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Abstract: Multivariate longitudinal data are common in medical, industrial, and

social science research. However, statistical analysis of such data in the current

literature is restricted to linear or parametric modeling, which may well be inap-

propriate in applications. On the other hand, all existing nonparametric methods

for analyzing longitudinal data are for univariate cases only. When longitudinal

data are multivariate, nonparametric modeling becomes challenging, as one needs

to properly handle the association among the observed data across different time

points and across different components of the multivariate response. Motivated

by data from the National Hearth Lung and Blood Institute, this paper proposes

a nonparametric modeling approach for analyzing multivariate longitudinal data.

Our method is based on multivariate local polynomial smoothing. Both theoretical

and numerical results show that it is useful in various settings.

Key words and phrases: Cluster data, local polynomial regression, longitudinal

data, multivariate regression.

1. Introduction

Some nonparametric methods have been proposed in the literature for the

analysis of longitudinal data. Most of them restrict their attention to the anal-

ysis of a single outcome variable measured repeatedly over time. However, ex-

periments in medical, industrial, and social science research are often complex,

characterized by several outcomes measured repeatedly over time. This paper fo-

cuses on statistical modeling of multivariate longitudinal data that are obtained

from such experiments.

The example that motivates our research is the SHARe Framingham Heart

Study of the National Hearth Lung and Blood Institute (cf., Cupples et al.

(2007)), in which 1,826 participants were followed seven times each at different

ages. Multiple medical indices that are important risk factors of stroke, including

systolic blood pressure (mmHg), diastolic blood pressure (mmHg), total choles-

terol level (mg/100ml), and glucose level (mg/100ml), were measured at each

time for each participant, and it was of interest to the medical researchers to

know how these indices change over time. Similar studies have been reported in
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the literature. See, for instance, Godleski et al. (2000), Roy and Lin (2000), and

Fieuws and Verbeke (2006).

There is some existing research about the statistical analysis of multivariate

longitudinal data. However, almost all of it assumes that the mean response

follows a parametric model (cf., Gray and Brookmeyer (2000); O’Brien and

Fitzmaurice (2004)) or that the error term has a given parametric distribution

(cf., Coull and Staudenmayer (2004); Fieuws and Verbeke (2006); Roy and Lin

(2000)). When the model assumptions are valid, these methods should be ef-

fective. But, in practice, it is difficult to obtain sufficient prior information to

properly specify parametric models. There is some existing research on nonpara-

metric or semiparametric modeling of longitudinal data, see, for instance, Liang

and Zeger (1986), Lin and Carroll (2000, 2001), Wang (2003), Fitzmaurice, Laird

and Ware (2004), Weiss (2005), Chen and Jin (2005), and Li (2011). The existing

nonparametric or semiparametric methods are for analyzing univariate longitu-

dinal data; we have not found existing research on nonparametric modeling for

multivariate longitudinal data.

In this paper, we develop a nonparametric modeling approach for analyzing

multivariate longitudinal data. In our approach, possible correlation among dif-

ferent components of the response is properly accommodated, along with possible

correlation across different time points. The method is based on local polyno-

mial kernel smoothing, and is described in Section 2. In Section 3, some of its

theoretical properties are discussed. In section 4, the results of a simulation

study are presented. Furthermore and we apply our method to the data of the

SHARe Framingham Heart Study. Some concluding remarks are given in Section

5. Technical details are provided in the Appendix.

2. Proposed Method

Let yij = (yij1, yij2, . . . , yijq)
T be the q-dimensional response observed at the

jth time point tij from the ith subject, j = 1, . . . , J and i = 1, . . . , n. we assume

the multivariate nonparametric regression model

yij = m(tij) + εij , j = 1, . . . , J, i = 1, . . . , n, (2.1)

where m(tij) = (m1(tij),m2(tij), . . . ,mq(tij))
T is the mean of yij , and εij =

(εij1, . . . , εijq)
T is the q-dimensional random error. Let

Yi = (yi1, . . . ,yiJ)
T , εi = (εi1, . . . , εiJ)

T ,

vec(Yi) be created by connecting all columns of Yi one after another, and vec(εi)

be created from the columns of εi in the same way. Thus, Yi and εi are J × q



NONPARAMETRIC REGRESSION ANALYSIS 771

matrices, and vec(Yi) and vec(εi) are Jq-dimensional vectors. In (2.1), we assume
that, for i = 1, . . . , n,

E(vec(εi)|ti1, . . . , tiJ) = 0, (2.2)

Cov(vec(εi)|ti1, . . . , tiJ) = Cov(vec(Yi)|ti1, . . . , tiJ) =: Vi, (2.3)

where Vi is the conditional covariance matrix of vec(Yi) containing q × q sub-
matrices, each sub-matrix a J × J matrix. The diagonal sub-matrices give the
correlation among different components of the response at individual time points
for the ith subject, and the off-diagonal sub-matrices give the correlation among
response vectors at different time points. The model at (2.1) is quite general in
that it accommodates correlation among the observed data across different time
points and across different components of the multivariate response vector.

For estimation, we employ the local polynomial kernel smoothing approach
that has been used in the literature for handling cases with univariate longitudinal
data (e.g., Lin and Carroll (2001), Wang (2003), Chen and Jin (2005)). With
multivariate longitudinal data, it is much more complicated to use this approach
while allowing correlations among different components of the response. To this
end, let us first define some notation. We use diag{ajl, j = 1, . . . , J, l = 1, . . . , q}
to denote a diagonal matrix with the [j + (l − 1)J ]th diagonal element ajl. The
inverse of a matrix means the Moore-Penrose generalized inverse, and t denotes
an arbitrary but fixed interior point of the domain of tij . The kernel function is
denoted by K(·), chosen to be a symmetric density function with support [-1,1].
Typical choices ofK(·) are the Epanechnikov kernelK(u) = 0.75(1−u2)I(|u| ≤ 1)
and the uniform kernel K(u) = 0.5I(|u| ≤ 1), where I(·) is the indicator function.
Let Kh(u) = K(u/h)/h, where h is a bandwidth. In our setting, we need a
q-dimensional bandwidth vector H to allow different degrees of smoothing in
different components. Let H = (h1, . . . , hq)

T ,

KiH = diag{Khl
(tij − t), j = 1, . . . , J, l = 1, . . . , q},

Wi =
(
K

−1/2
iH V̂iK

−1/2
iH

)−1
= K

1/2
iH

(
ĨiV̂iĨi

)−1
K

1/2
iH ,

where V̂i is an estimator of Vi, and

Ĩi = diag {I (Khl
(tij − t) > 0) , j = 1, . . . , J, l = 1, . . . , q}

= diag {I (|tij − t| ≤ hl) , j = 1, . . . , J, l = 1, . . . , q} .

For a positive integer p, consider the pth order local polynomial kernel smoothing
procedure

min
vec(β)∈Rq(p+1)

n∑
i=1

[vec(Yi)− (Iq ⊗Xi)vec(β)]
T Wi [vec(Yi)− (Iq ⊗Xi)vec(β)] ,

(2.4)
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where ⊗ denotes the Kronecker product, and

Xi =

1 (ti1 − t) . . . (ti1 − t)p

...
...

. . .
...

1 (tiJ − t) . . . (tiJ − t)p


J×(p+1)

, β =


β
(1)
0 . . . β

(q)
0

...
. . .

...

β
(1)
p . . . β

(q)
p


(p+1)×q

.

In (2.4), the possible correlation among different response components has been

accommodated by using Wi =
(
K

−1/2
iH V̂iK

−1/2
iH

)−1
. When we know that the

q response components are independent of each other, the procedure (2.4) is

equivalent to applying the univariate method of Chen and Jin (2005) to each

component of the response vector.

The solution to (2.4) is

v̂ec(β) =

[
n∑

i=1

(Iq ⊗Xi)
TWi(Iq ⊗Xi)

]−1 [ n∑
i=1

(Iq ⊗Xi)
TWivec(Yi)

]
. (2.5)

Then, the pth order local polynomial kernel estimators of m(k)(t) = (m
(k)
1 (t), . . .,

m
(k)
q (t))T for k = 0, . . . , p, are

m̂(k)(t) = k!v̂ec(β)
T
(Iq ⊗ ek+1), (2.6)

where ek+1 is a (p+1)-dimensional vector that is 1 at the (k+1)th position and

0 otherwise. When k = 0, (2.6) becomes

m̂(0)(t) = v̂ec(β)
T
(Iq ⊗ e1),

the pth order local polynomial kernel estimator of m(t).

In (2.4), we need to provide a reasonable estimator V̂i of the covariance ma-

trix Vi. In practice, if there are replicated observations at each time point for

each subject, then the Vi can be estimated by their sample covariance matrices.

Otherwise, some assumptions on the Vi are necessary. If it is reasonable to as-

sume that Vi are the same for all i, then the common covariance matrix can be

estimated as follows. First, we use the local linear kernel smoothing procedure to

estimate individual components of m(·) separately, using the Epanechnikov ker-

nel function and the bandwidths determined by the conventional cross-validation

(CV) procedure. The estimators are denoted as m̃(·) = (m̃1(·), . . . , m̃q(·)). Then,
we compute the residuals

ε̃ijl = yijl − m̃l(tij), i = 1, . . . , n, j = 1, . . . , J, l = 1, . . . , q.
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The ([(l − 1)J + j], [(s− 1)J + k])th element of Vi can then be estimated by

Ĉov(εijl, εiks) =



∑n
v=1 ε̃vjlε̃vksK

(
tvj−tij

gl

)
K
(

tvk−tik
gs

)
∑n

v=1 K
(

tvj−tij
gl

)
K
(

tvk−tik
gs

) , j ̸= k or l ̸= s;

∑n
v=1 ε̃

2
vjlK

(
tvj−tij

gl

)
∑n

v=1 K
(

tvj−tij
gl

) , j = k, l = s.

(2.7)

where gl is the bandwidth for the response component l, j, k = 1, . . . , J , and

l, s = 1, . . . , q. In (2.7), we can still use the Epanechnikov kernel function, and

the bandwidths (g1, . . . , gJ)
T can be chosen as follows. With

y∗ijl = ε̃2ijl, i = 1, . . . , n, j = 1, . . . , J, l = 1, . . . , q,

the mean of y∗
ij = (y∗ij1, y

∗
ij2, . . . , y

∗
ijq)

T is a good approximation of the vari-

ance of yij , denoted by σ2(tij). Then, we can use the CV procedure to choose

the bandwidths for the local linear kernel smoothing of the new data when the

Epanechnikov kernel function is used. The resulting bandwidths can be used as

the chosen values of (g1, . . . , gJ)
T . To specify Vi, one might also use a time series

model for specifying the correlation of the observed data across different time

points, as mentioned by Chen and Jin (2005) for univariate cases.

In certain applications, it is possible that some response components are

missing at some time points. To handle such cases, our proposed method should

be modified as follows. Let δijl be a binary variable taking the value of 0 when

the observation of the lth component of y(tij) is missing and 1 otherwise. Take

∆i = diag{δijl, j = 1, . . . , J, l = 1, . . . , q}.

Then, Ĉov(εijl, εiks) in (2.7) is changed to

Ĉov
′
(εijl, εiks) =



∑n
v=1 ε̃vjlε̃vksδvjlδvksK

(
tvj−tij

gl

)
K
(

tvk−tik
gs

)
∑n

v=1 δvjlδvksK
(

tvj−tij
gl

)
K
(

tvk−tik
gs

) , j ̸= k or l ̸= s;

∑n
v=1 ε̃

2
vjlδvjlK

(
tvj−tij

gl

)
∑n

v=1 δvjlK
(

tvj−tij
gl

) , j = k, l = s.

(2.8)

The resulting estimator of Vi is denoted as V̂ ′
i and (2.5) becomes

v̂ec(β)
′
=

[
n∑

i=1

(Iq ⊗Xi)
T∆iW

′
i∆i(Iq ⊗Xi)

]−1 [ n∑
i=1

(Iq ⊗Xi)
T∆iW

′
i∆ivec(Yi)

]
,

(2.9)

where

W ′
i =

(
K

−1/2
iH ∆iV̂

′
i∆iK

−1/2
iH

)−1
= K

1/2
iH

(
Ĩi∆iV̂

′
i∆iĨi

)−1
K

1/2
iH .
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Finally, the pth order local polynomial kernel estimators of m(k)(t), for k =

0, . . . , p, can still be computed by (2.6) after v̂ec(β) is replaced by v̂ec(β)
′
in

(2.9). The resulting estimators are denoted by m̂(k)′(t).

3. Asymptotic Properties

In this section we study the theoretical properties of the proposed method.

These properties require some regularity conditions on the local distribution of

the design points, here described along with the necessary notation.

Let Ωv, for 1 ≤ v ≤ 2J − 1, be the 2J − 1 distinct non-empty subsets of

{1, . . . , J}, and B(t, δ) be the interval [t−δ, t+δ]. Assume that the design points

(ti1, . . . , tiJ)
T , for i = 1, . . . , n, are independent and identically distributed, and

that their partial density at any given point t in the design space exists. Partial

density at t, according to Chen and Jin (2005), exists if there is a constant δ0 > 0

such that, for all u ∈ B(t, δ0) and all v = 1, . . . , 2J − 1,

Pr
{
t1j ∈ B(u, δ), and elements in {t1j , j ∈ Ωv} are equal, and t1j1 ̸= t1j

if j1 /∈ Ωv and j ∈ Ωv

}
=

∫ δ

−δ
fv(z + u)dz

= Pr{t1j ∈ B(u, δ) for all j ∈ Ωv, and t1j /∈ B(u, δ) for all j /∈ Ωv}+ o(δ)

for all 0 < δ < 2δ0. Here fv(.), for 1 ≤ v ≤ 2J − 1, are nonnegative continuous

functions on B(t0, 2δ0) such that
∑2J−1

v=1 fv(z) > 0 for all z ∈ B(t, 2δ0). The

condition ensures that the chance that two design points take values in a small

neighborhood of t is negligible unless they belong to the same Ωv.

Let Sv(0) = {t1j = t for all j ∈ Ωv, and t1j ̸= t for all j /∈ Ωv}, and take

ξ(sk)v = E{(ẽs ⊗ 10)
T (Ĩv0V̂1Ĩv0)

−1(ẽk ⊗ 10)|Sv(0)}, for s, k = 1, . . . , q,

where Ĩv0 = Iq⊗diag{I(1 ∈ Ωv), . . . , I(J ∈ Ωv)} is a qJ×qJ nonrandom matrix,

ẽk is a q-dimensional vector with 1 at the kth position and 0 otherwise, and 10
is a J-dimensional vector with all components equal to 1. We further take

V0(t) = Cov(vec(ε1)|t11 = t, . . . , t1J = t),

ξ̃(sk)v (t) = E{(ẽs ⊗ 10)
T (Ĩv0V̂1Ĩv0)

−1V0(t)(Ĩv0V̂1Ĩv0)
−1(ẽk ⊗ 10)|Sv(0)},

ξ̄
(sk)
v,l1l2

(t) = E{(ẽs ⊗ 10)
T (Ĩv0 V̂1Ĩv0)

−1(El1 ⊗ IJ)V0(t)(El2 ⊗ IJ)(Ĩv0 V̂1Ĩv0)
−1

×(ẽk ⊗ 10)|Sv(0)},

where El is a q × q matrix with 1 at the lth diagonal position and 0 otherwise,

l = 1, . . . , q. Set hmax = max{h1, . . . , hq}, and let hl = clhmax, where 0 < cl ≤ 1
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are constants, l = 1, . . . , q. Let

µj(hs, hk) = (hshk)
−1/2

∫
zjK1/2

(hmaxz

hs

)
K1/2

(hmaxz

hk

)
dz,

νj(hs, hk, hl1 , hl2) = (hshkhl1hl2)
−1/2

∫
zjK1/2

(hmaxz

hs

)
×K1/2

(hmaxz

hk

)
K1/2

(hmaxz

hl1

)
K1/2

(hmaxz

hl2

)
dz,

ν
(sk)
m+l,v(t) =

q∑
l1,l2=1

ξ̄
(sk)
v,l1l2

(t)νm+l(hs, hk, hl1 , hl2).

Then it can be checked that µj(hs, hk) = O(h−1
max) and νj(hs, hk, hl1 , hl2) =

O(h−2
max) for any s, k, l1, l2 ∈ {1, . . . , q}. Let S and S̄ be [q(p + 1)] × [q(p + 1)]

matrices with the [(p + 1)(s − 1) + m + 1, (p + 1)(k − 1) + l + 1]th elements

equal to
∑2J−1

v=1 fv(t)ξ
(sk)
v µm+l(hs, hk) and

∑2J−1
v=1 fv(t)ν

(sk)
m+l,v(t), respectively, for

s, k,m, l ∈ {1, . . . , q}.

Proposition 1. Denote Fn as the σ-algebra generated by (ti1, . . . , tiJ), i =

1, . . . , n. Let the design points (ti1, . . . , tiJ)
T , i = 1, . . . , n, be independent and

identity distributed and assume their partial density exists at any given point t in

the design space. Suppose the Vi at (2.3) are continuous functions of (ti1, . . . , tiJ)

and the components of the (p+1)th derivative m(p+1)(t) of m(t) are continuous

functions of t, i = 1, . . . , n. If it is further assumed that hl = clhmax, where

0 < cl ≤ 1 are constants, for l = 1, . . . , q, hmax = o(1), and 1/(nhmax) = o(1),

then the following hold.

(i) The conditional covariance of m̂(k)(t) is

Cov{m̂(k)(t)|Fn} =
k!2

nh1+2k
max

[(Iq⊗eTk+1)S
−1S̄S−1(Iq⊗ek+1)]+oP

(
1

nh1+2k
max

)
.

(3.1)

(ii) The conditional bias of m̂(k)(t) is

Bias{m̂(k)(t)|Fn} =
k!

(p+ 1)!
hp+1−k
max [(Iq ⊗ eTk+1)S

−1D] + oP (h
p+1−k
max ), (3.2)

where D = (d10, . . . , d1p, . . . , dq0, . . . , dqp)
T and

dsk =

2J−1∑
v=1

q∑
l=1

fv(t)m
(p+1)
l (t)ξ(sl)v µk+p+1(hs, hl), for s=1, . . . , q, k=0, . . . , p.

The convergence rates of the conditional covariance and the conditional bias

of m̂(k)(t) here are the same as those in univariate cases (cf., Chen and Jin
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(2005)). Our results are derived in a quite general setting while in some special

cases, they have simpler expressions. For instance, in cases when the components

of m(·) have similar smoothness, we can use a bandwidth vector with h1 ∼ · · · ∼
hq ∼ hmax. In such cases, µj(hs, hk) ≈ (1/hmax)

∫
ujK(u)du =: (1/hmax)µj ,

and νj(hs, hk, hl1 , hl2) ≈ (1/h2max)
∫
ujK2(u)du =: (1/h2max)νj , where “≈” means

that some higher order terms have been omitted in the related expressions. Then,

take cp = (µp+1, . . . , µ2p+1)
T , S1 = (µi+j)0≤i,j≤p, S̄1 = (νi+j)0≤i,j≤p, and let

C = diag
{ 2J−1∑

v=1

q∑
l=1

fv(t)m
(p+1)
l (t)ξ(1l)v , . . . ,

2J−1∑
v=1

q∑
l=1

fv(t)m
(p+1)
l (t)ξ(ql)v

}
,

N =
( 2J−1∑

v=1

fv(t)ξ̄
(sk)
v (t)

)
q×q

and M =
( 2J−1∑

v=1

fv(t)ξ
(sk)
v

)
q×q

,

where ξ̄
(sk)
v (t) =

∑q
l1,l2=1 ξ̄

(sk)
v,l1l2

(t). In such cases, the results in Proposition 1 can

be simplified.

Corollary 1. Under conditions in Proposition 1, if h1 ∼ · · · ∼ hq. the following

hold.

(i) The conditional covariance of m̂(k)(t) is

Cov{m̂(k)(t)|Fn} =
k!2

nh1+2k
max

eTk+1S
−1
1 S̄1S

−1
1 ek+1M

−1NM−1+oP

(
1

nh1+2k
max

)
.

(3.3)

(ii) The conditional bias of m̂(k)(t) is

Bias{m̂(k)(t)|Fn} =
k!hp+1−k

max

(p+ 1)!
eTk+1S

−1
1 cpM

−1C + oP (h
p+1−k
max ). (3.4)

When p − k is even, the first term on the right side of the above expression

is 0.

Compared to (3.1) and (3.2), the leading terms of (3.3) and (3.4) are much

simpler. For practical purpose, we can use h1 = · · · = hq = h for simplicity.

Another special case that deserves attention has different response components

independent of each other. Then the matrices V̂i are nearly block diagonal and

our method is similar to the one that handles individual response components

separately.

Corollary 2. Under conditions in Proposition 1, suppose that different response

components are independent of each other. Then, the following hold.
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(i) The conditional covariance of m̂(k)(t) is

Cov{m̂(k)(t)|Fn} =
k!2

n
eTk+1S

−1
1 S̄1S

−1
1 ek+1

×diag

{ ∑2J−1
v=1 fv(t)ξ̃

(ll)
v (t)

{
∑2J−1

v=1 fv(t)ξ
(ll)
v }2

h1+2k
l , l = 1, . . . , q

}

+oP

(
1

nh1+2k
max

)
. (3.5)

(ii) The conditional bias of m̂(k)(t) is

Bias{m̂(k)(t)|Fn} =
k!

(p+ 1)!
eTk+1S

−1
1 cp

×diag
{
m

(p+1)
l (t)hp+1−k

l , l = 1, . . . , q
}

+oP (h
p+1−k
max ). (3.6)

In cases when p − k is even, the first term on the right side of the above

expression is 0.

We next discuss the properties of our proposed method when there are miss-

ing observations. First, we introduce some notation. Let ξ
′(sk)
v denote ξ

(sk)
v

after (Ĩv0V̂1Ĩv0)
−1 is replaced by (Ĩv0∆1V̂1∆1Ĩv0)

−1 in its definition, and ξ̄
′(sk)
v,l1l2

(t)

denote ξ̄
(sk)
v,l1l2

(t) after (Ĩv0V̂1Ĩv0)
−1 and V̂0(t) are replaced by (Ĩv0∆1V̂1∆1Ĩv0)

−1

and ∆1V̂0(t)∆1, respectively. Furthermore, let S′ and S̄′ be [q(p + 1)] × [q(p +

1)] matrices with their [(p + 1)(s − 1) + m + 1, (p + 1)(k − 1) + l + 1]th ele-

ments
∑2J−1

v=1 fv(t)ξ
′(sk)
v µm+l(hs, hk) and

∑2J−1
v=1 fv(t)ν

′(sk)
m+l,v(t), respectively, for

s, k,m, l ∈ {1, . . . , q}, where

ν
′(sk)
m+l,v(t) =

q∑
l1,l2=1

ξ̄
(sk)
v,l1l2

(t)ν ′m+l(hs, hk, hl1 , hl2).

Corollary 3. Under the assumptions in Proposition 1 and that P (δijl = 0) = pl,

i = 1, . . . , n, j = 1, . . . , J , and l = 1, . . . , q, where pl ∈ [0, 1) does not depend on

i and j. Then, the following hold.

(i) The conditional covariance of m̂(k)′(t) is

Cov{m̂(k)′(t)|Fn} (3.7)

=
k!2

nh1+2k
max

[(P−1 ⊗ eTk+1)S
′−1S̄′S′−1(P−1 ⊗ ek+1)] + oP

(
1

nh1+2k
max

)
,(3.8)

where P = diag{p1, . . . , pq}.
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(ii) The conditional bias of m̂(k)′(t) is

Bias{m̂(k)′(t)|Fn} =
k!

(p+ 1)!
hp+1−k
max [(P−1 ⊗ eTk+1)S

′−1D′] + oP (h
p+1−k
max ),

where D′ = (d′10, . . . , d
′
1p, . . . , d

′
q0, . . . , d

′
qp)

T and

d′sk =

2J−1∑
v=1

q∑
l=1

fv(t)m
(p+1)
l (t)ξ′(sl)v µk+p+1(hs, hl), for s=1, . . . , q, k=0, . . . , p.

4. Numerical Study

In this section, we investigate the numerical performance of the proposed

method using simulation and a data example. We also discuss estimation of the

covariance matrices Vi defined at (2.3) and the selection of the bandwidth vector

used in the local smoothing estimators.

We first considered observed data without missing values. The simulated

data were generated from the model (2.1) with J = 3, q = 3, and

m1(t)=2×exp{sin(10t)}, m2(t)=1−exp{−t}, m3(x)=1−exp{−t}+2 sin(10t).

The error term vec(εi) was normal with mean 0. Its correlation matrix was

specified as follows: for j, k, l, s = 1, 2, 3,

corr(ε1jl, ε1ks) =


1, if j = k, l = s,

ρ1, if j ̸= k, l = s,

ρ2, if j = k, l ̸= s,

ρ1ρ2, if j ̸= k, l ̸= s,

var(ε111) =
var(ε112)

2
=

var(ε113)

3
= 0.25,

var(ε121) =
var(ε122)

2
=

var(ε123)

3
= 0.64,

var(ε131) =
var(ε132)

2
=

var(ε133)

3
= 0.36.

The design points {tij , j = 1, 2, 3, i = 1, . . . , n} were uniform U [−2, 2], and

independent of the errors.

In this, ρ1 specifies the association of individual response components over

different time points, and ρ2 specifies the association among different response

components at a given time point. We considered cases I: ρ1 = 0.8 and ρ2 = 0;

II: ρ1 = 0 and ρ2 = 0.8; III: ρ1 = 0.8 and ρ2 = 0.8.

With multivariate longitudinal data, besides the proposed method denoted

MULTIVARIATE here, there are a number of alternative approaches. One is



NONPARAMETRIC REGRESSION ANALYSIS 779

to apply the univariate method of Chen and Jin (2005) to each dimension of

the multivariate longitudinal data to obtain estimators of the individual com-

ponents of m(·), denoted as INDIVIDUAL. Another is a simplified version of

MULTIVARIATE using the same bandwidth h in all dimensions, denoted as

SIMPLIFIED. For each method, we computed the values of the estimator m̂(t)

at 101 grid points {tj = −1.8+0.036× j, j = 0, . . . , 100}, and three performance

measures were computed:

Biasl =
1

101

100∑
j=0

|ml(tj)− m̂l(tj)| ,

SDl = sample standard deviation of {ml(tj)− m̂l(tj), j = 0, 1, . . . , 100},

MISEl =
4

101

100∑
j=0

(ml(tj)− m̂l(tj))
2 ,

where l = 1, 2, 3 is the index of the response components. To remove some

randomness, the values of these measures that are given are averages computed

from 100 replicated simulations.

In all methods considered, the Epanechnikov kernel function and local linear

smoothing were used (cf., (2.4)). For a fair comparison, we first used the true

covariance matrices Vi, instead of their estimates, in all methods. The optimal

bandwidths of each method were then searched by minimizing the MISE value.

The searched optimal bandwidths and the corresponding values of the perfor-

mance measures in the three cases considered are presented in Tables 1 and 2,

respectively, for sample sizes n = 100 and n = 200. For each measure, its val-

ues corresponding to the three response components are presented separately,

together with their summation SUM.

From Table 1, it can be seen that, in case I the methods MULTIVARIATE

and INDIVIDUAL perform exactly the same. As a matter of fact, it can be

checked that the two methods are equivalent in such cases. Compared to SIM-

PLIFIED, their MISE values are smaller across all three response components.

This means that when the curvature of the three components ofm(·) are quite dif-
ferent, the method SIMPLIFIED may not be appropriate to use. It also suggests

that the proposed method MULTIVARIATE is appropriate even in cases when

the response components are independent. In case II, we see that the method

MULTIVARIATE performs better than both methods INDIVIDUAL and SIM-

PLIFIED in terms of the SUMs of the three performance measures, although it

is slightly worse then the method INDIVIDUAL for estimating m2(·). In case

III, the method MULTIVARIATE also performs better than both methods IN-

DIVIDUAL and SIMPLIFIED in terms of the SUMs of the three performance

measures. Similar conclusions can be made from results in Table 2.
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Table 1. Averaged performance measures Bias, SD, and MISE, based on 100
replicated simulations, of the methods MULTIVARIATE, INDIVIDUAL,
and SIMPLIFIED when n = 100. The numbers in H are the searched
optimal bandwidths.

MULTIVARIATE INDIVIDUAL SIMPLIFIED

Case Components Bias SD MISE Bias SD MISE Bias SD MISE

H = (0.08, 0.65, 0.11)T H = (0.08, 0.65, 0.11)T H = (0.11, 0.11, 0.11)T

I

1 0.103 0.224 0.246 0.103 0.224 0.246 0.159 0.199 0.286

2 0.036 0.114 0.057 0.036 0.114 0.057 0.020 0.269 0.267

3 0.140 0.317 0.455 0.140 0.317 0.455 0.117 0.334 0.470

SUM 0.279 0.655 0.758 0.279 0.655 0.758 0.295 0.802 1.023

H = (0.08, 0.45, 0.11)T H = (0.09, 0.5, 0.11)T H = (0.1, 0.1, 0.1)T

II

1 0.102 0.186 0.201 0.139 0.211 0.280 0.169 0.196 0.304

2 0.067 0.128 0.080 0.043 0.112 0.056 0.024 0.264 0.259

3 0.119 0.253 0.297 0.151 0.307 0.449 0.127 0.325 0.459

SUM 0.288 0.567 0.578 0.333 0.630 0.785 0.320 0.785 1.022

H = (0.07, 0.5, 0.11)T H = (0.09, 0.65, 0.12)T H = (0.1, 0.1, 0.1)T

III

1 0.074 0.208 0.211 0.129 0.217 0.287 0.188 0.193 0.334

2 0.067 0.139 0.091 0.044 0.112 0.058 0.018 0.251 0.232

3 0.105 0.268 0.312 0.159 0.298 0.440 0.133 0.314 0.443

SUM 0.245 0.615 0.615 0.332 0.627 0.785 0.339 0.758 1.009

Table 2. Averaged performance measures Bias, SD, and MISE, based on 100
replicated simulations, of the methods MULTIVARIATE, INDIVIDUAL,
and SIMPLIFIED when n = 200. The numbers in H are the searched
optimal bandwidths.

MULTIVARIATE INDIVIDUAL SIMPLIFIED

Case Components Bias SD MISE Bias SD MISE Bias SD MISE

H = (0.06, 0.5, 0.09)T H = (0.06, 0.5, 0.09)T H = (0.09, 0.09, 0.09)T

I

1 0.064 0.169 0.127 0.064 0.169 0.127 0.137 0.140 0.171

2 0.031 0.083 0.031 0.031 0.083 0.031 0.015 0.184 0.125

3 0.091 0.227 0.226 0.091 0.227 0.226 0.091 0.227 0.226

SUM 0.185 0.479 0.383 0.185 0.479 0.383 0.242 0.551 0.522

H = (0.06, 0.4, 0.08)T H = (0.06, 0.45, 0.09)T H = (0.08, 0.08, 0.08)T

II

1 0.059 0.137 0.091 0.066 0.170 0.132 0.113 0.146 0.151

2 0.041 0.091 0.038 0.035 0.079 0.030 0.017 0.198 0.144

3 0.070 0.200 0.169 0.106 0.228 0.242 0.085 0.244 0.251

SUM 0.170 0.428 0.298 0.207 0.477 0.404 0.214 0.587 0.546

H = (0.06, 0.45, 0.10)T H = (0.06, 0.55, 0.1)T H = (0.09, 0.09, 0.09)T

III

1 0.059 0.136 0.087 0.061 0.168 0.123 0.134 0.137 0.164

2 0.054 0.101 0.050 0.031 0.082 0.030 0.019 0.186 0.128

3 0.093 0.191 0.171 0.120 0.221 0.244 0.099 0.233 0.243

SUM 0.206 0.427 0.308 0.212 0.470 0.397 0.252 0.555 0.535
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Table 3. Averaged performance measures Bias, SD, and MISE, based on 100
replicated simulations, of the methods MULTIVARIATE, INDIVIDUAL,
and SIMPLIFIED when n = 200 and Vi are estimated. The numbers in H
are the searched optimal bandwidths.

MULTIVARIATE INDIVIDUAL SIMPLIFIED

Case Components Bias SD MISE Bias SD MISE Bias SD MISE

H = (0.06, 0.5, 0.09)T H = (0.06, 0.5, 0.09)T H = (0.08, 0.08, 0.08)T

I

1 0.065 0.170 0.129 0.064 0.170 0.128 0.112 0.147 0.147

2 0.032 0.083 0.032 0.032 0.082 0.032 0.016 0.197 0.143

3 0.092 0.227 0.227 0.092 0.227 0.226 0.072 0.243 0.239

SUM 0.189 0.480 0.387 0.189 0.479 0.386 0.200 0.587 0.529

H = (0.06, 0.4, 0.09)T H = (0.06, 0.4, 0.09)T H = (0.08, 0.08, 0.08)T

II

1 0.066 0.138 0.096 0.066 0.171 0.133 0.114 0.147 0.153

2 0.041 0.091 0.038 0.029 0.084 0.030 0.017 0.199 0.146

3 0.091 0.193 0.172 0.107 0.229 0.244 0.086 0.246 0.256

SUM 0.197 0.421 0.306 0.202 0.483 0.407 0.217 0.591 0.555

H = (0.06, 0.45, 0.09)T H = (0.06, 0.55, 0.1)T H = (0.09, 0.09, 0.09)T

III

1 0.063 0.138 0.091 0.061 0.168 0.124 0.138 0.138 0.171

2 0.040 0.095 0.040 0.033 0.081 0.031 0.019 0.187 0.130

3 0.084 0.200 0.178 0.122 0.222 0.247 0.101 0.235 0.248

SUM 0.187 0.432 0.309 0.216 0.470 0.402 0.258 0.560 0.549

Generally, the covariance matrices Vi are unknown and need to be estimated

from observed data. We investigated the performance of the three methods when

Vi, i = 1, . . . , n, are assumed the same and are estimated by the procedure (2.7).

The estimated Vi were used in the three methods in place of the true matrices

Vi. The corresponding results of the three methods in cases when n = 200, and

when the bandwidths are chosen to be optimal by minimizing the MISE values,

are presented in Table 3. From the table, we can see that similar conclusions can

be made here to those from Tables 1 and 2, regarding the relative performance

of the three methods. By comparing the results of MULTIVARIATE in Tables 2

and 3, we see that they are almost the same, which suggests that the procedure

(2.7) for specifying Vi is quite efficient. Corresponding results in the case when

n = 100 are similar and thus omitted here.

In practice, the optimal bandwidths are also unknown. To implement our

method, we propose using cross-validation (CV) to determine the bandwidths,

as follows. Let

CVl(hl) =
1

n

n∑
i=1

J∑
j=1

(yl(tij)− m̂l,−i(tij))
2 , for l = 1, 2, 3,

CV (H) = CV1(h1) + CV2(h2) + CV3(h3),



782 DONGDONG XIANG, PEIHUA QIU AND XIAOLONG PU

Table 4. Averaged performance measures Bias, SD, and MISE, based on 100
replicated simulations, of the method MULTIVARIATE-CV when n = 100
or 200.

Case I Case II Case III

n Components Bias SD MISE Bias SD MISE Bias SD MISE

100 1 0.118 0.236 0.297 0.136 0.192 0.258 0.137 0.197 0.252

2 0.062 0.117 0.075 0.083 0.127 0.093 0.084 0.123 0.094

3 0.157 0.326 0.497 0.151 0.274 0.389 0.144 0.283 0.376

SUM 0.336 0.679 0.870 0.371 0.593 0.740 0.365 0.604 0.722

200 1 0.079 0.165 0.138 0.090 0.130 0.118 0.101 0.125 0.117

2 0.048 0.081 0.041 0.065 0.076 0.046 0.060 0.078 0.041

3 0.109 0.211 0.227 0.117 0.179 0.187 0.121 0.192 0.211

SUM 0.236 0.457 0.407 0.272 0.385 0.351 0.282 0.396 0.369

where m̂l,−i(·) is the “leave-one-subject-out” estimator of ml(·) obtained when

the observations of the ith subject are not used. Then the three bandwidths

can be determined by minimizing CV (H) over R3
+. However, this minimiza-

tion process is time-consuming. To simplify the computation, we suggest us-

ing a two-step CV procedure instead, noticing in Tables 1 and 2 that the op-

timal bandwidths of MULTIVARIATE and INDIVIDUAL are actually quite

close to each other. In the first step, we determine the individual bandwidths

{hl, l = 1, 2, 3} separately by applying CV to the method INDIVIDUAL. The

selected bandwidths from this step are denoted as {hl,0, l = 1, 2, 3}. Then, in

the second step, we determine the three bandwidths by minimizing CV (H) in

a small neighborhood of (h1,0, h2,0, h3,0)
T . In our simulation study, we used the

neighborhood {(h1, h2, h3)|h1 = h10 + 0.01δl, h2 = h20 + 0.05δ2, h3 = h30 +

0.01δ3, δ1, δ2, δ3 = 0,±1,±2}. The method MULTIVARIATE with the band-

widths chosen by the CV procedure and the covariance matrix estimated by (2.7)

is denoted as MULTIVARIATE-CV. Its results corresponding to the cases con-

sidered in Tables 1 and 2 are presented in Table 4. By comparing tables, we can

see that MULTIVARIATE-CV performs a little worse than MULTIVARIATE,

but still favorably compared to the methods INDIVIDUAL and SIMPLIFIED, in

these cases when the response components are correlated, even if INDIVIDUAL

and SIMPLIFIED use their optimal bandwidths.

Next, we considered an example in which missing observations were present

in the observed data. The setup of this example was the same as that of Ta-

ble 4, except that n = 200, with probabilities of missing observations for the

components taken as p1 = p2 = p3 = π, and π = 0.05, 0.1, or 0.2. The results

are presented in Table 5, computed by (2.6) after v̂ec(β) is replaced by v̂ec(β)
′

in (2.9). From the table, it can be seen that the MISE value increases when π

increases, intuitively reasonable, and that our method performs reasonably well

in such cases.
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Table 5. Averaged performance measures Bias, SD, and MISE, based on 100
replicated simulations, of MULTIVARIATE-CV when n = 200, the proba-
bilities of missing observations for the three components are p1 = p2 = p3 =
π = 0.05, 0.1, or 0.2.

Case I Case II Case III

π Components Bias SD MISE Bias SD MISE Bias SD MISE

0.05 1 0.061 0.188 0.148 0.059 0.152 0.105 0.052 0.151 0.098

2 0.014 0.123 0.056 0.034 0.124 0.061 0.036 0.131 0.069

3 0.092 0.241 0.251 0.081 0.213 0.195 0.070 0.222 0.203

SUM 0.167 0.552 0.455 0.174 0.489 0.361 0.158 0.504 0.370

0.1 1 0.062 0.193 0.158 0.058 0.158 0.114 0.067 0.151 0.118

2 0.015 0.122 0.056 0.034 0.123 0.061 0.045 0.121 0.069

3 0.094 0.248 0.265 0.078 0.220 0.204 0.079 0.214 0.213

SUM 0.171 0.563 0.479 0.170 0.501 0.379 0.191 0.486 0.400

0.2 1 0.066 0.207 0.182 0.063 0.169 0.132 0.076 0.158 0.128

2 0.014 0.131 0.063 0.034 0.138 0.082 0.049 0.138 0.091

3 0.096 0.268 0.305 0.092 0.237 0.247 0.115 0.224 0.311

SUM 0.176 0.606 0.550 0.189 0.544 0.461 0.240 0.520 0.530

Finally, we apply our proposed method to the SHARe Framingham Heart

Study data that is described in Section 1. The raw data can be downloaded from

the web page http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.

cgi?study_id=phs000007.v4.p2. After deleting patients with outlier values, a

total of n = 1028 non-stroke patients with ages from 14 to 85 were included in

our analysis. In this example, the response is 4-dimensional, q = 4, and each

patient was followed seven times, J = 7. In our proposed method, we used p = 1

and the covariance matrices Vi were determined by the procedure (2.7). The

bandwidth vector H was chosen using two-step CV, and the chosen bandwidth

vector was H = (9, 5, 4, 6)T . The four estimated components of m(·) are shown

in the four plots of Figure 1 by the solid curves. After obtaining the estimator

m̂(·), we estimated the variance functions of the components of the multivariate

response y(t) by first computing the residuals

ε̂ijl = yijl − m̂l(tij), i = 1, . . . , n, j = 1, . . . , J, l = 1, . . . , q.

The estimators of the variance functions were obtained by applying the method

described in Section 2. Using the estimated variance functions, pointwise 95%

confidence bands of the components of m(·) were constructed and are shown in

Figure 1 (a)−(d) by the dashed curves, along with the observed longitudinal data

of the first 20 patients, shown by little circles connected by thin lines. From the

plots, it can be seen that our estimators describe the observed data reasonably

well.

http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000007.v4.p2
http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000007.v4.p2
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Figure 1. Estimated mean components, the pointwise 95% confidence bands
of the true mean response components, and the observed longitudinal data of
the first 20 patients in the dataset of the SHARe Framingham Heart Study.
(a) systolic blood pressure, (b) diastolic blood pressure, (c) cholesterol level,
and (d) glucose level.

5. Concluding Remarks

We have proposed a local smoothing method for analyzing multivariate lon-

gitudinal data. That can accommodate not only the correlation among observa-

tions across different time points, but the correlation among different response

components. Numerical results presented in the paper suggests that our method

can perform well in applications. Although the explanatory variable t is univari-

ate here, it is possible to generalize the method to handle multiple explanatory

variables, using methods similar to these in Ruppert and Wand (1994).

There are several issues that have not been addressed. First, our numeri-

cal results show that the cross-validation procedure for choosing the bandwidths
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works reasonably well. But, as pointed out by Hall and Robinson (2009), the

bandwidths chosen by this approach usually have a large variability. they pro-

posed two computationally procedures to overcome this limitation. Thus, re-

search is needed to produce an efficient and computationally simple procedure

for choosing bandwidths. Second, our method may not be suitable for high-

dimensional multivariate longitudinal data because of the complexity in comput-

ing estimators of Vi and in choosing bandwidths, and research might develop

appropriate methods for handling such cases. Third, in Corollary 3, it is as-

sumed that the probabilities of missing observations of the response components

are unchanged over time. In applications, this assumption may not be valid. If

the probabilities of missing observations depend on observation times, variable

bandwidths might be more appropriate to our method. At places with more

missing observations, bandwidths should be chosen larger and this not trivial

topic is left for our future research.
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Appendix

Proof of Proposition 1. By the definitions of S, S̄, and D, we can show that

S = O(h−1
max), S̄ = O(h−2

max), D = O(h−1
max). (A.1)

By the continuity of Vi and a direct algebraic manipulation, we get

Cov(v̂ec(β)|Fn) = A−1
n BnA

−1
n {1 + oP (1)}, (A.2)

where An =
∑n

i=1(Iq ⊗Xi)
TWi(Iq ⊗Xi) and

Bn =

n∑
i=1

(Iq ⊗XT
i )K

1/2
iH (ĨiV̂iĨi)

−1K
1/2
iH V0(t)K

1/2
iH (ĨiV̂iĨi)

−1K
1/2
iH (Iq ⊗Xi).

Set H̃ = diag{1, hmax, . . . , h
p
max} and cijsm = (tij − t)mK

1/2
hs

(tij − t), for

i = 1, . . . , n, j = 1, . . . , J , s = 1, . . . , q and m = 0, . . . , p. For every fixed

v = 1, . . . , 2J − 1, let

Sv(hmax)={t1j ∈ B(t, hmax) for all j∈Ωv, and t1,j /∈B(t, hmax) for all j /∈Ωv}.



786 DONGDONG XIANG, PEIHUA QIU AND XIAOLONG PU

Then, the existence condition of the partial density of {tij} ensures that Pr{t1j
are all equal for all j ∈ Ωv|Sv(hmax)} = 1+ o(1) on B(t, hmax), as hmax → 0. Let

a
(sk)
m+1,l+1 denote the ((s− 1)(p+ 1) +m+ 1, (k − 1)(p+ 1) + l + 1)th element of

An, jv ∈ Ωv, and Cism = (0, . . . , 0, ci1sm, . . . , ciJsm, 0, . . . , 0)T1×qJ . Then,

E(a
(sk)
m+1,l+1) =

n∑
i=1

E{CT
ism(ĨiV̂iĨi)

−1Cikl}

= n
2J−1∑
v=1

E{CT
1sm(Ĩ1V̂1Ĩ1)

−1C1kl|Sv(hmax)}Pr{Sv(hmax)}

= n

2J−1∑
v=1

E[(t1jv − t)m+lK
1/2
hs

(t1jv − t)K
1/2
hk

(t1jv − t)I{Sv(hmax)}]

×E{(ẽs ⊗ 10)
T (Ĩv0 V̂1Ĩv0)

−1(ẽk ⊗ 10)|Sv(0)}{1 + o(1)}

= n

2J−1∑
v=1

1√
hshk

∫ t+hmax

t−hmax

(u− t)m+lK1/2

(
u− t

hs

)
K1/2

(
u− t

hk

)
fv(u)du

×E{(ẽs ⊗ 10)
T (Ĩv0 V̂1Ĩv0)

−1(ẽk ⊗ 10)|Sv(0)}{1 + o(1)}

= n

2J−1∑
v=1

hm+l+1
max√
hshk

∫ 1

−1
zm+lK1/2

(
hmax

hs
z

)
K1/2

(
hmax

hk
z

)
fv(t)dz

×E{(ẽs ⊗ 10)
T (Ĩv0 V̂1Ĩv0)

−1(ẽk ⊗ 10)|Sv(0)}{1 + o(1)}

= nhm+l+1
max µm+l(hs, hk)

2J−1∑
v=1

fv(t)ξ
(sk)
v {1 + o(1)}.

Similarly, we can show that {var(a(sk)m+1,l+1}
1/2 = o(nhm+l

max ). By combining these

results, we have

a
(sk)
m+1,l+1 = E(a

(sk)
m+1,l+1) +Op[{var(a(sk)m+1,l+1}

1/2]

= nhm+l+1
max µm+l(hs, hk)

2J−1∑
v=1

fv(t)ξ
(sk)
v {1 + o(1)}.

Therefore,

An = nhmax[(Iq ⊗ H̃)S(Iq ⊗ H̃)]{1 + oP (1)}. (A.3)

Let b
(sk)
m+1,l+1 denote the ((s − 1)(p + 1) + m + 1, (k − 1)(p + 1) + l + 1)th

element of Bn. Then, we have

E(b
(sk)
m+1,l+1) =

n∑
i=1

E{CT
ism(ĨiV̂iĨi)

−1K
1/2
iH V0(t)K

1/2
iH (ĨiV̂iĨi)

−1Cikl}
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=n
2J−1∑
v=1

E{CT
1sm(Ĩ1V̂1Ĩ1)

−1K
1/2
1HV0(t)K

1/2
1H (Ĩ1V̂1Ĩ1)

−1C1kl|Sv(hmax)}Pr{Sv(hmax)}

=n

2J−1∑
v=1

{
q∑

l1,l2=1

E[(t1jv − t)m+lK
1/2
hs

(t1jv − t)K
1/2
hk

(t1jv − t)

×K
1/2
hl1

(t1jv − t)K
1/2
hl2

(t1jv − t)I{Sv(hmax)}]E{(ẽs ⊗ 10)
T (Ĩv0 V̂1Ĩv0)

−1

×(El1 ⊗ IJ)V0(t)(El2 ⊗ IJ)(Ĩv0 V̂1Ĩv0)
−1(ẽk ⊗ 10)|Sv(0)}}{1 + o(1)}

=n

2J−1∑
v=1

fv(t)h
m+l+1
max {

q∑
l1,l2=1

ξ̄
(sk)
v,l1l2

(t)
1√

hshkhl1hl2

×
∫ 1

−1
zl+mK1/2(

hmax

hs
z)K1/2(

hmax

hk
z)K1/2(

hmax

hl1
z)K1/2(

hmax

hl2
z)dz}{1 + o(1)}

=n
2J−1∑
v=1

fv(t)h
m+l+1
max {

q∑
l1,l2=1

ξ̄
(sk)
v,l1l2

(t)νm+l(hs, hk, hl1 , hl2)}{1 + o(1)}

=nhm+l+1
max

2J−1∑
v=1

fv(t)ν
(sk)
m+l,v(t){1 + o(1)}.

As with (A.3), we have

Bn = nhmax[(Iq ⊗ H̃)S̄(Iq ⊗ H̃)]{1 + oP (1)}. (A.4)

By combining (A.1)−(A.4), we have

Cov{m̂(k)(t)|Fn} =
k!2

nh1+2k
max

[(Iq ⊗ eTk+1)S
−1S̄S−1(Iq ⊗ ek+1)] + oP

(
1

nh1+2k
max

)
.

Similar to the asymptotic expansion of Bn in (A.4), we can show that

Bias{m̂(k)(t)} = k!(Iq ⊗ eTk+1)[E(v̂ec(β)|Fn)− vec(β)]

= k!(Iq ⊗ eTk+1)A
−1
n

n∑
i=1

(Iq ⊗XT
i )WiE[vec(Yi)−(Iq ⊗Xi)vec(β)]

=
k!

(p+ 1)!
(Iq ⊗ eTk+1)A

−1
n

n∑
i=1

(Iq ⊗XT
i )Wi


m

(p+1)
1 (t)

...

m
(p+1)
q (t)


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⊗

 (ti1 − t)p+1

...

(tiJ − t)p+1

 {1 + o(1)}

=
nk!hp+2

max

(p+ 1)!
(Iq ⊗ eTk+1){nh−1

max[(Iq ⊗ H̃)S(Iq ⊗ H̃)]{1 + oP (1)}}−1

×[(Iq ⊗ H̃)D]{1 + oP (1)}

=
k!

(p+ 1)!
hp+1−k
max [(Iq ⊗ eTk+1S

−1D] + oP (h
p+1−k
max ).

The last equation holds because D = O(h−1
max), as specified in (A.1). By

now, we have proved (3.1) and (3.2).

Proof of Corollary 1. Similar to the proof of Proposition 1, we can show that

An = n[M ⊗ H̃S1H̃]{1 + oP (1)} (A.5)

Bn = nh−1[N ⊗ H̃S̄1H̃]{1 + oP (1)} (A.6)
n∑

i=1

(Iq ⊗XT
i )WiE[vec(Yi)− (Iq ⊗Xi)vec(β)] = [C ⊗ H̃cp]{1 + oP (1)}. (A.7)

The results (3.3) and (3.4) can be obtained from combining (A.5)−(A.7).

Proof of Corollary 2. In cases when response components are independent,

the covariance matrices Vi are block diagonal. By combining this result with

those in (3.1) and (3.2) in Proposition 1, the conclusions (3.5) and (3.6) are

straightforward.

Proof of Corollary 3. The proof of Corollary 3 is similar to the one of Propo-

sition 1. Thus, it is omitted here.
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