
Statistica Sinica 23 (2013), 829-851

doi:http://dx.doi.org/10.5705/ss.2011.279

SEMIPARAMETRIC ROC ANALYSIS

USING ACCELERATED REGRESSION MODELS

Eunhee Kim and Donglin Zeng

Brown University and University of North Carolina at Chapel Hill

Abstract: The Receiver Operating Characteristic (ROC) curve is a widely used mea-

sure to assess the diagnostic accuracy of biomarkers for diseases. Biomarker tests

can be affected by subject characteristics, the experience of testers, or the environ-

ment in which tests are carried out, so it is important to understand and determine

the conditions for evaluating biomarkers. In this paper, we focus on assessing the

effects of covariates on the performance of the ROC curves. In particular, we de-

velop an accelerated ROC model by assuming that the effect of covariates relates

to rescaling a baseline ROC curve. The proposed model generalizes the acceler-

ated failure time model in the survival context to ROC analysis. An innovative

method is developed to construct estimation and inference for model parameters.

The obtained parameter estimators are shown to be asymptotically normal. We

demonstrate the proposed method via a number of simulation studies, and apply

it to analyze data from a prostate cancer study.

Key words and phrases: Accelerated failure time model, asymptotic normality,

receiver operating characteristic curve, regression models.

1. Introduction

In medical studies, noninvasive and accurate biomarkers are widely used for

evaluating patients’ disease status or their responses to treatments. Examples

include the use of prostate-specific antigen and CA-125 to detect the presence

of prostate cancer and ovarian cancer, respectively. To assess the accuracy of

biomarkers for diagnosis and prognosis of disease, one of the most popular tools

is the analysis of the Receiver Operating Characteristic (ROC) curve (Swets and

Pickett (1982); Hanley (1989)). The definition of a ROC curve is as follows: let

Y1 denote the biomarker for a diseased subject and Y0 denote the biomarker for a

non-diseased subject. For any threshold value c for which any test results greater

than c are considered to be positive, the true positive and false positive rates are

defined as S1(c) = P (Y1 ≥ c) and S0(c) = P (Y0 ≥ c). The ROC curve is defined

as the plot of the true positive rate versus the false positive rate, (S0(c), S1(c)),

when the threshold value c varies from −∞ to ∞. Equivalently, the ROC curve

is a function

ROC(t) = S1(S
−1
0 (t)), t ∈ (0, 1),
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where S−1
0 denotes the inverse of S0.

In practice, the diagnostic performance of biomarkers can vary under differ-

ent conditions. They may be accurate for predicting diseases for certain patients,

but may not perform well for others. Biomarker performance may also depend

on the particular conditions under which biomarker tests are carried out, in-

cluding the level of experience of the tester. In order to evaluate the diagnostic

performance of biomarkers, it is important to understand how the performance

depends on patient characteristics or test conditions.

In the existing literature, three approaches to incorporate covariate effects

into the ROC analysis have been suggested (c.f., Pepe (1998, 2003); Zhou, Obu-

chowski, and McClish (2002)). The first approach is to model the ROC curve

summary indices as a function of covariates. Particularly, Dorfman, Berbaum,

and Metz (1992) and Obuchowski and Rockette (1995) suggested modeling the

area under the curve (AUC), while Thompson and Zucchini (1989) recommended

modeling the partial area under the curve (pAUC). This approach is feasible only

when covariates are discrete, and there are enough patients in each covariate com-

bination to permit the reliable calculation of the summary accuracy measure.

The second approach is to model the distributions of test results as a function

of disease status and covariates. Tosteson and Begg (1998) described the use of

an ordinal regression model to induce the regression models for the ROC curve

for tests with ordinal outcomes. Their method has been extended to random

effects models (Beam (1995); Gatsonis (1995)) and Bayesian methods (Peng and

Hall (1996); Hellmich et al. (1998); Ishwaran and Gatsonis (2000)). However,

in this approach, the parameter estimates do not reflect the covariate effects on

the ROC curve, so it is difficult to examine how the ROC curves can vary over

different covariates. Instead, the third approach directly models covariate effects

on the ROC curve (Pepe (1997, 2000); Alonzo and Pepe (2002)). Sometimes, this

approach is called a parametric distribution free approach since it only assumes

a parametric model for the ROC curve, but is distribution-free regarding the

distribution of the test results. The most important advantage of this approach

is that the interpretation of model parameters pertains directly to the covariate

effects on the ROC curves. Specifically, in this approach, Pepe (1997, 2000) pro-

posed parametric ROC regression models of the generalized linear model (GLM)

form by assuming,

ROCX(t) = g(h(t) + βTX), t ∈ (0, 1), (1.1)

where ROCX(t) denotes the ROC curve at a false positive rate t associated

with covariates X, g(·) is a known link function, and h(·) is a baseline function

specified up to some finite parameters. Here, the baseline function h defines

the location and shape of the ROC curve, and β quantifies covariate effects.
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Pepe used the estimating equations for β based on the binary indicator vari-

able I(Y1 ≥ S−1
0 (t|X)). Later, Cai and Pepe (2002) extended this parametric

ROC regression model to a semiparametric approach by allowing an arbitrary

nonparametric baseline function for h. They assumed a semiparametric location

model for S0(y|X) (Pepe (1998); Heagerty and Pepe (1999)), and constructed

high-dimensional estimating equations for estimating β and h. We emphasize

that the last two models both assume that the effects of covariates are related

to the location shift of a baseline ROC curve. This may not be true in some

situations.

In this article, we develop an alternative regression model, namely the accel-

erated ROC model, by adjusting for covariates that can influence the performance

of biomarkers. We consider modeling covariates directly on the ROC curve and

our model generalizes the usual accelerated failure time model (Kalbfleisch and

Prentice (2002)) in the survival context to the ROC analysis. A practical advan-

tage of the proposed approach is that the estimation for the regression parameters

only requires solving a small number of equations compared to the estimation

techniques by Cai and Pepe (2002). In Section 2, we describe an accelerated

ROC model and the procedures for estimating parameters of covariates β as well

as the ROC function. The asymptotic properties of β and the ROC function

are given in Section 3, and simulation studies are provided in Section 4. As an

example, we apply our method to a prostate cancer dataset in Section 5, and a

discussion is given in Section 6. All technical proofs are given in the Appendix.

2. Models and Inference Procedure

To model the covariate effects on the ROC curve, we propose the semipara-

metric ROC model

ROCX(t) = G(eβ
TX log t), t ∈ (0, 1), (2.1)

where ROCX(t) denotes the ROC curve at a false positive rate t associated

with covariates X and G(·) is an unknown and increasing function satisfying

G(−∞) = 0 and G(0) = 1, this is because ROCX(1) = 1 and ROCX(0) = 0

for any fixed value X. It is noted that (2.1) becomes one ROC-GLM model if

a link function g in (1.1) takes G(exp(t)) with a baseline function h(t) equal to

log(log(t)).

In model (2.1), a negative value for β indicates that discrimination improves

asX increases since log(t), t ∈ (0, 1) is negative and G(·) is an increasing function.

For example, if G(t) = exp(αt), then ROCX(t) = exp{αeβTX log t}, 0 < t < 1. If

α = 1 and β = 0, the ROC curve is the 45 degree line indicating that a biomarker

has no discriminatory ability, while if 0 < α < 1 and β = 0, the ROC curve is
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Figure 1. (Left) Parametric ROC-GLM, ROC1(t) = Φ(0.6X + 0.8Φ−1(t));
(Right) Accelerated ROC model, ROC2(t) = exp(0.5e−0.8X log(t))

above the diagonal line, and a biomarker is considered to have reasonable dis-

criminatory ability to diagnose patients with and without the disease. If α = 0.5

and β = −0.8, then ROCX(t) = exp{0.5e−0.8X log t}; in this case, discrimination

improves as X increases, see Figure 1.

The parameter β characterizes the shape of the ROC curve for X, where

the effects of X in the proposed ROC model relate to rescaling a baseline ROC

curve. To see how this is different from the parametric ROC regression model

in Pepe (1997, 2000), we plot the ROC curves using the two models in Figure 1.

Clearly, the covariate affects true positive rates more dramatically for low false

positive rates based on our model.

Suppose we observe n1 biomarker measurements from diseased subjects and

n0 biomarker measurements from non-diseased subjects. Let Yi1 (i = 1, . . . , n1)

denote the biomarker measurement for diseased subject i and Yj0 (j = 1, . . . , n0)

denote the biomarker measurement for non-diseased subject j. We assume that

each subject may have one or more covariates and denote them as Xi1 and Xj0

for diseased subject i and non-diseased subject j, respectively. In many applica-

tions, the measurements of a biomarker are subject to a finite upper detection

limit, denoted by τ , where the test results above τ are not quantifiable and are

considered to be censored. Thus, the observed data can be represented as

{(min(Yi1 ∧ τ), Xi1,∆i1), i = 1, . . . , n1}

for diseased subjects and

{(min(Yj0 ∧ τ), Xj0,∆j0), j = 1, . . . , n0}

for non-diseased subjects, where ∆i1 = I(Yi1 ≤ τ) and ∆j0 = I(Yj0 ≤ τ).
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By the definition of ROCX(t), the model (2.1) can be rewritten as

S1(t|X) = G(eβ
TX logS0(t|X)). (2.2)

It is to be noted that we make no assumptions on the model for S0(t|X). To
estimate β, we take Zi1 = − logS0(Yi1|Xi1). Using (2.2), it can be shown that

P (Zi1 ≤ z|Xi1) = 1− P (− logS0(Yi1) > z|Xi1) = 1−G(eβ
TXi1 log e−z)

= 1−G(−zeβ
TXi1) ≡ F (zeβ

TXi1),

with F (x) = 1−G(−x). Hence, Zi1 satisfies the accelerated failure time (AFT)
model, so inference for β can be conducted by solving the log-rank estimating
equation, that is commonly used for the estimation in the AFT model. Specifi-
cally, the log-rank estimating equation is

n1∑
i=1

∆i1

{
Xi1 −

∑
j I(logZj1 + βTXj1 ≥ logZi1 + βTXi1)Xj1∑

j I(logZj1 + βTXj1 ≥ logZi1 + βTXi1)

}
= 0. (2.3)

Alternatively, other methods, such as the the Gehan-rank estimation equation
(Jin et al. (2003)) or the nonparametric maximum likelihood estimation (Zeng
and Lin (2007)) can be applied. Because of the AFT model implication on the
Zi1 = − logS0(Y1|X), we call the proposed ROC function (2.1) the accelerated
ROC model.

Since S0 is unknown, we estimate S0 nonparametrically using the smoothed
Breslow estimator as follows:

Ŝ0(y|x) = exp

{
−

n0∑
j=1

I(Yj0 ≤ y)
△j0Kan(Xj0 − x)∑n0

k=1 I(Yk0 ≥ Yj0)Kan(Xk0 − x)

}
, (2.4)

where Kan(x) = K(x/an)/a
d
n with an the bandwidth and d the dimension of X.

Alternatively, one may use the Kaplan-Meier type estimator.
We suggest using an optimal bandwidth selection method in Wang and Shen

(2008) for an in (2.4). First, we obtain a smoothed Breslow estimator Ŝ(y|x, an)
using a reasonable initial bandwidth an. We also generate repeatedly B boot-
strap samples {(x∗i0, y∗i0), i = 1, . . . , n0} from {(xi0, yi0), i = 1, . . . , n0} and get
bootstrapped smoothed Breslow estimators,

Ŝb
0(y|x, a∗n)=exp

{
−

n0∑
j=1

I(Y ∗
j0≤y)

Ka∗n(X
∗
j0−x)∑n0

k=1I(Y
∗
k0≥Y ∗

j0)Ka∗n(X
∗
k0 − x)

}
, b=1, . . . , B.

Then, we select ân by minimizing the bootstrapped mean integrated squared
error (MISE)

1

B

B∑
b=1

∫ (
Ŝb
0(y|x, a∗n)− Ŝ0(y|x, an)

)2
dy (2.5)
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over possible bandwidths a∗n. If the difference between ân and the initial value

an is small enough, the process stops and the optimal bandwidth is set to ân.

Otherwise, we replace the initial bandwidth and repeat similar procedures until

the process converges to an optimal value.

Zi1 is estimated by Ẑi1 = − log Ŝ0(Yi1|Xi1) using (2.4) and, after plugging

Ẑi1 into (2.3), β̂ is calculated by solving

n1∑
i=1

∆i1

{
Xi1 −

∑
j I(log Ẑj1 + β̂TXj1 ≥ log Ẑi1 + β̂TXi1)Xj1∑

j I(log Ẑj1 + β̂TXj1 ≥ log Ẑi1 + β̂TXi1)

}
= 0.

Remark 1. When X is discrete, the estimator for S0, Ŝ0(y|x) in (2.4) can be

replaced by the Breslow estimator using the data with Xj0 = x. i.e.,

Ŝ0(y|x) = exp

{
−

n0∑
j=1

I(Yj0 ≤ y)
△j0I(Xj0 = x)∑n0

k=1 I(Yk0 ≥ Yj0)I(Xk0 = x)

}
.

Remark 2. WhenX has more than one continuous covariate, the kernel estimate

Ŝ0 may not perform well with a moderate sample size. In this case, we suggest

estimating S0(y|x) based on the Cox regression model using the non-diseased

data. That is,

Ŝ0(y|x) = exp
[
− Λ̂(y) exp(γ̂Tx)

]
,

where Λ̂(y) is the estimate of the cumulative baseline function and γ̂ is the

regression parameter estimate. An alternative approach is to use the single index

model, which is more flexible than the Cox regression model. The estimators from

the latter model, however, can be computed easily.

We next describe the procedures for estimating G and the ROC function

specified in (2.1). Clearly, P (Zi1e
βTXi1 ≤ z|Xi1) = 1 − G(−z). Therefore,

Zi1e
βTXi1 is independent of Xi1 and has distribution function 1 − G(−z). This

implies that we can estimate G consistently by using the empirical distribution

of Wi1 ≡ Zi1e
βTXi1 . In light of possible upper limit detection in practice, we

specifically use the Kaplan-Meier estimator to estimate the survival function of

Wi1. After replacing Wi1 with its estimate

Ŵi1 = −eβ̂
TXi1 log Ŝ0(Yi1|Xi1), i = 1, . . . , n1,

we estimate G(·) using

Ĝ(t) =

n1∏
i=1

[
1− ∆i1I(Ŵi1 ≤ −t)∑n1

j=1 I(Ŵj1 ≥ Ŵi1)

]
. (2.6)
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Finally, the ROC curve for fixed covariates X is estimated by

R̂OCX(t) = Ĝ(eβ̂
TX log t), t ∈ (0, 1), (2.7)

and the corresponding AUC estimate is

ÂUCX =

∫ 1

0
R̂OCX(t)dt =

∫ 1

0
Ĝ(eβ̂

TX log t)dt, (2.8)

which can be calculated via the trapezoidal numerical integration.

Although the asymptotic variance of β̂ has an analytic expression (see the

Appendix), directly estimating its variance involves estimating some derivatives

and can be computationally tedious. Thus, we propose to estimate the variances

of β̂ and Ĝ using the bootstrap method in order to make inferences. Bootstrap

samples are drawn repeatedly with replacement from the dataset, and β and G

are estimated for each bootstrap sample. We then use the variances of these β̂’s

and Ĝ’s as our estimates.

The confidence region for R̂OCX(t) in (2.7) can be calculated in the following

manner. For 0 < ξ < 1 and 0 ≤ a < b ≤ 1, we first find Cξ such that

Pr

{
sup

t∈(a,b)

|Ĝ(eβ̂
TX log t)|

SG(eβ̂
TX log t)

≤ Cξ

}
= 1− ξ,

where SG(e
β̂TX log t) is the estimated standard deviation of Ĝ(eβ̂

TX log t). Then,

a 100(1− ξ)% confidence region for ROCX(t) over [a, b] is

Ĝ(eβ̂
TX log t)± Cξn

−1/2
1 SG(e

β̂TX log t).

Specifically, we generate K (e.g. K = 500) samples consisting of biomarker mea-

surements and corresponding covariates in the diseased and nondiseased groups

and compute Ĝk (k = 1, . . . ,K) for each sample. Then, SG(e
β̂TX log t) can be

calculated by the sample standard deviation of Ĝk’s, and Cξ can be computed

as the 100(1-ξ)% percentile of the supt∈(a,b)
|Ĝk(e

β̂TX log t)|
SG(eβ̂

TX log t)
, k = 1, . . . ,K.

Remark 3. The proposed approach can be generalized to handle the situation

in which each subject may have multiple or repeated biomarkers. We assume

the marginal ROC model of such multivariate biomarkers. In this case, the

estimating equation for β is replaced by

n1∑
i=1

ni1∑
k=1

∆ik1

{
Xik1−

∑
j

∑nj1

l=1 I(log Ẑjl1 + β̂TXjl1 ≥ log Ẑik1 + β̂TXik1)Xjl1∑
j

∑nj1

l=1 I(log Ẑjl1 + β̂TXjl1 ≥ log Ẑik1 + β̂TXik1)

}
=0,
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where ∆ij1, Ẑij1, and Xij1 are the observations of jth measurement for subject

i in the diseased group, and Ẑij1 can be estimated similarly as Ẑi1. The boot-

strapping method can still be used for inference by randomly selecting subjects

for each bootstrap sample.

Remark 4. We suggest using the following procedure to check model adequacy.

First, we stratify the data based on covariates X to obtain L groups. Let Y l
i1

(i = 1, . . . , nl
1) be the biomarker measurement for diseased subject i, and Y l

j0

(j = 1, . . . , nl
0) be the biomarker measurement for non-diseased subject j in

group l. Next, we compare the empirical ROC curve with the proposed ROC

curve R̂OCX(t) = G(eβ̂X log t) in each group, where X takes the mean value

from the group. A good-fitting ROC model is reasonably consistent with the

empirical ROC curve. Finally, we check if the proposed AUC estimate (2.8) is

close to the empirical AUC within each stratum

ÂUCGroup=l =

nl
0∑

j=1

nl
1∑

i=1

{
I(Y l

i1 > Y l
j0) +

1

2
I(Y l

i1 = Y l
j0)

}
(nl

1n
l
0)

−1, l = 1, . . . , L.

3. Asymptotic Properties

In this section, we derive the asymptotic properties of β̂ and Ĝ. Consider

the following conditions.

(C.1) The true parameter value, β0, belongs to a compact set B.

(C.2) The true densities with respective to a dominating measure for (Y1, X1)

and (Y0, X0) are (χ+ 1)-continuously differentiable, where χ > d/2 with d

the dimension of X0. Additionally, X1 and X0 have bounded support.

(C.3) The matrix [1, X1] is linearly independent with positive probability.

(C.4) The kernel function K(·) is differentiable with bounded symmetric support

and first (χ− 1) moments begin zero. Moreover, nadn → ∞ and na2χn → 0.

(C.5) n0/n → ν ∈ (0, 1), where n = n0 + n1.

(C.1) and (C.5) are standard conditions for this type of problem. (C.3) ensures

the identifiability of the regression parameters, and (C.4) states the restrictions

on the choice of possible kernel functions. For example, when d = 2, the kernel

function can be chosen to be the Gaussian kernel or the Epanechnikov kernel.

Both (C.2) and (C.4) are necessary conditions to prove the asymptotic distribu-

tion of β̂. Obviously, if S0 is estimated using the Breslow method with discrete

X1 or from the Cox regression method, (C.4) is not needed.

Theorem 1. Under Conditions (C1)−(C5), ∥β̂ − β0∥ →a.s. 0.
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Table 1. Estimates of optimal bandwidths hopt and bootstrapped MISEs
when X = 0.54 in Simulation 2 based on 1,000 simulations.

Scenario n1 = n0 hopt MISE
Simulation 2 100 0.1706 0.619

200 0.1212 0.624

Theorem 2. Under Conditions (C1)−(C5),
√
n(β̂−β0) converges in distribution

to a mean zero normal random vector as n → ∞.

Theorem 3. Under Conditions (C1)−(C5),
√
n(Ĝ(log t)−G0(log t)) converges

weakly to a zero mean Gaussian process in l∞([0, 1]).

The proofs of Theorems 1−3 are provided in the Appendix. For the proof of

Theorem 1, we use the fact that Ŝ0(y;x) converges uniformly in (y, x) to S0(y;x)

as n goes to ∞, which is given in Zeng (2004). We then apply Theorem 2.10.3 of

van der Vaart and Wellner (1996) and Theorem 5.9 of van der Vaart (1998). The

proofs of Theorems 2 and 3 follow the same arguments as in Zeng (2004), and

we use the central limit theorems for the empirical process indexed by classes

depending on samples (Theorem 2.11.23, van der Vaart and Wellner (1996)).

4. Simulation Studies

Simulation studies were conducted to examine the performance of the pro-

posed method. First, we took as true G(x) = exp(αx), so from (2.1),

ROCX(t) = exp[αeβ
TX log(t)]. (4.1)

The biomarker values for diseased and non-diseased subjects, Y1 and Y0, were

generated by

Y0 = − log(U0)

(λ exp(γTX))
and Y1 = − log(U1)

(λα exp(γTX + βTX))
, (4.2)

where U0 and U1 are Uniform(0, 1) random variables. It is easy to check such

(Y0, Y1) gives the ROC function specified in (4.1). We used an equal number of

diseased and non-diseased subjects but varied the total sample size n from 200

to 400. Additionally, we set the upper detection limit τ as the 95th percentile of

the biomarker in the non-diseased group.

We conducted three simulations with different types of covariates. For the

first simulation, a binary covariate X was generated from a Bernoulli distribution

with probability 0.5, and true parameters in (4.2) were set to β = 0.5, γ =

−0.5, λ = 1, and α = 1.2. Because X was discrete, we estimated S0(y|x) using
the Breslow estimator given in Remark 1. In the second simulation, we used a
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Table 2. Summary results from simulation studies.

n1 = n0 = 100 n1 = n0 = 200
Par. True Est ASE SE CP Est ASE SE CP

Simulation Study 1. X: 0 or 1
β 0.5 0.479 0.309 0.302 95.7 0.517 0.219 0.210 94.9
G(−2.7) 0.259 0.255 0.081 0.080 95.6 0.262 0.060 0.060 93.0
G(−1.3) 0.522 0.519 0.084 0.082 94.8 0.524 0.060 0.059 94.0
G(−0.5) 0.779 0.774 0.063 0.060 96.0 0.778 0.044 0.042 94.3

Simulation Study 2. X ∼ Beta(4,2)
β -1 -1.080 0.967 0.936 94.9 -1.057 0.703 0.694 95.8
G(−0.89) 0.663 0.630 0.160 0.165 92.2 0.641 0.125 0.128 93.4
G(−0.542) 0.763 0.727 0.141 0.142 94.3 0.741 0.106 0.106 94.2
G(−0.23) 0.891 0.865 0.098 0.091 95.0 0.877 0.066 0.061 95.6

Simulation Study 3. X1 ∼ Uniform(0,1), X2 ∼ Uniform(0,1)
β1 -1.3 -1.300 0.571 0.543 95.6 -1.297 0.384 0.367 94.7
β2 -1.8 -1.847 0.587 0.582 94.5 -1.817 0.395 0.391 95.2
G(−0.162) 0.321 0.319 0.144 0.150 92.7 0.325 0.108 0.107 94.1
G(−0.116) 0.442 0.430 0.151 0.158 93.2 0.441 0.112 0.110 94.2
G(−0.056) 0.675 0.649 0.137 0.137 95.2 0.668 0.096 0.091 94.9

continuous covariate generated from Beta(4, 2) distribution, and true parameters

were set to β = −1, γ = −0.2, λ = 0.5, and α = 0.5. In this simulation,

S0(y|x) was estimated using the smoothed Breslow estimator in (2.4), where the

Gaussian kernel function K(x) = (2π)−1/2 exp(−x2/2) was applied. The initial

bandwidth was set to an = n1
−1/3, and optimal bandwidths an were chosen such

that the bootstrapped MISE (2.5) attained is minimum. Specifically, we used

the optimal bandwidths at the average values of the covariates as shown in Table

1. Our simulation studies showed, however, that the optimal bandwidths and

initial bandwidth an = n1
−1/3 resulted in very similar β estimates. For the third

simulation, two continuous covariates, generated as Uniform(0,1) were used with

β = (−1.3,−1.8)T , γ = (−0.2,−0.25)T , λ = (1, 1)T , and α = 7. We then fit

the Cox model to estimate S0 as described in Remark 2. In all the simulation

studies, we obtained β̂ by solving the log-rank estimating equation (2.3) through

bisection search.

Table 2 summarizes the simulation results based on 1,000 replicates. Column

“Est” is the average value of the estimates from 1,000 replicates; column “ASE”

is the average of the estimated standard errors by the bootstrap method with

1,000 replicates; column “SE” is the standard deviation of the estimates; col-

umn “CP” gives the (100×) coverage proportion of the 95% confidence intervals

based on asymptotic normality. Overall, the estimates for β are very close to

the actual values, and the estimated standard errors using the bootstrap method
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Table 3. Estimates of β under the misspecified model for S0.

n1 = n0 = 100 n1 = n0 = 200
Par True Est SE MSE Est SE MSE
β1 -1.3 -1.271 0.688 0.448 -1.342 0.462 0.215
β2 -1.8 -1.788 0.724 0.524 -1.840 0.503 0.254

Figure 2. Semiparametric ROC curve (· · · ), misspecified parametric ROC
curve (– · – ·), and true ROC curve (—)

approximate the empirical standard errors fairly well. In addition, the coverage

proportions of 95% CIs are close to the nominal level of 95% across sample sizes.

In the same table, we present the true and estimated G at three fixed points cho-

sen to be the quartiles of the true distribution of −W1 (= eβ
TX1 logS0(Y1;X1)).

For all simulations, the estimated values of G are very close to the actual values

at all three points. Moreover, the fitted semiparametric ROC curves obtained

from the three simulation studies were extremely close to the true ROC curves

(e.g., Figure 2).

We next investigated the robustness of the β estimates conducted in the

third simulation study by misspecifying the model for S0. Specifically, Y0 was

generated from the log-normal model of the form

Y0 = exp(−1.25 + 0.37X1 + 0.5X2 + Z)

with Z ∼ Normal(0, 0.62), and Y1 was generated as at (4.2),

Y1 = − log(U1)

α exp(γTX + βTX)
,

with β = (−1.2,−2)T , γ = (−2, 1.95)T , and α = 7. As shown in Table 3, the

estimates of β using the accelerated ROC model are fairly robust to the choice

of distributions for S0.
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Figure 3. Misspecified semiparametric ROC curve (· · · ), misspecified para-
metric ROC Curve (– · – ·), and true ROC curve (—)

Furthermore, we compared the performance of the proposed semiparametric

approach, based on the accelerated ROC model, to the parametric ROC-GLM

approach (Alonzo and Pepe (2002))

ROCX(t) = Φ(γ0 + γ1Φ
−1(t) + γ2X).

Specifically, the three simulation scenarios were considered (n1 = n0 = 100) and

the two approaches were compared with respect to MISEs shown in Table 4.

First, we used the data obtained from Simulation 1 and the semiparametric and

parametric ROC curves were estimated at X = 0, 1. Figure 2 and the MISEs

in Table 4 indicate that the fitted semiparametric ROC curve Ĝ(e0.479X log t) is

slightly closer to the true ROC curve exp(0.5e0.5X log(t)) than the misspecified

parametric ROC curve Φ(−0.463 + 1.449Φ−1(t) + 0.56X) at both points.

Second, we simulated the biomarker values from

Y0 = exp(−1 + 1.4X + ϵ), Y1 = − log(U)

exp(−0.2 + 0.2X)
,

whereX and U were generated from Uniform(0, 1) and the ϵ were fromN(0, 0.62).

The induced ROC curve is ROCX(t) = exp[− exp(−1.2 + 1.6X − 0.6Φ−1(t))],

which is neither parametric ROC-GLM nor our accelerated ROC model. Figure

3 suggests that the proposed semiparametric ROC curve Ĝ(e1.39X log t) is closer

to the truth than is the parametric curve Φ(0.058+0.916Φ−1(t)−0.24X) at both

points. Interestingly, the ROC-GLM approach gives very different estimates from

the truth.

Finally, we simulated the biomarker values from

Y1 = 3 + 3.85X + ϵ1, Y0 = 1.5 + 2X + ϵ0,
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Figure 4. Misspecified semiparametric ROC curve (· · · ), parametric ROC
curve (– · – ·), and true ROC curve (—)

Table 4. Average of estimated MISE based on 1,000 simulated datasets by
the proposed semiparametric and parametric ROC-GLM approaches.

Figure Model MISE (Covariate)
1 Semiparametric 2.32× 10−5 (X = 0) 1.94× 10−4 (X = 1)

Misspecified ROC-GLM 0.0013 (X = 0) 0.0014 (X = 1)
2 Misspecified semiparametric 0.0131 (X = 0) 0.0451 (X = 0.5)

Misspecified ROC-GLM 0.0599 (X = 0) 0.0635 (X = 0.5)
3 Misspecified semiparametric 0.0035 (X = 0) 0.0044 (X = 1)

ROC-GLM 6.75× 10−5 (X = 0) 2.72× 10−4 (X = 1)

where X is a Bernoulli random variable with probability 0.5, and ϵ1 and ϵ0 have

the standard normal distributions. Then the corresponding covariate-specific

curve is

ROCX(t) = Φ(1.5 + Φ−1(t) + 1.85X),

which is exactly the form in the ROC-GLM approach. Undoubtedly, the ROC-

GLM approach fits data well but our accelerated ROCmodel, even though biased,

is still not far from the truth; see Figure 4.

5. Application

We illustrate our approach by utilizing a prostate cancer dataset. Prostate-

specific antigen (PSA) is a protein produced by the prostate gland, and the

PSA test measures the level of PSA in the blood. Most healthy men have PSA

levels under 4 nanograms per milliliter (ng/mL) of blood, and the chance of

having prostate cancer rises as the PSA level increases. PSA occurs in two major

forms in the blood. One form is attached to blood proteins while the other

freely circulates. The free PSA is the ratio of how much PSA circulates freely

compared to the total PSA level. Low free PSA may indicate prostate cancer,
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and most men with prostate cancer have a free PSA below 15%. According to

the American Cancer Society and National Cancer Institute, men with free PSA

at 7% or lower should undergo a biopsy as a precaution. We used a dataset

of 71 prostate cancer subjects and 68 controls, all of whom participated in the

Beta-Carotene and Retinol Efficacy Trial (CARET), a randomized lung cancer

prevention study including 12,025 men (Goodman et al. (1993); Etzioni et al.

(1999)).

The objective of this analysis was to evaluate the capacity of free PSA levels

to discriminate men with prostate cancer from those with no malignancy prior to

the onset of clinical symptoms. Subjects who participated in CARET had serum

samples drawn at baseline and at two-year intervals thereafter. Blood samples

drawn after a diagnosis of prostate cancer were excluded from this analysis,

leaving 1-7 blood samples per subject. Previous studies have suggested that

age and the time at which PSA was measured prior to diagnosis may affect

the detection of prostate cancer. Let X be the age PSA was measured, and

T be the time (years) from the onset of symptoms to the time at which the

serum sample was drawn, so that time is negative and increases to 0, the time of

clinical diagnosis. Accuracy would be expected to increase with increasing values

of T . The average age of participants was 63.7 (range from 46.7 to 80.8), and

the average time was -3.06 years (range from -9.008 to -0.003 yrs). We fitted an

accelerated ROC model adjusting for age X and time T ,

ROCT,X(u) = G(eβxX+βtT log u).

Since each subject may have more than one measurement, the estimating equa-

tions in Remark 3 were solved for estimating β’s.

We found β̂x = 0.0485 with SE 0.0248 (p-value 0.0505) and β̂t = −0.0587

with SE 0.0442 (p-value 0.1841). The positive coefficient for age suggested that

discrimination of disease is more efficient in younger men, and the negative coef-

ficient for time implies that discrimination improves as PSA levels are measured

closer to actual diagnosis although the time T was not found to be significant.

The estimated AUCs based on the accelerated ROC model were 0.8579,

0.8103, and 0.7623 using the median time T = −2.82 and the respective mean

ages for groups age ≤ 61, 61< age ≤ 65, and age ≥ 65. On the other hand, the

estimated parametric binormal model was ROCT,X(u) = Φ(4.82+0.715Φ−1(t)−
0.051X + 0.166T ) and the corresponding estimated AUCs were 0.8788, 0.8220,

and 0.7634. Our AUC estimates turned out to be closer to the empirical AUCs

which were calculated as 0.8575, 0.8062, and 0.7527. Additionally, Figure 5 shows

that the fitted ROC curves based on the accelerated ROC model matches well

with the empirical curves demonstrating the model adequacy of the proposed

method; refer to Remark 4.
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Figure 5. Estimated Semiparametric ROC Curves for PSA Adjusted for Age
and Time (– · – ·) and their 95 % Confidence Regions over [0, 0.6] (· · ·),
Corresponding Empirical ROC Curves (—).

6. Discussion

We have proposed a semiparametric method to assess the accuracy of bio-

markers by adjusting for covariates that could influence their performance. We

developed an accelerated ROC model by employing the properties of the AFT

model and showed that the parameter estimate of β can be conducted by solv-

ing the log-rank estimating equation. The function G was estimated using the

empirical distribution of Zije
βTXi1 without making any assumptions about the

distribution of G. We demonstrated that Ĝ derived using the Kaplan-Meier es-

timator of Zije
βTXi1 is a good fit to the true function G. The bootstrapping

method was used for inference, and the asymptotic properties of β̂ and Ĝ were

presented.

In our proposed method, the parameter estimates of covariates based on the

log-rank estimating equations may not be efficient. Other estimation approaches

such as described by Jin et al. (2003) and Jin, Lin, and Ying (2006) can be
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applied. For future work, we will examine whether a semiparametrically efficient
estimator can be obtained.

Both our model and Pepe’s (1997; 2000) directly model the effects of covari-
ates on the ROC curves. These two models are in parallel to the AFT model
and the proportional hazards model in the survival context. In survival analysis,
there have been a number of approaches developed for model diagnostics and
model checking. It is interesting to see how those approaches can be extended
to the ROC regression models. Another possibility is to consider an even more
general model by assuming

ROCX(t) = G(exp{XTβ}h(t)),

where both G and h are unknown functions. This general model includes our
model and Pepe’s model as special cases with h(t) = log t and G(·) a known link,
respectively. However, it is unclear how reliably the model parameters can be
estimated in practice.

Appendix

A.1. Proof of Theorem 1

With direct calculations, (C.3) implies that

σ1 ≡ − ∂

∂β
E

[
Q1(logZ1 + βTX1)

Q0(logZ1 + βTX1)

]
is positive for β ∈ B, where Q1(x) = E[X1I(logZ1 + βTX1 ≥ x)] and Q0 =
E[I(logZ1 + βTX1 ≥ x)]. Therefore, β0 must be the unique solution to

E

[(
X1 −

Q1(logZ1 + βTX1)

Q0(logZ1 + βTX1)

)]
= 0,

We introduce some notation. We use Pn1 and P1 to denote the empirical
measure and expectation based on i.i.d. observations in the diseased group,
(Yi1, Xi1), i = 1, . . . , n1. Similarly, we use Pn0 and P0 to denote the empirical
measure and expectation based on i.i.d. observations in the non-diseased group,
(Yj0, Xj0), j = 1, . . . , n0. Moreover, Gn1 and Gn0 denote the empirical processes√
n1(Pn1 − P1) and

√
n0(Pn0 − P0), respectively. Thus, by definition, β̂ should

solve

0 = Pn1

[{
X1 −

∑n1
i=1 I(log Ẑi1 + β̂TXi1 ≥ log Ẑ1 + β̂TX1)Xi1∑n1

i=1 I(log Ẑi1 + β̂TXi1 ≥ log Ẑ1 + β̂TX1)

}]
.

We show the consistency of β̂. First, conditional on non-diseased data,
(Ẑi1, Xi1) are i.i.d. Therefore, the class

F ≡
{
I(x ≥ log Ẑ1 + βTX1) : x ∈ (−∞,∞), β ∈ B

}
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is the VC-class, so is Donsker. Note that the random functions

n−1
n1∑
i=1

I(log Ẑi1 + βTXi1 ≥ log Ẑ1 + βTX1)Xi1,

n−1
n1∑
i=1

I(log Ẑi1 + βTXi1 ≥ log Ẑ1 + βTX1),

E∗

[
I(log Ẑ1 + βTX1 ≥ log Ẑ∗

1 + βTX∗
1 )X1

n−1
∑n1

i=1 I(log Ẑi1 + βTXi1 ≥ log Ẑ∗
1 + βTX∗

1 )

]
,

where here and later, E∗ and E∗∗ denote the expectation with respect to those
random variables with asterisk and double asterisk respectively, can be expressed
as the limit of the convex combinations of F and are bounded from above. Thus,
they belong to sconvF , which is a Donsker class by Theorem 2.10.3 of van der
Vaart and Wellner (1996). Therefore, by the Glivenko-Cantelli Theorem, it is
easy to see that

sup
β

∣∣∣Pn1

[{
X1 −

∑n1
i=1 I(log Ẑi1 + βTXi1 ≥ log Ẑ1 + βTX1)Xi1∑n1

i=1 I(log Ẑi1 + βTXi1 ≥ log Ẑ1 + βTX1)

}]

−E

[{
X1 −

E∗[I(log Ẑ∗
1 + βTX∗

1 ≥ log Ẑ1 + βTX1)X
∗
1 ]

E∗[I(log Ẑ∗
1 + βTX∗

1 ≥ log Ẑ1 + βTX1)]

}] ∣∣∣→a.s. 0.

Furthermore, as n goes to ∞, Ŝ0(y;x) converges uniformly in (y, x) to S0(y;x),
as shown in Zeng (2004). Thus, the limit function

E

[{
X1 −

E∗[I(log Ẑ∗
1 + βTX∗

1 ≥ log Ẑ1 + βTX1)X
∗
1 ]

E∗[I(log Ẑ∗
1 + βTX∗

1 ≥ log Ẑ1 + βTX1)]

}]
converges uniformly in β to

E

[{
X1 −

Q1(logZ1 + βTX1)

Q0(logZ1 + βTX1)

}]
.

The latter has a unique minimum zero at β0 by (C.1). Additionally, it satisfies
the separability at β0 by (C.3). Therefore, by Theorem 5.9 of van der Vaart
(1998), β̂ converges almost surely to β0.

A.2. Proof of Theorem 2

We derive the asymptotic distribution of β̂. From

Pn1

[{
X1 −

∑n1
i=1 I(log Ẑi1 + β̂TXi1 ≥ log Ẑ1 + βTX1)Xi1∑n1

i=1 I(log Ẑi1 + β̂TXi1 ≥ log Ẑ1 + β̂TX1)

}]
= 0 (A.1)
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if we define

Q̂1(x) = E[X1I(log Ẑ1 + β̂TX1 ≥ x)], Q̂0(x) = E[I(log Ẑ1 + β̂TX1 ≥ x)],

then we obtain

Gn1

[{
X1 −

∑n1
i=1 I(log Ẑi1 + β̂TXi1 ≥ log Ẑ1 + β̂TX1)Xi1∑n1

i=1 I(log Ẑi1 + β̂TXi1 ≥ log Ẑ1 + β̂TX1)

}]

−Gn1E
∗

[
I(log Ẑ1 + β̂TX1 ≥ log Ẑ∗

1 + β̂TX∗
1 )X1

n−1
∑n1

i=1 I(log Ẑi1 + β̂TXi1 ≥ log Ẑ∗
1 + β̂TX∗

1 )

]

+Gn1E
∗

[
I(log Ẑ1 + β̂TX1 ≥ log Ẑ∗

1 + β̂TX∗
1 )Q̂1(log Ẑ

∗
1 + β̂TX∗

1 )

n−1
∑n1

i=1 I(log Ẑi1 + β̂TXi1 ≥ log Ẑ∗
1 + β̂TX∗

1 )Q̂0(log Ẑ∗
1 + β̂TX∗

1 )]

]

=−
√
n1E

[{
X1 −

E∗[I(log Ẑ∗
1 + β̂TX∗

1 ≥ log Ẑ1 + β̂TX1)X
∗
1 ]

E∗[I(log Ẑ∗
1 + β̂TX∗

1 ≥ log Ẑ1 + β̂TX1)]

}]
.

From the Donsker theorem, we have

−
√
n1E

[{
X1 −

Q̂1(log Ẑ1 + β̂TX1)

Q̂0(log Ẑ1 + β̂TX1)

}]
= Gn1g(X1, Z1;β0) + op(1), (A.2)

where

g(X1, Z1;β0) =

{
X1 −

Q1(logZ1 + βT
0 X1)

Q0(logZ1 + βT
0 X1)

}

−E∗
[
I(logZ1 + βTX1 ≥ logZ∗

1 + βTX∗
1 )X1

Q0(logZ∗
1 + βT

0 X
∗
1 )

]

+E∗
[
I(logZ1 + βTX1 ≥ logZ∗

1 + βTX∗
1 )Q1(logZ

∗
1 + βT

0 X
∗
1 )

Q0(logZ∗
1 + βT

0 X
∗
1 )

2

]
.

On the other hand, from (C.2),

Q̂0(x) = E
[
P
(
Y1 ≥ Ĥ−1

0 (ex−β̂TX1 ;X1)
∣∣∣X1

)]
,

where Ĥ−1
0 (y;x) denotes the inverse of H0(y;x) ≡ − logS0(y;x) for given x.

Thus, if f1(y|x) is the conditional density of Y1 given X1, then

Q̂0(x)

= −E
[
f1

(
H−1

0 (ex−β̂TX1 ;X1)
∣∣∣X1

)(
Ĥ−1

0 (ex−β̂TX1 ;X1)−H−1
0 (ex−β̂TX1 ;X1)

)]
+E

[
P
(
Y1 ≤ H−1

0 (ex−β̂TX1);X1)
∣∣∣X1

)]
+ o(1).
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By slightly modifying Lemma 3.9.20 of van der Vaart and Wellner (1996), we can

show

Ĥ−1
0 (ex−β̂TX1 ;X1)−H−1

0 (ex−β̂TX1 ;X1)

= −Ĥ0(H
−1
0 (ex−β̂TX1 ;X1);X1)−H0(H

−1
0 (ex−β̂TX1 ;X1);X1)

H ′
0(H

−1
0 (ex−βT

0 X1 ;X1);X0 = X1)
+ o(1),

and that it holds uniformly in x, β̂, and X1. Moreover, since Ĥ0(·;x) converges
to H0(·;x) in D[0, τ ] uniformly in x, we obtain

Q̂0(log Ẑ
∗
1 + βT

1 X
∗
1 )

= E

 f1

(
H−1

0 (Z∗
1e

βT
0 X∗

1−βT
0 X1 ;X1)|X1

)
H ′

0(H
−1
0 (Z∗

1e
βT
0 X∗

1−βT
0 X1 ;X1);X0 = X1)

×
(
Ĥ0(H

−1
0 (Z∗

1e
βT
0 X∗

1−βT
0 X1 ;X1);X1)−H0(H

−1
0 (Z∗

1e
βT
0 X∗

1−βT
0 X1 ;X1);X1)

)]
+E

[
P
(
Y1 ≥ H−1

0 (Ẑ∗
1e

β̂T
0 X∗

1−β̂TX1 ;X1)
∣∣∣X1

)]
+ o(1).

The last term on the right-hand side can be further approximated by

E
[
P
(
Y1 ≥ H−1

0 (Z∗
1e

βT
0 X∗

1−βT
0 X1 ;X1)

∣∣∣X1

)]
E

[
f1(H

−1
0 (Z∗

1e
βT
0 X∗

1−βT
0 X1 ;X1)|X1)

H ′
0(H

−1
0 (Z∗

1e
βT
0 X∗

1−βT
0 X1 ;X1);X0 = X1)

Z∗
1e

βT
0 X∗

1−βT
0 X1

×

{
Ĥ0(Y

∗
1 ;X

∗
1 )−H0(Y

∗
1 ;X

∗
1 )

H0(Y ∗
1 ;X

∗
1 )

+ (β̂ − β0)(X
∗
1 −X1)

}]
.

Similarly, we can expand the numerator term in the left-hand side of (A.2) to

eventually obtain that (A.2) is equivalent to

Gn1g(X1, Z1;β0) + op(1)

=
√
n1σ1(β̂ − β0) +

√
n1E

∗
[
σ2(Z1, X1, X

∗
1 )

(
Ĥ0(H

−1
0 (Z1e

βT
0 X1−βT

0 X∗
1 ;X∗

1 );X
∗
1 )

−H0(H
−1
0 (Z1e

βT
0 X1−βT

0 X∗
1 ;X∗

1 )
)]

+
√
n1E

[
σ3(Y1, X1)

(
Ĥ0(Y1;X1)−H0(Y1;X1)

)]
, (A.3)

for some differentiable functions σ2 and σ3. Particularly, σ1 has the same expres-

sion as given in (C.3) with β = β0, so σ1 is non-singular.
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Using the same arguments as in Zeng (2004) and (C.4), we can show that,

uniformly in x and y ∈ [0, τ ],

(Ĥ0(y;x)−H0(y, x))

=

{
(Pn0 −P0)

[
I(Y0 ≤ y)(n0a

d
n)

−1Kan(X0 − x)

(n0adn)
−1

∑n0
k=1 I(Yk0 ≥ Y0)Kan(Xk0 − x)

]
− (Pn0 −P0)

E∗
[

I(Y0 ≥ Y ∗
0 )(n0an)

−1Kan(X
∗
0−x)

(n0adn)
−1

∑n0
k=1 I(Yk0≥Y ∗

0 )Kan(Xk0−x)E∗∗[I(Y ∗∗
0 ≥Y ∗

0 )Kan(X
∗∗
0 −x)]

]}
+O(aχn)

≡ (Pn0 − P0)qn(y, x, Y0, X0) + op(a
χ
n).

We plug the above expression into (A.4), then (A.2). From (C.4), we obtain

Gn1g(X1, Z1;β0) + op(1) =
√
n1σ1(β̂ − β0)

+
√
n1(Pn0 − P0)E

[
σ2(Z1, X1, X

∗
1 )qn(H

−1
0 (Z∗

1e
−βT

0 X1+βT
0 X∗

1 ;X∗
1 ), X

∗
1 , Y0, X0)

]
+
√
n1(Pn0 − P0)E [σ3(Y1, X1)qn(Y1, X1, Y0, X0)] . (A.4)

Finally, we apply Theorem 2.11.23 in van der Vaart and Wellner (1996) to

the last two terms in the right-hand side of (A.4). Particularly, their conditions

are satisfied by observing that after integration by parts, both

E
[
σ2(Z1, X1, X

∗
1 )qn(H

−1
0 (Z1e

βT
0 X1−βT

0 X∗
1 ;X∗

1 ), X
∗
1 , Y0, X0)

]
and E[σ3(Y1, X1)qn(Y1, X1, Y0, X0)] converge uniformly in (Y0, X0) to

E
[
σ2(Z1, X1, X

∗
1 )q(H

−1
0 (Z1e

βT
0 X1−βT

0 X∗
1 ;X∗

1 ), X
∗
1 , Y0, X0)

∣∣∣X∗
1 = X0

]
and E[σ3(Y1, X0)q(Y1, X0, Y0, X0)

∣∣∣X1=X0], respectively, where q(Y1, X1, Y0, X0)

= I(Y0 ≤ Y1)/S0(Y0|X = x). Furthermore, they have bounded total variation in

Y0 uniformly in X0, and are Lipschitz continuous in X0. The latter implies the

entropy condition in Theorem 2.11.23. Therefore, combining the above results

and the non-singularity of σ1 in (A.4), we obtain

√
n(β̂ − β0) = Gn1σ

−1
1 g1(Y1, X1;β0) + Gn2σ

−1
1 g2(Y0, X0) + op(1),

where

g2(Y0, X0)

= −E
[
σ2(Z1, X1, X

∗
1 )q(H

−1
0 (Z1e

βT
0 X1−βT

0 X∗
1 ;X∗

1 ), X
∗
1 , Y0, X0)

∣∣∣X∗
1 = X0

]
−E

[
σ3(Y1, X0)q(Y1, X0, Y0, X0)

∣∣∣X1 = X0

]
.
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Hence,
√
n(β̂ − β0) converges in distribution to a normal distribution with mean

zero and variance (1− ν)Var (g1) + νVar (g2).

Remark A2.1 When X’s take discrete values, the proof can be much simplified.
Particulary, we can set an = 1/n and Kan(x) = I(x = 0) in the above arguments.

Remark A2.2 When S0(y|x) is estimated by the Cox model, the only difference
is in the expressions of Ĥ0(y;x)−H0(y, x); the influence function qn(y, x, Y0, X0)
is given by the influence function of exp[−Λ̂(y) exp(γ̂Tx)], where (Λ̂, γ̂) is the
nonparametric maximum likelihood estimator in the Cox model.

A.3. Proof of Theorem 3

The asymptotic property of Ĝ(t) follows the same expansion as the proof of
Theorem 2 but we utilize the differentiability of the product-limit function. Let
SW denote the survival function for W1, and HW the cumulative hazard function
of W1. We have

Ĝ(t)−G0(t)

= −G0(t)(Pn1 − P1)

[
I(W1 ≤ −t)

E∗[I(W ∗
1 ≥ W1)]

− E∗
{
I(W1 ≥ W ∗

1 )I(W
∗
1 ≤ −t)

SW (W ∗
1 )

2

}]

−G0(t)

{
E

[
I(Ŵ1 ≤ −t)

E∗[I(Ŵ ∗
1 ≥ Ŵ1)]

]
−HW (t)

}
+ op(n

−1/2).

We further expand the second term in the right-hand side as in the previous
section to obtain

σ̃1(β̂ − β0) + E
[
σ̃2(Z1, X1, X

∗
1 )

(
Ĥ0(H

−1
0 (Z1e

βT
0 X1−βT

0 X∗
1 ;X∗

1 );X
∗
1 )

−H0(H
−1
0 (−Z1e

βT
0 X1−βT

0 X∗
1 ;X∗

1 )
)]

+E
[
σ̃3(Y1, X1)

(
Ĥ0(Y1;X1)−H0(Y1;X1)

)]
+ op(n

−1/2).

Hence, from the same arguments as in Theorem 2, we obtain

Ĝ(t)−G0(t)

= −G0(t)(Pn1 − P1)

[
I(W1 ≤ −t)

E∗[I(W ∗
1 ≥ W1)]

− E∗
{
I(W1 ≥ W ∗

1 )I(W
∗
1 ≤ −t)

SW (W ∗
1 )

2

}]
+σ̃1(β̂ − β0) + (Pn0 −P0)g3(Y0, X0) + op(n

−1/2)

for some g3(Y0, X0). Therefore,
√
n(Ĝ(t)−G0(t)) converges in distribution to a

Gaussian process in l∞[0, τ ], and the covariance function is equal to the covariance
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of

√
1− ν

[
I(W1 ≤ −t)

E∗[I(W ∗
1 ≥ W1)]

− E∗
{
I(W1 ≥ W ∗

1 )I(W
∗
1 ≤ −t)

SW (W ∗
1 )

2

}]
+
√
1− νσ̃1σ

−1
1 g1(Y1, X1;β0) +

√
νσ̃1σ

−1
1 g2(Y0, X0) +

√
νg3(Y0, X0).
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