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Abstract: We consider estimation of a linear or nonparametric additive model in

which a few coefficients or additive components are “large” and may be objects

of substantive interest, whereas others are “small” but not necessarily zero. The

number of small coefficients or additive components may exceed the sample size. It

is not known which coefficients or components are large and which are small. The

large coefficients or additive components can be estimated with a smaller mean-

square error or integrated mean-square error if the small ones can be identified

and the covariates associated with them dropped from the model. We give condi-

tions under which several penalized least squares procedures distinguish correctly

between large and small coefficients or additive components with probability ap-

proaching 1 as the sample size increases. The results of Monte Carlo experiments

and an empirical example illustrate the benefits of our methods.
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lection.

1. Introduction

We consider the mean-regression models

Yi =

p∑
j=1

Xijβj + εi; i = 1, . . . , n, (1.1)

Yi =

p∑
j=1

fj(Xij) + εi; i = 1, . . . , n, (1.2)

where Yi ∈ R is a response variable, the Xij ’s are scalar covariates that are fixed

in model (1.1) and random in model (1.2), and the εi’s are unobserved mean-zero

random variables. In (1.1), the βj ’s are unknown constant coefficients; in (1.2),

the fj ’s are unknown functions. We assume without loss of generality that the

data are centered and the fj ’s are normalized so that there is no intercept in either

model. In (1.1), we also assume that n−1
∑n

i=1X
2
ij = 1 for each j = 1, . . . , p.
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The number of covariates (p) may be large, possibly larger than the sample size

(n).

Motivated by applications in economics and other social sciences, we assume

that some βj ’s or fj ’s are “large” in a sense that will be defined and that one

or more of the large βj ’s or fj ’s are the objects of substantive interest. The

remaining βj ’s or fj ’s are small but not necessarily zero. They are not objects of

substantive interest, but including them in the model reduces the bias of estimates

of the large βj ’s or fj ’s. Our interest is in estimating the large βj ’s or fj ’s that

are of substantive interest. It turns out that the mean-square estimation errors

of the large βj ’s or integrated mean-square estimation errors of the large fj ’s can

be reduced by identifying and dropping from the model the covariates associated

with small βj ’s or fj ’s. We give conditions under which several penalized least

squares procedures distinguish correctly between large and small βj ’s or fj ’s with

probability approaching one as n→ ∞. We also show that these methods provide

consistent estimators of the large βj ’s and fj ’s. The penalization methods we

consider include the adaptive LASSO, bridge estimation, and estimation with

the SCAD or minimax concave (MC) penalty functions.

In model (1.1), let As ⊂ {1, . . . , p} denote the set of small coefficients. These

are defined as coefficients satisfying the generalized sparsity condition (GSC)∑
j⊂As

|βj | ≤ ηn, (1.3)

where {ηn} is a sequence of non-negative constants. In our most general ap-

proach, which is the adaptive LASSO, ηn = o(n−1/2). This condition is weaker

than the one commonly used in the literature,

|βj | = 0 if j ∈ As. (1.4)

Note that (1.4) is a special case of the GSC. In practice, the GSC can be a more

realistic formulation of sparse models than (1.4). Let A0 denote the complement

of As. We define the elements of A0 to be large coefficients. In the adaptive

LASSO, we assume that the coefficients βj in A0 satisfy |bj | ≫
√

(log p)/n. We

take a covariate to be important if its coefficient is in A0 and unimportant if its

coefficient is in As. The other penalization methods that we consider require more

restrictive definitions of the large and/or small coefficients. These definitions

depend on the penalization method and are given in Section 3.2 of this paper.

In model (1.2), let A0 ⊂ {1, . . . , p} again denote the set of large additive

components. We define these to be components that are non-zero in the sense
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that Efj(Xij)
2 > 0 and assume that the number of such components, q, is fixed

as n→ ∞. Specifically,

A0 = {j : Efj(Xij)
2 > 0}

and |A0| = q is fixed. We assume that the remaining additive components are

small or zero in the sense that

p max
x:j ̸∈A0

fj(x)
2 = o(n−2d/(2d+1)), (1.5)

where d is measures the smoothness of the additive components. Let As denote

the set of small additive components. Condition (1.5) is weaker than, but includes

as a special case, the condition used by Huang, Horowitz, and Wei (2010), fj(v) =

0 for all v if j ∈ As.

In model (1.1), we assume that the number of large coefficients is fixed as

n → ∞. Thus, for example, if p is fixed, the small coefficients are smaller than

O(n−1/2) and the large coefficients are larger than O(n−1/2) as n → ∞. In this

case, the mean-square estimation errors of the large coefficients are smaller if

all the unimportant covariates are excluded from the model than if any of the

unimportant covariates is included. Thus, when the objective is to estimate one

or more large coefficients, it is better to drop the unimportant covariates from

the model.

The assumption that the number of large coefficients is fixed is motivated

by applications in the social sciences. In these applications, it is not unusual

for survey data to contain hundreds or thousands of variables that are arguably

related to the dependent variable of interest in the sense of having non-zero βj
coefficients in (1.1). However, in typical applications, most of these coefficients

are thought to be small in the sense of having magnitudes and effects on the

dependent variable that are smaller than the random sampling errors of their

estimates. The “large” coefficients are typically few in number. For example,

in an economic wage equation, the dependent variable is the logarithm of an

individual’s weekly wage, and the objects of interest are the coefficients of a

few covariates such as an individual’s years of education, years of labor-force

experience, and labor union membership. However, widely available data sets for

estimating wage equations can contain hundreds or even thousands of variables

that may be weakly related to wages. It is not clear a priori which of these

variables should be included in a wage equation, though it is clear that including

all of them will result in very imprecise estimates of the coefficients of interest.

This illustrates the usefulness of a systematic method for discriminating between

covariates with large and small coefficients. We give conditions under which

certain penalized least squares estimators do this with probability approaching

1 as n→ ∞.
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In model (1.2), the asymptotic distributions and, therefore, integrated mean-

square errors of the estimators of the large fj ’s are independent of the number

of small fj ’s, provided that this number is also fixed as n → ∞ (Horowitz and

Mammen (2004)). We give conditions under which a penalized least-squares

estimation procedure reduces the number of small fj ’s to a fixed value when the

number of covariates associated with small fj ’s is an increasing function of n.

Our objectives differ from those of most of the literature on estimation of

high-dimensional mean-regression models. In most of the literature, the large

βj ’s or fj ’s are assumed to be bounded away from zero, and the small ones

are assumed to be exactly zero. Interest centers on identifying and estimating

the large βj ’s or fj ’s (model selection) or selecting covariates that yield good

predictions of Y . In this paper, the large βj ’s are not necessarily bounded away

from zero as n→ ∞ and the small βj ’s or fj ’s are not necessarily zero. Moreover,

our concern is with estimating a few large βj ’s or fj ’s , not with model selection

or predicting Y .

The remainder of this paper is organized as follows. Section 2 presents a lit-

erature review. Section 3 describes penalized least-squares methods for selecting

and estimating the large coefficients of model (1.1). These include the adap-

tive LASSO (Zou (2006)) and a class of penalization methods that includes the

bridge, SCAD, and MC penalties as special cases. Section 4 deals with model

(1.2). Section 5 presents the results of a Monte Carlo investigation of the numeri-

cal performance of the adaptive LASSO. Section 6 presents an empirical example,

and Section 7 presents concluding comments. The proofs of theorems are in the

Appendix, which is Section 8.

2. Review of the Literature

LASSO-type penalization methods for model selection (Tibshirani (1996))

have attracted much attention in recent years. There is also a large literature on

the use of LASSO for the related problem of prediction (see, e.g., Greenshtein

and Ritov (2004) and Bickel, Ritov, and Tsybakov (2009)). Meinshausen and

Bühlmann (2006) and Zhao and Yu (2006) showed that, under a strong irrepre-

sentable condition on the design matrix, the LASSO for model (1.1) is model-

selection consistent in high-dimensional settings. Zhang (2009) gave conditions

under which the LASSO combined with a thresholding procedure consistently

distinguishes between coefficients that are zero and coefficients whose magni-

tudes as n→ ∞ exceed n−s for some s < 1/2. Zou (2006) proposed the adaptive

LASSO and gave conditions under which it is model-selection consistent when the

number of covariates is fixed. Huang, Ma, and Zhang (2008) provided conditions

under which the adaptive LASSO is model-selection consistent even when the
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number of covariates is as large as exp(na) for some a ∈ (0, 1). Huang, Horowitz,

and Wei (2010) considered model (1.2) and showed that a form of adaptive group

LASSO provides consistent model selection in a high-dimensional setting.

Non-LASSO penalization approaches have also been considered. Knight and

Fu (2000) and Huang, Horowitz, and Ma (2008) established model-selection con-

sistency of bridge estimators. Antoniadis and Fan (2001) proposed the SCAD

penalty. Fan and Li (2001) and Fan and Peng (2004) further investigated the

properties of least-squares and penalized likelihood estimators with the SCAD

penalty. Zhang (2010) investigated penalized least squares estimation with the

MC penalty. Other penalization methods have been investigated by Fan, Peng,

and Huang (2005), Lv and Fan (2009), and Zou and Zhang (2009).

The foregoing model-selection procedures assume that the large βj ’s in model

(1.1) are non-zero and that the small βj ’s are exactly zero. In a recent paper,

Zhang and Huang (2008) studied the selection properties of the LASSO under the

GSC when p > n. They showed that the LASSO selects a model that includes

all the covariates with large coefficients and has the right order of dimensional-

ity. However, in general, the LASSO also includes some covariates with small

coefficients. Thus, for example, the LASSO tends to select a model that is too

large when the large coefficients are larger and the small coefficients are smaller

than O(n−1/2). Zhang (2009) gave conditions under which the LASSO, combined

with a thresholding procedure, correctly selects coefficients that are sufficiently

far from zero. However, Zhang’s procedure requires a user-selected threshold,

and it is not clear how to choose it in applications.

In this paper, we give conditions under which, with probability approaching

one as n → ∞, several penalized least-squares procedures correctly distinguish

between large and small coefficients or additive components under the GSC. No

user-selected thresholds are needed.

3. The Linear Model

This section describes methods for selecting and estimating the large βj
coefficients in model (1.1). Section 3.1 gives conditions under which the adaptive

LASSO procedure of Zou (2006) distinguishes correctly between large and small

βj ’s as n→ ∞. Section 3.2 gives conditions under which penalized least-squares

estimation with a SCAD, MC, or bridge penalty function does this.

3.1. The adaptive LASSO

Write y = (Y1, . . . , Yn)
′, let xj = (x1j , . . . , xnj)

′ denote the vector of values

of the j’th covariate, and let X = (x1, . . . ,xp) denote the design matrix. Let

β = (β1, . . . , βp)
′, and let β0 denote the true but unknown value of β. Let ∥ · ∥2
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denote the ℓ2 norm. The ordinary LASSO objective function is

L1(β;λ1) = 0.5∥y −Xβ∥22 + λ1

p∑
j=1

|βj |, (3.1)

where λ1 ≥ 0 is the penalty parameter, and the LASSO estimator is defined as

β̃n(λ1) = argmin β L1(β;λ1).

The adaptive LASSO objective function is

L2(β;λ1) = 0.5∥y −Xβ∥22 + λ2

p∑
j=1

wj |βj |, (3.2)

where λ2 ≥ 0 is the penalty parameter. The weights wj are

wj = |β̃nj |−1,

where β̃nj is the j’th component of β̃n(λ1). The adaptive LASSO estimator is

defined as β̂n(λ2) = argmin β L2(β;λ1). We take wj = ∞ when β̃nj = 0, and we

set 0 ×∞ = 0. Minimization of (3.2) results in β̂nj = 0 if wj = ∞. Thus, if a

variable is not selected by the LASSO, it is not selected by the adaptive LASSO.

Coefficients that are known to be large a priori can be omitted from the penalty

term.

Under conditions (A1)−(A3) below, the LASSO selects (asymptotically) all

coefficients that exceed a certain threshold. However, the LASSO also tends to

select coefficients that are below the threshold. The adaptive LASSO is a way

to correct LASSO’s over-selection problem.

We use the following notation. For any A ⊆ {1, . . . , p}, letXA = {xj : j ∈ A}
and CA = X ′

AXA/n, and put

cmin(m) = min
|A|=m,

min
∥v∥2=1

v′CAv, cmin(m) = max
|A|=m,

max
∥v∥2=1

v′CAv,

where |A| is the number of elements of A. We say that the covariate matrix

X satisfies the sparse Riesz condition (SRC) with rank q and spectrum bounds

0 < c∗ < c∗ <∞ if

c∗ ≤ cmin(q) ≤ cmax(q) ≤ c∗ ∀ A with |A| = q and v ∈ Rq. (3.3)

Under (3.3), all the eigenvalues of CA are contained in the interval [c∗, c
∗] when

|A| ≤ q.

We employ the following conditions.

(A1) The random variables ε1, ε2, . . . are independently and identically distributed

with mean 0. There are constants C > 0 and K > 0 such that P (|εi| >
z) ≤ K exp(−Cz2) for all z ≥ 0 and i = 1, 2, . . ..
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(A2) There is a finite constant c1 > 0 such that ηn ≤ c1
√
qλ1/n. Moreover, q is

fixed, and |A0| ≡ k ≤ q.

(A3) The SRC holds.

Condition (A1) requires the εis to have subgaussian tails. Condition (A2)

defines the class of small coefficients and states our assumption that the number of

large coefficients is fixed, while (A3) holds if the restricted eigenvalue assumption

RE(s, c0) of Bickel, Ritov, and Tsybakov (2009) holds for some s ≥ q/2.

Let Ã1 = {j : β̃nj(λ1) ̸= 0} be the set of coefficients estimated to be non-

zero by the LASSO. A lemma, proved in Zhang and Huang (2008), summarizes

important properties of Ã1 and β̃nj .

Lemma 1. Let (A1)−(A3) hold, and let λ1 = O(
√
n log p). Then there are finite

constants M1 and M2 such that

(i) |Ã1| ≤M1q with probability approaching 1 as n→ ∞.

(ii) All covariates with β20j > M2qλ
2
1/(c∗c

∗n2) are selected with probability ap-

proaching 1 as n→ ∞.

(iii)∥β̃n − β0∥22 = Op(h
2
n), where hn =

√
(log p)/n.

Lemma 1 shows that with high probability, the number of covariates selected

by the LASSO is a finite multiple of the number of covariates in A0 (and, there-

fore, of the number of covariates with large coefficients). Moreover, all covariates

exceeding the threshold in (ii) are selected with probability approaching 1 as

n → ∞. In particular, all of the covariates with large coefficients are selected

with probability approaching 1 if ηn = o(
√

(log p)/n) and the large βj ’s are larger

than O(
√

(log p)/n). In addition, the LASSO estimator is estimation consistent,

though this does not imply model-selection consistency.

We now give conditions under which the adaptive LASSO achieves model-

selection consistency. Denote the smallest and largest eigenvalues of CA0 =

X ′
A0
XA0/n by τn1 and τn2, respectively. Consider the following.

(A4) There are constants 0 < τ1 ≤ τ2 < ∞ such that τ1 ≤ τn1 ≤ τn2 ≤ τ2 for all

sufficiently large n.

(A5) Let bn1 = minj∈A0 |β0j |. As n → ∞, the nonstochastic quantities ηn, hn,

λ2, and bn1 satisfy

λ2
nb2n1

+
(hn + ηn)

bn1
+
nη(hn + ηn)

λ2
→ 0.

In our model, |A0| is fixed as n→ ∞, so it is reasonable to assume in (A4) that

the eigenvalues of CA0 are bounded away from 0 and ∞. (A5) restricts ηn, λ2,

and bn1, and requires that bn1, the smallest of the large coefficients, be not too
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small and the ℓ1 norm of the small coefficients to be not too large. In particular,

it requires bn1 ≫ ηn. In other words, there must be enough separation between

the large and small coefficients for the adaptive LASSO to distinguish between

them.

Now define β̂nA0 = {β̂nj : j ∈ A0} and β0A0 = {β0j : j ∈ A0}. For any vector

u = (u1, u2, . . .)
′, take sgn(u) = (sgn(u1), sgn(u2), . . .)

′, where sgn(u1) = −1, 0,

or 1 according to whether u1 < 0, u1 = 0, or u1 > 0.

Theorem 1. Let (A1)−(A5) hold. Then as n→ ∞,

P (β̂nj = 0 ∀ j ∈ As) → 1 and P (sgn(β̂aA0) = sgn(β0A0)) → 1.

Thus, with probability approaching 1 as n → ∞, the adaptive LASSO se-

lects all the covariates with large coefficients and drops the covariates with small

coefficients in the sense that it sets the coefficients of those covariates equal to

zero.

If, as often happens in social science applications, the total number of co-

variates is less than the sample size, we can consider a model in which p is fixed

as n→ ∞, the small coefficients satisfy ηn = o(n−1/2), and the large coefficients

satisfy bn1 ≥ κ
√

(log p)/n as n → ∞ for some constant κ > 0. It follows from

Theorem 1 with λ2 ∝
√
log n that, as n→ ∞, the adaptive LASSO estimates of

the large coefficients are non-zero and the estimates of the small coefficients are

zero. Moreover, a straightforward calculation shows that the mean-square error

(MSE) of the adaptive LASSO estimator of each large coefficient is never larger

and, except in special cases, is strictly smaller than the MSE of the ordinary

least squares (OLS) estimator that is obtained when all covariates are included

in (1.1). Thus, the adaptive LASSO improves the precision of the estimates of

the large coefficients.

If p > n, we can consider a model in which the large coefficients satisfy

bn1 ≥ κ(log p)/n1/2 for some constant κ > 0, and λ2 ∝ log p. Then it follows

again from Theorem 1 that, as n → ∞, the adaptive LASSO estimates of the

large coefficients are non-zero and the estimates of the small coefficients are zero.

Moreover, the MSE of the adaptive LASSO estimator of each large coefficient is

no larger and, except in special cases, is strictly smaller than MSE of the OLS

estimator that is obtained by including in the model any group of up to n− q−1

unimportant covariates or linear combinations of unimportant covariates. In

summary, the adaptive LASSO estimator reduces the MSE of the estimator of

any large coefficient if there is sufficient separation between the magnitudes of

the large and small coefficients.
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3.2. Penalized least-squares estimation with other penalty functions

We now investigate penalized least-squares estimation of model (1.1) with

a class of penalty functions that includes the bridge, SCAD, and MC penal-

ties. As in Section 3.1, we consider a two-step estimation procedure. The

first step is the same as that in Section 3.1; it consists of solving the problem

β̃n(λ1) = argmin β L1(β;λ1), where L1 is defined in (3.1). Under the assump-

tions of Lemma 1, the number of non-zero components of β̃n is fixed as n → ∞
and includes all the large βj ’s. Let X̃ denote the design submatrix consisting

of the columns of X corresponding to non-zero components of β̃n. The second

estimation step consists of minimizing

L3(β;λ1) = ∥y − X̃β∥22 +
∑
j:β̃j ̸=0

pλn(|βj |),

where pλ is a penalty function and λn is the penalty parameter. Denote the

resulting estimator by β̂n(λn).

The penalty function is to be subject to the following condition.

(A6) The penalty function has the form pλ(v) = λf(v), where f is a bounded,

non-decreasing function that may depend on n and λ, and satisfies

(i) f(0) = 0

(ii) One of the following holds.

(a) There are constants C < ∞ and τ that may depend on n and λ

such that 0 ≤ f ′(v) ≤ C for all v, and f ′(v) = 0 if v ≥ τ . Moreover

there are constants b > 0 and δ > 0 such that f ′(v) ≥ δ if v ≤ bλ/n.

(b) There is a C < ∞ such that 0 < f ′(v) ≤ C for all v ≥ ε and some

ε > 0. Moreover 0 ≤ f(v) ≤ Cvγ for all v > 0 and some γ such

that 0 < γ < 1. Also, limδ/v→0[f(|v + δ|)− f(|v|)] ≥ c|δ|γ .
In addition, we adopt the following more restrictive definitions of large and small

coefficients.

(A7) If (A6)(ii)(a) holds, then the large coefficients satisfy |βj | ≫ [λn(log p)/n]
1/2

≫ τ for all j ∈ A0, where {λn} is a sequence of positive constants such that

n−1/2λn → ∞ and n−θλn → 0 for some θ > 1/2 as n → ∞. The small

coefficients satisfy
∑

j∈As
|βj | = o(n−θ). If (A6)(ii)(b) holds, then the large

coefficients satisfy |βj | ≥ ε for all j ∈ A0 and some ε > 0. The small

coefficients satisfy
∑

j∈As
|βj |γ = o(n−1/2) for the γ in (A6)(ii)(b).

The SCAD and MC penalty functions satisfy (A6)(ii)(a). We write the

derivative of the SCAD penalty function as

p′λn(v) = λn

[
I(v ≤ n−1λn) +

(an−1λn − v)

(a− 1)n−1λn
I(v > n−1λn)

]
, v > 0
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where I is the indicator function and a > 2 is a constant. The MC penalty

function is

pλn(v) = λn

∫ v

0

(
1− nx

γλn

)
+
dx, v > 0

for some γ > 0. The bridge penalty function satisfies (A6)(ii)(b). The bridge

penalty function is

pλn(v) = λn|v|γ ,

where γ is a constant satisfying 0 < γ < 1. The ordinary LASSO penalty

function, pλ(v) = |v|, does not satisfy (A6).

Let Σn = X̃ ′X̃/n, and assume that

(A8) limn→∞Σn = Σ for some nonsingular matrix Σ.

Theorem 2. Let (A1)−(A3) and (A5)−(A8) hold. Let n−1/2λn → ∞ and

n−θλn → 0 as n→ ∞ if (A6)(ii)(a) holds. Let n−γλn → ∞ and n−1/2λn → 0 as

n→ ∞ if (A6)(ii)(b) holds. Then

P (β̂nj = 0 ∀ j ∈ As) → 1 and P (sgn(β̂nA0) = sgn(β0A0)) → 1.

Thus, under the conditions of Theorem 2, the second-stage estimator distin-

guishes correctly between large and small coefficients with probability approach-

ing 1 as n→ ∞.

4. The Nonparametric Additive Model

This section presents a method for selecting and estimating the large additive

components fj in model (1.2). Horowitz and Mammen (2004) describe a method

for estimating the fj ’s that is oracle efficient when the dimension of model (1.2)

remains fixed as n → ∞. The estimator of each fj has the same asymptotic

distribution that it would have if the other fj ’s were known. There is no need to

distinguish between large and small fj ’s. Here, we consider the case in which the

dimension of the model increases and may exceed n as n→ ∞. We present a two-

step procedure for selecting and estimating the large fj ’s. The first step of the

procedure consists of penalized least-squares estimation of series approximations

to the fj ’s using a group LASSO penalty function. Huang, Horowitz, and Wei

(2010) showed that this procedure reduces the number of fj ’s to a fixed value

when Ef2j (j = 1, . . . , p) is either zero or bounded away from zero. We show that,

asymptotically, the same procedure reduces the number of fj ’s to a fixed value

and retains all fj ’s for which Ef
2
j is large in the sense defined in Section 1. The

second step consists of using the estimator of Horowitz and Mammen (2004) to

re-estimate the fj ’s that are retained in the first step. Horowitz and Mammen

(2004) present the properties of the second-step estimator. Therefore, we treat

only the first step here.
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Assume that each X.j takes values in [a, b]. Let {ϕk : k = 1, . . . ,mn} be a
normalized B-spline basis for polynomial splines of degree l ≤ 1 on [a, b], where
mn = Kn + l and Kn is the number of spline knots in (a, b). Define the centered
B-splines

ψk(Xij) = ϕk(Xij)− n−1
n∑
ℓ=1

ϕk(Xℓj); k = 1, . . . ,mn; j = 1, . . . , p,

and let Zij = ((ψ1(Xij), . . . , ψmn(Xij))
′. Let Zj = (Z1j , . . . , Znj)

′, Z = (Z1, . . .,
Zp) and Y = (Y1 − Ȳ , . . . , Yn − Ȳ )′, where Ȳ = n−1

∑n
i=1 Yi. The first-step

estimator of our procedure consists of solving the problem

β̃nj = argmin
b

∥Y − Zbn∥22 + λn

p∑
j=1

∥bj∥2,

where bj is the mn × 1 vector (bj1, . . . , bjmn)
′ and λn is the penalty parameter.

This is also the problem solved in the first estimation step of Huang, Horowitz,
and Wei (2010).

Now let k be a non-negative integer, and let α ∈ (0, 1). Let d = k+α > 0.5.
Let F be the class of functions on [a, b] whose k’th derivative f (k) exists and
satisfies the Lipschitz condition of order α,

|f (k)(s)− f (k)(t)| ≤ C|s− t|α for s, t ∈ [a, b].

Order the fj ’s so that the first q are large and the rest are small or zero.
Consider the following assumptions.

(A9) The number of large additive components, q, is fixed. Moreover, there is
a constant Cf > 0 such that min1≤j≤q ∥fj∥2 ≥ Cf .

(A10) The random variables ε1, . . . , εn are independently and identically dis-
tributed with E(εi) = 0. Moreover, P (|εi| > x) ≤ K exp(−Cx2) (i =
1, . . . , n) for all x ≥ 0, where C and K are finite constants.

(A11) Efj(X·j) = 0 and fj ∈ F for all j = 1, . . . , p.
(A12) The covariate vector (X·1, . . . , X·j) has a continuous probability density

function with respect to Lebesgue measure. Moreover, there exist con-
stants C1 and C2 such that the probability density function gj of X·j sat-
isfies 0 < C1 ≤ gj(x) ≤ C2 <∞ for every x ∈ [a, b] and every j = 1, . . . , p.

(A13) Every additive component is either large or small. The small components
satisfy (1.5).

Assumptions (A9)−(A12) are made by Huang, Horowitz, and Wei (2010) and
are explained there. Assumption (A13) defines the small additive components.

Define Ã0 =
{
j : ∥β̃nj∥2 ̸= 0; j = 1, . . . , p

}
and
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βnj = argmin
b1,...,bmn

∥∥∥ mn∑
k=1

bkψk(X·j)− fj(X·j)
∥∥∥2
2
.

Let A2 = A0 ∪ {j : ∥β̃nj∥2 ̸= 0} and Ā2 = Ā0 ∩ {j : ∥β̃nj∥2 = 0}, where Ā is

the complement of any set A. Let β̃n,A2 and βnA2 , respectively, be the vectors

consisting of the β̃nj ’s and βnj ’s for which j ∈ A2.

We now have a result that extends Theorem 1 of Huang, Horowitz, and Wei

(2010) to the case in which some additive components may be small, but are not

necessarily zero.

Theorem 3. Let (A9)−(A13) hold at (1.2). In addition, let λn ≥ C
√
n log(pmn)

for some sufficiently large but finite constant C and suppose mn ≍ n1/(2d+1).

Then

(i) with probability approaching 1 as n → ∞, |Ã0| ≤ M1|A0| = M1q, for some

finite constant M1 > 1;

(ii) if m2
n log(pmn)/n → 0 and λ2nmn/n

2 → 0 as n → ∞, then ∥β̃nj∥2 ̸= 0 with

probability approaching 1 as for every j ∈ A0;

(iii)

∥β̃nA2 − βnA2∥22 = Op

(m2
n log(pmn)

n

)
+Op

( 1

n

)
+O

( 1

m2d−1
n

)
+O

(4m2
nλ

2
n

n2

)
.

Under the conditions of Theorem 3, the group LASSO selects all of the large

additive components of model (1.2) with probability approaching 1 as n → ∞.

Moreover, the group LASSO selects only a fixed number of additive components.

5. Monte Carlo Experiments

This section reports the results of a Monte Carlo investigation of the finite-

sample performance of the LASSO and adaptive LASSO for model (1.1) when

the small coefficients are not necessarily zero. We write model (1.1) in the form

Yi =

d∑
j=1

βjXij +

p∑
j=d+1

βjXij + εi; i = 1, . . . , n,

where β1, . . . , βd are large coefficients and the coefficients βd+1, . . . , βp are small

or zero. The random variables εi are independently distributed as N(0, σ2ε). The

covariates are fixed in repeated samples and are centered and scaled so that

n−1
n∑
i=1

Xij = 0; n−1
n∑
i=1

X2
ij = 0; j = 1, . . . , p.
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Table 1. Mean square errors of OLS estimates of from full and reduced
models.

Mean-Square Error of Estimate of β1
d Full Model Reduced Model
2 0.67 0.22
4 0.67 0.19
6 0.67 0.16

The covariates are generated as follows. Take

ξij = ζij +
( ρ1
1− ρ1

)1/2
vi; i = 1, . . . , n; j = 1, . . . ,

p

2
,

ξij = ζij +
( ρ2
1− ρ2

)1/2
vi; i = 1, . . . , n; j =

p

2
+ 1, . . . , p,

where the ζij ’s and vi’s are independently distributed as N(0, 1) and 0 ≤ ρ1,

ρ2 < 1. Let

ξ̄j = n−1
n∑
i=1

ξij ; s2j = n−1
n∑
i=1

(ξij − ξ̄j)
2.

Then

Xij =
ξij − ξ̄j
sj

.

Moreover,

corr(Xij , Xik) =


ρ1 if 1 ≤ j, k ≤ p/2,

ρ2 if p/2 < j, k < p,

(ρ1ρ2)
1/2 if j ≤ p/2 < k ≤ p.

In the experiments reported here, βj = 1 if 1 ≤ j ≤ d, is 0.05 if d+ 1 ≤ j ≤
p/2, and is 0 if p/2+ 1 ≤ j ≤ p. In addition, n = 100, p = 50, σ2ε = 10, ρ1 = 0.5,

and ρ2 = 0.1. The coefficient of interest is β1. Experiments are reported with

d = 2, 4, and 6 and with the LASSO and adaptive LASSO. The penalization

parameter is obtained by minimizing the BIC.

Table 1 shows the mean-square errors of the estimates of β1 obtained from

applying OLS to the full model and to the model containing only the variables

whose coefficients are large (the reduced model). These results are obtained

analytically using the algebra of least squares. They show that the mean-square

error is smaller when β1 is estimated from the reduced model than when it is

estimated from the full model.

Table 2 shows the results of estimation using the LASSO and adaptive

LASSO. There are 1,000 Monte Carlo replications in each experiment. Both
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Table 2. Results of LASSO and adaptive LASSO estimation.

Prob. that Selected
Average Size of Model Contains

d MSE of β̂1 Selected Model Large Variables Average
LASSO

2 0.31 9.7 0.84 4.57
4 0.34 12.3 0.75 4.52
6 0.29 15.0 0.67 4.48

ADAPTIVE LASSO
2 0.31 6.5 0.67 3.10
4 0.30 8.8 0.56 3.29
6 0.32 10.8 0.39 3.44

Table 3. Results of LASSO and adaptive LASSO estimation with β1 not in
the penalty function.

Prob. that Selected
Average Size of Model Contains

d MSE of β̂1 Selected Model Large Variables Average
LASSO

2 0.27 7.9 0.88 4.66
4 0.29 10.6 0.81 4.64
6 0.40 13.3 0.67 4.58

ADAPTIVE LASSO
2 0.19 5.8 0.67 2.83
4 0.17 8.0 0.64 3.13
6 0.19 10.2 0.43 3.23

versions of the LASSO reduce the mean-square estimation error by about a fac-

tor of two relative to OLS estimation with the full model. Not surprisingly,

neither version achieves the mean-square error that is achievable when the vari-

ables with large coefficients are known. The model selected by the LASSO has a

higher probability of containing all the important covariates than does the model

selected by the adaptive LASSO.

If β1 is the coefficient of interest, it is reasonable to consider versions of the

LASSO and adaptive LASSO in which Xi1 (i = 1, . . . , n) is always in the chosen

model. This can be achieved by leaving β1 out of the penalty function. Table 3

shows the results of LASSO and adaptive LASSO estimation with β1 not in the

penalty function. Forcing Xi1 into the model greatly reduces the mean-square

error of the adaptive LASSO estimator of β1. It is essentially the same as the

mean-square error that is obtained by applying OLS to the model with only the

covariates with large coefficients.
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Table 4. Results of estimating effects of union membership and marital
status on wages.

Coefficient (Standard Error) Obtained from
Variable OLS LASSO Adaptive LASSO
Union 0.21 0.21 0.22
Member (0.17) (0.096) (0.094)
Marital 0.051 0.19 0.20
Status (0.19) (0.11) (0.11)

6. An Empirical Example

This section presents an application of the LASSO and adaptive LASSO to a

setting in which many coefficients are plausibly small but non-zero. The setting is

that of estimating a wage equation for black males aged 40−49 years who reside

in the northeastern U.S. The data are from the National Longitudinal Survey

of Youth. There are 62 observations. The dependent variable is the logarithm

of the hourly wage. There are 42 covariates, including scores on 10 sections

of the armed forces qualification examination, indicators of education level, a

variety of personal characteristics, a binary indicator of marital status, and a

binary indicator of membership in a labor union. The variables of interest in this

example are marital status and union membership. Their coefficients measure

the fractional change in the wage associated with being married or belonging to

a labor union. It is arguable that all of the covariates affect productivity and,

therefore, the hourly wage but that the effects of many covariates may be small.

Application of the LASSO and adaptive LASSO using the BIC to select the

penalty parameter resulted in selection of 7 and 4 covariates, respectively. An

asymptotic chi-square test does not reject the hypotheses that the coefficients of

the variables not selected by the LASSO or adaptive LASSO are zero (p > 0.6).

This implies that the values of these coefficients are small enough to be within

random sampling error of zero. They are not necessarily equal to zero. Table

4 shows the estimates and asymptotic standard errors of the two coefficients of

interest that are obtained from applying ordinary least squares to the full model

(all 42 covariates), the model selected by the LASSO, and the model selected

by the adaptive LASSO. The three point estimates of the coefficient of labor

union membership are similar, but the standard error of the estimate obtained

from the full model is nearly twice as large as the standard errors obtained from

the models selected by the LASSO and adaptive LASSO. The estimates of the

coefficient of marital status obtained from the models selected by the LASSO and

adaptive LASSO are nearly four times as large as the estimate obtained from the

full model, and the standard errors of the estimates obtained from the selected

models are about 55% of the standard error obtained with the full model.



740 JOEL L. HOROWITZ AND JIAN HUANG

7. Conclusions

In applications of mean regression analysis, it is often the case that there

are many covariates whose effects on the conditional mean of the dependent

variable are thought to be small, but not necessarily zero, and there relatively

few covariates that have large effects on the conditional mean function. In such

situations, the precision of estimating the large effects can be increased by leaving

the covariates with small effects out of the model. However, it is rarely known a

priori which covariates have large effects and which have small ones. This paper

has given conditions under which the adaptive LASSO and several penalized least

squares methods correctly distinguish between covariates with large and small

effects in a linear model and a nonparametric additive model. Specifically, we

have shown that with probability approaching one as the sample size increases,

the adaptive LASSO and penalized least squares correctly distinguish between

covariates with large and small effects under a generalized sparsity condition and

other mild regularity conditions.
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Appendix: Proofs of Theorems

A.1. Proof of Theorem 1

Let ψ(v) = exp(v2) − 1. The ψ-Orlicz norm ∥x∥ψ of any random variable

x is ∥x∥ψ = inf{C > 0 : Eψ(|x|/C) ≤ 1}, and is useful for obtaining maximal

inequalities (Van der Vaart and Wellner (1996)).

Lemma A.1. Suppose that ε1, . . . , ε are iid random variables with Eεi = 0 and

Var (ε2i ) = σ2. Suppose that P (|εi| > z) ≤ K exp(−Cz2) for i = 1, . . . , n and

constants C and K. Then, for all constants ai satisfying
∑n

i=1 a
2
i = 1,∥∥∥ n∑

i=1

aiεi

∥∥∥
ψ
≤ K[σ + (1 +K)1/2C−1/2], (A.1)

where K is a constant. Consequently

gn(t) ≡ sup
a21+···+a2n=1

P
( n∑
i=1

aiεi > t
)
≤ exp

(
− t2

M

)
, (A.2)

for some constant M that depends only on K and C.
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Proof. See Huang, Horowitz, and Ma (2008).

Proof of Theorem 1. By the Karush-Kuhn-Tucker conditions, β̂n = (β̂n1, . . .,

β̂np)
′ is the unique adaptive LASSO estimator if{

x′
j(y −Xβ̂n) = λ2wj sgn(β̂nj) if β̂nj ̸= 0,

|x′
j(y −Xβ̂n)| ≤ λ2wj if β̂nj = 0,

(A.3)

and the vectors {xj , β̂nj ̸= 0} are linearly independent. Let s̃A0 = {wj sgn(β0j) :
j ≡ A0} and

β̂A0 = (X ′
A0
XA0)

−1(X ′
A0

y − λ2s̃A0)

= β0A0 + n−1C−1
A0

(X ′
A0
ε+X ′

A0
XA0β0As − λ2s̃A0), (A.4)

where CA0 = X ′
A0
XA0/n. If sgn(β̂A0) = sgn(β0As), then (A.3) holds for β̂n =

(β̂A0 ,0A0)
′, where 0A0 is a vector of zeros with length |As|. Let β∗0=(β′0,A−0,0

′
As
)′.

To prove the theorem, it suffices to show that P [sgn(β̂A0) = sgn(β0A0)] → 1.

Since Xβ̂n = XA0 β̂A0 for this β̂n and {xj : j ∈ A0} are linearly independent,

sgn(β̂n) = sgn(β∗0) if

{
sgn(β̂A0) = sgn(β0A0),

|x′
j(y −XA0 β̂A0)| ≤ λ2wj ∀ j ̸∈ A0.

(A.5)

Let Hn = In −XA0C
−1
A0
X ′
A0
/n be the projection onto the null of X ′

A0
, where In

is the n× n identity matrix. From (A.4), we have

y −XA0 β̂A0 = Hnε+ n−1λ2XA0C
−1
A0

s̃A0 +HnXAsβ0As . (A.6)

By (A.5) and (A.6), sgn(β̂n) = sgn(β∗0) if{
sgn(β0j)(β0j − β̂nj) < |β0j | ∀ j ∈ A0,

|x′
j(Hnε+ n−1λ2XA0C

−1
A0

s̃A0 +HnXAsβ0As | ≤ λ2wj ∀ j ̸∈ A0.
(A.7)

Thus, by (A.4) and (A.7), for any 0 < κ < κ+ v < 1

P{sgn(β̂n) ̸=sgn(β∗0)} ≤ P{n−1|e′jC−1
A0
X ′
A0
XAsβ0As | ≥ |β0j |/3 for some j ∈ A0}

+P{n−1|e′jC−1
A0
X ′
A0
ε| ≥ |β0j |/3 for some j ∈ A0}

+P{n−1λ2|e′jC−1
A0

s̃A0 | ≥ |β0j |/3 for some j ∈ A0}
+P{|x′

jHnε| ≥ λ2wj/3 for some j ∈ A0}
+P{n−1|x′

jXA0C
−1
A0

s̃A0 | ≥ wj/3 for some j ∈ A0}
+P{|x′

jHnXAsβ0As | ≥ λ2wj/3 for some j ∈ A0}
≡ P (Bn1)+P (Bn2)+P (Bn3)+P (Bn4)+P (Bn5)+P (Bn6),
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where ej is the unit vector in the direction of the j’th coordinate.

Consider Bn1. Because

n−1|e′jC−1
A0
X ′
A0
XAsβ0As | ≤ n−1∥e′jC−1

A0
X ′
A0

∥2 · ∥XAsβ0As∥2
≤ n−1/2∥C−1/2

A0
∥n1/2ηn ≤ τn1ηn,

we have P (Bn1) → 0 by (A5).

Now consider Bn2. Because n
−1∥e′jC

−1
A0
X ′
A0

∥2 ≤ n−1/2∥C−1/2
A0

∥ ≤ (nτn1)
−1/2

and |β0j | ≥ bn1 for j ∈ A0,

P (Bn2) = P
(
n−1|e′jC−1

A0
X ′
A0
ε| ≥ |β0j |

3
∀ j ∈ A0

)
≤ qgn

(bn1(τn1n)1/2
3

)
,

with the tail probability gn(t) in Lemma A.1. Therefore, P (Bn2) → 0 by (A1),

Lemma A.1, (A4), and (A5).

Now ∥s̃A0∥2 = Op[q
1/2/(nbn1)]. Therefore, by (A5),

n−1λ2|e′jC−1
A0

s̃A0 | ≤
λ2∥s̃A0∥2
nτn1

= Op(1)
λ2q

nτn1bn1
= op(bn1).

This gives P (Bn3) → 0.

For Bn4, we have w−1
j = |β̃nj | ≤ |Op(hn) + ηn|. Since ∥xjHn∥ ≤ n1/2, for

large C

P (Bn4) ≤ P
{
|x′
jHnε| ≥

(1/3)λ2

Cn1/2(hn + ηn)
∀ j ̸∈ A0

}
+ o(1)

≤ qngn

{ (1/3)λ2

Cn1/2(hn + ηn)

}
.

Therefore, by Lemma A.1 and (A5), P (Bn4) → 0.

For Bn5 we have

|x′
jXA0C

−1
A0
s̃A0 |

nwj
≤ ∥n−1x′

jXA0C
−1
A0

∥2 · ∥s̃A0∥2|β̃nj | ≤
τ
1/2
2 q1/2

τ1bn1
[Op(hn) + ηn].

Therefore, P (Bn5) → 0 by (A5).

Finally, for Bn6 we have |x′
jHnXAsβ0As | ≤ ∥xj∥2 · ∥XAsβ0As∥2 ≤ nηn, and

so
|x′
jHnXAsβ0As |

wj
≤ nηn|β̃nj | ≤ nηn[Op(hn) + ηn].

Therefore, P (Bn6) → 0 by (A5). This completes the proof.
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Proof of Theorem 2. The proof takes place in three steps.
Step 1 consists of proving that ∥β̂−β0∥22 = O(n−1+λnn

−1) with probability
approaching 1 as n→ ∞. Let r denote the (asymptotically fixed) number of co-
variates at this estimation stage. Denote the covariates by {Xij : i = 1, . . . , n; j =
1, . . . , r}. Set Xi = (Xi1, . . . , Xir). Define

Sn(b) =
n∑
i=1

(Yi −Xib)
2 +

r∑
j=1

pλn(|bj |).

Then Sn(β̂n) ≤ Sn(β0). Therefore,

n∑
i=1

(Yi −Xiβ̂)
2 +

r∑
j=1

pλn(|β̂j |) ≤
n∑
i=1

(Yi −Xiβ0)
2 +

r∑
j=1

pλn(|β0j |),

n∑
i=1

(Yi −Xiβ̂)
2 −

n∑
i=1

(Yi −Xiβ0)
2 ≤

r∑
j=1

pλn(|β0j |)−
r∑
j=1

pλn(|β̂j |).

Some algebra shows that this is equivalent to

n∑
i=1

[Xi(β̂ − β0)]
2 − 2

n∑
i=1

εiXi(β̂ − β0) ≤
r∑
j=1

pλn(|β0j |)−
r∑
j=1

pλn(|β̂j |).

Define δn = n1/2Σ
1/2
n (β̂ − β0), and Dn = n−1/2XΣ

1/2
n . Σ

−1/2
n exists for all

sufficiently large n by (A8). Then

n∑
i=1

[Xi(β̂−β0)]2−2
n∑
i=1

εiXi(β̂−β0) = δ′nδ−2(D′
nε)

′δn = ∥δn−D′
nε∥22−∥D′

nε∥22.

Therefore,

∥δn −D′
nε∥22 − ∥D′

nε∥22 ≤
r∑
j=1

pλn(|β0j |)−
r∑
j=1

pλn(|β̂j |). (A.8)

Now use the inequality (b − a)2 ≥ 0.5b2 − a2 to get ∥δn − D′
nε∥22 ≥ 0.5∥δn∥22 −

∥D′
nε∥22. Substituting this inequality into (A.8) and rearranging terms gives

0.5∥δn∥22 ≤ 2∥D′
nε∥22 +

r∑
j=1

pλn(|β0j |)−
r∑
j=1

pλn(|β̂j |).

Now E∥D′
nε∥22 = σ2r, where σ2 = E(ε2). Moreover, E∥δn∥22 = nE(β̂−β0)′Σn(β̂−

β0). Therefore,

E(β̂ − β0)
′Σn(β̂ − β0) ≤ 4n−1σ2r + 2n−1E

r∑
j=1

[pλn(|β0j |)− pλn(|β̂j |)]. (A.9)
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In particular,

E(β̂ − β0)
′Σn(β̂ − β0) ≤ 4n−1σ2r + 2n−1

r∑
j=1

pλn(|β0j |).

But pλ = λf by (A6), so,

E(β̂ − β0)
′Σn(β̂ − β0) ≤ 2n−1σ2r + 2λnn

−1
r∑
j=1

f(|β0j |) = O(n−1 + λnn
−1).

It follows that

E∥β̂ − β0∥22 = O
(1 + λn

n

)
.

In addition, it follows from Markov’s inequality, that for each ε > 0 there is an

Mε <∞ such that

p
[( n

1 + λn

)
∥β̂ − β0∥22 ≤Mε

]
≥ 1− ε.

Step 2 of the proof consists of refining the result of step 1 to show that β̂j is

n−1/2-consistent for β0j . Let A
∗
s = {j : j ∈ As; p limn→∞ |β̃j | ̸= 0}.

Now pλn(|β0j |) − pλn(|β̂j |) = λn[f(|β0j |) − f(|β̂j |)]. If (A6)(ii)(a) holds and

j ∈ A0, then it follows from step 1 that with probability approaching 1 as n→ ∞,

|pλn(|β0j |) − pλn(|β̂j |)| = 0. If (A6)(ii)(b) holds and j ∈ A0, then |pλn(|β0j |) −
pλn(|β̂j |)| ≤ Cλn|β̂j − β0j |. Therefore, if (A6)(ii)(a) holds,

r∑
j=1

[pλn(|β0j |)− pλn(|β̂j |)] =
∑
j∈A∗

s

[pλn(|β0j |)− pλn(|β̂j |)]

≤
∑
j∈A∗

s

pλn(|β0j |) = λn
∑
j∈A∗

s

f(|β0j |)

≤ Cλn
∑
j∈A∗

s

|β0j | = o(λnn
−θ).

with probability approaching 1. If (A6)(ii)(b) holds, then

r∑
j=1

[pλn(|β0j |)− pλn(|β̂j |)]

≤
∑
j∈A0

[pλn(|β0j |)− pλn(|β̂j |)] +
∑
j∈A∗

s

[pλn(|β0j |)− pλn(|β̂j |)]

≤
∑
j∈A0

[pλn(|β0j |)− pλn(|β̂j |)] +
∑
j∈A∗

s

pλn(|β0j |).
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Therefore,∣∣∣ r∑
j=1

[pλn(|β0j |)− pλn(|β̂j |)]
∣∣∣ ≤ Cλn

∑
j∈A0

|β̂j − β0j |+ Cλn
∑
j∈A∗

s

|β0j |γ

= Cλn
∑
j∈A0

|β̂j − β0j |+ o(λnn
−1/2)

if (A6)(ii)(b) holds. The Cauchy-Schwarz inequality gives∑
j∈A0

|β̂j − β0j |,
∑
j∈A∗

s

|β̂j − β0j | ≤ r1/2∥β̂ − β0∥2.

Therefore, ∣∣∣ r∑
j=1

[pλn(|β0j |)− pλn(|β̂j |)]
∣∣∣ = o(λnn

−θ)

with probability approaching 1 if (A6)(ii)(a) holds, and∣∣∣ r∑
j=1

[pλn(|β0j |)− pλn(|β̂j |)]
∣∣∣ ≤ Cλnr

1/2∥β̂j − β0j∥2 + o(λnn
−1/2)

if (A6)(ii)(b) holds. Substituting these inequalities into (A.9) yields

E(β̂ − β0)
′Σn(β̂ − β0) ≤ 4n−1σ2r + o(λnn

−1−θ)

for all sufficiently large n if (A6)(ii)(a) holds and

E(β̂ − β0)
′Σn(β̂ − β0) ≤ 2n−1σ2r + Cn−1λnr

1/2∥β̂j − β0j∥2 + o(λnn
−3/2)

if (A6)(ii)(b) holds. Now E∥β̂ − β0∥2 ≤ (E∥β̂ − β0∥22)1/2 by the Cauchy-Schwarz

inequality. This combined with non-singularity of Σ implies that

E(β̂ − β0)
′Σn(β̂ − β0) ≥ cE∥β̂ − β0∥22

for some constant c > 0. Therefore,

E∥β̂ − β0∥22 ≤ C̃n−1 + o(λnn
−1−θ) (A.10a)

for all sufficiently large n and some C̃ <∞ if (A6)(ii)(a) holds and

E∥β̂ − β0∥22 ≤ C̃n−1 + Cn−1λn∥β̂j − β0j∥2 + o(λnn
−3/2) (A.10b)

if (A6)(ii)(a) holds. Inequalities (A.10a) and (A.10b) imply that E∥β̂ − β0∥ =

O(n−1/2).
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The third step of the proof consists of showing that with probability ap-

proaching 1 as n → ∞, all the large βj ’s and none of the small ones are se-

lected. Let β̂ = (β̂′1, β̂
′
2)

′, where β̂1 is the second-stage estimator of the large

coefficients and β̂2 is the second stage estimator of the small ones. We have

∥β̂ − β0∥ ≤ n−1/2Cε with probability at least 1 − ε for any ε > 0 and all suf-

ficiently large Cε. Let β1n = β01 + n−1/2u1 and β2n = β02 + n−1/2u2, where

β01 and β02 are the true values of the large and small coefficients, respectively,

and ∥u∥2 = ∥u1∥2 + ∥u2∥2 ≤ C2
ε . Take Vn(u1, u2) = Sn(β1n, β2n) − Sn(β01, 0).

Then (β̂′1n, β̂
′
2n) minimizes Vn(u1, u2) over ∥u∥ ≤ Cε with probability at least

1− ε. Define u20 = −n1/2β02. It follows from n−1/2 consistency of the β̂j ’s that

all the large βj ’s are chosen with probability approaching 1 as n → ∞. There-

fore, it suffices to show that Vn(u1, u2) − Vn(u1, 0) ≥ 0 with probability at least

1 − ε if u2 ̸= 0. Write x = (w, z), where w corresponds to covariates with large

coefficients and z corresponds to covariates with small ones. Then

Vn(u1, u2)− Vn(u1, 0) = n−1
n∑
i=1

[(ziu2)
2 − (ziu20)

2] + 2n−1
n∑
i=1

(wiu1)zi(u2 − u20)

−2n−1/2
n∑
i=1

εizi(u2 − u20) + ∆

≡ Rn1 +Rn2 +Rn3 +∆,

where

∆ =

p∑
j=k+1

[pλn(|β2j |)− pλn(|β02,j |)] =
p∑

j=k+1

[pλn(|β02,j + n−1/2u2|)− pλn(|β02,j |)].

Now u20 = o(1), so Rn1 = n−1
∑n

i=1(ziu2)
2+o(1), Rn2 = 2n−1

∑n
i=1(wiu1)ziu2+

o(1), and Rn3 = −2n−1/2
∑n

i=1 εiziu2 + o(1). As in Huang, Horowitz, and Ma

(2008), Rn1+Rn2 ≥ −C for some constant C <∞, and Rn3 = Op(1). Therefore,

Vn(u1, u2)− Vn(u1, 0) ≥ −C +O(1) + ∆

= −C +O(1) + λn
∑
j∈A∗

s

[f(|β02,j + n−1/2u2j |)− f(|β02,j |)].

Therefore,

Vn(u1, u2)− Vn(u1, 0) ≥ −C +O(1) + C1λnn
−1/2

∑
j∈A∗

s

|u2j | (A.11a)

for all sufficiently large n under (A6)(ii)(a), and

Vn(u1, u2)− Vn(u1, 0) ≥ −C +O(1) + C1λnn
−γ/2

∑
j∈A∗

s

|u2j | (A.11b)
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under (A6)(ii)(b), where C1 is a constant. The right-hand sides if (A.11a) and

(A.11b) increase without bound as n→ ∞.

Proof of Theorem 3. The proofs of Theorem 3(i) and 3(ii) are identical to the

proof of Theorem 1(i) and 1(ii) in Huang, Horowitz, and Wei (2010). To prove

Theorem 3(iii), let ηn be the n×1 vector whose i’th component is ηi = Yi−Ziβn,
where βn is the pmn× 1 vector of stacked βnj ’s. Take f0A2(Xi) =

∑
j∈A2

fj(Xi),

fnA2(Xi) =
∑

j∈A2
Z ′
ijβnj , and fnĀ2

(Xi) =
∑

j∈Ā2
Z ′
ijβnj . Proceed as in the

proof of Theorem 1(iii) of Huang, Horowitz, and Wei (2010) to obtain

ηi = Yi − µ− f0(Xi)− Ȳ −
∑
f∈A2

Z ′
ijβnj

= εi + µ+ [fA2(Xi)− fnA2(Xi)] + fĀ2
(Xi).

Now proceed as in Huang, Horowitz, and Wei (2010) to obtain

∥β̃nA2 − βnA2∥22 = Op

[m2
n log(pmn)

n

]
+Op

(mn

n

)
+Op

(m2
nλ

2
n

n2

)
+O

( 1

m2d−1
n

)
+Op

(mn

n
∥fĀ2

∥22
)
.

The last term on the right-hand side is asymptotically negligible ifmn ≍ n1/(2d+1),

which gives part (iii) of the theorem.
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