be laborious for large datasets.

To ease computing, we propose to treat vobs as a total that can be estimated

from a subsample via the Horvitz and Thompson (1952) estimator. Hence we

subsample ñ elements from the sample s, s̃, and let π̃k be the first order inclusion

probabilities of s̃. We estimate vobs using the unbiased Horvitz-Thompson point

estimator

ṽobs =
∑
k∈s̃

ϕk ε2(k)

π̃k
. (4.5)

Thus, a less computationally intensive estimator than (4.1) is given by

ṽar(θ̂)prop = vclu + ṽobs. (4.6)

We recommend using π̃k = ñϕk/Φ, where Φ =
∑

k∈sϕk, implying

ṽπpsobs =

ñ∑
k=1

ϕk ε2(k)

π̃k
=

Φ

ñ

ñ∑
k=1

ε2(k).

Note that π̃k should be approximately proportional to ϕkε
2
(k). Hence, this gives

an efficient Horvitz-Thompson estimator.

In the context of two-phase sampling, Kim and Sitter (2003) also proposed

a less computationally intensive approach. In further research, it would be good

to explore the applicability of (4.6) for two-phase sampling designs.
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4.3. Customary jackknife variance estimator

A customary jackknife variance estimator for sampling designs of more than

one stage is the stratified multi-stage delete cluster jackknife estimator of Rao,

Wu, and Yue (1992), originally purposed for functions of totals and for with-

replacement sampling designs, thus for negligible sampling fractions. Their esti-

mator is

v̂ar(θ̂)RWY =
∑
i∈s

ς 2
(Ii), (4.7)

where ς(Ii) is defined as (4.4). When the sampling fraction is large, this is usually

adjusted by an overall clusters’ finite population correction (FPC),

v̂ar(θ̂)FPC
RWY =

∑
i∈s

(
1− nI

NI

)
ς 2
(Ii). (4.8)

Comparing (4.1) with (4.8), we note that v̂ar(θ̂)prop adds the term vobs which

computes variability of observations within clusters, and v̂ar(θ̂)prop uses a differ-

ent FPC (1 − π∗
Ii) for each cluster i, whereas v̂ar(θ̂)FPC

RWY uses the fixed FPC

(1− nI/NI).

5. Simulation Study

We illustrate with two datasets: the Labour Force Population from Valliant,

Dorfman, and Royall (2000, Appendix B.5) and the MU284 Swedish Municipali-

ties Population from Särndal, Swensson, and Wretman (1992, Appendix B). For

each, we duplicated 3 times the number of clusters and 3 times the number of

observations within each cluster. We therefore used two population frames of

N = 4, 302 and 2, 556 observations, grouped into NI = 345 and 150 clusters,

respectively. The minimum/maximum cluster sizes were: 6/39 and 15/27, re-

spectively. We used two variables from each population frame: weekly wages

(y1) and number of hours worked per week (y2) from the first population frame,

the number of Social-Democratic seats in municipal council (y3) and the number

of Conservative seats in municipal council (y4) from the second. The homogeneity

measures f(·) defined in Särndal, Swensson, and Wretman (1992, Secs. 3.4.3 and

4.2.2), for each of the variables of interest were: f(y1) = 0.2965, f(y2) = 0.1951,

f(y3) = 0.3181, and f(y4) = 0.4958. The parameters of interest were the ratios

R12 = µ1/µ2 = 7.697 and R34 = µ3/µ4 = 2.439, estimated by R̂12 = µ̂1/µ̂2 and

R̂34 = µ̂3/µ̂4, where µ̂1, . . . , µ̂4 are Horvitz-Thompson point estimators.

Clusters were selected using the Brewer (1975) unequal-probability sampling

design with clusters’ inclusion probabilities proportional to the cluster size; then,

a simple random without replacement sample of individuals was selected within

clusters using sample sizem = 2, 4, and 6. For the labour force population frame,
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it is important to note that 20.34% of the clusters are of the minimum cluster

size, with m = 6 we are selecting all the elements within many clusters. For

the estimator (4.6), we used the Brewer (1975) unequal probability design with

subsampling rate 0.25 and with subsampling inclusion probabilities proportional

to ϕk, as defined in Subsection 4.2.

For each simulation and each simulation example, NSim1 = 100, 000 and

NSim2 = 1, 000, 000 samples were selected to compute the empirical rela-

tive bias RB = B(v̂ar(R̂ab))/var(R̂ab), where B(v̂ar(R̂ab)) = E(v̂ar(R̂ab)) −
var(R̂ab), the empirical relative root mean square error defined by RRMSE =

{MSE(v̂ar(R̂ab))}1/2/var(R̂ab), and the coverage at a 95% confidence level. The

var(R̂ab) is the empirical variance computed from the NSim1 (and NSim2) ob-

served values of R̂ab (ab =12 and 34). These quantities were computed for the

estimators (4.1), (4.6), (4.7) and (4.8).

5.1. Example 1: point estimator R̂12

Results for this example are summarised in Table 1 which illustrates, in terms

of RB, that the customary estimators (4.7) and (4.8), respectively, over-estimate

and under-estimate the variance for increasing values of f (fI). In general, this

effect is more pronounced for small second-stage sampling sizes m = 2, 4, and less

so with m = 6 (census within several clusters) for the FPC-adjusted customary

estimator (4.8). On the other hand, the RB for the proposed variance estimator

(4.1) and its subsampling version (4.6) remains close to zero as the sampling

fractions increases, regardless of the second-stage sample sizes. The reason for

this is that the proposed estimators correctly incorporate the finite population

corrections at both stages. Note that there is a particular FPC for each cluster

at (4.1) and (4.6).

In terms of RRMSE, it can be seen in Table 1 that the proposed estimator

(4.1) had always the smallest RRMSE followed by the FPC-adjusted Rao, Wu,

and Yue (1992) from (4.8), and by the subsampling version of the proposed

estimator (4.6). It can also be seen in Table 1 that the original Rao, Wu, and

Yue (1992) (4.7) had the correct coverage for small sampling fractions, although

this variance estimator had the worst performance in terms of RB and RRMSE.

Hence, discarding (4.7), the proposed estimator (4.1) has presumably the best

coverage for increasing sampling fractions. In general, this also happens for the

subsampling version (4.6) which has similar RB, RRMSE, and coverage as (4.1).

Finally, Table 1 suggests that, although the FPC corrections improves the

Rao, Wu, and Yue (1992) estimator in terms of bias and stability, these artificial

corrections are not always the best way to proceed; particularly, for situations

where the second stage sampling may use small sampling fractions within certain

clusters.
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Table 1. RB, RRMSE, and Coverage at 95% confidence level of variance
estimators for the point estimator R̂12, where f(y1) = 0.2965 and f(y2) =
0.1951.

m nI n fI f RB% for eqs. RRMSE% for eqs. Coverage% for eqs.
% % (4.1) (4.6) (4.7) (4.8) (4.1) (4.6) (4.7) (4.8) (4.1) (4.6) (4.7) (4.8)

2 20 40 6 1 -4.4 -4.4 4.5 -1.5 46.1 46.4 51.5 48.4 91.9 91.8 92.9 92.1
40 80 12 2 -1.7 -1.7 9.1 -3.6 31.9 32.9 38.0 32.9 93.4 93.3 94.5 93.1
60 120 17 3 -1.8 -1.8 12.9 -6.8 25.3 27.2 33.5 26.4 93.8 93.7 95.3 93.1
80 160 23 4 -1.3 -1.3 18.1 -9.3 21.0 24.4 32.9 23.1 94.2 94.0 96.0 93.1

100 200 29 5 -0.6 -0.7 24.3 -11.8 18.3 23.4 35.3 21.6 94.4 94.0 96.5 92.7
120 240 35 6 -0.8 -0.8 30.1 -15.1 16.0 23.1 38.5 21.8 94.4 94.1 97.0 92.4
140 280 41 7 -0.6 -0.6 37.2 -18.5 14.4 23.9 43.7 23.0 94.7 94.2 97.5 91.9
160 320 46 7 -0.5 -0.5 44.8 -22.4 13.1 25.5 50.1 25.4 94.7 94.0 97.9 91.3

4 20 80 6 2 -4.8 -4.8 5.5 -0.6 42.1 42.2 47.2 44.2 92.1 92.1 93.3 92.6
40 160 12 4 -3.1 -3.1 10.6 -2.3 29.2 29.3 35.5 30.0 93.5 93.4 94.9 93.5
60 240 17 6 -2.7 -2.7 16.6 -3.7 23.2 23.4 33.0 23.9 93.9 93.9 95.8 93.7
80 320 23 7 -1.8 -1.8 24.7 -4.2 19.6 19.9 35.8 20.3 94.2 94.2 96.5 93.9

100 400 29 9 -0.9 -0.9 34.1 -4.7 17.0 17.4 41.9 17.8 94.4 94.4 97.3 93.9
120 480 35 11 0.0 0.0 45.1 -5.4 15.1 15.8 50.7 16.2 94.7 94.6 97.8 93.9
140 560 41 13 0.0 0.0 56.4 -7.1 13.4 14.5 60.7 15.2 94.7 94.7 98.3 93.8
160 640 46 15 -1.2 -1.2 67.5 -10.2 11.9 13.6 71.1 15.6 94.7 94.6 98.7 93.4

6 20 120 6 3 -4.9 -4.9 6.0 -0.1 40.1 40.1 45.0 42.0 92.1 92.1 93.4 92.7
40 240 12 6 -3.0 -3.0 12.2 -0.8 27.7 27.7 34.4 28.5 93.5 93.5 95.1 93.7
60 360 17 8 -1.3 -1.3 20.9 -0.1 22.1 22.1 34.6 22.7 94.1 94.1 96.2 94.2
80 480 23 11 -1.3 -1.3 29.3 -0.7 18.4 18.5 38.3 18.9 94.3 94.3 96.9 94.4

100 600 29 14 -0.8 -0.8 39.9 -0.7 16.2 16.3 46.2 16.6 94.5 94.5 97.6 94.5
120 720 35 17 -1.4 -1.4 50.9 -1.6 14.2 14.3 55.5 14.6 94.5 94.4 98.1 94.4
140 840 41 20 -0.2 -0.2 66.9 -0.8 12.6 12.9 70.4 13.0 94.6 94.6 98.6 94.5
160 960 46 22 -1.1 -1.1 82.7 -2.0 11.3 11.7 85.4 11.7 94.5 94.5 99.0 94.4

5.2. Example 2: point estimator R̂34

The results for this example are summarised in Table 2. In terms of RB, it

can be seen that the FPC-adjusted Rao, Wu, and Yue (1992) (4.8) estimator has

the best performance when the sampling fractions are very small. This might

be useful for highly stratified sampling designs. However, for increasing sam-

pling fractions, the estimators (4.7) and (4.8) tend, respectively, to increasingly

over- and under-estimate the variance. Again, this is more noticeable with small

sample sizes at the second stage (small values of m).

On the other hand, in terms of RB, the variance estimators (4.1) and (4.6)

tend consistently to zero for increasing sampling fractions, regardless of the

utilised sample size at the second stage. This is something desirable in busi-

ness surveys, for example, where sampling fractions are large or in situations
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Table 2. RB, RRMSE, and Coverage at 95% confidence level of variance
estimators for the point estimator R̂34, where f(y3) = 0.3181 and f(y4) =
0.4958.

m nI n fI f RB% for eqs. RRMSE% for eqs. Coverage% for eqs.
% % (4.1) (4.6) (4.7) (4.8) (4.1) (4.6) (4.7) (4.8) (4.1) (4.6) (4.7) (4.8)

2 18 36 12 1 -3.5 -3.5 12.8 -0.8 42.2 43.0 51.7 44.1 93.1 93.0 94.8 93.3
26 52 17 2 -2.4 -2.4 17.3 -3.0 33.6 35.1 44.9 34.4 93.7 93.6 95.7 93.6
35 70 23 3 -1.7 -1.7 23.5 -5.3 27.8 30.5 43.2 28.3 94.1 93.9 96.4 93.5
44 88 29 3 -1.4 -1.4 30.5 -7.8 23.8 27.8 44.9 24.6 94.3 94.0 97.0 93.4
53 106 35 4 -1.1 -1.1 38.8 -10.3 20.9 27.0 49.6 22.5 94.4 94.1 97.5 93.2
62 124 41 5 -1.1 -1.1 47.8 -13.3 18.5 26.8 56.2 21.8 94.5 94.0 98.0 92.8
69 138 46 5 -0.9 -0.9 56.2 -15.7 17.0 27.7 63.1 22.1 94.6 94.0 98.3 92.4

4 18 72 12 3 -3.8 -3.8 14.1 0.4 39.9 39.9 49.5 41.7 92.9 92.9 94.8 93.4
26 104 17 4 -2.6 -2.6 19.9 -0.9 31.9 32.0 44.2 32.6 93.6 93.6 95.8 93.8
35 140 23 5 -2.0 -2.0 27.4 -2.3 26.4 26.6 44.2 26.6 94.0 94.0 96.6 94.0
44 176 29 7 -1.7 -1.6 36.3 -3.7 22.7 22.9 48.2 22.7 94.2 94.2 97.3 93.9
53 212 35 8 -1.4 -1.5 46.7 -5.1 19.8 20.3 55.4 20.0 94.4 94.3 97.9 93.9
62 248 41 10 -1.2 -1.2 59.1 -6.7 17.6 18.3 65.7 18.2 94.5 94.5 98.4 93.8
69 276 46 11 -1.0 -1.0 70.4 -8.0 16.2 17.1 75.9 17.2 94.5 94.5 98.7 93.6

6 18 108 12 4 -4.1 -4.1 14.6 0.8 38.9 38.9 48.5 40.8 92.9 92.9 94.9 93.5
26 156 17 6 -2.9 -2.9 20.7 -0.2 31.1 31.1 43.8 31.9 93.6 93.6 95.9 93.9
35 210 23 8 -1.9 -1.9 29.3 -0.8 25.8 25.8 44.9 26.1 94.0 94.0 96.8 94.1
44 264 29 10 -1.6 -1.6 39.0 -1.7 22.1 22.2 50.0 22.1 94.2 94.2 97.4 94.2
53 318 35 12 -1.7 -1.7 49.9 -3.0 19.3 19.4 57.9 19.2 94.3 94.3 98.0 94.2
62 372 41 15 -1.5 -1.5 63.7 -4.0 17.1 17.2 69.7 17.0 94.4 94.4 98.5 94.1
69 414 46 16 -1.0 -1.0 77.0 -4.4 15.7 15.9 81.8 15.7 94.5 94.5 98.9 94.1

where stratification is moderate. Note that the RB for the proposed estima-

tors always showed a slight negative bias. This is something expected and well-

documented when using the Hájek (1964) approximations (see Haziza, Mecatti,

and Rao (2008); Brewer and Donadio (2003)).

As to stability of the studied variance estimators, Table 2 shows that the

proposed estimator (4.1) has the smallest RRMSE in all considered situations.

It can also be seen that the subsampling version (4.6) has small but slightly higher

RRMSE. In terms of coverage, it can be seen that the estimator (4.7) has better

coverage than the FPC-adjusted (4.8). The coverage of the proposed estimators

(4.1) and (4.6) become closer to 95% for increasing sampling fractions. Overall,

the worst coverage was showed by the estimator (4.8). This suggests again that

the fixed ad hoc FPC correction might not be suitable.

6. Conclusion

Self-weighted two-stage sampling designs are common in practice. Besides



JACKKNIFE FOR SELF-WEIGHTED TWO-STAGE SAMPLES 607

their popularity, it is also common practice to compute variance estimates relying

only on the first sampling stage (e.g., Särndal, Swensson, and Wretman (1992,

Chap. 4)). A customary jackknife variance estimator for sampling designs of more

than one stage is the Rao, Wu, and Yue (1992) estimator, originally designed for

functions of totals and for negligible sampling fractions. This jackknife would

work well when most of the variability is between clusters and with very small

sampling fractions (highly stratified samples), but this may not necessarily be

the case.

First, we propose an alternative Sen-Yates-Grundy form of the generalised

unequal-probability without-replacement jackknife variance estimator (Campbell

(1980)). This estimator is extended to two-stage sampling by proposing new less

restrictive regularity conditions than those from Berger and Skinner (2005), thus

allowing two-stage sampling for the Horvitz-Thompson (original) form of the

Campbell (1980) generalised jackknife as well.

Secondly, we propose a novel design-consistent jackknife variance estimator

for self-weighted two-stage without-replacement sampling. The proposed estima-

tor does not need joint-inclusion probabilities, allows stratification, naturally in-

cludes FPC, and comprises a wide class of point estimators (functions of means).

Monte-Carlo simulations show that the proposed estimator can be more accurate

than customary jackknife estimators, specially in situations where the first stage

sampling fraction is large, or in cases where the second stage sampling fractions

are small. The proposed estimator incorporates not only clustering effects but

also the underlying unequal-probabilities of both, clusters and observations.
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Appendix

A. Proof of Theorem 1

The proof uses standard arguments in proving jackknife variance estimators

design consistency (see Miller (1964); Shao and Tu (1995, Sec. 2.1.1)). Hence,

from the mean value theorem we have that θ̂−θ̂(k) = g(µ̂)−g(µ̂(k)) = ∇(ξk)
T (µ̂−

µ̂(k)) = ∇(µ̂)T (µ̂ − µ̂(k)) + r∗k, where ξk denotes a point between µ̂ and µ̂(k),

and where r∗k = (∇(ξk)−∇(µ̂))T (µ̂− µ̂(k)) is the remainder term. Thus, ε(k) =

∇(µ̂)T (1− w̃k)(µ̂− µ̂(k)) + rk, where

rk = (1− w̃k)r
∗
k. (A.1)
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It can be shown that

(1− w̃k)(µ̃− µ̃(k)) = w̃k(yk − µ̃), (A.2)

implying that

ε(k) = ∇(µ̂)T w̃k(yk − µ̂) + rk. (A.3)

Furthermore, the Cauchy inequality together with (A.1) and (A.2) imply

|rk| ≤ ||∇(ξk)−∇(µ̂)||w̃k||yk − µ̂||. (A.4)

The regularity condition C7 implies that there are constants λ > 0, δ, and

0 ≤ β < 1, where β/2 < δ, such that

||∇(ξk)−∇(µ̂)|| ≤ λ||ξk − µ̂||δ. (A.5)

As ξk is between µ̂ and µ̂(k), we have that ||ξk − µ̂|| ≤ ||µ̂ − µ̂(k)||. Combining

this with (A.2), we obtain ||ξk − µ̂|| ≤ ||(1− w̃k)
−1w̃k(yk − µ̂)||, which by (A.5)

gives ||∇(ξk) − ∇(µ̂)|| ≤ λ|1 − w̃k|−δw̃δ
k||yk − µ̂||δ. Then, by C2 this becomes

||∇(ξk)−∇(µ̂)|| ≤ λα−δw̃δ
k||yk − µ̂||δ which, combined with (A.4), imply

|rk| ≤ λα−δw̃1+δ
k ||yk − µ̂||1+δ. (A.6)

Moreover, C3 implies that

{n var(θ̂)L}−2 = O(1). (A.7)

By substituting (A.3) in (3.3), we obtain v̂ar(θ̂)SY G = A + 2(E − C) +D − B,

where

A =∇(µ̂)T v̂ar(µ̂)SY G ∇(µ̂),

B =
∑
k∈s

∑
ℓ∈s

Dkℓ rk rℓ,

C =
∑
k∈s

∑
ℓ∈s

Dkℓ rk w̃ℓ(yℓ − µ̂)T ∇(µ̂),

D =
∑
k∈s

∑
ℓ∈s

Dkℓ r
2
k, (A.8)

E =
∑
k∈s

∑
ℓ∈s

Dkℓ rk w̃k(yk − µ̂)T ∇(µ̂). (A.9)
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Hence, Theorem 1 follows if we show

A

var(θ̂)L
→p 1, (A.10)

B

var(θ̂)L
→p 0, (A.11)

C

var(θ̂)L
→p 0, (A.12)

D

var(θ̂)L
→p 0, (A.13)

E

var(θ̂)L
→p 0, (A.14)

Now C1 implies (A.10), whereas (A.11) and (A.12) can be shown by following
the Berger and Skinner (2005) proof and taking into account the changes in
regularity conditions C5 to C7. Hence, it remains to show (A.13) and (A.14).
We start with (A.13). By the triangle and the Cauchy inequalities, (A.8) implies

|D| ≤
∑
k∈s

∑
ℓ∈s

|Dkℓ||rk|2 = D1 +D2 ≤ (G1/2
s +H1/2

s )D
1/2
3 ,

where D1=
∑∑

k,ℓ∈sD
−
kℓ|rk|

2 ≤ G
1/2
s D

1/2
3 , D2 =

∑∑
k,ℓ∈sD

+
kℓ|rk|

2 ≤ H
1/2
s D

1/2
3

and
D3 = nβ

∑
k∈s

∑
ℓ∈s

|rk|4 = n1+β
∑
k∈s

|rk|4. (A.15)

Thus, (A.13) follows from C5 and C6 if we show D3{var(θ̂)L}−2 →p 0. Using the
expression (A.6) in (A.15), we have that

D3

var(θ̂)2L
≤ λ4

α4δ

n4+β

{n var(θ̂)L}2

(
1

n

∑
k∈s

w̃
4(1+δ)
k ||yk − µ̂||4(1+δ)

)
. (A.16)

Conditions C3, C4, and (A.7) and (A.16) imply D3{var(θ̂)L}−2 = nβOp(n
−4δ).

From C7, β < 4δ. Thus D3{var(θ̂)L}−2 →p 0, implying (A.13). We now show
(A.14). Using the triangle and the Cauchy inequalities in (A.9) gives

|E| ≤
∑
k∈s

∑
ℓ∈s

|Dkℓ||rk||ỹk| = E1 + E2 ≤ (G1/2
s +H1/2

s )E
1/2
3 ,

where E1 =
∑∑

k,ℓ∈sD
−
kℓ|rk||ỹk|, E2 =

∑∑
k,ℓ∈sD

+
kℓ|rk||ỹk|, and

E3 = nβ
∑
k∈s

∑
ℓ∈s

|rk|2|ỹk|2 = n1+β
∑
k∈s

|rk|2|ỹk|2, (A.17)

ỹk = w̃k(yk − µ̂)T∇(µ̂). (A.18)
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Thus, (A.14) follows from C5 and C6 if we show E3{var(θ̂)L}−2 →p 0. Using

the Cauchy inequality in (A.18), we have that |ỹk| ≤ w̃k||yk − µ̂|| ||∇(µ̂)||. This
inequality together with (A.6) and (A.17) imply that

E3

var(θ̂)2L
≤ ||∇(µ̂)||2 λ2

α2δ

n4+β

{n var(θ̂)L}2

(
1

n

∑
k∈s

w̃4+2δ
k ||yk − µ̂||4+2δ

)
. (A.19)

From C7, β < 2δ. This, together with (A.19), (A.7), C4, and C8 imply

E3{var(θ̂)L}−2 →p 0, completing the proof.

B. Proof of Theorem 2

Theorem 1 asserts the consistency of the variance estimator v̂ar(θ̂)SY G at

(3.3), used to develop the proposed variance estimator v̂ar(θ̂)prop from (4.1).

Hence, given conditions C1, C3, C4, C7, and C8, it remains to show that Mi ≥
m ≥ 2, for all i = 1, . . . , NI , implies that C2, C5, and C6 hold. From self-

weighting, it can be shown that C2 holds. We now consider C5 and C6. Let

qIi = 1 − πIi and q∗Ii = 1 − π∗
Ii, and let β = Log(nI)/Log(n) < 1 be such that

nβ = nI . It can be shown that |q∗Ii| = O(1) for Mi ≥ m ≥ 2, for all i = 1, . . . , NI ,

and that d = O(NI) as qIi = O(1).

If q∗Ii > 0, we have from C5 and C6 that D−
kℓ = qIi qIj/d = Op(N

−1
I ) for

k ∈ si, ℓ ∈ sj , i ̸= j, and that D+
kℓ = q∗Ii for (k ̸= ℓ) ∈ si. Thus,

Gs =
1

nI

nI∑
i=1

nI∑
j=1,i̸=j

m∑
k=1

m∑
ℓ=1

(qIi qIj
d

)2
=

m2n 2
I

nIN 2
I

Op(1) = f2
Im

2Op(n
−1
I ),

Hs =
1

nI

nI∑
i=1

nI∑
j=1,i=j

m∑
k=1

m∑
ℓ=1,k ̸=ℓ

(q∗Ii)
2 = m(m− 1)Op(1),

where fI = nI/NI and m are constants. Moreover, if d̂ was used instead of d in

(4.2), then Gs = m2Op(n
−1
I ). Now, if q∗Ii < 0, we have that D−

kℓ = qIi qIj/d =

Op(N
−1

I ) for k ∈ si, ℓ ∈ sj , i ̸= j, D−
kℓ = q∗Ii for (k ̸= ℓ) ∈ si, and D+

kℓ = 0.

Hence, Gs = f2
Im

2Op(n
−1
I ) + m(m− 1)Op(1) and Hs = 0. Again, if d̂ was used

instead of d, Gs = m2Op(n
−1
I ) +m(m− 1)Op(1).

Thus, Gs and Hs are Op(1) completing the proof.

C. Proof of (4.1)

We need some results and approximations. For the designs and estimators

defined in Sections 2 and 4, we have that

ς(Ii) =
∑
k∈si

ε(k). (A.1)
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We show (A.1) by recalling that the sampling design is self weighted. Hence,

n = nIm, w̃k = n−1, w̃ℓ(k) = (n− 1)−1, and w̃k(Ii) = (n−m)−1, implying

nI − 1

nI
(µ̂q − µ̂q(Ii)) =

1

nI

[
(nI − 1)µ̂q −

nI − 1

m(nI − 1)

(
nImµ̂q −

∑
k∈si

yqk

)]
=
∑
k∈si

(n− 1)µ̂q − nµ̂q + yqk
n

=
n− 1

n

∑
k∈si

(µ̂q − µ̂q(k)).

Then, as g(·) is linearisable, we obtain (A.1). Now, under the asymptotic frame-

work from Subsection 3.1 (Isaki and Fuller (1982)) we have that N → ∞, imply-

ing NI → ∞ as m is assumed fixed. Then we have that d → ∞ and qIi = O(1).

Letting qIi = 1−πIi and q∗Ii = 1−π∗
Ii, we introduce the approximations that are

suitable for large values of d:

qIi qIj {qIi qIj − d}−1 .
= −qIiqIi

d
, (A.2)

(d̂− qIi)

d

.
= 1, (A.3)

q∗Ii +
q2Ii
d

.
= q∗Ii. (A.4)

Hence, from (3.3), we have that

v̂ar(θ̂)SY G =
∑
k∈s

∑
ℓ∈s,ℓ ̸=k

Dkl ε(k)ε(ℓ) −
∑
k∈s

∑
ℓ∈s,ℓ ̸=k

Dkl ε
2
(k)

=
∑
i∈s

∑
j∈s,j=i

∑
k∈si

∑
ℓ∈sj ,ℓ̸=k

Dkl ε(k)ε(ℓ) +
∑
i∈s

∑
j∈s,j ̸=i

∑
k∈si

∑
ℓ∈sj

Dkl ε(k)ε(ℓ)

−
∑
i∈s

∑
j∈s,j=i

∑
k∈si

∑
ℓ∈sj ,ℓ̸=k

Dkl ε
2
(k) −

∑
i∈s

∑
j∈s,j ̸=i

∑
k∈si

∑
ℓ∈sj

Dkl ε
2
(k).

Then, substituting for Dkl (see Section 4), and using (A.1) and (A.2), we obtain

v̂ar(θ̂)SY G
.
=
∑
i∈s

q∗Ii

[
ς2(Ii) −

∑
k∈si

∑
ℓ∈siℓ=k

ε(k)ε(ℓ)

]
−
∑
i∈s

∑
j∈s,j ̸=i

qIi qIj
d

ς(Ii)ς(Ij)

−(m− 1)
∑
i∈s

q∗Ii
∑
k∈si

ε2(k) +m
∑
i∈s

∑
j∈s,j ̸=i

qIi qIj
d

∑
k∈si

ε2(k)

=
∑
i∈s

[
q∗Ii+

q2Ii
d

]
ς2(Ii)−

1

d

[∑
i∈s

qIiς(Ii)

]2
+m

∑
i∈s

[
qIi

d̂− qIi
d

−q∗Ii

]∑
k∈si

ε2(k).

Now, by using (A.3) and (A.4), combined with qIi − q∗Ii = (πIi − f)/(m − 1) =

πIi(Mi −m)/Mi(m− 1), we obtain the estimator v̂ar(θ̂)prop from (4.1).
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Hájek, J. (1981). Sampling From a Finite Population. Dekker, New York.

Haziza, D., Mecatti, F. and Rao, J. N. K. (2008). Evaluation of some approximate variance

estimators under the Rao-Sampford unequal probability sampling design. Metron LXVI,

91-108.

Horvitz, D. G. and Thompson, D. J. (1952). A generalization of sampling without replacement

from a finite universe. J. Amer. Statist. Assoc. 47, 663-685.

Isaki, C. T. and Fuller, W. A. (1982). Survey design under the regression superpopulation model.

J. Amer. Statist. Assoc. 77, 89-96.

Kim, J. K. and Sitter, R. R. (2003). Efficient replication variance estimation for two-phase

sampling. Statist. Sinica 13, 641-653.

Kish, L. and Frankel, M. R. (1974). Inference from complex samples. J. Roy. Statist. Soc. Ser.

B 36, 1-37.

Kovar, J. G., Rao, J. N. K. and Wu, C. F. J. (1988). Bootstrap and other methods to measure

errors in survey estimates. Canad. J. Statist. 16, 25-45.

Krewski, D. and Rao, J. N. K. (1981). Inference from stratified samples: properties of the

linearization, jackknife and balanced repeated replication methods. Ann. Statist. 9, 1010-

1019.

Miller, R. G. (1964). A trustworthy jackknife. Ann. Math. Statist. 35, 1594-1605.

Quenouille, M. H. (1956). Notes on bias in estimation. Biometrika 43, 353-360.

Rao, J. N. K., Wu, C. F. J. and Yue, K. (1992). Some recent work on resampling methods for

complex surveys. Surv. Methodol. 18, 209-217.



JACKKNIFE FOR SELF-WEIGHTED TWO-STAGE SAMPLES 613

Robinson, P. M. and Särndal, C. E. (1983). Asymptotic properties of the generalized regression

estimator in probability sampling. Sankhyā: Indian J. Statist. Ser. B 45, 240-248.
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