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Abstract: Two-level minimum aberration (MA) designs in N = 1 (mod 4) runs

are studied. For this purpose, we consider designs obtained by adding any single

run to a two-symbol orthogonal array (OA) of strength two and then, among these

designs, sequentially minimize a measure of bias due to interactions of successively

higher orders. The reason for considering such OA plus one run designs is that they

are optimal main effect plans in a very broad sense in the absence of interactions.

Our approach aims at ensuring model robustness even when interactions are pos-

sibly present. It is shown that the MA criterion developed here has an equivalent

formulation which is similar but not identical to the minimum moment aberration

criterion. This formulation is utilized to derive theoretical results on and construct

tables of MA designs in the present context.
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1. Introduction

Optimal factorial fractions under the minimum aberration (MA) and related

model robustness criteria have received much attention over the last two decades.

See Mukerjee and Wu (2006) and Xu, Phoa, and Wong (2009) for reviews of

regular and nonregular designs, respectively, and further references. Recall that

regular designs are the ones that arise through a defining relation.

We consider two-level factorial designs which are of particular interest due to

their popularity among practitioners. The number of runs in regular MA designs

is a power of two, while nonregular MA designs have been studied more generally

for n = 4t runs, where t ≥ 1 is an integer. Two symbol orthogonal arrays (OAs)

play a key role in this context. An OA(n,m, 2, 2) of strength two, where n = 4t,

is an n ×m array with entries from a set of two symbols, say ±1, such that in

every n × 2 subarray, all four possible pairs of symbols occur equally often as

rows. The rows of such an OA, interpreted as treatment combinations, give a

fraction of a 2m factorial in n runs.
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Following Tang and Deng (1999), a two-level nonregular MA design in n = 4t

runs sequentially minimizes, among designs given by OA(n,m, 2, 2), a certain

measure of the bias due to interactions of successively higher orders in the esti-

mation of the main effects. This adheres to the effect hierarchy principle (Wu and

Hamada (2009, p.172)) that asserts that interactions of the same order are equally

likely to be active and lower order interactions are more likely to be active than

higher order ones. The MA designs so obtained have sound statistical motivation

because (a) consideration of designs given by OA(n,m, 2, 2) ensures universal op-

timality, among all n-run designs, for the general mean and the main effects when

interactions are absent (Cheng (1980a)), while (b) sequential minimization of bias

among these designs as indicated above maximizes model robustness even in the

presence of interactions. This is appealing because typically the main effects are

of principal interest and only a small number of interactions are really active,

by the principle of effect sparsity (Wu and Hamada (2009, p.173)). Indeed, the

same statistical motivation applies to nonregular MA designs for more general

factorials (Xu and Wu (2001)) and also to regular MA designs even though the

original formulation of the MA criterion there looks combinatorial.

We focus on MA designs when the available resources allow N = n + 1(=

4t + 1) runs. Precisely along the lines of (a) and (b) above for n = 4t runs,

it makes sense to consider a design strategy that (i) starts with designs that

are optimal for main effects in the absence of interactions, and then (ii) selects

a design from amongst these so as to provide maximum protection, under the

effect hierarchy principle, against bias even in possible presence of interactions.

Now, analogously to the optimality of designs given by OA(n,m, 2, 2) in the n-

run case, following Cheng (1980b), designs obtained by the addition of any one

run to any such OA are optimal under a very wide range of criteria (including the

well-known D-, A- or E-criteria), among all N -run designs, for the general mean

and the main effects when interactions are absent. Therefore, in accordance with

(i) and (ii) and resembling the literature for n = 4t runs, our approach to finding

an MA design in N = n + 1(= 4t + 1) runs starts with such OA plus one run

designs and then sequentially minimizes, among these designs, a certain measure

of the bias due to interactions of successively higher orders. The resulting MA

designs can be quite attractive as screening designs where the main effects are

of principal interest but it is also important to guard against the bias caused by

interactions possibly present.

Although our approach to MA designs is inspired by that for n = 4t runs,

its implementation involves significantly new features because the OA plus one

run designs we start with are themselves nonorthogonal even in the absence of

interactions. This, in particular, leads to some counterintuitive results such as

those for the 13-run case in Section 4 below.
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2. Preliminaries

Denote the m two-level factors by F1, . . . , Fm, and the treatment combina-

tions by j1 · · · jm, where ji = −1 or 1, 1 ≤ i ≤ m. Let τ(j1 · · · jm) be the

treatment effect associated with j1 · · · jm. Then, under the usual orthogonal

parametrization and a full factorial model where no assumption is made about

the absence of any interaction,

τ(j1 · · · jm) =
∑
x∈Ω

jx1
1 · · · jxm

m β(x), (2.1)

for each j1 · · · jm, where Ω is the set of binary m-tuples. For x = x1 · · ·xm ∈ Ω,

the parameter β(x) in (2.1) represents the general mean if x = 0 · · · 0, or the

factorial effect F x1
1 · · ·F xm

m otherwise. Clearly, any β(x) represents a main effect

if exactly one of x1, . . . , xm equals 1, or an interaction if two or more of x1, . . . , xm
equal 1. In particular, if all interactions are absent, then (2.1) reduces to

τ(j1 · · · jm) = β0 + j1β1 + · · ·+ jmβm, (2.2)

where we write β0 = β(0 · · · 0), β1 = β(10 · · · 0) etc. for notational simplicity.

Let Q = (qui), 1 ≤ u ≤ n, 1 ≤ i ≤ m, be an OA(n,m, 2, 2), and consider

an N(= n + 1)-run design obtained by adding a run, say q01 · · · q0m, to Q. Let

q0 = (q01, . . . , q0m)T . Each element of Q and q0 is ±1. Denote the vector

of observations by Y = (Y0, Y1, . . . , Yn)
T , where Y0 arises from q01 · · · q0m and

Y1, . . . , Yn from the runs given by the rows of Q. Then by (2.2), under the

absence of all interactions,

E(Y ) = Zβ∗, (2.3)

where

Z =

[
1 qT0
1n Q

]
, β∗ =

(
β0

βmain

)
, (2.4)

βmain = (β1, . . . , βm)T the vector of the main effect parameters, and 1a the a× 1

vector of ones. Assume as usual that the observations Y0, Y1, . . . , Yn have equal

variance and are uncorrelated.

We now focus attention on the main effect parameters as given by βmain.

Let β̂main be the best linear unbiased estimator (BLUE) of βmain under (2.3).

Clearly

β̂main = LY , (2.5)

where L is the m ×N submatrix of (ZTZ)−1ZT formed by the last m rows of

the latter. To find L more explicitly, we write Imfor the identity matrix of order

m and use the facts that

QT1n = 0, QTQ = nIm, N = n+ 1, qT0 q0 = m, (2.6)
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the first two of which are consequent on Q being an OA(n,m, 2, 2) with elements

±1. Hence by (2.4) and (2.6), after some simplification,

L = {n(N +m)}−1[nq0 {(N +m)Im − q0q
T
0 }QT − q01

T
n ]. (2.7)

3. Formulating the Minimum Aberration Criterion

3.1. MA criterion via consideration of bias

If the assumption of absence of all interactions is dropped, then the BLUE

β̂main of βmain, arising under (2.3) and shown in (2.5), becomes biased. We now

quantify this bias with a view to controlling it and thus discriminating amongst

the OA plus one run designs from the perspective of model robustness. So we

return to the representation (2.1) for the τ(j1 · · · jm), where no assumption about

the absence of interactions is made. For 2 ≤ i ≤ m, let Ω(i) be the set of binary

m-tuples with exactly i ones. Then for any x = x1 · · ·xm ∈ Ω(i), the parameter

β(x) in (2.1) represents the i-factor interaction F x1
1 · · ·F xm

m , and it is not hard

to see that under (2.1), the expression for E(Y ) in (2.3) gets modified to

E(Y ) = Zβ∗ +

m∑
i=2

∑
x∈Ω(i)

φ(x)β(x),

where

φ(x) = (qx1
01 · · · q

xm
0m , qx1

11 · · · q
xm
1m , . . . , qx1

n1 · · · q
xm
nm)T . (3.1)

Therefore, by (2.5), the bias vector of β̂main under (2.1), as an estimator of βmain,

is
m∑
i=2

∑
x∈Ω(i)

Lφ(x)β(x) =

m∑
i=2

∆(i)θ(i), (3.2)

where ∆(i) is the matrix with columns Lφ(x), x ∈ Ω(i), and correspondingly,

θ(i) is the column vector of the i-factor interaction effects β(x), x ∈ Ω(i). By

(3.2), the i-factor interactions collectively contribute a term ∆(i)θ(i) to the

bias vector of β̂main. Note that ∆(i) is the alias matrix associated with the

i-factor interactions. As an effective strategy for controlling the bias of β̂main

in the possible presence of interactions, invoking the effect hierarchy principle,

it makes sense to look for a design that sequentially minimizes the “sizes” of

∆(2), . . . ,∆(m). This is in the spirit of Tang and Deng (1999) and Xu and Wu

(2001) who explored nonregular designs represented by OAs. Following these

authors, for 2 ≤ i ≤ m, we take

Gi = tr{∆(i)∆(i)T }, (3.3)
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as a very reasonable measure of the size of ∆(i). Then the MA criterion calls

for finding an OA plus one run design that sequentially minimizes G2, . . . , Gm

among all such designs.

Along the lines of Mukerjee and Tang (2012) who studied two-level facto-

rial designs under a baseline parametrization different from the one considered

here, Bayesian-inspired considerations further justify sequential minimization of

G2, . . . , Gm. Let µi be number of active i-factor interactions, i ≥ 2. In the ab-

sence of any knowledge about which µi of the i-factor interactions are active or

their exact magnitudes, suppose (i) for each i ≥ 2, all possibilities about the µi

active i-factor interactions are equally likely, and (ii) the active interactions are

uncorrelated, each with mean zero and a constant variance. Let E denote the ex-

pected trace, under (ii) and then simply averaged as per (i), of the mean squared

error matrix of β̂main as an estimator of βmain. As in Mukerjee and Tang (2012),

then from (3.2) and (3.3) one can check that bias due to interactions accounts

for a term proportional to
∑m

i=2 πiGi in the expression for E , where πi = µi/
(
m
i

)
is the proportion of active i-factor interactions. Through the πi’s are not exactly

known in practice, the two principles of effect sparsity and effect hierarchy sug-

gest that they are small and that they decrease rapidly with increase in i. Hence

it is sensible to sequentially minimize G2, . . . , Gm so as to control E .

3.2. Further simplification

In order to streamline the subsequent development, we now obtain an

equivalent version of the MA criterion introduced above. Since ∆(i)∆(i)T =∑
x∈Ω(i) Lφ(x)φ(x)TLT by the definition of ∆(i), from (3.3) we get

Gi = tr{LTLΦ(i)}, 2 ≤ i ≤ m, (3.4)

where

Φ(i) =
∑

x∈Ω(i)

φ(x)φ(x)T . (3.5)

Recall that Q = (qui), 1 ≤ u ≤ n, 1 ≤ i ≤ m, and that q0 = (q01, . . . , q0m)T . Let

puw =
m∑
i=1

quiqwi, 0 ≤ u,w ≤ n, (3.6)

and, for 0 ≤ s ≤ m, define the N × N matrices P (s) = (psuw)u,w=0,1,...,n, where

the s in psuw is a power index. Write

Rs = tr{LTLP (s)}, 0 ≤ s ≤ m. (3.7)

Then the following lemmas, proved in Appendix A, hold.



858 RUNCHU ZHANG AND RAHUL MUKERJEE

Lemma 1. For 2 ≤ i ≤ m, Φ(i) =
∑i

s=0 kisP
(s), where the kis are constants

which depend on i, s,m but not on the design, and kii > 0.

Lemma 2. (a) R0 = 0, R1 = m.

(b) For 2 ≤ s ≤ m,

Rs = {n(N +m)}−2[n2ms+1 + 2n
n∑

u=1

(Np0u −m)ps0u

+
n∑

u=1

n∑
w=1

{(N +m)2puw − (2N +m)p0up0w − 2Np0u +m}psuw].

For 2 ≤ i ≤ m, by (3.4), (3.7), and Lemma 1, Gi =
∑i

s=0 kisRs, where

the kis are constants that depend on i, s,m but not on the design, and kii > 0.

Since by Lemma 2(a), R0 and R1 do not depend on the design, it follows that

sequential minimization of G2, . . . , Gm, as demanded by the MA criterion, is

equivalent to that of R2, . . . , Rm. However, by Lemma 2(b), consideration of

R2, . . . , Rm rather than G2, . . . , Gm entails much more computational efficiency,

because the puw are simply scalar products of the experimental runs. As seen in

the Appendix, this also facilitates the derivation of theoretical results.

3.3. Comparison with other criteria

We now discuss how the MA criterion developed in the last two subsections

compares with commonly used criteria like (a) minimum G2 aberration (Tang

and Deng (1999); this G2 is unrelated to our Gi), (b) generalized minimum aber-

ration (Xu and Wu (2001)), and (c) minimum moment aberration (MMA; Xu

(2003)). As noted in Xu and Wu (2001) and Xu (2003), these three criteria are

equivalent in the two-level case. Hence for two-level designs in n = 4t runs as

given by OAs of strength two, following Tang and Deng (1999), they all sequen-

tially minimize a measure of bias caused by interactions of successively higher

orders and thus have nice statistical justification even though their definitions

are somewhat combinatorial. It is precisely this statistical reasoning that was

followed to develop our MA criterion for N = 4t + 1 runs. One may wonder if

the criteria in (a)−(c) also have the same statistical justification in our setup.

In view of the aforesaid equivalence of (a)−(c), it suffices to consider only MMA

criterion in (c) for this purpose.

Let c(u,w) be the number of coincidences between the runs (qu1, . . . , qum)

and (qw1, . . . , qwm), and write

Ci =
{N(N − 1)

2

}−1 ∑∑
0≤u<w≤n

{c(u,w)}i, 1 ≤ i ≤ m.
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Then the MMA criterion sequentially minimizes C1, . . . , Cm, or equivalently
R∗

1, . . . , R
∗
m, where R∗

s =
∑n

u=0

∑n
w=0 p

s
uw, 1 ≤ s ≤ m, because by (3.6),

puw = 2c(u,w)−m, 0 ≤ u,w ≤ n, (3.8)

i.e., c(u,w) = (1/2)(puw+m). The R∗
s are, however, different from the Rs shown

in Lemma 2(b) and obtained directly from consideration of bias. Hence, in our
setup, there is no guarantee in general that the MMA criterion, or equivalently
the criteria in (a) and (b), sequentially minimize the bias due to interactions of
successively higher orders as the MA criterion developed in the last two subsec-
tions does.

Nevertheless, for smaller values of N , namely N = 5, 9, 13 and 17, we checked
computationally that the MMA criterion and our MA criterion lead to identical
optimal designs. For the nearly saturated cases m = n− 1 and m = n − 2, this
happens because both the R∗

s and Rs have simplified versions − see e.g., (B.2)
and (B.3) in the Appendix − so that sequential minimization of one can be shown
to be equivalent to that of the other. While such simplification does not take
place for other values of m, a heuristic explanation arises from the fact that R∗

s+1

is the sum of pure (s + 1)th degree terms ps+1
uw while, by Lemma 2(b), our Rs

involves sth, (s+1)th, and (s+2)th degree terms in the puw but the coefficients
of the pure (s + 1)th degree terms among them typically dominate those of the
other terms. Thus, although the MMA criterion is not formally equivalent to our
MA criterion arising directly from statistical considerations, the two appear to
be good surrogates for each other.

4. Minimum Aberration Designs

Theorem 1 presents necessary and sufficient conditions for OA plus one run
designs, obtained by adding a single run qT0 to an OA(n,m, 2, 2) denoted by Q,
to have MA in the sense of sequentially minimizing G2, . . . , Gm, or equivalently
R2, . . . , Rm, for m = n− 1, n− 2, or n− 3. These are practically important cases
where the OA that one starts with is saturated or nearly saturated.

Theorem 1. Let m(≥ 3) equal n−1, n−2, or n−3, and suppose an OA(n,m, 2, 2)
exists. Then an OA plus one run design has MA if and only if Q is any
OA(n,m, 2, 2) and qT0 is the negative of some row of Q.

Theorem 1 is proved in Appendix B. As hinted earlier, the proofs for m =
n−1 or n−2 show that the MA designs reported in Theorem 1 for these two cases
have MMA as well. However one can check that these designs are not necessarily
OAs of weak strength three as defined in Xu (2003), and hence cannot be obtained
using the sufficient condition in Theorem 3 of his paper.

Theorem 1 settles the case n = 4, m = 3. Similarly, for n = 8, it settles the
cases m = 5, 6, 7, while the case m = 4 is treated here.
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Example 1. Let N = 9, n = 8, m = 4. Then there are two nonisomorphic

choices of Q both of which correspond to regular fractions. A complete search of

all possibilities for the added run, in conjunction with both these choices of Q,

shows that an MA design is given by qT0 = (−−−+) and

Q =

− − − −
+ + − −
+ − + −
+ − − +

− + + −
− + − +

− − + +

+ + + +

where + and − stand for +1 and −1 respectively. The search further reveals that

augmentation of neither of the two nonisomorphic choices of Q by the negative

of any row therein leads to an MA design with N = 9 runs.

Example 1 shows that the conclusion of Theorem 1 does not remain valid for

arbitrary n and m(≤ n− 4). There are many other instances of this kind − e.g.,

with n = 12 and 4 ≤ m ≤ 8, the consequence of augmenting Q by the negative

of one of its rows depends on the specific Q and the specific row considered,

and no general pattern emerges. Indeed, the proof of Theorem 1 shows that for

m = n − 1, n − 2, and n − 3, the quantities R2, . . . , Rm are determined by p0u,

1 ≤ u ≤ n. The possible lack of this feature for m ≤ n − 4 precludes further

extension of this theorem.

In the rest of this section, we computationally find and tabulate MA designs

for N = 13 and 17, i.e., n = 12 and 16, and m ≤ n− 4. The following facts are

useful for this purpose.

(a) For n = 12, there are two nonisomorphic OAs if m = 5 or 6, and only one

such array if m = 4 or m ≥ 7; see Deng and Tang (2002).

(b) For n = 16 and each m, a complete listing of nonisomorphic OAs can be

obtained from Hall (1961) together with Sun, Li, and Ye (2008).

We now employ steps to obtain MA designs for N = 13 and 17. Certain

simplifying features that can be incorporated in this procedure are indicated in

the next section.

Step I. Given N(= n+1) and m, follow (a) or (b) to list all nonisomorphic choices

of Q, say Q1, . . . ,Qg.

Step II. For every fixed j, 1 ≤ j ≤ g, consider each of the 2m possibilities for

the added run and use Lemma 2, or directly (3.7), to find a run whose addition
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to Qj sequentially minimizes R2, . . . , Rm. Let dj be the best N -run design so

obtained from Qj .

Step III. Find theN -run MA design as one that sequentially minimizesR2, . . . , Rm

among d1, . . . , dg.

The results for N = 13 and 17 are summarized in Tables 1 and 2 which show

Q and the added run, denoted by ‘Add’, for the MA designs. In the tables, we

write + and − for +1 and −1 respectively. The tables along with the process of

their construction shed light on an issue of both theoretical and computational

interest. Since we are considering designs obtained via the addition of a single run

to Q, an OA with n rows, does it suffice for our purpose to restrict attention to

only suchQ as having MA as an n-run design? In other words, do theN(= n+1)-

run designs with Q itself having MA form an essentially complete class in our

context? The answer to this question is in the affirmative in Example 1 where

the Q, shown for our MA design, itself has MA as an 8-run design. The cases

N = 13 (i.e., n = 12) and m = 5 or 6, however, demonstrate the nonexistence

of any general result in this direction. With n = 12 and m = 5, there are two

nonisomorphic choices of Q, say Q1 and Q2, as given by columns 1,2,3,4,5 and

2,4,5,6,10 of the OA(12, 11, 2, 2) shown as B12 in Table 1. Note that Q1 has

MA as a 12-run design and Q2 does not enjoy this property. However, Q1 never

yields an MA design in our setup irrespective of the run added, while Q2 does so

upon addition of a run as indicated in Table 1. The same phenomenon holds for

n = 12, m = 6. For N = 17 (i.e., n = 16), on the other hand, each MA design

shown in Table 2 is based on a Q which is itself a 16-run regular MA design; see

e.g., Mukerjee and Wu (2006, Chap. 3). This happens presumably because the

MA property of Q exerts, for relatively large n, a greater impact on that of the

final design obtained by the addition of one run.

5. Some Computational Issues

The main obstacle to finding MA designs for values of N(= n + 1) higher

than those in Tables 1 and 2 is that for larger n, often a complete list of all

nonisomorphic OA(n,m, 2, 2), 3 ≤ m ≤ n − 4, is not yet available. As with the

case of n(= 4t) runs, this prevents one from obtaining an N -run design which is

perfectly guaranteed to have the MA property among all possible OA plus one

run designs. Given N and m, from a practical point of view, in such a situation it

makes sense to consider the known nonisomorphic OA(n,m, 2, 2) or a reasonable

subclass thereof in Step I of Section 4 and then apply Steps II and III to reach a

design that can be expected to behave well under the MA criterion. For example,

the fact that all MA designs in Table 2 are augmentations of 16-run regular OAs

may encourage one to consider all regular nonisomorphic OA(n,m, 2, 2) in Step
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Table 1. MA designs for N = 13.

m = 4 Add: − − + −

Q: Keep the first four columns of B12. B12 : − − − − − − − − − − −
+ − + − − − + + + − +

+ + − + − − − + + + −
− + + − + − − − + + +

+ − + + − + − − − + +

+ + − + + − + − − − +

+ + + − + + − + − − −
− + + + − + + − + − −
− − + + + − + + − + −
− − − + + + − + + − +

+ − − − + + + − + + −
− + − − − + + + − + +

m = 5 Add: + + + + +

Q: Keep columns 2,4,5,6,10 of B12.

m = 6 Add: + + + + + +

Q: Keep columns 2,4,5,6,10,11 of B12.

m = 7 Add: − − − + − − +

Q: Keep the first seven columns of B12.

m = 8 Add: − − + − − + − +

Q: Keep the first eight columns of B12.

Table 2. MA designs for N = 17.

m = 5 Add: − − − − + m = 12 Add: −−+−++−++−−+

Q: Keep columns 1, 2, 4, 8, 15 of B16. Q: Keep columns 1-6, 8-10 and 13-15 of B16.

m = 6 Add: - - - - - + B16 : + + − + − − + + − − + − + + −
+ + − + − − + − + + − + − − +

+ + − − + + − + − − + + − − +

+ + − − + + − − + + − − + + −
+ − + + − + − + − + − − + − +

+ − + + − + − − + − + + − + −
+ − + − + − + + − + − + − + −
+ − + − + − + − + − + − + − +

− + + + + − − + + − − − − + +

− + + + + − − − − + + + + − −
− + + − − + + + + − − + + − −
− + + − − + + − − + + − − + +

− − − + + + + + + + + − − − −
− − − + + + + − − − − + + + +

− − − − − − − + + + + + + + +

− − − − − − − − − − − − − − −

Q: Keep columns 1, 2, 4, 7, 8, 11 of B16.

m = 7 Add: −−−−−−+

Q: Keep columns 1, 2, 4, 7, 8, 11, 13 of B16.

m = 8 Add: −−−−−−++

Q: Keep columns 1, 2, 4, 7, 8, 11, 13, 14 of B16.

m = 9 Add: −−+−+−++−

Q: Keep columns 1-5, 8, 9,14,15 of B16.

m = 10 Add: −−+−++−+−+

Q: Keep columns 1-6, 8, 9, 14, 15 of B16.

m = 11 Add: −−+−++−++−−

Q: Keep columns 1−6, 8−10, 13,14 of B16. Note: B16 is the regular OA(16, 15, 2, 2).

I, when n is a power of two and a complete list of such regular nonisomorphic

OAs exists.

We now indicate how, for larger N , a two-stage execution of Step II can con-

siderably reduce the computing time while implementing Steps I-III as above.

Recall that Step II finds the best augmentation, in the sense of sequential mini-
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mization of R2, . . . , Rm, of each OA(n,m, 2, 2) considered in Step I. For any given

OA(n,m, 2, 2), say Q, let D(Q) be the set of n runs formed by the negatives of

the n rows of Q. As seen in Section 4, any arbitrary run in D(Q) does not neces-

sarily yield the best augmentation of Q among all the 2mpossible runs that could

be added. However, our computations reveal that almost invariably there exists

a run in D(Q) which either entails the best augmentation or comes quite close.

This prompts execution of Step II in two stages as shown below. The Q1, . . . ,Qg

of Step I are now the known nonisomorphic OA(n,m, 2, 2) considered in a given

context.

Step II. For every fixed j, 1 ≤ j ≤ g, find the best N -run design dj , among those

obtained by adding one run to Qj , as follows.

(A) Among the n runs in D(Qj), find one whose addition to Qj sequentially

minimizes R2, . . . , Rm. Record this run and the corresponding R2, . . . , Rm,

say R20, . . . , Rm0, for comparative purpose while implementing (B) below.

(B) Next consider all the 2m possibilities for the added run and, from amongst

these, find one whose addition to Qj sequentially minimizes R2, . . . , Rm.

Execution of (A) is almost instantaneous even for large N(= n+ 1) because

there are only n runs in D(Qj). On the other hand, the sequence R20, . . . , Rm0

emerging from (A) acts as a benchmark when (B) begins, and it remains so until

even better and hence even more stringent augmentations possibly emerge. Now,

typically, the sequence R20, . . . , Rm0 is itself quite stringent in view of the points

noted above regarding the addition of runs from D(Qj). As a result, a vast

majority of the 2m possible augmentations in (B) get eliminated very quickly on

the basis of R2, or at most R3, alone. In this way, the two-stage implementation

of Step II significantly enhances the speed of computation.

Example 2. Let N = 33, n = 32 and, for illustration, consider m = 10 and 25.

To the best of our knowledge, for neither m, does a complete list of all nonisomor-

phic OA(32,m, 2, 2) exist. So, we focus attention on designs obtained by adding

one run to 32-run regular OAs for which a complete catalog of nonisomorphic

solutions is available from D.X. Sun as an expanded version Table 3 in Chen,

Sun, and Wu (1993). In order to describe the designs for m = 10 and 25, let V

be the 5 × 31 matrix with columns given by the points of the finite projective

geometry PG(4,2) in Yates order, i.e., in the order (1, 0, 0, 0, 0)T , (0, 1, 0, 0, 0)T ,

(1, 1, 0, 0, 0)T , . . . , and let B32 be the regular OA(32, 31, 2, 2), obtained by re-

placing each 0 by −1 in the 32× 31 array with rows spanned by those of V over

GF(2).

(a) For m = 10, there are 46 nonisomorphic regular OA(32,10,2,2) which we

consider in Step I. Then Steps II and III, with II executed in two stages as



864 RUNCHU ZHANG AND RAHUL MUKERJEE

above, show that the design obtained by adding the run

−−−−−−−+−+

to the regular OA, say Q∗, as given by columns 1, 2, 4, 7, 8, 11, 16, 19, 29,

30 of B32 has MA among all augmentations of 32 × 10 regular OAs by one

run.

(b) For m = 25, there are 9 nonisomorphic regular OA(32,25,2,2) which are

considered in Step I. Then as before it is seen that the design obtained by

adding the run

+−−++−−−−++−−−−++−−−−++−−

to the regular OA, say Q∗∗, as given by columns 1−13, 16−21, 26−31 of B32

has MA among all augmentations of 32× 25 regular OAs by one run.

Interestingly, for m = 25, the added run in (b) is the negative of a row of

Q∗∗, while for m = 10, the best design among the augmentations of Q∗ by the

negative of a row of itself comes quite close to the one reported in (a) in the sense

of having the same R2 and an only 2% larger R3. This is in agreement with the

rationale behind the two-stage execution of Step II as proposed above.

The OAs Q∗ and Q∗∗ in Example 2 represent 32-run regular MA designs for

the respective values of m; see e.g., Mukerjee and Wu (2006, Chap. 3). This lends

further support to the point noted earlier in connection with Table 2 that, for

relatively large n, the behavior of an OA(n,m, 2, 2) under the MA criterion tends

to exert an influence on that of its best augmentation. Therefore, one may wonder

about the possible existence of a general result in this direction. For instance,

given a class of nonisomorphic OA(n,m, 2, 2) and their best augmentations, will

the ranking of these best augmentations as N(= n+ 1)-run designs be the same

as that of the OAs themselves as n-run designs under the MA criterion, when n

is relatively large? Our computations show that for n = 32 and m = 25, this is

indeed the case with the 9 nonisomorphic regular OAs in Example 2(b) and their

best augmentations. On the other hand, for n = 32 and m = 10, the rankings of

the 46 nonisomorphic regular OAs in Example 2(a) and their best augmentations

turn out to be quite similar but not identical. Thus even for n = 32, no general

result emerges, which is not entirely unexpected given the somewhat involved

form of R2, . . . , Rm.

Nevertheless, the present computations as well as many others not reported

here suggest that, for relatively large n, if out of the nonisomorphic OA(n,m, 2, 2),

say Q1, . . . ,Qg, considered in a given context, only the top few, say the top four

or five, under the MA criterion are included in Step I and then Steps II and III



MINIMUM ABERRATION DESIGNS 865

are employed, then the resulting design is the same as what one would obtain by

including all of Q1, . . . ,Qg in Step I. In other words, for larger n, consideration

of only the top few of Q1, . . . ,Qg rather than all of them for the purpose of

augmentation should yield at least highly efficient N(= n+1)-run designs under

the MA criterion, while at the same time entailing further significant reduction

of computing time.

6. Concluding Remarks

Several open issues emerge from the present work. Although the conclusion

of Theorem 1 does not hold for arbitrary n and m(≤ n − 4), our computations

show that augmentation of specific choices of Q by the negatives of some specific,

but not all, rows therein may lead to MA designs even for m ≤ n− 4. It would

be of interest to obtain systematic results in this direction. However, given the

complexities and multitude of steps already encountered in the proof of Theorem

1 for m = n− 3, this problem looks quite formidable.

Further improvement in the computational procedure also deserves attention.

For instance, in the spirit of the two-stage execution of Step II proposed in Section

5, one may wish to explore if some other modification of this step can reduce the

computing time to an even greater extent.

Following Mukerjee (1999), main effect plans obtained via the augmentation

of an OA by one run enjoy wide-ranging optimality properties in the absence of

interactions, not only for two-level factorials but also for general symmetric facto-

rials and certain asymmetric factorials. Extension of the present ideas and results

to more general factorials of this kind is of interest. A Kronecker representation

for the factorial effects should be useful for this purpose.

Back to 2m factorials, the present work on N(4t+1)-run designs supplements

the existing results on n(= 4t)-run designs. This leaves open the cases of designs

with 4t + 2 and 4t + 3 runs. In either case, from a statistical perspective, one

may in principle consider employing the same basic ideas as here to formulate

the design problem: (i) start with designs which are optimal under a broad

range of criteria for the main effects when interactions are absent, and then (ii)

among these designs, find one which sequentially minimizes the bias caused by

the possible presence of interactions of successively higher orders. With 4t + 2

runs, following Jacroux, Wong, and Masaro (1983), OA plus two run designs have

wide-ranging optimality properties for the general mean and the main effects in

the absence of interactions, provided the number of coincidences between the two

added runs equals [m/2], the greatest integer in m/2. Therefore, in accordance

with (i) above, it makes sense to start with OA plus two run designs of this

kind. Preliminary studies show that the counterparts of R2, . . . , Rm are then

even more involved. Additional complexities arise in the derivation of theoretical
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results because the two added runs have to be handled simultaneously subject

to the aforesaid constraint on the number of coincidences between them. Work

is currently underway on this problem and will be reported elsewhere. The case

of 4t+ 3 runs, however, looks far more intractable at this stage because then, to

the best of our knowledge, even in the absence of interactions, sufficiently general

optimality results as envisaged in (i) above are not yet available.

We conclude with the hope that the present work will generate interest in

these and related problems.
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Appendices

Appendix A: Proofs of Lemmas 1 and 2

Proof of Lemma 1. The proof follows essentially from Xu (2003) though, for

completeness, we indicate it briefly. By (3.1) and (3.5), the (u,w)th element of

Φ(i) is

Φuw(i) =
∑

x∈Ω(i)

(qu1qw1)
x1 · · · (qumqwm)xm

=

i∑
h=0

(
c(u,w)

h

)(
m− c(u,w)

i− h

)
(−1)i−h. (A.1)

where, for integers a, b(≥ 0),
(
a
b

)
equals 1 if b = 0, and a(a− 1) · · · (a− b+ 1)/b!

if b > 0. Since by (3.8), c(u,w) = (puw +m)/2, it is not hard to see from (A.1)

that Φuw(i) is an ith degree polynomial in puw, where the coefficients depend on

i and m but not on u,w, or the design, and the coefficient of the ith degree term

is positive. Hence the result follows.

Proof of Lemma 2. Clearly, by (2.6) and (2.7), L1N = 0 and LQ̃ = Im,

where Q̃ = [q0 QT ]T . Since by definition P (0) = 1N1TN and P (1) = Q̃Q̃T , part

(a) follows from (3.7). Using (2.6) and (2.7) again,

LTL = {n(N +m)}−2

[
n2m γT

γ Γ

]
,
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where γ = n(NQq0 −m1n), and

Γ = (N +m)2QQT − (2N +m)Qq0q
T
0 Q

T −N(Qq01
T
n + 1nq

T
0 Q

T ) +m1n1
T
n .

Hence (b) follows from (3.7) and the facts that

puu =m, puw = pwu, 0 ≤ u,w ≤ n,
(A.2)

Qq0 = (p01, . . . , p0n)
T , QQT = (puw)u,w=1,...,n,

which are evident from (3.6) and the definitions of Q and q0.

Appendix B: Proof of Theorem 1

Case 1: m = n− 1.

Lemma B.1. If m = n−1, then the following are equivalent: (a) for 1 ≤ u ≤ n,
p0u ∈ {−(n−1),−1, 1}, (b) one of p01, . . . , p0n equals −(n−1) and the rest equal
1, (c) the vector qT0 , representing the added run, is the negative of some row of
Q.

Proof. Since m = n− 1, by (2.6) and (A.2),

n∑
u=1

p0u = 1TnQq0 = 0,
n∑

u=1

p20u = qT0 Q
TQq0 = nm = n(n− 1). (B.1)

Suppose (a) holds. Let f0, f1, and f2 of p01 . . . , p0n equal −(n − 1), −1, and 1
respectively. Then f0+ f1+ f2 = n, while by (B.1), −(n− 1)f0− f1+ f2 = 0 and
(n−1)2f0+f1+f2 = n(n−1). These equations have the unique solution f0 = 1,
f1 = 0, f2 = n−1. Hence (a) implies (b). Trivially, (b) implies (c) because if one
of p01, . . . , p0n, say p01, equals −(n− 1)(= −m), then qT0 must be the negative of
the first row of Q. It remains to show that (c) implies (a). To that effect, note
that m = n− 1 and hence H = [1n Q] is a Hadamard matrix of order n. Let (c)
hold with qT0 as the negative of, say, the first row of Q. Then (−1, qT0 ) equals
the negative of the first row of Hn, so that

Qq0 = [1n Q]

(
−1

q0

)
+ 1n = Hn

(
−1

q0

)
+ 1n =

(
−n

0

)
+ 1n =

(
−(n− 1)

1n−1

)
,

i.e., by (A.2), (a) holds. Therefore, (c) implies (a), completing the proof.

Proof of Theorem 1 for m = n − 1. Clearly, puu = m for every u, while
puw = −1, for every 1 ≤ u ̸= w ≤ n, because Hn = [1n Q] is a Hadamard
matrix. Hence from (B.1) and Lemma 2(b),

R2 = constant + 2Nn−1(N +m)−2
n∑

u=1

p30u, (B.2)

Rs = constant + 2n−1(N +m)−2
n∑

u=1

(Np0u −m)ps0u, 3 ≤ s ≤ m, (B.3)
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where the constants do not depend on the design. We now proceed to minimize

R2, or equivalently
∑n

u=1 p
3
0u; see (B.2). By (3.8) and the fact that m(= n−1) is

odd, p0u ≥ −(n−1) and |p0u| ≥ 1, 1 ≤ u ≤ n. Hence
∑n

u=1(p0u+n−1)(p20u−1) ≥
0, i.e.,

∑n
u=1 p

3
0u ≥ −n(n − 1)(n − 2), using (B.1). Clearly, this lower bound is

attained if and only if (a), or equivalently (b), of Lemma B.1 holds. But (b) of

Lemma B.1 uniquely determines R3, . . . , Rm; see (B.3). The result now follows,

recalling the equivalence of (b) and (c) of Lemma B.1.

Case 2: m = n− 2.

Lemma B.2. If m = n−2, then the following are equivalent: (a) for 1 ≤ u ≤ n,

p0u ∈ {−(n − 2), 0, 2}, (b) one of p01, . . . , p0n equals −(n − 2) and, among the

rest, there are n/2 and n/2 − 1 which equal 0 and 2 respectively, (c) the vector

qT0 , representing the added run, is the negative of some row of Q.

Proof. Since m = n− 2, analogously to (B.1),

n∑
u=1

p0u = 0,
n∑

u=1

p20u = n(n− 2). (B.4)

Hence as with Lemma B.1, it follows that (a) implies (b), and (b) implies (c).

We next show that (c) implies (a). Note that m = n−2 and hence Q can be

embedded in a saturated OA(n, n− 1, 2, 2); cf., Mukerjee and Wu (1995). Thus

there exists a vector ε = (ε1, . . . , εn)
T , with half of its elements 1 and the rest

−1, such that Hn = [1n ε Q] is a Hadamard matrix of order n. Let (c) hold

with qT0 as the negative of, say, the first row of Q. Then (−1,−ε1, q
T
0 ) equals

the negative of the first row of Hn so that, as in the proof of Lemma B.1,

Qq0 =

(
−n

0

)
+ 1n + ε1ε.

Since each of ε1, . . . , εn is 1 or −1, it follows that the first element of Qq0 is

−(n− 2) and the remaining elements are 0 or 2, i.e., by (A.2), (a) holds. Hence

(c) implies (a), completing the proof.

Proof of Theorem 1 for m = n − 2. Since Hn = [1n ε Q] is a Hadamard

matrix, puw equals −2 if εu and εw have the same sign, and 0 otherwise, 1 ≤
u ̸= w ≤ n. Moreover, 1TnQq0 = εTQq0 = 0, as the columns of Hn are mutually

orthogonal. Hence by (A.2), Σ+p0w = Σ−p0w = 0, where Σ+ and Σ− denote

sums on u over {u : 1 ≤ u ≤ n, εu = 1} and {u : 1 ≤ u ≤ n, εu = −1},
respectively. Since puu = m for each u, from these facts together with (B.4) and

Lemma 2(b), one can check that (B.2) and (B.3) continue to hold. In view of

(B.2), minimization of R2 amounts to that of
∑n

u=1 p
3
0u. By (3.8), p0u ≥ −(n−2)
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and each p0u is even, because m = n−2 is even. Therefore, as the product of two

consecutive integers is nonnegative,
∑n

u=1(p0u+n−2)(p0u/2)(p0u/2−1) ≥ 0, i.e.,∑n
u=1 p

3
0u ≥ −n(n− 2)(n− 4), using (B.4). Clearly, this lower bound is attained

if and only if (a) of Lemma B.2 holds. The result now follows as in Case 1, using

Lemma B.2 in place of Lemma B.1.

Case 3: m = n− 3.

The proofs in Cases 1 and 2 were facilitated by the fact that, form = n−1 and

m = n−2, if qT0 is the negative of some row ofQ then at most three of p01, . . . , p0n
are distinct; see Lemmas B.1 and B.2. As Lemma B.6 below demonstrates, this

simplifying feature ceases to hold for m = n − 3. Consequently, the proof now

gets quite involved. If n = 8 or 12 and m = n − 3, then there is a unique

choice of Q up to isomorphism and the proof in Case 3 follows via a complete

enumeration of all possibilities for the added run. Therefore, in what follows, we

consider m = n− 3 and n ≥ 16

Since m = n − 3, following Vijayan (1976), there exist vectors ε(1) =

(ε11, . . . , ε1n)
T and ε(2) = (ε21, . . . , ε2n)

T with elements ±1 such that each of

the sets

J1={u : 1≤u≤n, ε1u=ε2u=1}, J2={u : 1≤u≤n, ε1u=1, ε2u=−1},
(B.5)

J3={u : 1≤u≤n, ε1u=−1, ε2u=1}, J4={u : 1≤u≤n, ε1u=ε2u=−1},

has cardinality n/4 and

Hn = [1n ε(1) ε(2) Q] (B.6)

is a Hadamard matrix of order n. Let

ξl =
∑
u∈Jl

p0u. (B.7)

Lemma B.3. ξ1 = −ξ2 = −ξ3 = ξ4.

Proof. By (B.6), each of 1n, ε
(1), and ε(2) is orthogonal to Qq0. So, by (A.2),

(B.5), and (B.7), ξ1 + ξ2 + ξ3 + ξ4 = ξ1 + ξ2 − ξ3 − ξ4 = ξ1 − ξ2 + ξ3 − ξ4 = 0, and

the lemma follows.

Lemma B.4. (a) Rs = constant+{n(N+m)}−2[2n
∑n

u=1(Np0u−m)ps0u−(2N+

m)αsξ
2
1 ], 2 ≤ s ≤ m, where αs = 4{1+(−3)s−2(−1)s} and the constants do not

depend on the design.

(b) Minimization R2 of is equivalent to minimizing

W = 2n(n+ 1)

n∑
u=1

p30u − 32(3n− 1)ξ21 . (B.8)
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Proof. Since Hn as shown in (B.6) is a Hadamard matrix of order n, from (B.5)

we get

puw = −3, if u ̸= w and u,w belong to the same Jl,

= −1, if one of u,w belongs to J1 or J4 and the other to J2 or J3.

= 1, if one of u,w belongs to J1 and the other to J4

or if one of u,w belongs to J2 and the other to J3. (B.9)

Also, puu = n− 3, 1 ≤ u ≤ n, and analogously to (B.1),

n∑
u=1

p0u = 0,
n∑

u=1

p20u = n(n− 3). (B.10)

Part (a) follows from Lemmas 2(b) and B.3, using relationships such as

n∑
u=1

n∑
w=1

p0up0wp
s
uw = constant + αsξ

2
1 and

n∑
u=1

n∑
w=1

p0up
s
uw = 0,

which are consequent on (B.7), (B.9), and (B.10). Part (b) then follows from (a)

using (B.10) and the facts that N = n+ 1, m = n− 3, and α2 = 32.

Lemma B.5. (a) For 1 ≤ u ≤ n, p0u is an odd integer which is greater than or

equal to −(n− 3). (b) The minimum of p0u, over 1 ≤ u ≤ n, equals −(n− 3) if

and only if qT0 is the negative of some row of Q.

Proof. This is evident from (3.8) noting that here m = n− 3 is odd.

Lemma B.6. Consider designs where qT0 is the negative of some row of Q.

(a) For every such design, one p0u, 1 ≤ u ≤ n, equals −(n− 3) and, among the

rest, there are n/4− 1, n/2, and n/4 which equal 3, 1, and −1, respectively.

(b) Every such design has ξ21 = n2/16 and W = W0, where

W0 = −2n2(n+ 1)(n− 4)(n− 5)− 2n2(3n− 1). (B.11)

(c) All such designs have the same sequence R2, . . . , Rm.

Proof. Without loss of generality, let qT0 be the negative of the first row of Q and

suppose 1 ∈ J1. Then p0u = −p1u, 1 ≤ u ≤ n, so that by (B.9), p01 = −(n− 3),

p0u = 3, for u(̸= 1) ∈ J1, and among p0u, u ̸∈ J1, there are n/2 and n/4 which

equal 1 and −1 respectively. Thus (a) follows. Next, from (B.7) and the proof

of (a), ξ1 = −n/4, i.e., ξ21 = n2/16. The rest of (b) follows from (a) and (B.8).

Finally, (c) follows from (a), (b), and Lemma B.4(a).

Lemma B.7. Let n ≥ 16. If min{p0u : 1 ≤ u ≤ n} > −(n− 3), then W > W0.
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Proof. Without loss of generality, let p01 = min{p0u : 1 ≤ u ≤ n} and 1 ∈ J1.
Since p01 is odd by Lemma B.5(a), it suffices to consider the three cases in (i)−(iii)
below.

(i) Let p01 = −(n − 5). Then by (3.8), qT0 has exactly one coincidence with
qT1 , where qT1 is the first row of Q. If this coincidence is in the ith position,
then qT0 = −qT1 + 2q1ie

T
i , where eTi is the 1 × m unit vector with 1 in the

ith position and zeros elsewhere. Hence p0u = −p1u + 2q1iqui, i.e., p0u =
−p1u ± 2, 1 ≤ u ≤ n, as each element of Q is ±1. Consequently, as 1 ∈ J1,
it follows from (B.9) that p0u ∈ {1, 5} for u(̸= 1) ∈ J1, p0u ∈ {−1, 3}
for u ∈ J2 ∪ J3, and p0u ∈ {1,−3} for u ∈ J4. Hence if y1, y2, y3, and
y4 denote the cardinalities of the sets {u : u(̸= 1) ∈ J1, p0u = 1}, {u :
u ∈ J2, p0u = −1}, {u : u ∈ J3, p0u = −1}, and {u : u ∈ J4, p0u = 1},
then from (B.7) and the fact that p01 = −(n − 5), we get ξ1 = n/4 − 4y1,
ξ2 = 3n/4 − 4y2, ξ3 = 3n/4 − 4y3, and ξ4 = 4y4 − 3n/4. Writing y4 = y
for notational simplicity, Lemma B.3 now yields y1 = n/4− y, y2 = y3 = y,
where 1 ≤ y ≤ n/4 because 0 ≤ y1 ≤ n/4 − 1. From (B.8), (B.11) and the
facts just noted, W −W0 = 2n2(6n2 − 66n − 40) − 512(3n − 1)y2 + 768n2y
after some algebra. The right-hand side of the expression for W − W0 is
increasing in y over 1 ≤ y ≤ n/4, and hence is minimized at y = 1. Therefore,
W −W0 ≥ 4(n− 4)(3n3 − 21n2 + 88n− 32) > 0, for n ≥ 16.

(ii) Let p01 = −(n − 7). Then qT0 has exactly two coincidences with the first
row of Q, say in positions i1 and i2. As in (i) above, then p0u = −p1u +
2(q1i1qui1 + q1i2qui2), i.e., p0u = −p1u or −p1u ± 4, 1 ≤ u ≤ n. Hence, noting
that 1 ∈ J1 and using (B.9), p0u ∈ {7, 3,−1} for u(̸= 1) ∈ J1. Since n ≥ 16
and p01 = −(n − 7), from (B.7) one can now check that |ξ1| ≤ 5n/4 − 8.
Also, each p0u is odd by Lemma B.5(a), and p0u ≥ −(n − 7), 1 ≤ u ≤ n,
so that

∑n
u=1(p0u + n− 7)(p20u − 1) ≥ 0, i.e.,

∑n
u=1 p

3
0u ≥ −n(n− 4)(n− 7),

invoking (B.10). From these facts, together with (B.8) and (B.11), W−W0 ≥
4(n4 − 39n3 + 488n2 − 1696n+ 512) > 0, for n ≥ 16.

(iii)Let p01 ≥ −(n − 9). As in (ii) above, then
∑n

u=1 p
3
0u ≥ −n(n − 4)(n − 9).

Also, by Lemma B.3, (B.7), (B.10), and the Cauchy-Schwarz inequality,

ξ21 =
1

4

4∑
l=1

ξ2l ≤ 1

4

4∑
l=1

( ∑
u∈Jl

p20u

)
(
1

4
n) =

1

16
n

n∑
u=1

p20u =
1

16
n2(n− 3).

Therefore, by (B.8) and (B.11), W −W0 ≥ 2n2(n−4)(n+5) > 0, for n ≥ 16.

Proof of Theorem 1 for m = n−3. As mentioned earlier, for n = 8 or 12, the
result follows by complete enumeration of all possibilities for the added run. Let,
therefore, n ≥ 16. By Lemma B.4(b), Lemma B.5, Lemma B.6(b) and Lemma
B.7, then R2, or equivalently W , is minimized if and only if qT0 is the negative
of some row of Q. Lemma B.6(c) now completes the proof.
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