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Abstract: For simultaneous dimension reduction and variable selection for general

regression models, including the multi-index model as a special case, we propose

a penalized minimum average variance estimation method, combining the ideas of

minimum average variance estimation in dimension reduction and regularization

in variable selection. The resulting estimator can be found in a computationally

efficient manner. Under mild conditions, the new method can consistently select all

relevant predictors and has the oracle property. Simulations and a data example

demonstrate the effectiveness and efficiency of the proposed method.
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1. Introduction

Consider a univariate response Y and a predictor vector X = (X1, . . . , Xp)
T .

The goal of regression analysis is to infer about the conditional mean function or,

in general, the conditional distribution of Y |X. To deal with high-dimensional

data that arise frequently in modern scientific research, the literature offers suffi-

cient dimension reduction and variable selection. Sufficient dimension reduction

aims to replace the predictor vector with its low-dimensional projection onto a

suitable subspace of the predictor space without losing regression information,

whereas variable selection is to rule out predictors that insignificantly affect the

response.

More specifically, sufficient dimension reduction seeks to find a subspace S
of minimum dimension such that Y⊥⊥X|PSX, where ⊥⊥ indicates independence

and PS stands for the orthogonal projection onto S; that is, Y and X are inde-

pendent conditioned on PSX or equivalently, the conditional distribution of Y |X
equals that of Y |PSX. Such a space, denoted SY |X and often called the central

subspace, typically exists and is unique under mild conditions (Cook (1996)).

When all projection directions are contained in the conditional mean of Y given

X, E(Y |X), the above independence can be written as Y⊥⊥E(Y |X)|PSX. The
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related subspace is called the central mean subspace (CMS). A number of meth-

ods have been proposed to estimate the central/central mean subspace: inverse

regression methods such as sliced inverse regression method (SIR, Li (1991)) and

sliced average variance estimation method (SAVE, Cook and Weisberg (1991));

direct regression methods, in particular the minimum average variance estima-

tion method (MAVE, Xia et al. (2002)), are popular. Inverse regression methods

are computationally simple and practically useful, but the probabilistic assump-

tions on the design of predictors, such as the linearity condition (Li (1991)), are

considered to be strong (Li and Dong (2009)). Further, some of them fail in

one way or another to estimate the central/central mean subspace (Cook and

Weisberg (1991)). For CMS, MAVE is useful for both dimension reduction and

nonparametric function estimation. It is free of the linearity condition and often

has much better performance in finite samples than inverse regression methods.

The aforementioned methods assume that all predictors contain useful infor-

mation. As a result, the estimated directions generally involve all of the original

predictors, making their interpretation sometimes difficult. Further, if irrelevant

predictors are included, quite likely in high-dimensional situations, the precision

of estimation as well as the accuracy of prediction is lessened. It is thus crucial to

consider variable selection along with dimension reduction, and several attempts

at this have been made within the framework of sufficient dimension reduction.

For instance, Li, Cook, and Nachtsheim (2005) developed test-based selection

procedures, Li (2007) suggested sparse sufficient dimension reduction via inte-

grating inverse regression estimation with a regularization paradigm, Zhou and

He (2008) studied a constrained canonical correlation method, and Wang and

Yin (2008) proposed sparse minimum average variance estimation. However,

most methods are designed for element screening and not variable screening,

producing a shrinkage solution for a basis matrix of the central/central mean

subspace.

Building upon the regression-type formulation of sufficient dimension reduc-

tion methods, Chen, Zou, and Cook (2010) proposed a coordinate-independent

sparse estimation that can simultaneously achieve dimension reduction and screen

out irrelevant predictors. With the aid of the local quadratic approximation, the

resulting estimators can be found by an application of the eigen-system analysis.

Their general method is subspace-oriented and covers a number of inverse regres-

sion methods, but inherits all drawbacks of inverse regression methods, that is,

the strong conditions on predictors and regression function. Also, as pointed out

in Fan and Li (2001), the local quadratic approximation algorithm has to delete

any small coefficient because it cannot have a sparse representation.

In this paper, by incorporating a bridge penalty (Frank and Friedman (1993))

to L1 norms of the rows of a basis matrix, we propose a penalized minimum
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average variance estimation (P-MAVE) that can achieve sufficient dimension re-

duction and variable selection simultaneously. A fast and efficient algorithm is

developed to solve the optimization problem, and the resulting estimator natu-

rally adopts a sparse representation. A BIC-type criterion is suggested to select

the tuning parameter. The new method is free of the linearity condition that is

needed for inverse regression methods (see, e.g., Chen, Zou, and Cook (2010))

and has the oracle property under mild conditions, so that P-MAVE can be

applied to time series data while inverse regression methods cannot.

The rest of the paper is organized as follows. Section 2 introduces the new

method. Its theoretical properties are studied in Section 3. Numerical studies are

reported in Section 4, and there a dataset with categorical predictors is analyzed

for variable selection. Concluding remarks are included in Section 5. All technical

details are relegated to the Appendix.

2. Methodology

2.1. Minimum average variance estimation revisited

Let B0 ∈ Rp×d denote a p× d orthogonal matrix with d < p, so BT
0 B0 = Id

where Id is the d × d identity matrix. For dimension reduction we consider the

model,

Y = g(BT
0 X) + ϵ, (2.1)

where g is an unknown smooth link function and E(ϵ|X) = 0 almost surely.

At the population level, the MAVE procedure minimizes the objective func-

tion

E{var(Y |BTX)} = E{Y − E(Y |BTX)}2 (2.2)

among all B ∈ Rp×d such that BTB = Id. If σ
2
B(B

TX) = E[{Y − E(Y |BTX)}2
| BTX] is the conditional variance of Y given BTX,

E{Y − E(Y |BTX)}2 = E{σ2
B(B

TX)}.

Thus, minimizing (2.2) is equivalent to

min
B∈Rp×d

E{σ2
B(B

TX)} subject to BTB = Id.

Suppose {(yi, xi), i = 1, . . . , n} is a random sample drawn according to (2.1).

For xi close to x0, a local linear approximation is

yi − g(BTxi) ≈ yi − g(BTx0)− {∇g(BTx0)}TBT (xi − x0).

In the spirit of local linear smoothing, we might estimate σ2
B(B

Tx0) by

σ̂2
B(B

Tx0) = min
a∈R,b∈Rd

n∑
i=1

{yi − a− bTBT (xi − x0)}2wi0.
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Here, wi0 ≥ 0, i = 1, . . . , n, are some weights such that
∑n

i=1wi0 = 1, often

centering at x0. Let xij = xi − xj . The MAVE procedure is to minimize

1

2n

n∑
j=1

n∑
i=1

(yi − aj − bTj B
Txij)

2wij (2.3)

over aj ∈ R,bj ∈ Rd, and B ∈ Rp×d such that BTB = Id. In practice, minimizing

(2.3) can be decomposed into two weighted least squares problems by fixing

(aj ,bj), j = 1, . . . , n, and B, alternatively. To be specific, given B we minimize,

for j = 1, . . . , p,

1

2n

n∑
i=1

(yi − aj − bTj B
Txij)

2wij (2.4)

with respect to aj ∈ R and bj ∈ Rd. With cj = (aj , b
T
j )

T and sij = (1, xTijB)T ,

the solution is

cj =

(
n∑

i=1

sijs
T
ijwij

)−1 n∑
i=1

sijyiwij . (2.5)

Given (aj , bj), j = 1, . . . , n, we minimize

1

2n

n∑
j=1

n∑
i=1

(yi − aj − bTj B
Txij)

2wij (2.6)

over B ∈ Rp×d subject to BTB = Id. Note that

1

2n

n∑
j=1

n∑
i=1

(yi − aj − bTj B
Txij)

2wij =
1

2n

n∑
j=1

n∑
i=1

{yi − aj − (xTij ⊗ bTj )β}2wij ,

where β = vec(BT ) and vec(·) is a matrix operator that stacks all columns of

a matrix into a vector. Again, this is a weighted least squares problem with

closed-form solution

β =

 n∑
j=1

n∑
i=1

{(xijxTij)⊗ (bjb
T
j )}wij

−1
n∑

j=1

n∑
i=1

(xij ⊗ bj)(yi − aj)wij . (2.7)

The procedure now consists of iteration between (2.5) and (2.7). As for the

weights wij , we employ the lower-dimensional kernel weights

wij =
Kh(B

Txij)∑n
i=1Kh(BTxij)

, (2.8)
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where B is the latest or current estimate of B0, and Kh(·) is a d-dimensional

kernel function with bandwidth h; see Xia et al. (2002) for more details.

2.2. Penalized MAVE

In practice, it is often the case that some of predictors have only marginal

influence on the response. Effectively removing these irrelevant predictors could

improve estimation accuracy and enhance model interpretability. This motivates

us to apply regularization to simultaneously estimate parameters and select rel-

evant predictors.

By Proposition 1 in Cook (2004), the kth predictor can be removed from

the model if and only if the kth row of B0D is a zero vector, where D denotes

an arbitrary d × d orthogonal matrix. Thus, the selection of predictors can be

realized through the selection of non-vanishing rows of B0D. Building upon this

observation and the iterative least squares MAVE algorithm, we propose the

penalized MAVE procedure, as follows.

For some d× d orthogonal matrix D0, suppose that B̃ is an initial estimator

of B0D0. Replace B in (2.8) by B̃ and let w̃ij denote the new weights. For each

j, let

(ãj , b̃j) = argmin
aj∈R,bj∈Rd

1

2n

n∑
i=1

(yi − aj − bTj B̃
Txij)

2w̃ij . (2.9)

Write β = (βT
1 , . . . , β

T
p )

T and β̃ = (β̃T
1 , . . . , β̃

T
p )

T , where βk = (β1
k, . . . , β

d
k)

T ∈ Rd

is the kth row of B ∈ Rp×d and β̃k = (β̃1
k, . . . , β̃

l
k)

T ∈ Rd is the kth row of

B̃ ∈ Rp×d, respectively. Similarly, write x̃ij ≡ xij ⊗ b̃j = (x̃Tij1, . . . , x̃
T
ijp)

T , where

x̃ijk = xkij b̃j and xkij is the kth component of xij . Let ỹij = yi − ãj . For a ∈ Rm

the Lr norm is written as ∥a∥r. We consider the objective function

Ψλn(β; β̃) =
1

2n

n∑
j=1

n∑
i=1

{yi − ãj − (xTij ⊗ b̃
T
j )β}2w̃ij + λn

p∑
k=1

∥βk∥γ1

=
1

2n

n∑
j=1

n∑
i=1

(ỹij − x̃Tijβ)
2w̃ij + λn

p∑
k=1

∥βk∥γ1 , (2.10)

where λn > 0 is a tuning parameter and γ ∈ (0, 1). By adopting a bridge penalty

for the L1 norms of the rows of B, it is then possible to carry out variable

screening and element screening simultaneously. We call β̂ minimizing (2.10) the

penalized MAVE estimator (P-MAVE). In the literature, Huang et al. (2009)

adopted the same penalty function to perform group variable selection in linear

regression models.
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2.3. Computation

Because the penalty term in (2.10) is non-convex, direct minimization of

Ψλn(β; β̃) is difficult. However it is possible to give an equivalent form, in certain

sense, of (2.10), one that is easier to compute. Take

Φλn(β, θ; β̃) =
1

2n

n∑
j=1

n∑
i=1

(ỹij − x̃Tijβ)
2w̃ij +

p∑
k=1

θ
1−1/γ
k ∥βk∥1 + τn

p∑
k=1

θk, (2.11)

where τn is a penalty parameter. The following is proved in the Appendix.

Proposition 1. Suppose that γ ∈ (0, 1). If λn = τ1−γ
n γ−γ(1−γ)γ−1, then β̂ is a

minimizer of Ψλn(β; β̃) if and only if (β̂, θ̂) is a minimizer of Φλn(β, θ; β̃) subject

to θ > 0, where θ > 0 means θk ≥ 0 for k = 1, . . . , p.

To estimate β and θ, we can use an iterative approach (see, e.g., Huang et

al. (2009)). Specifically, we first fix β and estimate θ, then we fix θ and estimate

β, and we iterate between these two steps to convergence. Since the value of the

objective function decreases at each step, the process is guaranteed to converge.

The algorithm proceeds as follows.

S1. Initialization. Set β(0) = β̃ and s = 1.

S2. For k = 1, . . . , p, compute

θ
(s)
k =

(
1− γ

τnγ

)γ ∥∥∥β(s−1)
k

∥∥∥γ
1
.

S3. Compute

β(s) = argmin
β

1

2n

n∑
j=1

n∑
i=1

(ỹij − x̃Tijβ)
2w̃ij +

p∑
k=1

(
θ
(s)
k

)1−1/γ
∥βk∥1.

This is a LASSO problem and can be solved efficiently using the LARS

algorithm (Efron et al. (2004)) or the fast coordinate descent algorithm

(Friedman et al. (2007)).

S4. If β(s) and β(s−1) are close enough, stop; otherwise, set s = s + 1 and go

back to Step 2.

With a good initial value β̃, the penalized MAVE estimator obtained in this

way has nice statistical properties, as shown in the following section. In practice,

we might invoke one further step by taking the penalized MAVE estimator as

the initial estimator, updating ãj and b̃j from (2.9), and carrying out steps

S1-S4 to convergence. The resulting estimator is called the one-step penalized
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MAVE estimator. As seen later in numerical studies, the one-step estimator

is able to stabilize the estimation and improve the penalized MAVE estimator.

Furthermore, it is less sensitive to the choice of the initial estimator β̃.

3. Asymptotic Theory

3.1 Basic theoretical properties

In what follows, we assume with no loss of generality that only the first q

predictors are relevant to the response, where d ≤ q < p. Let A1 = {1, . . . , q}
and A2 = {q + 1, . . . , p}. With a slight abuse of notation, write β = (βT

A1
, βT

A2
)T

with βA1 = (βk, k ∈ A1) a sub-vector formed by the first qd components of β,

and βA2 = (βk, k ∈ A2) formed by the last pd − qd components. Let µB(x) =

E(X|BTX = BTx) and νB(x) = µB(x) − x. We use νB,A1(x) to denote a sub-

vector consisting of the first q components of νB(x). Define

Wg0,A1 = E[{νB0,A1(X)νTB0,A1
(X)} ⊗ {∇g(BT

0 X)∇T g(BT
0 X)}],

Wg0 = E[{νB0(X)νTB0
(X)} ⊗ {∇g(BT

0 X)∇T g(BT
0 X)}],

Ug0,A1 = E[{νB0,A1(X)νTB0
(X)} ⊗ {∇g(BT

0 X)∇T g(BT
0 X)}].

We need the following condition.

(A) B̃ = B0D0 +OP (n
−1/2), equivalently β̃ − β0 = OP (n

−1/2).

Condition (A) is mild and typically holds. In particular, the ordinary MAVE

estimator can be used as the initial estimator (Xia (2006); Wang and Xia (2008)).

Note that the group bridge penalty in (2.10) is added to each row of B and

the penalty is not rotation free, so the sparseness depends on a special form of

rotation. Under condition (A), D0 is the underlying rotation matrix and the

identifiability issue vanishes automatically.

Theorem 1. Suppose that γ ∈ (0, 1) and d ≤ 3. Assume (A) and conditions

(C1)−(C5) in the Appendix.

(i) If λnn
−1/2 = O(1), then there exists a local minimizer β̂ of Ψλn(β; β̃) such

that

∥β̂ − β0∥2 = OP

(
1√
n

)
.

(ii) If λnn
−1/2 = O(1) and λnn

−γ/2 → ∞, then P (β̂A2 = 0) → 1 as n → ∞.

(iii)Suppose that
√
n(β̃ − β0) →L G1 and

1√
n

n∑
i=1

{νB0,A1(xi)⊗∇g(BT
0 xi)}ϵi →L G2.
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If λnn
−1/2 → λ0 ∈ [0,∞) and λnn

−γ/2 → ∞, then

√
n(β̂A1 − β0A1) →L argmin

u
{V (u), u = (uT1 , . . . , u

T
q )

T ∈ Rqd},

where

V (u) = −uT (Ug0G1 +G2) + uTWg0,A1u

+ λ0γ

q∑
k=1

∥β0k∥γ−1
1

d∑
l=1

{ulksign(βl
0k)I(β

l
0k ̸= 0) + |ulk|I(βl

0k = 0)}.

In particular, when λ0 = 0,

√
n(β̂A1 − β0A1) →L

1

2
W+

g0,A1
(Ug0G1 +G2),

where W+
g0,A1

denotes the Moore-Penrose inverse matrix of Wg0,A1.

Theorem 1 indicates that the penalized MAVE estimator is
√
n-root consis-

tent, and that it is able to select all relevant predictors consistently. Part (iii)

of Theorem 1 has implications: if λ0 > 0, the limit distribution of β̂A1 that

corresponds to the relevant predictors puts positive probability to 0 when some

components of β0A1 are exactly 0, that is, element screening along with variable

screening is achievable; if λ0 = 0, the estimator β̂A1 of β0A1 is asymptotically

normal. For general multiple-index models, the ordinary MAVE estimate is con-

sistent, but it is hard to specify the asymptotic distribution, particularly for

d > 3. The asymptotic distribution is available when we use inverse regression

estimates, such as sliced inverse regression, as initial estimates. However, its vari-

ance has a vary complicated structure (see, Zhu and Ng (1995)). In the special

case of the single-index model, we have the oracle property.

Corollary 1. Adopt the conditions of Theorem 1 with d = 1. Suppose that β̃ is

the ordinary MAVE estimator.

(i) If λnn
−1/2 = O(1) and λnn

−γ/2 → ∞, then P (β̂A2 = 0) → 1 as n → ∞.

(ii) If n−1/2
∑n

i=1 g
′(βT

0 xi)νβ0,A1(xi)ϵi →L G2, λnn
−1/2 → 0 and λnn

−γ/2 → ∞,

then

√
n(β̂A1 − β0A1) →L W+

g0,A1
G2.

Remark 1. It is clear that B0 in model (2.1) or B in (2.3) is not identifiable. So

the initial condition B̃ = B0D0+OP (n
−1/2) for some d×d orthogonal matrix D0

is necessary. Many estimates, including the ordinary MAVE estimate, can serve

as an initial estimate because they can consistently estimate B0D0 (D0 may be
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different for different estimates). Of course, the P-MAVE depends on the initial

one, and we have shown in Theorem 3.1 that it is a consistent estimator of B0D0.

Nevertheless, the selection consistency of the P-MAVE does not depend on the

choice of the initial estimator.

Note that at the population level, the (unique) solution of the MAVE can

only identify B0D0 for some d × d orthogonal matrix D0. This is why we say

that dimension reduction methods can identify the central (mean) dimension

reduction subspace. The MAVE algorithm provides a consistent estimate of

B0D0, see Xia et al. (2002) and Wang and Xia (2008), but this does not affect

the selection by our procedure. It is easy to see that, if the kth row of B0 is

a zero vector (we say B0 is sparse in this sense), then the kth row of B0D for

any d × d orthogonal matrix D is also zero, and vice versa. Thus, the ordinary

MAVE procedure estimates the sparse version B0D0 for some D0, and we can

apply the techniques of shrinkage and selection to produce sparse solutions, such

as the P-MAVE.

3.2. Tuning parameter selection

In practice, the attractive properties of the penalized MAVE estimator rely

heavily on the choice of the tuning parameter that controls the model complex-

ity. In the literature, generalized cross-validation (GCV) has been extensively

used to choose tuning parameters, see Fan and Li (2001). Recently, Wang, Li,

and Tsai (2007) proved that the model selected by GCV tends to overfit, while

the Bayesian information criterion (BIC) is able to identify a finite-dimensional

model consistently. This motivates us to consider a BIC-type criterion for tuning

parameter selection. Let

RSSλ =
1

2n2

n∑
j=1

n∑
i=1

(ỹij − x̃Tij β̂λ)
2w̃ij , (3.1)

BICλ = logRSSλ + d× dfλ × log n

n
, (3.2)

where β̂λ = (β̂T
λ1, . . . , β̂

T
λp)

T is the minimizer of Ψλ(β; β̃), and dfλ denotes the

number of nonzero sub-vectors in {β̂λ1, . . . , β̂λp}.
We use the generic notation M ⊂ {1, . . . , p} to denote an arbitrary candidate

model. Let MF = {1, . . . , p},MT = {1, . . . , q}, and Mλ = {k : β̂λ,k ̸= 0} be the

full model, the true model, and the model that is identified by β̂λ, respectively.

Theorem 2. Let λ̂ denote the tuning parameter selected by minimizing BICλ.

Under the conditions of Corollary 1, P (Mλ̂ = MT ) → 1 as n → ∞.
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4. Numerical Studies

4.1. Simulations

In this subsection, we report on a study of the finite sample performance of

the proposed method via simulations. Throughout, we took the ordinary MAVE

estimator to be the initial estimator and used the BIC-type criterion (3.2) to

select the tuning parameter. To be specific, we used the refined MAVE estimator

with the multi-dimensional Gaussian kernel, and adopted the optimal bandwidth

h = {4/(d+2)}1/(d+4)n−1/(d+4) (Silverman (1999)). For measuring the estimation

accuracy, we employed the vector correlation coefficient COR1 = (
∏d

l=1 ϕ
2
l )

1/2

and the trace correlation coefficient COR2 = (d−1
∑d

l=1 ϕ
2
l )

1/2, where the ϕ2
l ’s

are the eigenvalues of the matrix B̂TB0B
T
0 B̂; see Ye and Weiss (2003) for more

details. Furthermore, we used four summary statistics to assess how well the

method selected predictors: MS, TPR, FDR, and CM. MS is the average number

of identified predictors, TPR is the average ratio of the number of correctly

identified predictors to the number of truly important predictors, FDR is the

average ratio of the number of falsely identified predictors to the total number of

identified predictors, and CM is the fraction of runs in which the correct model is

selected. In each of the following example, the reported simulation results were

based on 200 data replications.

Example 1. Let d = 1, p = 10, q = 4, and β = (0.4,−0.4, 0.8,−0.2, 0, . . . , 0)T .

Consider the single-index model

Y = 1 + 2(XTβ + 3)× log(3|XTβ|+ 1) + ϵ,

where ϵ ∼ N(0, 1), X ∼ N(0,Σ) with Σij = ρ|i−j| for i, j = 1, . . . , 10, and ϵ and

X are independent. Two values of ρ were explored, 0 and 0.5, with the sample

size n = 100.

Example 2. The same as Example 1, except that n = 200 and p = 20.

Example 3. Let d = 2, p = 10, and q = 4. We considered the model

Y =
(X1 + 2X2 + 3X3)

2

14
− 2X1 +X2 +X4 + 0.5ϵ,

where ϵ ∼ N(0, 1), X ∼ N(0,Σ) with Σij = ρ|i−j| for i, j = 1, . . . , 10, and ϵ and

X are independent. Two values of ρ were explored, 0 and 0.5, with the sample

size n = 100. In this example, the true dimension reduction subspace is spanned

by (1, 2, 3, 0, . . . , 0)T /
√
14 and (−2, 1, 0, 1, 0, . . . , 0)T /

√
6.
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Example 4. Let d = 3, p = 10, and q = 3. The regression model was

Y = X1 +
X2

0.5 + (1.5 +X3)2
+ 0.2ϵ,

where ϵ ∼ N(0, 1), X ∼ N(0,Σ) with Σij = ρ|i−j| for i, j = 1, . . . , 10, and ϵ and

X are independent. Two values of ρ were explored, 0 and 0.5, with the sample

size n = 100. In this example, the true dimension reduction subspace is spanned

by (1, 0, . . . , 0)T , (0, 1, 0, . . . , 0)T , and (0, 0, 1, 0, . . . , 0)T .

Example 5. We took the non-linear time series model

Yt = −1 + 0.4Yt−1 + cos
(π
2
Yt−2

)
+ 0.2ϵt,

where the ϵt’s are independent and identically distributed N(0, 1), and Xt−1 =

(Yt−1, . . . , Yt−6)
T . In this example, d = 2, p = 6, q = 2, and the true dimension

reduction subspace is spanned by (1, 0, . . . , 0)T and (0, 1, 0, . . . , 0)T . Our sample

sizes were n = 100 and n = 200.

We evaluated the performance of the P-MAVE estimator as well as the one-

step P-MAVE estimator and, in the first four examples, we also chose the refined

outer product of gradients estimator (OPG, Xia et al. (2002)) as the initial esti-

mator. We used γ = 0.5 in the bridge penalty function. For comparison purpose,

we report the simulation results of the coordinate-independent sparse estima-

tion. In particular, we applied sliced inverse regression (CISE-SIR) and principal

fitted components (CISE-PFC); see Section 3 of Chen, Zou, and Cook (2010)

for details. The simulation results from these five examples are summarized in

Tables 1-5, respectively.

When the original MAVE estimator was used as the initial value, observa-

tions are as follows. In all examples, both the penalized MAVE estimator and

its one-step counterpart improved the MAVE estimator in terms of basis estima-

tion. This phenomenon was more evident in Example 5, where the refined MAVE

estimator had a very low vector correlation coefficient (COR1) when n = 100 (Ta-

ble 5). In general, the one-step P-MAVE estimator outperformed the penalized

MAVE estimator, and the proposed method worked quite well in terms of pre-

dictor selection: the true positive rate (TPR) was very high, lowest at 97.33%;

and the false discovery rate (FDR) was close to 0. Further, the CM-values in

Example 1-2 were not far from 100% (Tables 1-2), which confirms the consistency

of the BIC-type criterion in the context of single-index models. When there was

more than one index, d > 1, the lowest CM-values were 67.50% and 88.50% for

the P-MAVE estimator and the one-step P-MAVE estimator, respectively. We

also tried two other selection criteria, generalized cross-validation and Akaike’s
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Table 1. Simulation results for Example 1. The means and the standard
deviations (in parentheses) of the vector correlation coefficient (COR1) and
the trace correlation coefficient (COR2), the average model size (MS), the
true positive rate (TPR), the false discovery rate (FDR), and the proportion
of selecting the correct model (CM), based on 200 data replications, are
reported.

d = 1, n = 100, p = 10, q = 4, ρ = 0

COR1 COR2 MS TPR FDR CM

Initial estimate: Refined MAVE 0.9979 (0.0013) 0.9979 (0.0013)

P-MAVE 0.9993 (0.0007) 0.9993 (0.0007) 4.0950 1.0000 0.0183 0.9150

One-step P-MAVE 0.9994 (0.0006) 0.9994 (0.0006) 4.0150 1.0000 0.0030 0.9850

Initial estimate: Refined OPG 0.9976 (0.0015) 0.9976 (0.0015)

P-MAVE 0.9992 (0.0008) 0.9992 (0.0008) 4.1150 1.0000 0.0223 0.8950

One-step P-MAVE 0.9994 (0.0006) 0.9994 (0.0006) 4.0100 1.0000 0.0020 0.9900

CISE-SIR 0.9351 (0.0593) 0.9351 (0.0593) 2.9900 0.7338 0.0130 0.2550

CISE-PFC 0.9365 (0.0575) 0.9365 (0.0575) 3.0300 0.7388 0.0173 0.2500

d = 1, n = 100, p = 10, q = 4, ρ = 0.5

Initial estimate: Refined MAVE 0.9978 (0.0014) 0.9978 (0.0014)

P-MAVE 0.9992 (0.0009) 0.9992 (0.0009) 4.1700 1.0000 0.0333 0.8400

One-step P-MAVE 0.9994 (0.0006) 0.9994 (0.0006) 4.0400 1.0000 0.0080 0.9600

Initial estimate: Refined OPG 0.9973 (0.0018) 0.9973 (0.0018)

P-MAVE 0.9992 (0.0009) 0.9992 (0.0009) 4.1800 1.0000 0.0353 0.8300

One-step P-MAVE 0.9994 (0.0006) 0.9994 (0.0006) 4.0350 1.0000 0.0070 0.9650

CISE-SIR 0.8841 (0.0789) 0.8841 (0.0789) 2.3900 0.5537 0.0378 0.1100

CISE-PFC 0.8800 (0.0767) 0.8800 (0.0767) 2.3000 0.5325 0.0361 0.0650

information criterion, and found that they tend to over-select many irrelevant

predictors. When the refined OPG estimator was used as the initial value, we

can make similar conclusions. In fact, as can be seen from Tables 1-4, the P-

MAVE estimator and the one-step P-MAVE estimator, especially the latter, are

not very sensitive to the choice of the initial estimator.

The P-MAVE estimator and the one-step P-MAVE estimator outperformed

CISE-SIR and CISE-PFC. In Example 1, CISE-SIR and CISE-PFC missed on

average one or two important predictors. In Example 2, they had much better

performance when the predictors were uncorrelated (Table 2). As a conclusion,

the coordinate-independent sparse estimation did not work well when either the

sample size of the data was low or the predictors were correlated. This is further

seen in Example 4 where we found that CISE-SIR and CISE-PFC could only

estimate part of the dimension reduction subspace. Unreported results showed

that the performance did not improve much when the sample size went from

n = 100 to n = 800. In Example 3, CISE-SIR and CISE-PFC failed as expected,

as there was a symmetry component in the mean regression function.

4.2. Automobile data

As an illustration, we apply the proposed method to an automobile data set
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Table 2. Simulation results for Example 2. The means and the standard
deviations (in parentheses) of the vector correlation coefficient (COR1) and
the trace correlation coefficient (COR2), the average model size (MS), the
true positive rate (TPR), the false discovery rate (FDR), and the proportion
of selecting the correct model (CM), based on 200 data replications, are
reported .

d = 1, n = 200, p = 20, q = 4, ρ = 0

COR1 COR2 MS TPR FDR CM

Initial estimate: Refined MAVE 0.9982 (0.0007) 0.9982 (0.0007)

P-MAVE 0.9996 (0.0004) 0.9996 (0.0004) 4.2200 1.0000 0.0420 0.8050

One-step P-MAVE 0.9998 (0.0002) 0.9998 (0.0002) 4.0200 1.0000 0.0040 0.9800

Initial estimate: Refined OPG 0.9978 (0.0009) 0.9978 (0.0009)

P-MAVE 0.9996 (0.0004) 0.9996 (0.0004) 4.2150 1.0000 0.0406 0.8150

One-step P-MAVE 0.9998 (0.0002) 0.9998 (0.0002) 4.0150 1.0000 0.0030 0.9850

CISE-SIR 0.9769 (0.0176) 0.9769 (0.0176) 3.7900 0.9187 0.0250 0.6050

CISE-PFC 0.9731 (0.0211) 0.9731 (0.0211) 3.6650 0.8912 0.0207 0.5050

d = 1, n = 200, p = 20, q = 4, ρ = 0.5

Initial estimate: Refined MAVE 0.9979 (0.0010) 0.9979 (0.0010)

P-MAVE 0.9996 (0.0004) 0.9996 (0.0004) 4.2900 1.0000 0.0545 0.7550

One-step P-MAVE 0.9998 (0.0002) 0.9998 (0.0002) 4.0500 1.0000 0.0097 0.9550

Initial estimate: Refined OPG 0.9972 (0.0014) 0.9972 (0.0014)

P-MAVE 0.9996 (0.0005) 0.9996 (0.0005) 4.3200 1.0000 0.0588 0.7500

One-step P-MAVE 0.9998 (0.0002) 0.9998 (0.0002) 4.0400 1.0000 0.0077 0.9650

CISE-SIR 0.9599 (0.0482) 0.9599 (0.0482) 3.9350 0.8363 0.1203 0.2250

CISE-PFC 0.9401 (0.0614) 0.9401 (0.0614) 3.4900 0.7562 0.0960 0.1850

(available from the Machine Learning Repository at the University of California-

Irvine). The objective of this analysis is to study the relationship between the car

price and a set of car attributes. In the data set, there are originally 205 instances

and 26 attributes, and there are also some missing values. We focus our analy-

sis on 17 attributes: Wheel-base (X1), Length (X2), Width (X3), Height (X4),

Curb-weight (X5), Engine-size (X6), Bore (X7), Stroke (X8), Compression-ratio

(X9), Horsepower (X10), Peak-rpm (X11), City-mpg (X12), Highway-mpg (X13),

Fuel-type (X14, 0 = diesel and 1 = gas), Aspiration (X15, 0 = std and 1 = turbo),

No-of-cylinders (X16, 0 = four cylinders and 1 otherwise), and Drive-wheels (4wd,

fwd and rwd). The first 13 attributes are continuous and the rest are categorical.

Set X17 = 0 if a car has four-wheel drive and 2 otherwise, X18 = 1 if it has front-

wheel drive and 2 otherwise. The response Y is the car price in thousands of

dollars. Because the number of missing values is quite small compared to the total

sample size, we simply discard the instances with missing values. The resulting

data set then consists of 195 instances with complete records. For ease of expla-

nation, all predictors, X1, . . . , X18, are standardized separately. As to sufficient

dimension reduction, this dataset, when the categorical predictors were removed,

was analysed to identify the projection directions when the inverse regression

method was applied. See Zhu and Zeng (2006). The categorical predictors were
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Table 3. Simulation results for Example 3. The means and the standard
deviations (in parentheses) of the vector correlation coefficient (COR1) and
the trace correlation coefficient (COR2), the average model size (MS), the
true positive rate (TPR), the false discovery rate (FDR), and the proportion
of selecting the correct model (CM), based on 200 data replications, are
reported.

d = 2, n = 100, p = 10, q = 4, ρ = 0

COR1 COR2 MS TPR FDR CM

Initial estimate: Refined MAVE 0.9776 (0.0098) 0.9888 (0.0049)

P-MAVE 0.9919 (0.0077) 0.9959 (0.0038) 4.4100 1.0000 0.0732 0.7000

One-step P-MAVE 0.9933 (0.0078) 0.9967 (0.0039) 4.1200 0.9988 0.0240 0.8850

Initial estimate: Refined OPG 0.9708 (0.0136) 0.9854 (0.0068)

P-MAVE 0.9924 (0.0064) 0.9962 (0.0032) 4.3350 1.0000 0.0626 0.7250

One-step P-MAVE 0.9941 (0.0050) 0.9971 (0.0025) 4.0850 1.0000 0.0170 0.9150

CISE-SIR 0.1985 (0.2589) 0.6834 (0.0820) 2.2850 0.4350 0.2454 0.0150

CISE-PFC 0.3310 (0.2996) 0.7289 (0.0968) 2.3950 0.5100 0.1485 0.0450

d = 2, n = 100, p = 10, q = 4, ρ = 0.5

Initial estimate: Refined MAVE 0.9676 (0.0155) 0.9838 (0.0077)

P-MAVE 0.9897 (0.0140) 0.9949 (0.0068) 4.1850 0.9975 0.0365 0.8300

One-step P-MAVE 0.9911 (0.0102) 0.9956 (0.0050) 4.0600 0.9988 0.0130 0.9300

Initial estimate: Refined OPG 0.9460 (0.0408) 0.9731 (0.0197)

P-MAVE 0.9846 (0.0267) 0.9924 (0.0129) 4.0550 0.9850 0.0227 0.8300

One-step P-MAVE 0.9905 (0.0118) 0.9952 (0.0058) 4.0450 0.9975 0.0110 0.9350

CISE-SIR 0.1916 (0.2419) 0.6707 (0.1016) 2.2700 0.4487 0.2096 0.0000

CISE-PFC 0.2637 (0.2710) 0.6879 (0.1198) 2.1900 0.4575 0.1675 0.0000

removed because inverse regression methods are limited in this regard whereas,

MAVE is not. To estimate the dimension, both the cross-validation method of

Xia et al. (2002) and the modified BIC-type criterion proposed by Wang and Yin

(2008) suggest taking d = 1. The results of estimation and variable selection are

summarized in Table 6.

The vector correlation coefficient, the trace correlation coefficient between

the MAVE estimator and the P-MAVE estimator, is 0.9865; between the MAVE

estimator and the one-step P-MAVE estimator, is 0.9762. In addition, the P-

MAVE estimator and the one-step P-MAVE have similar performance in terms

of predictor selection: the relevant predictors in common are Wheel-base (X1),

Length (X2), Width (X3), Engine-size (X6), Stroke (X8), Compression-ratio

(X9), Peak-rpm (X11), City-mpg (X12), Highway-mpg (X13), and Drive-wheels

(X18). The plot of Y against the reduced direction XT β̂ is shown in Figure 1,

displaying a strong non-linear relationship.

As seen in Figure 1, the significance of X18 indicates the difference between

front-wheel drive cars and others. It is common knowledge that four-wheel and

rear-wheel drive cars are typically more expensive to purchase than comparable

front wheel drive cars.
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Table 4. Simulation results for Example 4. The means and the standard
deviations (in parentheses) of the vector correlation coefficient (COR1) and
the trace correlation coefficient (COR2), the average model size (MS), the
true positive rate (TPR), the false discovery rate (FDR), and the proportion
of selecting the correct model (CM), based on 200 data replications, are
reported.

d = 3, n = 100, p = 10, , q = 3, ρ = 0

COR1 COR2 MS TPR FDR CM

Initial estimate: Refined MAVE 0.8207 (0.2458) 0.9476 (0.0646)

P-MAVE 0.9546 (0.1872) 0.9927 (0.0382) 3.2900 0.9900 0.0674 0.7400

One-step P-MAVE 0.9864 (0.0997) 0.9968 (0.0211) 3.1200 0.9983 0.0255 0.9150

Initial estimate: Refined OPG 0.7769 (0.2446) 0.9341 (0.0622)

P-MAVE 0.9193 (0.2597) 0.9893 (0.0395) 3.2250 0.9817 0.0625 0.7400

One-step P-MAVE 0.9820 (0.1262) 0.9961 (0.0265) 3.0600 0.9983 0.0149 0.9500

CISE-SIR 0.1711 (0.3594) 0.7853 (0.1362) 3.2900 0.7300 0.3317 0.1550

CISE-PFC 0.3756 (0.4585) 0.8608 (0.1202) 3.3500 0.8683 0.2150 0.3400

d = 3, n = 100, p = 10, q = 3, ρ = 0.5

Initial estimate: Refined MAVE 0.6605 (0.2883) 0.9040 (0.0721)

P-MAVE 0.8758 (0.3023) 0.9763 (0.0607) 3.3650 0.9733 0.0826 0.6750

One-step P-MAVE 0.9641 (0.1683) 0.9919 (0.0368) 3.1150 0.9933 0.0314 0.8950

Initial estimate: Refined OPG 0.5762 (0.2800) 0.8744 (0.0769)

P-MAVE 0.8241 (0.3530) 0.9778 (0.0521) 3.3500 0.9550 0.0951 0.6100

One-step P-MAVE 0.9396 (0.2314) 0.9900 (0.0409) 3.0750 0.9833 0.0306 0.8900

CISE-SIR 0.0216 (0.1176) 0.7091 (0.1222) 3.2550 0.5933 0.4596 0.0100

CISE-PFC 0.0209 (0.1052) 0.7382 (0.1147) 3.2950 0.6483 0.4142 0.0100

Table 5. Simulation results for Example 5. The means and the standard
deviations (in parentheses) of the vector correlation coefficient (COR1) and
the trace correlation coefficient (COR2), the average model size (MS), the
true positive rate (TPR), the false discovery rate (FDR), and the proportion
of selecting the correct model (CM), based on 200 data replications, are
reported.

d = 2, n = 100, p = 6, q = 2

COR1 COR2 MS TPR FDR CM

Initial estimate: Refined MAVE 0.5771 (0.2414) 0.8277 (0.0805)

P-MAVE 0.9365 (0.1841) 0.9749 (0.0680) 2.2800 0.9975 0.0795 0.8050

One-step P-MAVE 0.9683 (0.1532) 0.9889 (0.0499) 2.1000 0.9950 0.0350 0.9100

d = 2, n = 200, p = 6, q = 2

Initial estimate: Refined MAVE 0.7490 (0.2079) 0.8920 (0.0739)

P-MAVE 0.9556 (0.1458) 0.9820 (0.0526) 2.2650 1.0000 0.0772 0.8000

One-step P-MAVE 0.9920 (0.0676) 0.9969 (0.0226) 2.0650 1.0000 0.0217 0.9350

5. Concluding Remarks

In this paper, we suggest a penalized minimum average variance estimation

for both dimension reduction and variable selection. This is a forward regression

approach that does not depend on the eigen-decomposition of a kernel matrix. As

such this method, compared with that of Chen, Zou, and Cook (2010), requires
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Table 6. Estimation and variable selection for the automobile data.

Predictor Refined MAVE P-MAVE One-step P-MAVE
X1 0.1435 0.1097 0.1076
X2 -0.2419 -0.2445 -0.2013
X3 -0.0850 -0.0984 -0.0848
X4 -0.0419 0 0
X5 0.1303 0.1277 0
X6 -0.2988 -0.2333 -0.2119
X7 0.0134 0 0
X8 0.0325 0.0374 0.0460
X9 -0.2279 -0.2325 -0.2243
X10 0.0644 -0.0150 0
X11 -0.0548 -0.0415 -0.0644
X12 0.7558 0.8079 0.8184
X13 -0.3770 -0.3454 -0.3921
X14 0.0679 0 0
X15 -0.0608 0 0
X16 0.0158 0 0
X17 0.0192 0 0
X18 0.1518 0.1356 0.1256

fewer conditions on the predictors and the regression function. However, as with

other methods, P-MAVE seems to have difficulty handling the cases with very

large p; it can be extended to the case where p diverges to infinity at certain rate

as the sample size tends to infinity. As P-MAVE requires an initial nonparametric

estimator with all predictors, dimension reduction and variable selection can be

less accurate when p is very large. We have not yet found a good solution to this

problem, it deserves further study.
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Appendix

Regularity Conditions. Here are regularity conditions needed for estab-

lishing the asymptotic properties of our estimator.

(C1) The predictor vector X is bounded and its density function f(·) has a

bounded second order derivative; E(X|BTX = u) and E(XXT |BTX = u)
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Figure 1. The automobile data. The cars are represented by “o” for front-
wheel drive cars, “△” for four-wheel drive cars, and “+” for rear-wheel drive
cars.

have bounded derivatives with respect to u and B in a small neighborhood

of B0.

(C2) E|Y |k < ∞ for some large k > 0.

(C3) E(Y |BTX) has a bounded fourth order derivative in a neighborhood of B0.

(C4) K(·) is a symmetric density function with bounded first order derivative.

In particular, we use the Gaussian kernel with bandwidth h ∝ n−1/(d+4).

(C5) The smallest eigenvalue of JT
0 Wg0J0 is larger than ρ and the largest eigen-

value of Wg0 is less than ρ∗ for some positive constants ρ and ρ∗. Matrix

J0 in (C5) can be found in the proof of Theorem 1.

Conditions (C1)−(C4) are similar to those of Xia (2006) and Wang and Xia

(2008). As for condition (C5), consider the special case of the single-index model,

so Wg0 is a square matrix of order p and JT
0 Wg0J0 is a matrix of order p− 1. It

follows that βT
0 Wg0 = 0 and βT

0 J0 = 0. Note that JT
0 Wg0J0 has the same rank

as (J0, β0)
TWg0(J0, β0), and (J0, β0)

TWg0(J0, β0) has the same rank as Wg0, so
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JT
0 Wg0J0 has full rank p− 1. As a result, condition (C5) is mild.

Proof of Proposition 1. This follows directly from Proposition 1 in Huang et

al. (2009).

Proof of Theorem 1. There are three steps: Step I establishes the order of the

minimizer β̂ of Ψλn(β; β̃), Step II shows that β̂ is variable selection consistent, and

Step III derives the asymptotic distribution. Following Theorem 1 and Theorem 2

of Huang et al. (2009), write

Ψλn(β; β̃) = Ln(β; β̃) + λn

p∑
k=1

∥βk∥γ1 ,

where

Ln(β; β̃) =
1

2n

n∑
j=1

n∑
i=1

(ỹij − x̃Tijβ)
2w̃ij .

Step I. We prove that there exists a local minimizer β̂ of Ψλn(β; β̃) such that

∥β̂ − β0∥2 = OP

(
1√
n

)
. (A.1)

Because BT
0 B0 = Id, the number of free parameters in B0 equals pd−d(d+1)/2.

In addition, there are d(d − 1)/2 free parameters in D0. For example, we may

parameterize D0 via the polar coordinate system. Therefore, the total number

of free parameters in B0D0 is pd− d2.

For ease of presentation, we first consider the single-index model. We can

simply take D0 = 1. It follows that B0 = β0 = (β1, . . . , βp)
T ∈ Rp, but note

that ∥β0∥2 = 1, so g(βT
0 X) does not have a derivative at the point β0. To

address this problem, we adopt the “delete-one-component” method as follows.

For any vector a = (a1, . . . , ap)
T ∈ Rp, let a(1) = (a2, . . . , ap)

T . Then we can

write β1 = β1(β
(1)) = (1 − ∥β(1)∥22)1/2 and β = β(β(1)) = (β1(β

(1)), β(1)T )T . To

exclude the trivial cases, we assume q ≥ 2. Then the true parameter β
(1)
0 satisfies

the constraint ∥β(1)
0 ∥2 < 1, and β is infinitely differentiable in a neighborhood of

β
(1)
0 . We define the Jacobian matrix as J

β
(1)
0

= (η1, . . . , ηp)
T ∈ Rp×(p−1), where

η1 = −(1−∥β(1)
0 ∥22)−1/2β

(1)
0 and, for s = 2, . . . , p, ηs is a (p− 1)-dimensional unit

vector with sth component being 1.

When d > 1, a Jacobian matrix J0 = J
β
(1)
0

∈ Rpd×(pd−d2) can be defined in a

similar way, where the vector β
(1)
0 consists of all the free parameters in B0D0.

Let β∗(1) = β
(1)
0 + n−1/2v, where ∥v∥2 = C for some positive constant C.
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Applying a Taylor expansion, we can write

Ln(β
∗; β̃)− Ln(β0; β̃) = −

√
nvTJT

β
∗(1)
0

1

n2

n∑
j=1

n∑
i=1

(ỹij − x̃Tijβ0)x̃ijw̃ij

+
1

2
vTJT

β
∗(1)
0

1

n2

n∑
j=1

n∑
i=1

x̃ij x̃
T
ijw̃ijJβ∗(1)

0

v

≡ I1n + I2n,

where β
∗(1)
0 lies between β

(1)
0 and β∗(1). By Lemmas 6.4 and 6.5 in Wang and

Xia (2008),

I1n = −
√
nvTJT

β
(1)
0

[
Wg0(β̃ − β0) +

1

n

n∑
i=1

{νB0(xi)⊗∇g(BT
0 xi)}ϵi

]
+ oP

(
1√
n

)
,

I2n = vTJT

β
(1)
0

{Wg0 + oP (1)}Jβ(1)
0

v.

It follows that

Ψλn(β
∗; β̃)−Ψλn(β0; β̃)

= −
√
nvTJT

β
(1)
0

[
Wg0(β̃ − β0) +

1

n

n∑
i=1

{νB0(xi)⊗∇g(BT
0 xi)}ϵi

]
+ vTJT

β
(1)
0

Wg0Jβ(1)
0

v + λn

p∑
k=1

(∥β∗
k∥

γ
1 − ∥β0k∥γ1) + oP

(
1√
n

)
≡ T1n + T2n + T3n + oP

(
1√
n

)
.

By (C5), we have T2n ≥ ρ∥v∥22 with large probability. Further, by (A),

JT

β
(1)
0

Wg0

√
n(β̃ − β0) +

1√
n

n∑
i=1

JT

β
(1)
0

{νB0(xi)⊗∇g(BT
0 xi)}ϵi = OP

(
1√
n

)
.

Thus, by choosing a sufficiently large C, T1n is dominated by T2n.

Since bγ−aγ ≤ 2(b−a)bγ−1 for 0 ≤ a ≤ b, by the Cauchy-Schwarz inequality,

T3n ≤ 2λn

q∑
k=1

∥β0k|γ−1
1 ∥β∗

k − β0k∥1

≤ 2
√
dλn

q∑
k=1

∥β0k|γ−1
1 ∥β∗

k − β0k∥2

≤ 2
√
d

q∑
k=1

∥β0k|γ−1
1 λn

( q∑
k=1

∥β∗
k − β0k∥22

)1/2
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= O(1)λn
∥v∥2√

n
= O(∥v∥2),

where the last equality is from λn = O(n1/2). By choosing a sufficiently large

C, T3n is also dominated by T2n. Consequently, it holds with large probability

that Ψλn(β
∗; β̃) > Ψλn(β0; β̃) uniformly in {v : ∥v∥2 = C}. This implies that,

with large probability, there exists a local minimizer of of Ψλn(β; β̃) in the ball

{v : ∥v∥2 ≤ C}. Therefore, there exists a local minimizer β̂ of Ψλn(β; β̃) such

that ∥β̂ − β0∥2 = OP (n
−1/2).

Step II. In this step, we establish the consistency of variable selection. Let I(·)
denote the indicator function. Define β̄k = β̂kI(k ∈ A1) for k = 1, . . . , p. Write

β̄ = (β̄T
1 , . . . , β̄

T
p )

T . By Proposition 1 and the Karush-Kuhn-Tucker condition,

we have

−n
1

n2

n∑
j=1

n∑
i=1

(ỹij − x̃Tij β̂)x̃
l
ijkw̃ij = θ̂1−1/γsgn(β̂l

k), β̂l
k ̸= 0, (A.2)

where x̃lijk is the lth component of x̃ijk. Because θ̂1−1/γ∥β̂k∥1 = γλn∥β̂k∥γ1 , we
obtain

−n
1

n2

n∑
j=1

n∑
i=1

(ỹij − x̃Tij β̂)x̃
l
ijkw̃ij = γλn∥β̂k∥γ−1

1 sgn(β̂l
k), β̂l

k ̸= 0. (A.3)

It follows that

−n
1

n2

n∑
j=1

n∑
i=1

(ỹij − x̃Tij β̂)w̃ij x̃
T
ij(β̂ − β̄)

= −n
1

n2

n∑
j=1

n∑
i=1

(ỹij − x̃Tij β̂)w̃ij

∑
k,l:β̂l

k ̸=0

x̃lijk(β̂
l
k − β̄l

k)

=
∑

k,l:β̂l
k ̸=0

γλn∥β̂k∥γ−1
1 sgn(β̂l

k)(β̂
l
k − β̄l

k)

=
∑
k,l

γλn∥β̂k∥γ−1
1 sgn(β̂l

k)(β̂
l
k − β̄l

k).

Note that from (β̂l
k − β̄l

k)sgn(β̂
l
k) = |β̂l

k|I(k ∈ A2), we obtain

−n
1

n2

n∑
j=1

n∑
i=1

(ỹij − x̃Tij β̂)w̃ij x̃
T
ij(β̂ − β̄) =

∑
k∈A2

γλn∥β̂k∥γ−1
1

d∑
l=1

|β̂l
k|

=

p∑
k=1

γλn∥β̂k∥γ−1
1 (∥β̂k∥1 − ∥β̄k∥1).
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Since γb(γ−1)(b− a) ≤ bγ − aγ for 0 ≤ a ≤ b, we have

γ∥β̂k∥γ−1
1 (∥β̂k∥1 − ∥β̄k∥1) ≤ ∥β̂k∥γ1 − ∥β̄k∥γ1 .

And then∣∣∣n 1

n2

n∑
j=1

n∑
i=1

(ỹij − x̃Tij β̂)w̃ij x̃
T
ij(β̂ − β̄)

∣∣∣ ≤ λn

q∑
k=1

(∥β̂k∥γ1 − ∥β̄k∥γ1) + γλn

p∑
k=q+1

∥β̂k∥γ1 .

By the definition of β̂, Ψλn(β̂; β̃) ≤ Ψλn(β̄; β̃). It follows that∣∣∣n 1

n2

n∑
j=1

n∑
i=1

(ỹij − x̃Tij β̂)w̃ij x̃
T
ij(β̂ − β̄)

∣∣∣+ (1− γ)λn

p∑
k=q+1

∥β̂k∥γ1

≤ λn

p∑
k=1

∥β̂k∥γ1 − λn

p∑
k=1

∥β̄k∥γ1

≤ Ln(β̄; β̃)− Ln(β̂; β̃)

= n
1

n2

n∑
j=1

n∑
i=1

(ỹij − x̃Tij β̂)w̃ij x̃
T
ij(β̂ − β̄)

+
1

2
n(β̂ − β̄)T

1

n2

n∑
j=1

n∑
i=1

x̃ij x̃
T
ijw̃ij(β̂ − β̄).

Then, with (C5) and Lemma 4 of Wang and Xia (2008), we have, in probability,

(1− γ)λn

p∑
k=q+1

∥β̂k∥γ1 ≤ 1

2
n(β̂ − β̄)T

1

n2

n∑
j=1

n∑
i=1

x̃ij x̃
T
ijw̃ij(β̂ − β̄)

≤ nρ∗∥β̂ − β̄∥22

= nρ∗
p∑

k=q+1

∥β̂k∥22

≤ nρ∗∥β̂ − β0∥22.

Using the result of Step I,

(1− γ)λn

p∑
k=q+1

∥β̂k∥γ1 ≤ nρ∗
p∑

k=q+1

∥β̂k∥22 = OP (1). (A.4)

On the other hand,

p∑
k=q+1

∥β̂k∥γ1 ≥
( p∑

k=q+1

∥β̂k∥1
)γ

≥
( p∑

k=q+1

∥β̂k∥22
)γ/2

. (A.5)
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By (A.4) and (A.5), if
∑p

k=q+1 ∥β̂k∥
2
2 > 0 then

(1− γ)λn ≤ nρ∗
( p∑

k=q+1

∥β̂k∥22
)1−γ/2

= nρ∗OP (1)(nρ
∗)−1+γ/2 = OP (n

γ/2).

But, since λnn
−γ/2 → ∞, we obtain

P
( p∑

k=q+1

∥β̂k∥22 > 0
)
→ 0 as n → ∞.

Step III. It remains to derive the asymptotic distribution. Let 0m ∈ Rm be

a m-vector of zeros. Let u = (uT1 , . . . , u
T
q )

T , where uk = (u1k, . . . , u
d
k)

T ∈ Rd for

k = 1, . . . , q. Take

Vn(u) = Ψλn(β0 + n−1/2(uT ,0T(p−q)×d)
T ; β̃)−Ψλn(β0; β̃). (A.6)

We have shown that, with large probability, β̂−β0 = n−1/2(ûT ,0T(p−q)×d)
T , where

û is a minimizer of Vn(u). We may re-express Vn(u) as

Vn(u) = −
√
n(uT ,0T(p−q)×d)

[
Wg0(β̃ − β0) +

1

n

n∑
i=1

{νB0(xi)⊗∇g(BT
0 xi)}ϵi

]
+ (uT ,0T(p−q)×d)Wg0(u

T ,0T(p−q)×d)
T

+ λn

q∑
k=1

(∥β0k + n−1/2uk∥γ1 − ∥β0k∥γ1) + oP (1)

= −uTUg0

√
n(β̃ − β0)− uT

1√
n

n∑
i=1

{νB0,A1(xi)⊗∇g(BT
0 xi)}ϵi

+uTWg0,A1u + λn

q∑
k=1

(∥β0k + n−1/2uk∥γ1 − ∥β0k∥γ1) + oP (1)

≡ V1n + λn

q∑
k=1

(∥β0k + n−1/2uk∥γ1 − ∥β0k∥γ1) + oP (1)

≡ V1n + V2n + oP (1).

We have

V1n →L −uT (Ug0,A1G1 +G2) + uTWg0,A1u,

V2n → λ0γ

q∑
k=1

∥β0k∥γ−1
1

d∑
l=1

{ulksign(βl
0k)I(β

l
0k ̸= 0) + |ulk|I(βl

0k = 0)}.
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Therefore,

Vn(u)→L −uT (Ug0,A1G1 +G2) + uTWg0,A1u

+ λ0γ

q∑
k=1

∥β0k∥γ−1
1

d∑
l=1

{ulksign(βl
0k)I(β

l
0k ̸= 0) + |ulk|I(βl

0k = 0)}

≡ V (u).

Because û = OP (1), by the argmin continuous mapping theorem of Kim and

Pollard (1990),
√
n(β̂A1 − β0A1) = û →L argmin

u
V (u).

The proof is complete.

Proof of Corollary 1. The corollary follows from observing that, by Theo-

rem 4.2 in Xia (2006),

Wg0(β̃ − β0) =
1

n

n∑
i=1

g′(βT
0 xi)νβ0(xi)ϵi + oP

(
1√
n

)
.

Proof of Theorem 2. A candidate model M is said to be underfitted if it

misses at least one important predictor, M ̸⊃ MT ; it is overfitted if it covers all

important predictors but also contains at least one irrelevant predictor, M ⊃ MT

butM ̸= MT . According to whether the modelMλ is underfitted, correctly fitted,

or overfitted, we set

R−={λ : Mλ ̸⊃ MT },R0={λ : Mλ = MT } and R+={Mλ ⊃ MT ,Mλ ̸= MT }.

Let λn be a reference tuning parameter sequence such that

P (Mλn = MT ) → 1 as n → ∞. (A.7)

To prove the theorem, it suffices to show that

P

(
inf

λ∈R−∪R+

BICλ > BICλn

)
→ 1 as n → ∞. (A.8)

Clearly, we need only consider the single index model. For each M , write

RSSM =
1

2n2

n∑
j=1

n∑
i=1

(ỹij − x̃Tij β̌M )2w̃ij ,

where β̌M is an unpenalized estimator such that

β̌M = argmin
βj=0:∀j ̸∈M

1

2n2

n∑
j=1

n∑
i=1

(ỹij − x̃Tijβ)
2w̃ij .
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We consider two cases.

Case 1: Underfitted model. For any λ, we have RSSλ ≥ RSSMλ
and

RSSMλ
=

1

2n2

n∑
j=1

n∑
i=1

(ỹij − x̃Tij β̌MF
)2w̃ij

+ (β̌MF
− β̌Mλ

)T
1

n2

n∑
j=1

n∑
i=1

(ỹij − x̃Tij β̌MF
)x̃ijw̃ij

+ (β̌Mλ
− β̌MF

)T
1

2n2

n∑
j=1

n∑
i=1

x̃ij x̃
T
ijw̃ij(β̌Mλ

− β̌MF
)

≡ RSSMF
+R1λ +R2λ.

Applying techniques similar to those used in Lemma 1 of Xia et al. (2002), we

obtain

RSSMF
=

1

2n2

n∑
j=1

n∑
i=1

ϵ2iw0ij + op(1) = OP (1). (A.9)

Let Π = (β0, Jβ(1)
0

). Because Π is full rank, there exists a vector ϕ ∈ Rp such

that

β̌Mλ
= Πϕ = ϕ1β0 + J

β
(1)
0

ϕ(1).

Note that ∥β0∥2 = 1, ∥β̌Mλ
∥2 = 1, and βT

0 Jβ(1)
0

= 0, we have ϕ(1)TJT

β
(1)
0

J
β
(1)
0

ϕ(1) =

1− ϕ2
1 and

∥β̌Mλ
− β0∥22 = (ϕ1 − 1)2 + ϕ(1)TJT

β
(1)
0

J
β
(1)
0

ϕ(1) = 2(1− ϕ1).

Since λ ∈ R−, assume without loss of generality that β̌Mλ,2 = 0. Then,

1− ϕ1 =
1

2
∥β̌Mλ

− β0∥22 ≥
1

2
∥β02∥22,

1 + ϕ1 = 1 + β̌T
Mλ

β0 ≥ 1− 1

2
(1 + 1− ∥β02∥22) =

1

2
∥β02∥22.

It follows that ϕ(1)TJT

β
(1)
0

J
β
(1)
0

ϕ(1) ≥ 1
4∥β02∥

4
2. Thus we have for some positive

constant, ∥ϕ(1)∥22 ≥ 1
4∥β02∥

4
2∥β01∥22 > c. By (C5), we have, with large probability,

(β̌Mλ
− β0)

T 1

2n2

n∑
j=1

n∑
i=1

x̃ij x̃
T
ijw̃ij(β̌Mλ

− β0) ≥ cρ. (A.10)
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Further, we can show that

(β̌MF
− β0)

T 1

2n2

n∑
j=1

n∑
i=1

x̃ij x̃
T
ijw̃ij(β̌MF

− β0) = OP

(
1

n

)
. (A.11)

By (A.9), (A.10), and (A.11), we have R1λ +R2λ ≥ cρ in probability. Therefore,
with large probability,

RSSλ ≥ RSSMλ
≥ RSSMF

+ cρ. (A.12)

Note that the above results hold uniformly over all λ ∈ R−.
As for the reference tuning parameter λn, a similar decomposition yields that

RSSλn = RSSMF
+OP

(
1

n

)
. (A.13)

This, together with (A.12) and the definition of BICλ, implies that

P

(
inf

λ∈R−
BICλ > BICλn

)
→ 1 as n → ∞. (A.14)

Case 2: Overfitted model. Consider an arbitrary λ ∈ R+. By definition, RSSλ ≥
RSSMλ

. Further, by (C5), we can show that

RSSMλ
− RSSMF

= OP

( 1
n

)
.

It follows that

logRSSλ − log RSSMF
≥ log RSSMλ

− log RSSMF
= log

(
1 +

RSSMλ
− RSSMF

RSSMF

)
=

RSSMλ
− RSSMF

RSSMF

{1 + oP (1)} = OP

( 1
n

)
.

Similarly, we obtain

logRSSλn − log RSSMF
= OP

( 1
n

)
.

Then we have, with large probability,

inf
λ∈R+

BICλ − BICλn = inf
λ∈R+

log RSSλ − log RSSλn + (dfλ − dfλn)
log n

n

≥ inf
λ∈R+

log RSSλ − log RSSλn +
log n

n
≥ OP

( 1
n

)
+

log n

n
.

It thus follows that

P
(

inf
λ∈R+

BICλ > BICλn

)
→ 1 as n → ∞. (A.15)

The results of Cases 1 and 2 complete the proof.
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