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Abstract: This paper investigates the impact of dependent but uncorrelated inno-

vations (errors) on the traditional autoregressive moving average model (ARMA)

order determination schemes such as autocorrelation function (ACF), partial auto-

correlation function (PACF), extended autocorrelation function (EACF), and the

unit-root test. The ARMA models with iid innovations have been studied exten-

sively and are well-posed, but their properties with dependent but uncorrelated

innovations are relatively less studied. In the presence of such innovations, we

show that the ACF, PACF, and EACF are significantly impacted while the unit-

root test is not affected. We also propose a new order determination scheme to

address those impacts for analyzing time series with uncorrelated innovations.
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1. Introduction

Time series analysis is widely used in such fields as econometrics, finance,

engineering, and metrology. The most commonly used time series model is the

autoregressive moving average (ARMA) model. More specifically, ARMA(p, q)

model for a univariate time series Xt takes the form

Φ(B)Xt = Ψ(B)εt, (1.1)

with Φ(B) = ϕ(B)U(B) where Φ(B) = 1−Φ1B−· · ·−ΦpB
p, U(B) = 1−U1B−

· · ·−UdB
d, ϕ(B) = 1−ϕ1B−· · ·−ϕp−dB

p−d and Ψ(B) = 1+ψ1B+· · ·+ψqB
q are

polynomials in the back-shift operator B, defined as BXt = Xt−1 and Bεt = εt−1.

We require that all zeros of U(B) are on the unit circle and those of ϕ(B) and

Ψ(B) are outside the unit circle. εt is the innovation term. Note that when

U(B) = (1 − B)d, model (1.1) is the autoregressive moving integrated moving

average ARIMA(p− d, d, q) model. If we further assume Ψ(B) = 1, model (1.1)

is the ARI(p− d, d) model.

The first step and also one of the key steps in building a time series model is

order determination. In the literature, order determination schemes for time se-

ries models with identically independent distributed (i.i.d.) innovations{εt} are
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well studied. Box and Jenkins (1976) introduced the autocorrelation function

(ACF) and partial autocorrelation function (PACF). The Akaike Information

Criterion (AIC) of Akaike (1974) and the Bayesian Information Criteria (BIC)

of Schwarz (1978) are two goodness of fit measures of an estimated model that

facilitate model selection. Tsay and Tiao (1984) proposed the extended autocor-

relation function (EACF) for order determination of the ARMA(p, q) model. On

the other hand, Dickey and Fuller (1979) studied the unit-root behavior and gave

the asymptotic distribution of a unit root test statistic. Standard order deter-

mination procedure combines those two techniques: taking the unit root test to

decide whether to make difference(s)(i.e. set Yt = Xt −Xt−1), and then using a

ACF/PACF/EACF procedure on differenced series Yt to get AR and MA orders

p and q respectively. Other models and order determination schemes include

the R and S array approach of Gray, Kelly, and McIntire (1978); the Corner

method of Beguin, Gourieroux and Monfort (1980), and the Smallest Canonical

Correlation (SCAN) of Tsay and Tiao (1984).

Most of the existing order determination methods assume that the innovation

sequence {εt} is i.i.d. and/or has constant conditional variance, excluding such

interesting processes as the generalized autoregressive conditional heteroscedastic

(GARCH) models of Bollerslev (1986) and the stochastic volatility (SV) model

of Melino and Turnbull (1990), both often used in financial time series modeling.

In these models, the innovation series is not autocorrelated but auto-dependent.

Thus it becomes interesting and important to revisit the classical order determi-

nation schemes in the presence of auto-dependent but uncorrelated innovations.

Specifically, in this paper we study order determination schemes for MA,

AR, ARMA and ARI models in the presence of uncorrelated but dependent

innovations. Autocorrelation function (ACF) is a simple order determination

procedure for MA process and for AR process partial autocorrelation function

(PACF) becomes effective. For ARMA process, the extended autocorrelation

function (EACF) has shown to be very useful in identifying the AR and MA

orders, and it also works for the differenced sequence of an ARIMA process.

We investigate how those schemes are impacted by the new type of innovations

considered here.

There have been several studies in this area. Min (2004) investigated the

effect of dependent innovations on pure AR and MA time series sequences; Yang

and Zhang (2008) discussed the unit-root test with GARCH(1,1) innovations,

one of the most used dependent but uncorrelated innovations. Our study is

under a more unified framework that allows for a wide class of uncorrelated but

dependent innovations.

The rest of the paper is organized as follows. In Section 2, we present a

detailed study of how dependent but uncorrelated innovations affect the proper-

ties of the key statistics in classical time series model identification procedures.
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Based on these findings, we propose suitable methods and establish their theoret-

ical properties. Simulation studies and applications to examples are illustrated

in Section 3. Proofs are given in the Appendix.

For simplicity, we employ the following notations and terms:
dist.−→ means con-

vergence in distribution;
P−→means convergence in probability;

a.s.−→means almost

sure convergence;
∆
= means denotation; the term “errors” and “innovations” are

used interchangeably. For a set of random variables {Xn} and a corresponding

set of function {fn}, the notation Xn = Op(fn) means that Xn/fn is bounded in

the limit in probability.

2. Method

In this paper we consider the following structure of dependent but uncorre-

lated innovations. Let {et} be i.i.d. random variables and F be a measurable

function such that the innovation εt = F (et, et−1, . . .) is a well-defined random

variable. We work with the following.

Condition C.1. E(εt|Ft−1) = 0 and E(ε2t ) = σ2, ∀ t ∈ Z, where Ft
∆
= σ(et, et−1,

. . .) is the σ-field generated by the sequence {et}, representing the information

available up to time t.

The error series {εt} is uncorrelated since E(εtεt−1) = E(E(εtεt−1|Ft−1)) =

E(εt−1E(εt|Ft−1)) = 0. The second part of C.1 is weaker than the traditional con-

dition E(ε2t |Ft−1) = σ2, which can be seen from the iterative expectation E(ε2t ) =
E(E(ε2t |Ft−1)). The stronger condition E(ε2t |Ft−1) = σ2 implies Cov(ε2t , ε2t−1) =

0, while C.1 allows nonzero autocorrelations of {ε2t }.
Another important characterization of the uncorrelated and dependent in-

novation {εt} is related to projections defined in Wu and Min (2005): Ptη
∆
=

E(η|Ft) − E(η|Ft−1). For instance, P1εiεj
∆
= E(εiεj |F1) − E(εiεj |F0). Let ∥ · ∥

and ∥ · ∥p be the L2 and Lp norm, respectively. We employ the following.

Condition C.2. E(ε4n) <∞ and
∑∞

t=1 ∥P1εt∥4 <∞,
∑∞

i,j=0 ∥P1εiεj∥ <∞.

Remark 1. The intuition for C.2 is that the projection of the future εiεj to the

space µ1 ⊖ µ0 = {Z :
∑∞

i,j=0 ∥P1Z∥ < ∞, Z is F1 measurable and E(Z|F0) = 0}
has a small magnitude; namely, the future depends weakly on the current states

or the current states depends weakly on the previous states.

This setup includes such interesting stochastic processes as the ARCH(p)

model, the GARCH(p, q) model, and the Stochastic Volatility Model. For ex-

ample, Min (2004) showed that the GARCH(p, q) model satisfies C.2.
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2.1. Moving average model

One of the fundamental building blocks of time series models is the moving

average (MA) model. Specifically, a moving average process Xt with order q,

MA(q), has

Xt = εt + ψ1εt−1 + · · ·+ ψqεt−q, (2.1)

a special case of the ARMA model (1.1) with Φ(B) = 1. The autocovariance

function and autocorrelation function (ACF) are

γ(h) = Cov(xt, xt+h) and ρ(h) = Cor(xt, xt+h), (2.2)

respectively. The ACF has the unique feature that for an MA(q) process,

the ACF cuts off at lag q. Since the εt are uncorrelated, we have γ(h) =

σ2
∑q

i=0 ψiψi+h, where ψj = 0 for j > q. Hence γ(q + i) = ρ(q + i) = 0, ∀i > 0.

The ACF can be used effectively to determine the order q for an MA(q) model.

Let x1, . . . , xn be a sample of theMA(q) process as (2.1). We denote the sam-

ple autocovariance function and sample autocorrelation function, respectively, as

γ̂(h) =
1

n

n−h∑
t=1

xtxt+h, and ρ̂(h) =
γ̂(h)

γ̂(0)
. (2.3)

For a linear process with finite fourth moment and innovation εt
i.i.d.∼ (0, σ2),

it is known (e.g., Brockwell and Davis (1986)) that
√
n(ρ̂(h)−ρ(h)) dist.−→ N(0,W )

where W is given by the Bartlett formula

W =

∞∑
k=−∞

{ρ2(k) + ρ(h− k)ρ(h+ k) + 2ρ2(h)ρ2(k)− 4ρ(h)ρ(k)ρ(k− h)}. (2.4)

If we further assume a MA(q) model, the Bartlett formula implies that

W ∗ = 1 + 2ρ2(1) + · · ·+ 2ρ2(q), if h > q.

However, when the innovations εt are auto-dependent, the validity of using

n−1W ∗ to estimate the variance of sample ACF needs to be reexamined. In

the following, we establish the asymptotic properties of ρ̂(h) under C.1 and C.2.

Specifically, we show that the cut-off property (Lemma 1) and the asymptotic

joint normality of γ̂(h) still hold, but the asymptotic variance is different (The-

orem 1).

Lemma 1. Let {Xt} be an MA(q) process with innovation {εt} satisfying C.1.

For the autocorrelation function ρ(h) defined at (2.2), ρ(q+1) = ρ(q+2) = · · ·
= 0.
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The proof is trivial since the cut-off property is only related to correlation,

not dependence.

Theorem 1. Let {Xt} be an MA(q) process with innovation {εt} satisfying C.1

and C.2. For ρ(h) defined at (2.2) and ρ̂(h) defined at (2.3), ∀h ≥ 1,

√
n(ρ̂(1)− ρ(1), . . . , ρ̂(h)− ρ(h))

′ dist.−→ N
(

0
h×1

, Σ
h×h

)
,

where Σ is given in the Appendix. In particular, for h > q,

Var(ρ̂(h)) ≈ 1

nγ2(0)

(
σ(0, h) + 2σ(1, h) + · · ·+ 2σ(q, h)

)
, (2.5)

where σ(d, h)
∆
= E(x0xhxdxd+h). If it is further assumed that the ACF of {ε2t }

is nonnegative and E(ε2t εt−iεt−j) = 0, ∀i ̸= j, then for any h > q,

√
nρ̂(h)

dist.−→ N(0, δ2h), δ2h ≥ (1 + 2

q∑
k=1

ρ2(k)), (2.6)

where inequality is strict if the ACFs are positive.

The proof of the theorem is in the Appendix.

Remark 2. The theorem applies to the finite 4th moment GARCH(p, q) process

and stochastic volatility models (see (3.1)) as they satisfy the conditions of the

theorem and the additional positive ACF conditions.

Based on the theorem, one can estimate the standard error of ρ̂(h) by (2.5),

with σ(d, h) replaced by its estimate. However, the order of the MA process q is

unknown. We use the estimator

̂Var(ρ̂(h)) =
1

nγ̂2(0)

(
σ̂(0, h) + 2σ̂(1, h) + · · ·+ 2σ̂(h− 1, h)

)
. (2.7)

This is due to the fact that E(xtxt+hxsxs+h) = 0 for |s − t| > q for a MA(q)

process, hence we have σ(q+1, h) = σ(q+2, h) = · · · = σ(h−1, h) = 0 for h > q.

Thus including σ̂(q + 1, h) = σ̂(q + 2, h) = · · · = σ̂(h − 1, h) does not influence

the estimator of the asymptotic variance.

In Section 3.1.1, we perform a comparison study between the variance calcu-

lation above and the standard variance formula (1+ 2ρ̂2(1)+ · · ·+2ρ̂2(h− 1))/n

for i.i.d. innovations. Because of the differences in the variance, order identifica-

tions via ACF needs to be adjusted. A demonstration of this is given in Section

3.1.1.

It is to be noted that although our estimator is built for dependent but

uncorrelated innovations, it applies to i.i.d. innovations automatically.
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2.2. Autoregressive model

An autoregressive process Xt with order p, AR(p), follows

Xt = ϕ1Xt−1 + ϕ2Xt−2 + · · ·+ ϕpXt−p + εt.

It is a common practice to test the significance of the sample partial autocorrela-
tion function (PACF) for identifying the order of AR(p) series. The PACF ϕh,h
is defined as

ϕ0,0 = 1 and ϕh,h = the last component of ϕh = Γ−1
h γh, ∀h ≥ 1, (2.8)

where Γh = [γ(i − j)]hi,j=1 and γh = (γ(1), γ(2), . . . , γ(h))′. It is estimated by
replacing γ(i) with its estimate γ̂(i) in the above formula.

It can be shown (e.g., Brockwell and Davis (1986)) that the partial autocorre-
lation ϕh,h at lag h may be regarded as the correlation between Xt and Xt−h, ad-
justed for the intervening observations Xt−1, . . . , Xt−h+1. Since an AR(p) model
imposes a linear relationship betweenXt andXt−1, . . . , Xt−p, it is easily seen that
when h > p, Xt andXt−h are conditionally uncorrelated, givenXt−1, . . . , Xt−h+1,
hence the cut-off property of PACF of AR processes.

If one further assumes Gaussian white noise, εt
i.i.d.∼ N(0, σ2), it is well known

that ∀h > p, s
∆
= h− p ≥ 1,

√
n(ϕ̂p+1,p+1, . . . , ϕ̂p+s,p+s)

′ dist.−→ N
(
0

s×1
, I
s×s

)
, (2.9)

where I is the s−dimensional identity matrix. However, similar to the MA(q)
case, when {εt} are dependent, the variance matrix of the asymptotic distribution
of PACF is different from the i.i.d. case.

Lemma 2. Let {Xt} be an AR(p) process with innovation {εt} satisfying C.1.
For the PACF ϕh,h (2.8), we have ϕp+1,p+1 = ϕp+2,p+2 = · · · = 0.

In analogy to (2.9), the next theorem establishes the asymptotic properties
of sample PACF ϕ̂h,h, h > p of an AR(p) process with dependent innovations.

Theorem 2. Let ϕ̂h,h be the lag h sample PACF of a stationary and invertible
AR(p) time series {Xt}, where the innovations {εt} satisfy C.1 and C.2. Then
∀h > p (s = h− p ≥ 1),

√
n(ϕ̂p+1,p+1, . . . , ϕ̂p+s,p+s)

′ dist.−→ N
(
0

s×1
, Ξ
s×s

)
.

where Ξ is given in Appendix. If we further assume ACF of {ε2t } is nonnegative
and E(ε2t εt−iεt−j) = 0, ∀i ̸= j, then.

Ξ(ℓ,ℓ) ≥ 1, ∀ ℓ ∈ (1, . . . , s). (2.10)

strict inequality holds in (2.10) if all ACFs are positive.
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Remark 3. Dependent but uncorrelated innovations, such as GARCH innova-

tions, render a larger variance of sample PACF compared with an asymptotic

variance of 1/n in the case of i.i.d. innovations. So if we still use the traditional

(1− α)% confidence interval to test for lag-h PACF with h > p, the type I error

is larger than α%. This over- rejection leads to a specification of AR(h) model

with h greater than the true order p.

We can obtain the variance estimator of the sample lag-h PACF Var(ϕ̂h,h)
in the following manner. First we obtain the estimates ϕ̂1, . . . , ϕ̂h and the corre-

sponding residuals

ε̂t = xt − ϕ̂1xt−1 − · · · − ϕ̂hxt−h.

Secondly, from the sample autocovariance matrix Γ̂h and the sample version of

Ωh
∆
= Cov(ε1x0, ε1x−1, . . . , ε1x1−h)

′, we obtain an estimate of Γ−1
h ΩhΓ

−1
h whose

last diagonal entry over n is the variance estimator. See the proof of Theorem 2

in Appendix for more details.

In Section 3.1.2, we perform a comparison study between variance calcula-

tion above and the standard variance 1/n in the i.i.d. case. It demonstrates

that the order identification scheme for AR(p) process using PACF needs to be

adjusted to the updated variance. The illustration of order identifications via

PACF corresponding to different innovations is seen in Section 3.1.2.

2.3. Autoregressive and moving average model

The ARMA model in (1.1) is a hybrid of autoregressive and moving average

models. Tsay and Tiao (1984) proposed the extended autocorrelation function

(EACF) technique to identify the orders of a stationary or non-stationary ARMA

process based on iterated least square estimates of the autoregressive parameters.

This is based on the fact that, if Xt follows an ARMA(p, q) model, the “filtered

process” Yt = Xt − ϕ1Xt−1 − · · · − ϕpXt−p follows an MA(q) process Yt = εt +

ψ1εt−1 + · · ·+ ψqεt−q.

Under the dependent but uncorrelated innovations, in analogy to the pro-

cedure described in Tsay and Tiao (1984), an order determination scheme is

proposed as follows.

1. For each candidate AR order s, obtain a consistent estimate of the AR coef-

ficients, ϕ̂1, ϕ̂2, . . . , ϕ̂s.

2. Obtain Yt = Xt − ϕ̂1Xt−1 − ϕ̂2Xt−2 − · · · − ϕ̂sXt−s. If s = p, then Yt should

approximately follow an MA(q) sequence. On the other hand, if we over-fit

the AR term by m (i.e. s = p+m), then Yt should be an MA(q+m) process.

3. Use the order determination procedures for moving average sequences de-

scribed above on {Yt} to identify the MA order, build an EACF table as
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proposed in Tsay and Tiao (1984), and finalize the AR and MA order selec-

tions.

Since the major difference of this scheme with that of Tsay and Tiao (1984)

is dealing with the significance of ACF elaborated in Section 2.1, we skip the

discussion here. The impact on EACF process inference of different innovation

terms is illustrated in Section 3.1.3.

2.4. Autoregressive integrated model

The autoregressive integrated (ARI) model can be regarded as an extension

of the AR model. The Augmented Dickey Fuller (ADF) test (Dickey and Fuller

(1979), Said and Dickey (1984)) is important in detecting whether the process is

unit-root nonstationary. In this section we study ADF under uncorrelated but

dependent innovations.

Consider the ARI model,

Xt = Φ1Xt−1 +Φ2Xt−2 + · · ·+ΦpXt−p + εt. (2.11)

Following the formulation of ADF, we write (2.11) as

Xt = ρXt−1 +

p−1∑
k=1

ak∆Xt−k + εt, (2.12)

where ∆Xt−k
∆
= Xt−k − Xt−k−1, ρ =

∑p
i=1Φi, and ak = −

∑p
j=k+1Φj . The

unit-root problem for this model focuses on testing

H0 : ρ = 1 against H1 : ρmin < ρ < 1.

where ρmin is the smallest of
∑p

i=1Φi such that model (12) is stationary.

The ADF test statistic is T̂n
∆
= n(ρ̂n − 1), where ρ̂n is the least square

estimator of ρ when Xt is regressed on Xt−1,∆Xt−1, . . . ,∆Xt−p+1 using (2.12),

ρ̂n =

∑n
t=p+1Xt−1(Xt −

∑p−1
k=1 âk∆Xt−k)∑n

t=p+1X
2
t−1

.

Dickey and Fuller (1979) proved that, under the null hypothesis,

T̂n = n(ρ̂n − 1)
dist.→ 1

2
(1−

p−1∑
k=1

ak)(Γ
−1(T 2 − 1)),

where (Γ, T ) = (
∑∞

i=1 γ
2
i Z

2
i ,
∑∞

i=1

√
2γiZi) , γ

2
i = 4[(2i − 1)π]−2, and {Zi}∞i=1 is

a sequence of i.i.d. N(0, 1) random variables. Chan and Wei (1988) showed that
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the limiting distribution could also be further represented in terms of function of

Brownian Motion W (t),

T̂n = n(ρ̂n − 1)
dist.−→ 1

2
(1−

p−1∑
k=1

ak)
(W 2(1)− 1)∫ 1
0 W

2(t)dt
.

When the innovation {εt} is not a sequence of i.i.d. random variables but

dependent and uncorrelated random variables satisfying C.1 and C.2, we show in

the following that the same limiting distribution of the test statistics T̂n applies.

Before we state the results, we need the following definition from Wu and

Min (2005).

Definition 1. Let {ωt}t∈Z be independent and identically distributed random

elements. The process Yn = g(ωn, ωn−1, . . .), where g is a measurable function, is

said to be Lp(p ≥ 0) weakly dependent with order r(r ≥ 0) if E(|Yn|p) <∞ and

∞∑
n=1

nr∥P1Yn∥p <∞. (2.13)

If (2.13) holds with r = 0, then Yn is said to be Lp weakly dependent.

Condition C.3. The {εt} process is Lα weakly dependent with order 1, for

some α > 2.

This innovation assumption includes a large class of nonlinear processes, and

substantially relaxes the i.i.d. or martingale difference assumption. In particular,

it is satisfied if the innovations are GARCH, random coefficient AR, bilinear AR,

etc. For more details, see Wu and Min (2005).

The next theorem indicates that the limiting distribution of the test statistic

T̂n does not change if we use dependent but uncorrelated errors.

Theorem 3. If ρ = 1, for {Xt} following (2.11), and errors {εt} satisfying C.1,

C.2., and C.3, we have

T̂n
dist.−→ (1−

p−1∑
k=1

ak)

∫ 1
0 W (t)dW (t)∫ 1
0 W

2(t)dt
.

Remark 4. According to Theorem 10.1.2 of Fuller (1995), âk is a consistent

estimator of ak and we can use âk in estimating the limiting distribution, where

(ρ̂, â1, . . . , âk)
′ is the regression coefficients obtained by regressing Xt on Xt−1,

∆Xt−1, · · · , ∆Xt−p+1.

Remark 5. Theorem 3 cannot be easily extended to ARIMA models since (2.11)

is no longer a simple regression model when the MA part is involved. Further

study would be useful here.
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3. Empirical Study

In this section, we use simulation and real applications to demonstrate the

results and methods developed in the previous section. Simulation results for

AR/MA/ ARMA/ARI are provided first to validate the theorems. Only part of

the results are presented here. Results with different parameters of the GARCH

model and results with other innovation models such as the stochastic volatility

model would be given upon request. For applications, we go through the entire

order determination and estimation process. We denote the EACF proposed by

Tsay and Tiao (1984) as original EACF and the adjusted EACF for time series

associated with uncorrelated and dependent innovations as modified EACF.

3.1. Simulation

Here we use GARCH(1, 1) innovations as the dependent but uncorrelated

errors since GARCH is among the most common and useful models for this type.

Specifically, we consider{
Xt = ϕ1Xt−1 + · · ·+ ϕpXt−p + εt + · · ·+ ψqεt−q,

εt =
√
gtωt, gt = α0 + αε2t−1 + βgt−1,

where {ωt} are i.i.d. N(0, 1).

3.1.1. Moving average model

We consider two formulae for estimating Var(ρ̂(h)):

• V (h) = n−1(1 + 2ρ̂2(1) + · · ·+ 2ρ̂2(h− 1));

• V ∗(h) = (nγ̂2(0))−1(σ̂(0, h) + 2σ̂(1, h) + · · ·+ 2σ̂(h− 1, h)).

Correspondingly, we denote the statistics ρ̂2(h)/V (h) and ρ̂2(h)/V ∗(h) as

T (h) and T ∗(h) respectively.

First, we use an MA(1) model for simulation.{
Xt = εt + ψ1εt−1,

εt =
√
gtωt, gt = α0 + αε2t−1 + βgt−1,

with ψ1 = −0.4 and GARCH effect setting α = 0.2 and β = 0.7.

We simulated 2,000 replications of time series with length 1,000 each. In

Table 1, we report the empirical percentiles of T (h) and T ∗(h) along with that of

χ2
1, for h = 2 and 3. Since the series were simulated fromMA(1), the true value of

ρ should be zero and asymptotically the statistics should follow χ2
1 if the variance

is estimated correctly. The last column shows the percentage of rejections if χ2
.95

is used as the critical value for testing non-zero ACF coefficients.
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Table 1. Empirical percentile of T (h) and T ∗(h) for a simulated MA(1)
series Xt = εt−0.4εt−1 where innovation {εt} is GARCH(1,1) with α = 0.2,
β = 0.7.

Mean S.D. 50% 75% 90% 95% 99% p
T (2) 1.852 2.820 0.804 2.340 4.828 7.465 13.012 14.30%
T (3) 1.821 2.938 0.786 2.309 4.917 7.197 12.231 13.70%
χ2
1 1.000 1.414 0.454 1.323 2.705 3.841 6.634 -

T ∗(2) 1.003 1.402 0.478 1.334 2.656 3.731 6.553 4.55%
T ∗(3) 1.007 1.332 0.484 1.330 2.806 3.776 6.084 4.45%

Table 2. Empirical percentile of T (h) and T ∗(h) for a simulated MA(3) series
Xt = εt + 0.8εt−1 − 0.8εt−2 + 0.8εt−3 where innovation εt is GARCH(1,1)
with α = 0.5, β = 0.2.

Mean S.D. 50% 75% 90% 95% 99% p
T (2) 5.498 7.670 3.001 7.583 13.297 18.685 30.439 43.25%
T (3) 70.005 21.205 69.070 83.035 96.374 105.754 126.570 100.00%
T (4) 1.840 3.066 0.745 2.175 4.836 7.609 14.818 12.55%
T (5) 1.566 2.745 0.666 1.937 3.967 5.774 11.916 10.50%
χ2
1 1.000 1.414 0.454 1.323 2.705 3.841 6.634 -

T ∗(2) 2.286 2.549 1.426 3.325 5.992 7.739 10.941 21.80%
T ∗(3) 26.811 10.535 26.912 33.862 40.325 44.156 51.309 98.75%
T ∗(4) 1.035 1.448 0.505 1.410 2.682 3.670 6.479 3.85%
T ∗(5) 1.053 1.416 0.520 1.473 2.757 3.800 6.80 4.35%

It can be seen from Table 1 that T ∗(h) closely follows the chi-square dis-
tribution while T (h) is much larger. Since ρ̂(h) is the same for both T (h) and
T ∗(h), the variance estimate V ∗(h) is more accurate. The level of testing using
T ∗(h) is also more accurate.

In order to compare T (h) and T ∗(h) when h ≤ q, we use an MA(3) model
for a second simulation:{

Xt = εt + ψ1εt−1 + ψ2εt−2 + ψ3εt−3,

εt =
√
gtωt, gt = α0 + αε2t−1 + βgt−1,

with ψ1 = 0.8, ψ2 = −0.8, ψ3 = 0.8, and the two GARCH effect settings α =
0.1, β = 0.8 and α = 0.5, β = 0.2.

Again, we simulated 2,000 replications of the time series with length 1,000
each. The empirical percentiles of T (h) and T ∗(h) with those of χ2

1 are compared
in Table 2.

We make the following observations.

1. For h ≤ q, both T (h) and T ∗(h) differ significantly from χ2
1 since ρ̂

2(h)/ ̂Var(ρ̂(h))
is asymptotically non-central χ2 distributed since the asymptotic mean of ρ̂(h)
is ρ(h) ̸= 0 when h ≤ q.
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Table 3. EACF method comparison for a simulated MA(3) series with dif-
ferent types of innovations: Xt = εt + 0.8εt−1 − 0.8εt−2 + 0.8εt−3 with
innovations εt that were: (1) iid; (2) GARCH(1,1) with α = 0.1, β = 0.8; (3)
GARCH(1,1) with α = 0.5, β = 0.2. The time series length was 1,000 while
the replication was 1,000 as well. The numbers (in %) are the percentages
which the order, row, identified by the method, column, for the simulated
series. Each column sums to 100%.

Innovation (1) Innovation (2) Innovation (3)
Models original modified original modified original modified
MA(2) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
MA(3) 85.10% 89.80% 76.50% 87.70% 69.40% 85.00%
MA(4) 6.60% 4.10% 9.30% 5.90% 13.90% 5.10%
MA(5) 2.60% 1.90% 6.10% 2.20% 6.10% 1.90%

ARMA(1,3) 0.20% 0.00% 0.30% 0.10% 0.40% 0.20%
ARMA(1,4) 2.10% 1.60% 3.00% 0.50% 3.80% 0.00%
ARMA(1,5) 0.00% 0.00% 0.00% 0.00% 0.00% 1.00%
ARMA(2,3) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
ARMA(2,4) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
ARMA(2,5) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
ARMA(3,3) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
ARMA(3,4) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Others 3.40% 2.60% 4.80% 3.60% 6.40% 6.80%

2. T (3) and T ∗(3) are relatively greater than the others simply because ρ(3) is

a larger value. Theoretically, ρ(1) = −0.164, ρ(2) = −0.055, ρ(3) = 0.274,

ρ(4) = ρ(5) = 0.

3. For h > q, the performance of T (h) and T ∗(h) are similar to what we observed

in MA(1) simulation. T ∗(h) follows the χ2
1 distribution closely while T (h) is

much larger.

4. It is clear that, while the power of testing using T ∗(h) is comparable with

that of T (h), its size is more accurate. Since order determination is based on

the change from non-zero ACF coefficients to zero ACF coefficients, T ∗(h) is

certainly more reliable.

The simulation confirmed that the variance of ρ̂(h) may change when faced

with dependent innovations. Hence the new order identification scheme discussed

in previous section is needed. Since the MA model is a specific case of the

ARMA model, we incorporate the interpretation of the results of the new scheme

compared to the classical one into our discussion of the ARMA model and only

show the result table here (Table 3). All the interpretation of Section 3.1.3 apply.
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Table 4. Empirical percentile of T (h) and T ∗(h) for a simulated AR(1) series
Xt = 0.9Xt−1 + εt where innovation {εt} is GARCH(1,1) with α = 0.5,
β = 0.2.

Mean S.D. 50% 75% 90% 95% 99% p
T (2) 3.633 8.808 1.339 3.977 8.459 14.096 30.992 17.45%
T (3) 2.449 4.661 0.948 2.874 6.307 9.032 20.378 10.90%
χ2
1 1.000 1.414 0.454 1.323 2.705 3.841 6.634 -

T ∗(2) 1.084 1.597 0.488 1.354 2.891 4.010 8.275 2.95%
T ∗(3) 1.023 1.455 0.456 1.327 2.776 3.848 7.275 5.75%

3.1.2. Autoregressive model

For comparing the variance estimator under an i.i.d assumption and our pro-

posed estimator, we consider two formulae for estimating the variance Var(ϕ̂h,h):

• V (h, h) = 1
n ;

• V ∗(h, h) = n−1[Γ̂−1
h Ω̂hΓ̂

−1
h ](h,h).

Correspondingly, we denote the statistics ϕ̂2h,h/V (h, h) and ϕ̂2h,h/V
∗(h, h) as T (h)

and T ∗(h) respectively. We used the AR(1) model for the first simulation

experiment in this setting:{
Xt = ϕ1Xt−1 + εt,

εt =
√
gtωt, gt = α0 + αε2t−1 + βgt−1,

with ϕ1 = 0.9 and GARCH effect setting α = 0.5 and β = 0.2.

We simulated 2,000 replications of time series with length 1,000 each. The

empirical percentiles of T (h) and T ∗(h) with those of χ2
1 are listed in the Table 4.

It shows very similar results to those of Table 1 and leads to similar conclusions.

For h ≤ p, we use an AR(3) model for a second simulation.{
Xt = ϕ1Xt−1 + ϕ2Xt−2 + ϕ3Xt−3 + εt,

εt =
√
gtωt, gt = α0 + αε2t−1 + βgt−1,

with ϕ1 = 0.8, ϕ2 = −0.8, ϕ3 = 0.8 and the two GARCH effect settings α =

0.1, β = 0.8 and α = 0.5, β = 0.2.

Again, we simulated 2,000 replications of time series with length 1,000 each.

The empirical percentiles of T (h) and T ∗(h) with those of χ2
1 are compared in

the Table 5. Again, we see very similar results as those in Table 2.

The confirmation that the variance of ϕ̂h,h may change when faced with

dependent innovations indicates the need to use the new order identification

scheme discussed in previous section. Since the AR model is a specific case of

the ARMA model, indicates the incorporate the interpretation of the results of
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Table 5. Empirical percentile of T (h) and T ∗(h) for a simulated AR(3) series
Xt = 0.8Xt−1 − 0.8Xt−2 +0.8Xt−3 + εt where innovation εt is GARCH(1,1)
with α = 0.5, β = 0.2.

Mean S.D. 50% 75% 90% 95% 99% p
T (2) 210.077 63.594 203.664 249.110 290.703 321.813 380.473 100.00%
T (3) 622.774 40.188 625.208 649.088 669.552 682.707 708.027 100.00%
T (4) 3.326 8.237 1.238 3.897 8.217 12.303 23.530 23.30%
T (5) 2.112 3.953 0.813 2.597 5.296 7.835 17.106 8.30%
χ2
1 1.000 1.414 0.454 1.323 2.705 3.841 6.634 -

T ∗(2) 55.874 26.798 53.597 72.045 90.328 102.028 127.673 99.55%
T ∗(3) 178.789 65.745 182.865 226.146 259.340 278.116 320.841 100.00%
T ∗(4) 1.224 1.998 0.495 1.634 3.197 4.583 8.377 2.85%
T ∗(5) 1.011 1.408 0.433 1.322 2.824 3.793 6.533 6.35%

Table 6. EACF method comparison for a simulated AR(3) series with dif-
ferent types of innovations: Xt = 0.8Xt−1 − 0.8Xt−2 + 0.8Xt−3 + εt with
innovations εt that were (1) iid; (2) GARCH(1,1) with α = 0.1, β = 0.8; (3)
GARCH(1,1) with α = 0.5, β = 0.2. The time series length was 1,000 while
the replication is 1,000 was well. The numbers (in %) are the percentage
which the order, row, identified by the method, column, for the simulated
series. Each column sums to 100%.

Innovation (1) Innovation (2) Innovation (3)
Models original modified original modified original modified
AR(2) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

ARMA(2,1) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
ARMA(2,2) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

AR(3) 57.90% 64.80% 48.40% 69.20% 33.60% 70.60%
ARMA(3,1) 8.50% 10.40% 10.00% 8.60% 16.50% 7.40%
ARMA(3,2) 5.30% 5.00% 7.70% 4.10% 10.10% 3.90%

AR(4) 0.70% 0.60% 0.90% 0.50% 0.60% 1.00%
ARMA(4,1) 18.20% 13.70% 19.30% 13.10% 18.20% 12.60%
ARMA(4,2) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

AR(5) 1.20% 0.30% 1.30% 0.30% 1.60% 1.10%
ARMA(5,1) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
ARMA(5,2) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Others 8.20% 5.20% 12.40% 4.20% 19.40% 3.40%

the new scheme compared to the classical one into our discussion of the ARMA

model and only report the results in Table 6. All the interpretation of Section

3.1.3 can still be applied.

3.1.3. Autoregressive moving average model

Here we compare the different original and modified inferences of EACF on

time series with either i.i.d. innovations or uncorrelated but dependent innova-
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tions. The experiment was designed as follows.

1. Simulate ARMA(1, 1) time series with innovations that are i.i.d., GARCH in-

novations (with two parameter settings), and that follow a stochastic volatil-

ity model (to be specified). The length of the time series is 1,000, with 1,000

replications.

2. For each time series generated, estimate the EACF table and use the original

inference procedure (under i.i.d. assumption) to identify the model order.

3. Of the 1,000 replications, count the frequency of each candidate models se-

lected by the original EACF procedure.

4. Repeat step 2 and 3 using the modified EACF procedure.

The parameter for the ARMA(1, 1) mean equation is (0.8, 0.5) for the AR

and MA coefficients. We use innovations that are (i) i.i.d.; (ii) GARCH(1,1) with

α = 0.1, β = 0.8; (iii) GARCH(1,1) with α = 0.5, β = 0.2 and (iv) that follow

stochastic volatility with α1 = 0.5 where the model is

εt = σtet, (1− α1B) ln(σ2t ) = vt, (3.1)

where et are i.i.d. N(0, 1), vt are i.i.d. N(0, σ2v), {et} and {vt} are independent.

The reason we simulated two settings of the GARCH model is that the

GARCH effects differ. Min and Tsay (2005) showed that Var(ρ̂) is significantly
impacted if Cov(ε20, ε2q−k+i)/E2(ε20) is large. For instance, if {εt} is a GARCH(1,1)

process, as in our simulations, Cov(ε20, ε21)/σ4 = 2α+ (6α2(α+ β/3))/(1− 2α2 −
(α + β)2). Given α = 0.5 and β = 0.2 the ratio is 86, and with α = 0.1 and

β = 0.8, the ratio is 0.33.

The simulation results are reported in Table 7, showing the percentage of

a candidate model being selected based on either the original inference or the

modified inference of the EACF table.

From Table 7, it is seen that the modified EACF procedure has similar

performance as the original EACF for pure ARMA models, but outperforms

it for ARMA+GARCH Models. We ran a set of formal tests to see it more

clearly. Since the same sets of simulated time series are used for original EACF

and modified EACF procedure, we created a 2 × 2 contingency table for each

innovation type and run chi-square test to compare identification power. The

results are shown in Table 8 with the table and corresponding chi-square statistic

and its p-value, for each innovation type.

From Tables 7 and 8, we see that the procedures work equally well with

i.i.d. innovations (large p-value), confirming that the two algorithms are almost

equivalent for i.i.d. error terms. With GARCH innovation but relatively weak

dependence (ii), the improvement by the modified EACF compared to original
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Table 7. EACF method comparison for a simulated ARMA(1,1) series with
different types of innovations: Xt = 0.8Xt−1 + εt +0.5εt−1 with innovations
εt that are (1) iid, (2) GARCH(1,1) with α = 0.1, β = 0.8, (3) GARCH(1,1)
with α = 0.5, β = 0.2, (4) Stochastic Volatility with α1 = 0.5. The time
series length was 1,000 while the replication was 1,000 as well. The numbers
(in %) are the percentages which the order, row, identified by the method,
column, for the simulated series. Each column sums to 100%.

Innovation (i) Innovation (ii) Innovation (iii) Innovation (iv)
Models original modified original modified original modified original modified

white noise 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
MA(1) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
MA(2) 0.00% 0.00% 0.00% 0.00% 0.00% 0.20% 0.00% 0.00%
MA(3) 0.00% 0.00% 0.00% 0.00% 0.00% 0.20% 0.00% 0.00%
AR(1) 0.00% 0.00% 0.00% 0.00% 0.00% 0.30% 0.00% 0.00%

ARMA(1,1) 81.40% 82.40% 76.90% 82.70% 66.20% 87.60% 70.10% 84.30%
ARMA(1,2) 9.90% 8.50% 11.50% 7.60% 16.30% 4.40% 10.80% 7.40%
ARMA(1,3) 4.10% 3.90% 5.30% 4.50% 7.50% 3.00% 6.10% 3.70%

AR(2) 0.00% 0.00% 0.00% 0.00% 0.00% 0.10% 0.00% 0.00%
ARMA(2,1) 0.20% 0.40% 0.40% 0.10% 0.80% 0.20% 0.40% 0.00%
ARMA(2,2) 2.70% 3.10% 3.60% 3.30% 3.50% 2.10% 7.10% 3.00%
ARMA(2,3) 0.80% 0.30% 0.80% 0.40% 0.70% 0.40% 1.50% 0.50%

AR(3) 0.00% 0.00% 0.00% 0.10% 0.10% 0.20% 0.10% 0.00%
ARMA(3,1) 0.00% 0.00% 0.10% 0.00% 0.20% 0.10% 0.00% 0.00%
ARMA(2,2) 0.10% 0.20% 0.10% 0.20% 0.60% 0.20% 0.20% 0.10%
ARMA(3,3) 0.50% 0.90% 0.70% 0.50% 1.90% 0.50% 2.30% 0.50%

Others 0.30% 0.30% 0.60% 0.60% 2.20% 0.50% 1.40% 0.50%

EACF is significant but not as strong as the stronger dependent GARCH inno-

vation case (iii). For the case of innovation following the Stochastic Volatility

model, the effect is quite similar to that of GARCH, hence the modified EACF

procedure works for this type of innovations as well.

3.1.4. Autoregressive integrated model

In this subsection, we study the ADF test for ARI process with dependent

but uncorrelated innovations. As we saw in the previous section, the ADF test

continues to work in this case and we illustrate the conclusion in a simulation.

We used an ARIMA(1, 1, 0) model as the mean equation and GARCH(1,1)

for the innovations. Specifically,{
∆Xt = ϕ∆Xt−1 + εt,

εt =
√
gtωt, gt = α0 + αε2t−1 + βgt−1.

Simulation was conducted with the parameter settingsα = 0.1, β = 0.8 and

α = 0.5, β = 0.2. The results of 5% level test for 10,000 replications are reported
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Table 8. EACF procedure comparison by 2 × 2 contingency table and chi
square test.

Innovation (i) original modified
ARMA(1,1) 814 824 chi-square 0.337293

non ARMA(1,1) 186 176 p-value 0.561396
Innovation (ii) original modified

ARMA(1,1) 769 827 chi-square 10.4345
non ARMA(1,1) 231 173 p-value 0.001237

Innovation (iii) original modified
ARMA(1,1) 662 876 chi-square 128.9019

non ARMA(1,1) 338 124 p-value 7.13E-30
Innovation (iv) original modified

ARMA(1,1) 701 843 chi-square 57.27888
non ARMA(1,1) 299 157 p-value 3.78E-14

Table 9. Results of ADF Test: replication = 104; time series length = 104.

Model ϕ Innovations Percentage of rejection
ARIMA(1,0,0) 0.95 i.i.d. 100.00%
ARIMA(1,1,0) 0.95 i.i.d. 5.09%
ARIMA(1,1,0) 0.95 α = 0.1, β = 0.8 4.80%
ARIMA(1,1,0) 0.95 α = 0.5, β = 0.2 5.12%
ARIMA(1,0,0) 0.8 i.i.d. 100.00%
ARIMA(1,1,0) 0.8 i.i.d. 4.92%
ARIMA(1,1,0) 0.8 α = 0.1, β = 0.8 5.06%
ARIMA(1,1,0) 0.8 α = 0.5, β = 0.2 4.87%
ARIMA(1,0,0) 0.5 i.i.d. 100.00%
ARIMA(1,1,0) 0.5 i.i.d. 5.03%
ARIMA(1,1,0) 0.5 α = 0.1, β = 0.8 4.73%
ARIMA(1,1,0) 0.5 α = 0.5, β = 0.2 4.90%

in Table 9. It also include the results for an ARIMA(1, 0, 0) setting to check the

power of the test.

With a very large number of replications, we confirmed that the ADF test

maintains roughly the correct level under the null hypothesis, regardless the type

of innovations, as our theorem indicates.

3.2. Applications

Here we analyze two data sets utilizing our modified EACF procedure.

3.2.1. General motor stock price

We analyze the log-return series of General Motor company (GM) for the

period from January 2, 1996 to May 8, 2006, shown in Figure 1. Order deter-

mination schemes were applied. The EACF significance tables with the orig-
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GE 1996−2006 Daily Log-return Series using the Closing Price Series

Figure 1. General Motor Stock Return Series.

inal and modified estimated variance are shown in Table 10, where 0 indi-

cates insignificant EACF coefficient at 5% level and 2 indicates a significant

one. It is seen that the original inference procedure indicates an ARMA(2, 2)

model while the modified EACF procedure indicates a white noise model. When

ARMA(2,2)+GARCH(1,1) model in the form{
Xt = µ+ ϕ1Xt−1 + ϕ2Xt−2 + εt + ψ1εt−1 + ψ2εt−2,

εt =
√
gtωt, gt = α0 + α1εt−1 + β1gt−1,

was fitted to the data, none of the AR and MA coefficients was significant,

shown in Table 11. This suggests that the modified EACF procedure provides

more reliable model identification results. Although starting with a wrong model

does not necessarily result in an inaccurate final model, one has to go through a

more tedious and effort consuming estimation and model checking process.

3.2.2. Traffic volume in a large city

Time series analysis is widely used in traffic control applications. Large

amount of traffic information including speed and volume has been collected but

accurate prediction remains a challenge.

Here we analyze traffic volume data collected in a major city in China. The

traffic volume (number of vehicles) passing a specific location was recorded every

3 minutes. The data set contains 8 weeks of data, with 480 observations each

day. We used the first seven weeks for model identification and the last week to
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Table 10. Comparison of EACF tables for GM return data.

Original EACF Table Modified EACF Table
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 0 2 0 0 2 0 0 [1,] 0 0 0 0 0 0 0
[2,] 2 2 0 0 2 0 0 [2,] 2 0 0 0 0 0 0
[3,] 2 2 0 0 0 0 0 [3,] 2 2 0 0 0 0 0
[4,] 2 0 2 0 0 0 0 [4,] 2 0 2 0 0 0 0
[5,] 2 0 2 2 0 0 0 [5,] 2 0 2 2 0 0 0
[6,] 2 2 2 2 2 0 0 [6,] 2 2 2 2 2 0 0

Table 11. The fitting results of GM data set using ARMA(2,2) +GARCH(1,1) model.

Estimate Std. Error t value Pr(> |t|) Significance
µ 2.37E-04 1.43E-04 1.658 0.0973 .
ϕ1 5.55E-01 3.69E-01 1.506 0.1321
ϕ2 9.34E-02 3.34E-01 0.280 0.7794
ψ1 -5.57E-01 3.67E-01 -1.520 0.1284
ψ2 -1.42E-01 3.37E-01 -0.419 0.6749
α0 5.49E-07 3.14E-07 1.747 0.0806 .
α1 3.75E-02 6.41E-03 5.847 5.02E-09 ***
β1 9.62E-01 6.45E-03 149.1 <2.00E-16 ***

Table 12. Comparison of EACF Tables for Traffic Data Set.

Original EACF Table Modified EACF Table
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

[1,] 2 2 2 2 2 2 2 2 [1,] 2 2 2 2 2 2 2 2
[2,] 2 0 0 2 0 0 0 0 [2,] 2 0 0 0 0 0 0 0
[3,] 2 2 0 2 0 0 0 0 [3,] 2 2 0 0 0 0 0 0
[4,] 2 2 2 0 0 0 0 0 [4,] 2 2 2 0 0 0 0 0
[5,] 2 2 2 2 0 0 0 0 [5,] 2 2 2 2 0 0 0 0
‘[6,] 2 2 2 2 2 0 0 0 [6,] 2 2 2 2 2 0 0 0

test the prediction results. Figure 2 shows four of the eight weeks of the time

series.

Clearly the time series possesses strong daily and weekly seasonality. To

remove the seasonality and to stabilize the variance, for each observation we

subtracted from it the average of the volumes observed at the same time in the

seven weeks, then divided it by the standard deviation of these seven volumes.

Again, we used the original and modified EACF procedures on the resulting

series. Table 12 shows the results.

According to the EACF table, the modified EACF procedure identifies an

ARMA(1,1) while the original EACF procedure identifies an ARMA(1,4) model,

if the significant entries are treated strictly. The estimation results for both

models are shown in Table 13.
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Figure 2. Big City Traffic Volume Data Set.

Table 13. Estimation results for the traffic data.

ARMA(1,4)+GARCH(1,1) ARMA(1,1)+GARCH(1,1)
Est Std. Err t value p value Est Std. Err t value p value

ar1 9.90e-01 1.37e-03 722.7 < 2e-16 9.85e-01 1.77e-03 557.0 < 2e-16
ma1 -8.81e-01 6.98e-03 -126.3 < 2e-16 -9.01e-01 4.98e-03 -181.0 < 2e-16
ma2 -2.58e-03 8.90e-03 -0.290 0.772
ma3 -1.23e-02 9.00e-03 -1.363 0.173
ma4 -2.79e-02 6.73e-03 -4.150 3.33e-05
ω 5.44e-02 8.78e-03 6.198 5.73e-10 5.72e-02 9.21e-03 6.209 5.35e-10
α1 5.06e-02 5.01e-03 10.10 < 2e-16 5.38e-02 5.19e-03 10.36 < 2e-16
β1 8.73e-01 1.58e-02 55.11 < 2e-16 8.66e-01 1.66e-02 52.27 < 2e-16

The estimation shows that the last of the three extra MA terms in the

ARMA(1,4)+GARCH(1,1) model is actually significant. The two models have
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Table 14. Sum of Squares of Prediction Errors: The numbers listed below
are based on the summation of n = 3, 360 prediction error squares obtained
from the eighth weeks transformed series.

Sum of Squares of Prediction Error
Model Prediction Steps d

1 2 5 20
ARMA(1,4)+GARCH(1,1) 29.75342 29.34402 31.89418 32.54956
ARMA(1,1)+GARCH(1,1) 29.43388 29.32293 31.66965 32.41064

very comparable BIC values (2.485 and 2.487). To further compare the two

models, we obtained the multi-step prediction error using observation of the

next week. Table 14 shows the Sum of Squares of Prediction Errors, defined as∑
t(x̂t(d) − xt+d)

2, where both the predictions and true observations are based

on the transformed series. Here the d-step ahead prediction x̂t(d), is a prediction

of xt+d made at time t with observations up to xt, and the model parameters

were estimated using the first seven weeks of data. It is seen that the simpler

model identified by the modified EACF procedure performs slightly better than

the more complex one.
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Appendix: Proof of the Theorems

Proof of Theorem 1. Given the conditions C.1 and C.2, Theorem 3 of Wu and

Min (2005) implies that, for a given h,

√
n(γ̂(0)− γ(0), γ̂(1)− γ(1), . . . , γ̂(h)− γ(h))

′ dist.−→ N
(

0
(h+1)×1

, Π
(h+1)×(h+1)

)
,

where Π is the covariance matrix of random vector
∑∞

t=−∞ P1(xtxt, xt−1xt, . . .,

xt−hxt)
′
.

With H((x0, . . . , xh)
′) = (x1/x0, . . . , xh/x0)

′, and a Delta method argument,

we have that the sample autocorrelation functions ρ̂(1), . . . , ρ̂(h) satisfy

√
n(ρ̂(1)− ρ(1), . . . , ρ̂(h)− ρ(h))

′ dist.−→ N
(

0
h×1

, Σ
h×h

)
,

with Σ = DΠD
′
. Here D = [−ρh, Ih]/γ(0), where ρh = (ρ1, . . . , ρh)

′
and Ih

is the identity matrix of h × h. This completes the proof for the first part of
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Theorem 1. For h > q, by the obvious fact ρ(h) = 0 for MA(q) process and the

above expression for Σ, we have that

√
nρ̂(h)

dist.−→ N(0, δ2h),

where δ2h = ∥ξ∥2/γ2(0) and ξ =
∑∞

t=−∞ P1xt−hxt. Since {xt} is MA(q), xt =∑q
i=1 ψixt−i + εt, we have ξ = ε1

∑q
i=0 ψix1−h+i if h > q, and therefore

∥ξ∥2 = E(ε1
q∑

i=0

ψix1−h+i)
2

= E[ε21(
∞∑
i=0

κiε−i)
2] (MA representation of {xt})

=

∞∑
i,j=0

κiκjE(ε21ε−iε−j)

=
∞∑
i=0

κ2iE(ε21ε2−i) (i ̸= j terms vanish by assumption)

=
∞∑
i=0

κ2iE(ε21)E(ε2−i) +
∞∑
i=0

κ2iCov(ε
2
1, ε

2
−i).

The first term here is

E(ε21)
∞∑
i=0

κ2iE(ε2−i) = E(ε21)E(
∞∑
i=0

κ2i ε
2
−i) = E(ε21)E(

∞∑
i=0

κiε−i)
2

= E(ε21)E(
q∑

i=0

ψix1−h+i)
2

= σ2
( q∑
i=0

ψ2
i γ(0) + 2

q∑
k=1

q∑
i=0

ψiψi+kγ(k)
)

= γ2(0) + 2

q∑
k=1

γ2(k).

The last equality is due to the fact that σ2
(∑q

i=0 ψ
2
i

)
=γ(0) and σ2

(∑q
i=0 ψiψi+k

)
= γ(k). Thus we have

δ2h − (1 + 2

q∑
k=1

ρ2(k)) =
∥ξ∥2

γ2(0)
− (1 + 2

q∑
k=1

ρ2(k)) =

∞∑
i=0

κ2iCov(ε
2
1,

ε2−i

γ2(0)
).

Hence δ2h ≥ 1+2
∑q

k=1 ρ
2(k) if

∑∞
i=0 κ

2
iCov(ε

2
1, ε

2
−i)/γ

2(0) is nonnegative. This is

true if all ACF of the ε2t series are non-negative. If all ACF are strictly positive,
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then δ2h > 1+2
∑q

k=1 ρ
2(k). In addition, when E(ε2n|Fn−1) = σ2, we have equality,

which is the same as the i.i.d. case.

To estimate the variance of γ̂(h), h > q, note that

Var(γ̂(h)) = Var(
1

n

n−h∑
t=1

xtxt+h) =
1

n2
Var(

n−h∑
t=1

xtxt+h)

=
1

n2

( n−h∑
t=1

Var(xtxt+h) +

n−h∑
t=1

n−h∑
s=1,s ̸=t

Cov(xtxt+h, xsxs+h)
)

MA(q)
=

1

n2

(
(n− h)Var(x0xh) + 2

q∑
t=1

(n− t)Cov(x0xh, xtxt+h)
)

n−h∼n→∞−→ 1

n

(
Var(x0xh) + 2

q∑
t=1

Cov(x0xh, xtxt+h)
)

Symmetry
=

1

n

∑
|d|≤q

Cov(x0xh, xdxd+h)

=
1

n

∑
|d|≤q

(
E(x0xhxdxd+h)− E(x0xh)E(xdxd+h)

)
E(x0xh)=0

=
1

n

∑
|d|≤q

E(x0xhxdxd+h)
∆
=

1

n

∑
|d|≤q

σ(d, h). (A.1)

Recalling (2.3), we have ρ̂(h) = γ̂(h)/γ̂(0). By Theorem 3 of Wu and Min

(2005), [
γ̂(0)

γ̂(h)

]
dist.−→ N

([
γ(0)

γ(h)

]
, n−1V

)
. (A.2)

By the Delta method (see Casella and Berger (2002)), we have for h > q,

Var(ρ̂(h)) = Var(
γ̂(h)

γ̂(0)
) ≈

(
− γ(h)

γ2(0)
,

1

γ(0)

)
[n−1V ]

(
− γ(h)

γ2(0)
,

1

γ(0)

)T

γ(h)=0
=

1

γ2(0)
n−1V22 ≈

Var(γ̂(h))
γ2(0)

by (A.1)
=

1

nγ2(0)

(
σ(0, h) + 2σ(1, h) + · · ·+ 2σ(q, h)

)
.

Proof of Theorem 2. We adopt the notation Xk ∈ Rn×k and ε ∈ Rn×1 for any
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given k ∈ (p, p+ s],

Xk =


x0 x−1 · · · x1−k

x1 x0 · · · x2−k
...

...
. . .

...

xn−1 xn−2 · · · xn−k

 , ε =


ε1
ε2
...

εn

 ,

where {xt|t = 1, . . . , n} is the observed sequence and in the definition for Xk

we assume that xl = 0 for l ≤ 0. We first argue the asymptotic joint normal

distribution for (X
′
p+sε)/

√
n. In fact, under C.1 and C.2 we can apply Theorem

3 of Wu and Min (2005) respectively, to the new sequences {xt−j + εt+1} and

{xt−j−εt+1} for any given j. Since xt−jεt+1 = [(xt−j+εt+1)
2−(xt−j−εt+1)

2]/4,

we have
∑∞

t=1 ∥P1(xt−jεt+1)∥ < ∞, which leads to the asymptotic normality of∑n
t=1 xt−jεt+1/

√
n. Through the Cramér-Wold device, we obtain asymptotic

joint normality of {
∑n

t=1 xt−jεt+1/
√
n | j = 1, . . . , p + s}, i.e. of (X

′
p+sε)/

√
n.

In particular, the mean vector of the asymptotic joint normal distribution is a

vector of zeros since E(xt−jεt+1) = 0.

On the other hand, the lag-k PACF ϕ̂k,k is obtained from the OLS regression

of xt = ϕ1xt−1+· · ·+ϕpxt−p+· · ·+ϕkxt−k where the true values of ϕp+1, . . . , ϕk are

zero. For each k ∈ (p, p+ s],
√
nϕ̂k,k = [(X′

kXk/n)
−1](kth row)(X

′
kε)/

√
n is a lin-

ear transformation of the vector X′
p+sε/

√
n. Hence the vector

√
n(ϕ̂p+1,p+1,· · · ,

ϕ̂p+s,p+s)
′ also approaches a linear transformation of X′

p+sε/
√
n. Since

(X
′
p+sε)/

√
n is asymptotically joint normal with zero mean, it follows

√
n(ϕ̂p+1,p+1, . . . , ϕ̂p+s,p+s)

′ dist.−→ N
(
0

s×1
, Ξ
s×s

)
.

This completes the proof for the first part of Theorem 2. To show (2.10), for

simplicity of notations, we write k = p+l hereafter. Ξ(l,l) is related to the variance

of asymptotic distribution of lag-k sample PACF ϕ̂k,k. We first notice by Theorem

3 of Wu and Min (2005), (X
′
kε)/

√
n has an asymptotic normal distribution with

covariance matrix Ωk = E(ξξ′) where ξ =
∑∞

t=−∞(P1(εtxt−1), . . ., P1(εtxt−k))
′
=

(ε1x0, ε1x−1, . . . , ε1x1−k)
′
. Since

√
nϕ̂k,k = [(X′

kXk/n)
−1](kth row) (X

′
kε)/

√
n, we

have Ξ(l,l)=[Γ−1
k ΩkΓ

−1
k ](k,k), the (k, k) entry of matrix [Γ−1

k ΩkΓ
−1
k ] where Γk :=

[γ(i−j)]1≤i,j≤k. We will show that Ωk−σ2Γk is a positive semidefinite matrix. To

this end, consider that for any non-random vector C = (c0, c−1, . . . , c1−k)
′ ∈ Rk

with a positive L2 norm,

C ′ΩkC = C ′[Cov(ε1x0, ε1x−1, . . . , ε1x1−k)
′]C

= E[ε21(c0x0 + c−1x−1 + · · ·+ c1−kx1−k)
2]
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= E[ε21(
∞∑
i=0

κiε−i)
2] (MA representation of {xt})

=

∞∑
i,j=0

κiκjE(ε21ε−iε−j)

=

∞∑
i=0

κ2iE(ε21ε2−i) (i ̸= j terms vanish by assumption)

≥
∞∑
i=0

κ2iE(ε21)E(ε2−i) (ACF of {ε2t } are nonnegative by assumption)

= σ2
∞∑
i=0

κ2iE(ε2−i) = σ2E[(c0x0 + c−1x−1 + · · ·+ c1−kx1−k)
2]

= σ2C ′ΓkC > 0.

So Γ−1
k ΩkΓ

−1
k ≥ Γ−1

k σ2ΓkΓ
−1
k = σ2Γ−1

k . It is known that for an AR(p) pro-

cess the (k, k) entry of Γ−1
k is 1/σ2 for k > p. The result follows in view of

[Γ−1
k ΩkΓ

−1
k ](k,k) ≥ σ2[Γ−1

k ](k,k) = 1. If all ACFs are positive, then the inequality

in above derivations holds strictly since Ωk > σ2Γk.

Let Sn
∆
=

∑n
t=1 εt, then ∥S2

n∥2 = E(
∑n

t=1 εt)
2 = E(

∑n
t=1 ε

2
t ). Take V 2

n
∆
=

∥̂S2
n∥2 =

∑n
t=1 ε

2
t . For k = 0, . . . , n, set

Wn(t) =

{ Sk
Vn
, t = k

n ;

Sk
Vn

+ (nt− k)
εk+1

Vn
, k
n ≤ t ≤ k+1

n .

Lemma A.1. Suppose {Xt} follows (2.11), with θi the coefficient at lag i of

the MA infinity representation of {Xt}, Θn =
∑n

i=0 θi, B
2
n =

∑n−1
i=0 Θ2

i . If the

error series {εt} satisfies C.3,
∑∞

i=1(Θn+i − Θi)
2 = o(B2

n), and Bn → ∞, then

Wn
dist.−→W .

Remark 6. The condition
∑∞

i=1(Θn+i − Θi)
2 = o(B2

n) is related to the mean

equation’s coefficients and is automatically satisfied for stationary and invertible

time series.

Proof of Lemma 3. See Theorem 1 of Wu and Min (2005).

Proof of Theorem 3. Recall that Sn =
∑n

t=1 εt and V
2
n = ∥̂S2

n∥2 =
∑n

t=1 ε
2
t .

Also recall that ρ̂n, the least square estimator of ρ, has the form

ρ̂n =

∑n
t=p+1Xt−1(Xt −

∑p−1
k=1 âk∆Xt−k)∑n

t=p+1X
2
t−1

.
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Under the null hypothesis that ρ = 1, since no MA part is involved in Xt, from
the multiple regression property âk → ak, we immediately have

T̂n = n(ρ̂n − 1) = n

∑n
t=p+1Xt−1(Xt −Xt−1 −

∑p−1
k=1 âk∆Xt−k)∑n

t=p+1X
2
t−1

=

1

n

∑n
t=p+1Xt−1εt

1

n2
∑n

t=p+1X
2
t−1

+ op(1).

Take c = (1 −
∑p−1

k=1 ak)
−1, and use the same polynomial decomposition of

Theorem 10.1.2 of Fuller (1995). Although the conditions on innovations are
different, they do not impact the argument for this specific part. Using the same
argument tat still holds for the our assumptions, we get

1

n2
[ n∑
t=p+1

X2
t−1 − c2

n∑
t=p+1

S2
t−1

]
= op(1);

1

n

[ n∑
t=p+1

Xt−1εt − c

n∑
t=p+1

St−1εt
]
= op(1).

Hence,

T̂n = =

1

n

∑n
t=p+1Xt−1εt

1

n2
∑n

t=p+1X
2
t−1

+ op(1) =
nc

∑n
t=p+1 St−1εt

c2
∑n

t=p+1 S
2
t−1

+ op(1)

=
n

c

1
2(S

2
n − V 2

n )∑n
t=p+1 S

2
t−1

+ op(1) =
1

c

1
2((Sn/Vn)

2 − 1)
1
n

∑n
t=p+1(St−1/Vn)2

+ op(1)

P−→ (1−
p−1∑
k=1

ak)
1
2(W

2
n(1)− 1)

1
n

∑n
t=p+1W

2
n(

t−1
n )

dist.−→ (1−
p−1∑
k=1

ak)

∫ 1
0 W (t)dW (t)∫ 1
0 W

2(t)dt
(by Lemma A.1).
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