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Abstract: A minimum separation between successive samples is a practical con-

straint that often comes in the way of sampling of a continuous time stationary

stochastic process for the purpose of spectrum estimation. It is known from a re-

cent study that additive random sampling subject to the said constraint can be

alias-free for bandlimited spectra with any specified support, but known estima-

tion approaches do not work. In this paper, we propose a new spectrum estimator

for this purpose and show that it can accurately and precisely estimate any power

spectral density limited to an arbitrarily large but known support.
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1. Introduction

Sampling of a continuous time process, and subsequent inference based on

those samples, is carried out in many disciplines of science and engineering. The

object of inference is typically an attribute of the underlying continuous time

process, such as the mean function or the power spectral density (also referred to

as the spectrum). In some applications, samples of the process are collected at

uncontrolled observational epochs (Bronez (1988), Ishimaru and Chen (1965),

Munson, O’Brien, and Jenkins (1983), Nobach, Müller, and Tropea (1998)).

When one can choose a sampling scheme for the observational time points, one

typically uses uniform sampling (i.e., sampling at regular intervals) or additive

random sampling (i.e., sampling at the times of renewal of a renewal process with

a known distribution of spacing between successive samples) (Costain and Çoruh

(2004), Eldar et al. (1997), Roughan (2006)). In such situations, there is often

a practical constraint on the minimum separation between successive samples,

that can arise due to technological constraints or from economic considerations.

For example, in paleoclimatic studies based on ice core data (Petit et al. (1999)),

the age of a particular sample is determined from radioactive dating techniques.

Samples from ice core slices at greater depths are regarded as older. Ice core
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slices cannot be arbitrarily thin, and this constraint induces a limit on the time

separation between successive samples. In computer graphics, where the time

parameter is replaced by a two-dimensional space parameter, photo-receptor ar-

rays are designed subject to the restriction of a minimum distance between two

receptors, depending on the physical dimensions and specifications of the recep-

tor (Cook (1986), Dippé and Wold (1985)). The constraint arises due to similar

other limitations in laser doppler velocimetry (Ouahabi et al. (1998)) as well as

radar applications (Nohrden (1995)).

Assuming that the data arise from renewal process sampling of a stationary

stochastic process, subject to the constraint of a minimum inter-sample spacing,

we develop a method for the estimation of its power spectral density.

Suppose that the minimum separation between successive samples is d units

of time. If one chooses to sample at regular intervals, the fastest possible sampling

rate is 1/d. Thus, only those spectra which are limited to the frequency band

[−π/d, π/d] can be consistently estimated from uniformly spaced samples (Kay

(1999)). A spectrum having larger support (bandwidth) than [−π/d, π/d] would
not be distinguishable from a corresponding spectrum having a support contained

in that interval, and consequently the bias cannot go to zero even for large sample

size. This limitation is related to the problem of aliasing, as described by the

Nyquist Theorem, in respect of reconstruction of a function from its uniformly

spaced samples. For spectra having larger support than [−π/d, π/d], one has to

look for methods based on alternative sampling schemes for consistent estimation

of spectra in the presence of the above constraint.

In the absence of any constraint on the minimum inter-sample spacing,

Shapiro and Silverman (1960) showed that certain renewal process sampling

schemes, including Poisson process sampling, are alias-free for the class of non-

bandlimited processes. Subsequently, some methods of spectrum estimation

based on the covariance sequence or other aspects of stochastic samples of the

process were proposed (Bardet and Bertrand (2010), Buetler (1970), Dunsmuir

(1983), Huang, Hsing, and Cressie (2011), Lii and Masry (1994), Matsuda and

Yajima (2009), Moore, Visser, and Shirtcliffe (2008), Stein, Chi, and Welty

(2004)). These methods typically have larger variance than methods based on

regularly spaced samples (Cook (1986), Dippé and Wold (1985), Moore, Visser,

and Shirtcliffe (2008), Roughan (2006)).

In the presence of a constraint on the minimum separation between succes-

sive samples many alias-free sampling schemes, including Poisson sampling, are

rendered infeasible. For such problems, researchers have turned to minimum dis-

tance Poisson sampling (which discards a sampling time if it is too close to the

previous one) (Cook (1986), Dippé and Wold (1985)) or periodic non-uniform

sampling (Ouahabi et al. (1998), Qu and Tarczynski (2007)). The latter form of
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sampling, ensuring a minimum separation between successive samples, has also

been applied to the problem of curve estimation (Marvasti (2001), Tarczynski

and Allay (2004)).

In a recent work, Srivastava and Sengupta (2011) studied the effect of the

inter-sample spacing constraint on spectrum estimation based on stochastically

sampled data. They showed that under the said constraint, no point process

sampling scheme is alias-free for the class of non-bandlimited processes. This

result implies that two processes with different spectra cannot be distinguished

from point process samples, and hence consistent spectrum estimation from these

samples is not possible. They also showed that there are sampling schemes, that

can identify spectra limited to any finite bandwidth.

The opportunity created by this theoretical result has so far not been ex-

ploited. The known approaches for construction of spectrum estimators through

additive random sampling, such as that based on the estimated covariance se-

quence of the sampled data (Shapiro and Silverman (1960)) and that based on the

sampling times together with the sampled values (Lii and Masry (1994)), do not

work in the presence of the minimum inter-sample spacing constraint (Srivastava

and Sengupta (2011)). The method developed here is consistent, under certain

regularity conditions on the process, regardless of the constraint of a minimum

separation between successive samples. Thus, even if there is a restriction on how

closely one can sample a continuous time process, a large number of appropri-

ately chosen samples permits accurate and precise estimation of the underlying

spectrum, as long as it is confined to an arbitrarily large but known band.

In Section 2, we develop the spectrum estimator. We establish its consistency

and rate of convergence in Section 3. In Section 4, we study the performance

of this estimator through Monte Carlo simulations for different degrees of min-

imum inter-sample spacing. In Section 5, we provide some concluding remarks,

including those on how the assumption of known bandwidth might possibly be

relaxed. The proofs of the theoretical results are given in the Appendix.

2. Spectrum Estimation from Samples With Minimum Inter-Sample

Spacing

Let X = {X(t), −∞ < t <∞} be a real, mean square continuous and wide

sense stationary stochastic process with mean zero, covariance function C(·),
power spectral density ϕ(·), and spectral support [−λ0, λ0], where λ0 is known.

Let τ = {tn, n = . . . ,−2,−1, 0, 1, 2, . . .} be sequence of real-valued sampling

times which constitute a stationary renewal process. Assume that the renewal

process τ is independent of X. The inter-sample spacing density is denoted by

f(·). The minimum separation between successive samples is denoted by d, so
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f(u) = 0 for 0 ≤ u < d. We assume that

f(u) > 0 for u ≥ d. (2.1)

The results presented in this section are valid without (2.1), it is made only

simplify proofs.

We first estimate the covariance function, and subsequently use it to estimate

the power spectral density. We estimate C(0) by

Ĉ(0) =
1

n

n∑
i=1

X2(ti). (2.2)

For u > d, we use the estimator

Ĉ(u) =
1

nH(u)

n∑
i=1

n∑
j=1

mnW (mn(u− ti + tj))X(ti)X(tj) for u > d. (2.3)

Here W (·) is a weight function, mn is the smoothing parameter, and H(·) is the
renewal density of τ ,

H(u) =

∞∑
n=1

f (n)(u), (2.4)

where f (n)(·) is the n-fold convolution of the inter-sample spacing density f(·).
Note that, in view of (2.1), H(u) > 0 for u > d. The estimator given by (2.3) is

essentially a weighted average of products of pairs of samples separated by lag

approximately equal to u, and mn is a smoothing parameter.

The main difficulty arising from the constraint of minimum inter-sample

spacing lies in the lack of pairs of samples separated by lags smaller than d.

Nevertheless, it has been shown that C(0) and C(u) for u > d contain complete

information about C(·) over its entire domain (Srivastava and Sengupta (2011)).

A possible way of reconstructing the function over the range (0, d] is to use the

representation of C(·) in terms of its values over a grid. Note that the covariance

function C(·) has the representation (Oppenheim and Schafer (2009))

C(u) =

∞∑
l=−∞

C(lT )sinc
(π
T
(u− lT )

)
, (2.5)

where T = π/λ0 and

sinc(x) =

{
sinx
x if x ̸= 0,

1 if x = 0.

In view of (2.5) and the symmetry of C(·), one need only to specify the sequence

{C(lT ), l = 0, 1, 2, . . .} to specify the function C(·) completely.
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We have estimated values of C(lT ) for l = 0 and l > J , where J is the integer

part of d/T , from (2.2) and (2.3). The remaining values, i.e., C(T ), . . . , C(JT ),

can be expressed in terms of the left side of (2.5) and the known terms of the

right side. Note that the left side of (2.5) can also be estimated directly for any

u > d. Thus, the missing values satisfy the linear equations

J∑
l=1

xl(u)C(lT ) = y(u) for u > d, (2.6)

where

xl(u) =
{
sinc

(π
T
(u− lT )

)
+ sinc

(π
T
(u+ lT )

)}
, for l = 1, 2, . . . , (2.7)

y(u) = C(u)− sinc(
πu

T
)C(0)−

∞∑
l=J+1

xl(u)C(lT ), (2.8)

for u > d. One can use these equations to reconstruct C(T ), . . . , C(JT ).

For indirect estimation of C(T ), . . . , C(JT ) from (2.6), we define for u > d,

yn(u) = Ĉ(u)− sinc(
πu

T
)Ĉ(0)−

Ln∑
l=J+1

xl(u)Ĉ(lT ), (2.9)

where Ln is a finite integer. Note that yn(u) is an estimator of y(u) defined in

(2.8), with the infinite sum truncated at Ln. Substitution of this estimator on

the right side of (2.6) gives a set of approximate equations in C(T ), . . . , C(JT ).

This ‘functional data’ linear model (Ramsay, Hooker, and Graves (2009)) leads

to the least squares estimator
Ĉ(T )

Ĉ(2T )
...

Ĉ(JT )

 =


a11 a12 · · · a1J
a21 a22 · · · a2J
...

...
. . .

...

aJ1 aJ2 · · · aJJ


−1

c1
c2
...

cJ

 , (2.10)

where ajl =
∫ u2

u1
xj(u)xl(u)du, cj =

∫ u2

u1
xj(u)yn(u)du, for l, j = 1, . . . , J and

(u1, u2) is a suitable sub-interval of [d,∞). The description of the covariance

estimator is completed by defining it in the range 0 < u ≤ d, u ̸= T, . . . , JT , as

Ĉ(u) = Ĉ(0)sinc
(πu
T

)
+

Ln∑
l=1

Ĉ(lT )
{
sinc

(π
T
(u−lT )

)
+sinc

(π
T
(u+lT )

)}
.

Once the function C(·) is estimated, we estimate the power spectral density

by a commonly used lag window estimator

ϕ̂n(λ) =
{ T

2π
Ĉ(0) +

T

π

[nµf/T ]∑
l=1

Ĉ(lT )K(bnl) cos(lλT )
}
× 1[−λ0,λ0](λ), (2.11)
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where K(·) is a covariance averaging kernel, bn is the kernel bandwidth, µf is the

mean of the inter-sample spacing distribution, and [nµf/T ] is the greatest integer

smaller that nµf/T . The upper limit here ensures that the largest covariance lag

included in the sum is about the same as the expected span of the data.

The proposed method involves specification of parameters mn, bn, Ln, u1
and u2, and functions W and K. Our convergence results hold for a range of

choices of them. However, performance of the method may depend on the choices

made. Some guidelines for making these selections are as follows.

For the functional data linear model based on (2.6) and (2.9), u1 and u2
determine the ‘sample size’ for estimating its parameters. While determining the

‘sample size’, one must include all the values of u for which yn(u) can provide

information about the model parameters C(T ), . . . , C(JT ). Since the envelope

of the sinc function is the reciprocal function, it is easy to see from the left side

of (2.6) that the magnitudes of coefficients of all the C(lT ) terms are bounded

from above by 2T/[π(u − JT )]. When this number is small, the corresponding

C(u) are unlikely to be affected much by the parameters of interest, and so yn(u)

cannot provide much information about them. Therefore, u2 may be chosen so

that π(u2 − JT )/2T is a suitably chosen large number. On the other hand, u1
should be greater than or equal to d. In the simulations reported in Section 4,

we have used u2 = T [J +30/π] (i.e., π(u2−JT )/2T = 15) and u1 = d, and these

choices appear to have worked well.

Selection of the kernel/window function K for the lag window spectrum

estimator has been extensively dealt with in the literature. Tapered windows are

generally found to produce less bias than the rectangular window. Harris (1978)

has provided a comparison of many windows. The selection of the bandwidth bn
has been dealt with by Hurvich (1985) and Beltrão and Bloomfield (1985).

The issue of choosing the window functionW and the corresponding window

width mn concerns the balance between bias and variance of the estimator. En-

suring non-negative definiteness of the estimator is an additional consideration.

Guillot, Senoussi, and Monestiez (2001) have addressed the issue.

The parameter Ln determines how many terms of an infinite series expansion

are actually used in indirect estimation of some covariance terms. It is seen from

the right side of (2.9) that the contribution of Ĉ(lT ) is small when xl(u) is small.

Since |xl(u)| ≤ 2T/[π(lT − u)], l > Ln implies |xl(u)| ≤ 2T/[π(LnT − u2)]. Thus

one can choose Ln by setting 2T/[π(LnT−u2)] equal to a suitably small threshold.

According to the large sample results obtained in Section 3, this threshold can

decrease with n over a range of rates.
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3. Consistency of the Spectrum Estimator

In order to establish consistency of the proposed spectrum estimator, we

first show consistency of the corresponding estimator of the covariance function.

For this, we choose the weight function W (·) of (2.3) so that it has the following

properties.

W1. The function W (·) is compactly supported, even, continuous, and square

integrable, with
∫∞
−∞W (v)dv = 1.

W2. For a specified r,∫ ∞

−∞
vkW (v)dv =

{
0 for k = 1, . . . , r − 1,

wr ̸= 0 for k = r.

The number r is termed the order of the weight function.

We make some assumptions about the underlying process and the inter-

sample spacing density.

Assumption 1. The covariance function C(·) is bounded by a decreasing and

integrable function over [0,∞).

Assumption 1A. The function |u|qC(u), for some q > 1, is bounded by a

decreasing and integrable function over [0,∞).

The parameter q of Assumption 1A signifies the degree of smoothness of ϕ(·);
in particular, if q is an integer, ϕ(·) is q times differentiable. Assumption 1A is

stronger than Assumption 1, and is used only to obtain rates of convergence.

Assumption 2. The inter-sample spacings density f(·) has a finite mean.

Theorem 1. Under Assumptions 1 and 2, take W (·) in (2.3) to have the prop-

erties W1 and W2, and let the smoothing parameter mn → ∞ and the truncation

parameter Ln → ∞ as n→ ∞.

(i) The bias of the estimator Ĉ(·) converges to 0 pointwise as the sample size n

goes to infinity.

(ii) Under Assumptions 1A, if mn logLn/n→ 0 and logLn/m
r
n → 0 as n→ ∞,

we have

E[Ĉ(u)]− C(u) =


0 if u = 0,

O
(

1
mr

n

)
+O

(
mn
n

)
if |u| > d,

O
(

1
Lq
n

)
+O

(
logLn

mr
n

)
+O

(
mn logLn

n

)
if 0 < |u| ≤ d,

where r is the order of weight function and O(·) is uniform in u.
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Note that Ln → ∞ together with mn logLn/n → 0 implies that mn/n → 0

as n→ ∞.

A further assumption on fourth order moments of the process is needed to

establish convergence of the variance of the estimator Ĉ(u).

Assumption 3. The fourth moment E|X(t)|4 exists for every t, the fourth order

cumulant Q of X(t + t1), X(t + t2), X(t + t3) and X(t) does not depend on t,

and

|Q(t1, t2, t3)| ≤
3∏

j=1

gj(tj),

where gj(·), j = 1, 2, 3, are continuous, even, nonnegative, and integrable func-

tions that are non-increasing over [0,∞).

Assumption 3 holds trivially for a Gaussian process, since Q(·) = 0.

Theorem 2. Under Assumptions 1−3, mn → ∞, Ln → ∞ andmn(logLn)
2/n→

0 as n→ ∞, if W (·) satisfies W1 and W2,

Var (Ĉ(u)) =


O
(
1
n

)
if u = 0,

O
(
mn
n

)
if |u| > d,

O
(
mn(logLn)2

n

)
if 0 < |u| ≤ d.

Note that Ln → ∞ and mn(logLn)
2/n → 0 implies that mn/n → 0 as

n→ ∞.

Under the assumptions of Theorem 1(ii) and 2, we have, for 0< |u|≤d,

E[Ĉ(u)− C(u)]2

= (E[Ĉ(u)]− C(u))2 +Var (Ĉ(u))

= O

(
1

L2q
n

)
+O

(
(logLn)

2

m2r
n

)
+O

(
m2

n(logLn)
2

n2

)
+O

(
mn(logLn)

2

n

)
. (3.1)

In view of the conditions of Theorem 2, the third term in (3.1) can be ignored.

Note that, for fixed Ln, the second term is a decreasing function of mn, while

the fourth term is increasing in mn. The fastest possible rate of convergence is

achieved by equating these two rates, which yields mn = O
(
n

1
2r+1

)
. Likewise,

the first term is a decreasing function of Ln, while the fourth term is increasing

in Ln. Again by equating the rates, we get the optimal rate of Ln satisfying the

condition

(Lq
n logLn)

(2r+1)/r = O(n)

for fastest convergence of the mean squared error. Even though a closed

form expression for the optimal rate of Ln is not available, use of the square
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root function in lieu of the log function leads to the nearly optimal rate Ln =

O(n2r/[(2r+1)(2q+1)]). Substitution of these rates of mn and Ln in (3.1) shows that

the optimal rate of convergence of the MSE is

E[Ĉ(u)− C(u)]2 = o
(
n−1/[(1+1/2r)(1+1/2q)]

)
. (3.2)

On the other hand, for |u| > d, the MSE of the direct estimate Ĉ(u) is

E[Ĉ(u)− C(u)]2 = O

(
1

m2r
n

)
+O

(mn

n

)
.

By using a similar argument as above, one can be see that the optimal rate of

convergence of the MSE for |u| > d is

E[Ĉ(u)− C(u)]2 = O
(
n−1/(1+1/2r)

)
. (3.3)

We now turn to the consistency of the spectrum estimator ϕ̂n(λ) given in

(2.11). For this purpose, we choose the covariance averaging kernel K(·) used in

(2.11) so that it has the following properties.

K1. The function K(·) is an even, continuous and square integrable function

with K(0) = 1, and is bounded by a nondecreasing function over (0,∞).

K2. The order of the kernel K(·) is q, where q is as in Assumption 1A.

Theorem 3. Suppose Assumptions 1−2 hold, the kernel K(·) of (2.11) satisfies

K1 and K2, and the weight function W (·) used in the covariance estimates has

properties W1 and W2. Let mn→∞, Ln→∞, and bn→0 as n→∞.

(i) The bias of the estimator ϕ̂n(·) converges to 0 pointwise as the sample size n

goes to infinity.

(ii) Under the conditions of Theorem 1(ii) and 1/(bnm
r
n) → 0, we have

E[ϕ̂n(λ)]− ϕ(λ)

= O(bqn) +O

(
1

Lq
n

)
+O

(
logLn

mr
n

)
+O

(
mn logLn

n

)
+O

(
1

bnmr
n

)
,

where r is the order of the weight function W (·).

Theorem 4. Under the conditions of Theorem 2, bn → 0 and mn/nb
2
n → 0 as

n→ ∞, and K(·) satisfying K1 and K2,

Var [ϕ̂n(λ)] = O

(
mn(logLn)

2

n

)
+O

(
mn

nb2n

)
.
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Under the conditions of Theorems 3 and 4, we have the rate of convergence

of the MSE of the estimator ϕ̂n(·),

E[ϕ̂n(λ)− ϕ(λ)]2 = O
(
b2qn

)
+O

(
1

L2q
n

)
+O

(
(logLn)

2

m2r
n

)
+O

(
m2

n(logLn)
2

n2

)
+O

(
1

b2nm
2r
n

)
+O

(
mn(logLn)

2

n

)
+O

(
mn

nb2n

)
. (3.4)

In view of the conditions of Theorem 2, the fourth term in (3.4) is smaller than

the sixth term, and hence can be ignored. Note that for fixed bn, the fifth

term is a decreasing function of mn, while the seventh term is increasing in mn.

The fastest rate of convergence is obtained by equating the two rates, which

yields mn = O
(
n1/(1+2r)

)
. Now, for this optimal choice of mn, the fifth term

is a decreasing function of bn, while the first term is increasing in bn. Thus,

by equating the two rates, we obtain the optimal rate of bn as O
(
n
− r

(1+2r)(1+q)
)
.

Substitution of these choices reduces (3.4) to

E[ϕ̂n(λ)− ϕ(λ)] = O
(
n−1/[(1+1/2r)(1+1/q)]

)
+O

(
1

L2q
n

)
+O

(
(logLn)

2

n2r/(1+2r)

)
. (3.5)

The requirement that the second and the third terms of the right side go to zero

at least as fast as the first term, leads us to a range of optimal choices of Ln as

logLn = O
(
n1/[(1+1/2r)(2+2q)]

)
; L−1

n = O
(
n−1/[(1+1/2r)(2+2q)]

)
.

For any choice of Ln in this optimal range, and for mn = O
(
n1/(1+2r)

)
and bn =

O
(
n−r/[(1+2r)(1+q)]

)
, the MSE of ϕ̂n(λ) achieves the fastest rate of convergence,

O(n−1/[(1+1/2r)(1+1/q)]).

We conclude this section by looking into the special case d ≤ π/λ0, where

no indirect estimation of the covariance sequence is needed. In this situation,

the parameter Ln is not required and the optimal rate of convergence of the

MSE of ϕ̂n(·) is once again O(n−1/[(1+1/2r)(1+1/q)]). Since the order r of the

weight function W (·) can be chosen to be arbitrarily large, the optimal rate of

convergence can approach O(n−1/[1+1/q]). Note that when d ≤ π/λ0, uniform

sampling under the given constraint becomes alias-free, and the optimal rate of

convergence of the MSE of the smoothed periodogram estimator based on uniform

sampling is O(n−1/[1+1/2q]) (Brillinger (1972)). The optimal rate of convergence

of the MSE of ϕ̂n(·) is only marginally slower than this rate when q is large,

indicating that the underlying power spectral density is very smooth.
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4. Simulation

In this section, we study the finite sample performance of the estimator ϕ̂n(·)
with different degrees of constraint on the inter-sample spacing. For comparison,

we use an estimator proposed by Lii and Masry (1994) in the case of Poisson

sampled data:

ψ̂n(λ) =
1

πβn

n−1∑
j=1

n−j∑
l=1

X(tl)X(tj+l)K (bn(tj + l − tl)) cos(λ(tj + l − tl)), (4.1)

Here, β is the average sampling rate, K(·) is a covariance averaging kernel, and

bn is the smoothing parameter. The estimator ψ̂n(·) is consistent in the absence

of the constraint on the minimum inter-sample spacing, under conditions similar

to those used for establishing consistency of ϕ̂n(·). However, in the presence of

this constraint, it follows from an argument given by Srivastava and Sengupta

(2011) that the estimator is not consistent.

We consider a continuous time stationary stochastic process X with mean 0

and covariance function

C(u) =



σ2
p−|l|∑
j=0

ξjξj+|l| if u = lπ
λ0
, |l| = 0, 1, . . . , p,

0 if u = lπ
λ0
, |n| > p, p+ 1, . . .,

∞∑
l=−∞

C

(
lπ

λ0

)
sin (λ0u− lπ)

(λ0u− lπ)
otherwise.

(4.2)

This covariance function corresponds to a process limited to the frequency band

[−λ0, λ0], and whose samples at regular intervals of length π/λ0 constitute a

discrete time MA(p) process with MA characteristic polynomial Ξ(z) = ξ0 +

ξ1z + ξ2z
2 + · · ·+ ξpz

p and innovation variance σ2.

We use sampling with a stationary renewal process τ whose inter-sample

spacing is distributed as d + R, where the random variable R has the exponen-

tial distribution with mean θ. Note that this ‘minimum distance’ Poisson sam-

pling (Dippé and Wold (1985)) is obtained if one attempts to implement Poisson

sampling by generating successive inter-sample spacings from the exponential

distribution with mean θ, but is obliged to discard those inter-sample spacings

which are smaller than d. We assume that n consecutive samples, denoted by

X(t1), X(t2), . . . , X(tn), are available for estimation. We chose the parameters

as

λ0 = 2π,

Ξ(z) = (1 + 1.2z)8,
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Figure 1. The covariance function corresponding to (4.2).

σ =
1

102
,

W (x) =

{
1
2 {1 + cos(πx)} if −1 ≤ x ≤ 1,

0 otherwise,

and K(x) =

{
1
2 {1 + cos(πx)} if −1 ≤ x ≤ 1,

0 otherwise.

Note that the common form chosen for the weight function W and the kernel
function K is of the second order (r = q = 2). We chose two values of the
minimum inter-sample spacing: d = 0.75 and d = 1. These thresholds are larger
than the uniform inter-sample spacing needed for sampling at the Nyquist rate
(which happens to be T = 0.5). It follows from the discussion of Section 2 that
J = 1 for d = 0.75, and J = 2 for d = 1.

We chose θ = d/2 and θ = 2d for each choice of d to illustrate the effect

of θ. These two values correspond to the situations in which the inter-sample

spacing is mostly dominated by the deterministic part (d) and the random part

(R), respectively. The average sampling rate is β = 1/(θ + d), and this rate is

used in computing ψ̂n(·).
We ran simulations for sample sizes n = 100 and n = 1, 000. For computing

the estimator ϕ̂n(·), we chose u1 = d and u2 = T (J + 30/π). Going by the

considerations mentioned in Section 2 and the rate calculations of Section 3, we

chose Ln by setting 2T/[π(LnT − u2)] =
(
5n1/[(1+1/2r)(2+2q)]

)−1
. For both ϕ̂n(·)

and ψ̂n(·) and both sample sizes, we used bn = 0.1. Finally, we used mn = 5 for

n = 100 and mn = 8 for n = 1, 000.

The left column of Figure 2 shows the average of the estimates of ϕ̂n(λ)

and ψ̂n(λ) computed from 500 Monte Carlo runs, along with the true density.
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The plots show that when the sample size increased, the average value of ψ̂n(·)
approached a wrong function, not even positive over its entire range. On the other

hand, the average of the estimator ϕ̂n(λ) approached the true power spectral

density for larger n, for both choices of the parameter θ. The middle column of

Figure 2 shows the variance of both the estimators. Though the variance of ψ̂n

is smaller than that of ϕ̂N , the right column of Figure 2 indicates that the mean

squared error of ϕ̂n(λ) is smaller. Further, the mean squared error of ϕ̂n(λ)

decreased with sample size, while that of ψ̂n(λ) saturated to a non-zero level

because of the bias component. In all cases, the smaller value θ corresponded

to larger bias and smaller variance of ϕ̂n(λ). This is expected, as a small value

of the θ generally brings the inter-sample spacing closer to d, and sampling at

uniform intervals of size d would lead to aliasing in this case. For a large value

of θ, the sampling scheme moves away from uniform sampling, and the proposed

estimator has a better chance to rectify the bias at the cost of increased variance.

The more challenging case has d = 1. The simulations were run with the

parameters chosen as described in the previous case. Figures 3 depicts the em-

pirical average, the variance, and the mean squared error for the two estimators,

computed from 500 simulation runs. The plots show a similar pattern as in the

case of d = 0.75, though the performance of both the estimators was worse, as

expected.

The MSE of both estimators appears to be large for θ = 2d in comparison

with θ = d/2 in all cases. The value θ controls the amount of randomness in the

sampling scheme: very small value of θ leads to the sampling scheme close to

uniform sampling, and estimation suffers from the aliasing in the small sample

situation; the larger MSE for θ = 2d indicates that too much randomness in the

sampling scheme leads to higher MSE in finite samples. The MSE plot shows that

for larger sample size the MSE of ϕ̂n decreases for both choices of θ. It shows

that the estimator performs well for any choice of θ provided one has enough

sample size.

The MSE of ϕ̂n(λ) is seen to be larger in the case d = 1 than in the case

d = 0.75. This finding can be explained by the fact that, in the former case,

the estimator ϕ̂n(·) involves indirect estimation of two covariance parameters,

C(T ) and C(2T ), as opposed to indirect estimation of C(T ) only when d = 0.75.

Reduction of the set of lags suitable for direct estimation is another reason why

the estimator has poorer performance for larger values of d. In any case, such

difficulties are made up by large sample size, as is evident from the MSE of ϕ̂n(λ)

for n = 1, 000.
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Figure 2. Averages (left column), variances (middle column) and mean

squared errors (right column) of the estimates of ϕ̂n(λ) and ψ̂n(λ) for sample
sizes n = 100 (top row) and 1,000 (bottom row) computed from 500 Monte
Carlo simulation runs for minimum separation d = 0.75.

5. Concluding Remarks

This paper provides a method of consistent estimation of an arbitrarily

bandlimited power spectral density of a continuous time stationary stochastic

process under the constraint that there is at least a specified amount of sep-
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Figure 3. Averages (left column), variances (middle column) and mean

squared errors (right column) of the estimates of ϕ̂n(λ) and ψ̂n(λ) for sample
sizes n = 100 (top row) and 1,000 (bottom row) computed from 500 Monte
Carlo simulation runs for minimum separation d = 1.

aration between successive samples. The proposed nonparametric estimator is
based on additive random sampling of the underlying process subject to this
constraint. The estimator is the first of its kind, as its known competitors based
on stochastic sampling are inconsistent in the presence of the constraint, and
the known competitors based on uniform sampling are consistent only when the
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bandwidth of the underlying process is within the limit implied by the Nyquist
theorem. Consistency of the proposed estimator demonstrates that large samples
collected through appropriate additive random sampling can be used to surpass
the Nyquist limit for the bandwidth of a spectrum that can be consistently esti-
mated through uniform sampling.

The constraint of minimum separation between successive samples makes it
impossible to estimate autocovariances at small lags directly from the data. The
proposed method circumvents this difficulty by expressing these autocovariances
in terms of directly estimable autocovariances through the representation (2.5).
This indirect method of estimation leads to larger variance than in the case of
direct estimation. The greater the minimum separation, the larger the need
for indirect estimation and the larger is the variance of the resulting spectrum
estimator. The simulation results reported in Section 4 confirm this fact. Thus,
while it is possible to make up for the deficiency of sampling resolution through
sample size, the sample size needs to be large when the resolution is not good.

A crucial assumption for the estimation problem considered in this article is
that the underlying power spectral density has a known and finite bandwidth.
This is indeed an undesirable assumption. For a proper perspective on this issue,
consider the problem of consistent spectrum estimation based on data sampled
with a minimum inter-sample spacing d, under a set of progressively weaker as-
sumptions: (a) the underlying spectrum has bandwidth less than π/d, (b) the
underlying spectrum has a finite and known bandwidth (possibly larger than
π/d), (c) the underlying spectrum has a finite bandwidth that may be unknown,
(d) the underlying spectrum has possibly infinite bandwidth. Srivastava and Sen-
gupta (2011) have shown that the problem, under (d), has no solution based on
point process sampling. Estimators based on uniform sampling can be consistent
only under (a). The method based on additive random sampling, proposed in
this article, is consistent under (b). As of now, there is no solution under (c).
However, if one does not have a constraint on sample size or computing power,
one may develop a procedure on the basis of the proposed estimator. For in-
stance, one can assume successively higher values of the maximum bandwidth,
then determine the value after which the corresponding estimators exhibit no
substantial change. Development of a suitable estimator along these lines would
require further research.

Some researchers have promoted point process sampling as a means of consis-
tent estimation of non-bandlimited power spectral densities, for which uniformly
spaced samples are said to be inadequate no matter how large the sampling rate
(Shapiro and Silverman (1960), Lii and Masry (1994)). This apparent deficiency
of uniform sampling disappears if one uses shrinking asymptotics to establish con-
sistency (Srivastava and Sengupta (2010)). However, this asymptotic approach
becomes inappropriate when inter-sample spacings are constrained to be larger
than a threshold value. On the other hand, under this constraint, consistent
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estimation of a non-bandlimited power spectral density through point process
sampling is also not possible (Srivastava and Sengupta (2011)). Thus, as far
as estimation of a non-bandlimited power spectral density is concerned, uniform
sampling and point process sampling have similar strengths and limitations. The
spectrum estimator introduced in this paper underscores an exclusive advantage
of point process sampling in the area of estimation of a bandlimited power spectral
density.

Control over the sampling mechanism has been assumed in the present work.
In particular, knowledge of the inter-sample spacing distribution has been used
to determine H(u) in the estimator (2.3), and in choosing J for (2.6) and (2.10).
When there is no control over the sampling mechanism, one may still wish to
model it as additive random sampling and use the proposed method for spectrum
estimation. In such a case, one has to test whether the inter-sample spacings are
independent and then estimate the spacings distribution, along with its support,
from the observed data of sampling times. These are standard inferential prob-
lems. While the use of consistent estimators for H(u) and J in (2.3) and (2.10)
may not affect consistency of the estimators of covariance and power spectral
density, there may be an impact on the rates of convergence. This matter would
require further study.
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Appendix

We denote the domain of the function W (·) by [−a, a], the suprema of the

functions |W |(·) and H(·) by M1 and M2, respectively, and the infimum of H(·)
by M3. The function g(·) is a bounding function as in Assumption 1.

Proof of Theorem 1. Part (i). Observe that

E[Ĉ(0)] =
1

n

n∑
i=1

E[X2(ti)] = C(0). (A.1)

From (2.3), we have for |u| > d

E[Ĉ(u)]=
1

nH(u)

n∑
i=1

n∑
j=1

mnE[E {W (mn(u−ti+tj))X(ti)X(tj)|ti, i=1, . . . , n}]
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=
1

nH(u)

n∑
i=1

n∑
j=1

mnE[W (mn(u− ti + tj))C(ti − tj)]

By considering the case i = j separately, and combining the other terms, we have

E[Ĉ(u)] =
mnW (mnu)C(0)

H(u)
+

1

H(u)

∫ ∞

0
mn

[
{W (mn(u+ v)) +W (mn(u− v))}

×C(v)
{
1

n

∑
1≤i<j≤n

f (j−i)(v)

}]
dv

=
mnW (mnu)C(0)

H(u)
+

1

H(u)

∫ ∞

0
mn

[
{W (mn(u+ v)) +W (mn(u− v))}

×C(v)Hn(v)

]
dv, (A.2)

where

Hn(u) =

n−1∑
l=1

(
1− l

n

)
f (l)(u). (A.3)

By making a transformation of the variable of integration and using the symmetry

of the covariance function C(·), we have

E[Ĉ(u)] =
mnW (mnu)C(0)

H(u)

+
1

H(u)

∫ ∞

−∞
W (v)C

(
u− v

mn

)[
Hn

(
u− v

mn

)
+Hn

(
−u+ v

mn

)]
dv. (A.4)

For sufficiently large n, we have mn > a/d, and consequently W (mnu) = 0 for

all |u| > d. This implies that the first term is identically zero for large n. Thus,

we have for large n,

E[Ĉ(u)] =
1

H(u)

∫ ∞

−∞
W (v)C

(
u− v

mn

)[
Hn

(
u− v

mn

)
+Hn

(
−u+ v

mn

)]
dv. (A.5)

Further, by using Assumptions 1 and 2, we have the dominance∣∣∣∣W (v)C

(
u− v

mn

)[
Hn

(
u− v

mn

)
+Hn

(
−u+ v

mn

)]∣∣∣∣
≤ |W (v)| g(0)

[
Hn

(
u− v

mn

)
+Hn

(
−u+ v

mn

)]
≤ |W (v)| g(0)2M2,

and Property W1 of the weight functionW (·) ensures that the bounding function
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is integrable. Since mn → ∞ as n→ ∞, we have

lim
n→∞

W (v)C

(
u− v

mn

)[
Hn

(
u− v

mn

)
+Hn

(
−u+ v

mn

)]
=W (v)C(u)H(u).

By applying the Dominated Convergence Theorem (DCT), we have

lim
n→∞

E[Ĉ(u)] = C(u). (A.6)

In order to compute the expectation of the indirect estimators Ĉ(T ), . . . ,

Ĉ(JT ) given in (2.10), we first compute E[
∫ u2

u1
xj(u)yn(u)du]. Note that for

j = 1, 2, . . . , J ,

E

[∫ u2

u1

xj(u)yn(u)du

]
=

∫ u2

u1

xj(u)E[yn(u)]du,

where interchange of the integrals is justified by the finiteness of the double

integral that follows from arguments similar to those given below to establish

convergence. We compute

E[yn(u)] = E[Ĉ(u)]− sinc(
πu

T
)E[Ĉ(0)]

−
Ln∑

l=J+1

E[Ĉ(lT )]
{
sinc

(π
T
(u−lT )

)
+sinc

(π
T
(u+lT )

)}
. (A.7)

It is seen from (A.1) and (A.6) that E[Ĉ(u)] → C(u) as n → ∞ for u > d and

E[Ĉ(0)] = C(0). By using (A.5) for large n, the third term of the right side of

(A.7) simplifies to∫ ∞

−∞
W (v)

[
Ln∑

l=J+1

1

H(lT )
C

(
lT− v

mn

){
Hn

(
lT− v

mn

)
+Hn

(
−lT+ v

mn

)}

×
{
sinc

(π
T
(u−lT )

)
+sinc

(π
T
(u+lT )

)}]
dv. (A.8)

By using Assumptions 1 and 2, we have the dominance∣∣∣∣W (v)

Ln∑
l=J+1

1

H(lT )
C

(
lT− v

mn

){
Hn

(
lT − v

mn

)
+Hn

(
−lT+ v

mn

)}
×
{
sinc

(π
T
(u−lT )

)
+sinc

(π
T
(u+lT )

)}∣∣∣∣
≤ |W (v)|2M2

M3

Ln∑
l=J+1

g

(
lT− v

mn

)
≤ |W (v)|2M2

M3
× 2

∞∑
l=1

g(lT ),
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and the integrability of the bound is guaranteed by Property W1 of W (·). Since
mn → ∞ and Ln → ∞ as n→ ∞, the integrand of (A.8) converges pointwise,

lim
n→∞

W (v)

Ln∑
l=J+1

E[Ĉ(lT )]
{
sinc

(π
T
(u−lT )

)
+sinc

(π
T
(u+lT )

)}
=W (v)

∞∑
l=J+1

C (lT )
{
sinc

(π
T
(u−lT )

)
+sinc

(π
T
(u+lT )

)}
.

By using the representation (2.5) and the DCT, we have

lim
n→∞

E[yn(u)] = C(u)−sinc(
πu

T
)C(0)−

∞∑
l=J+1

C(lT )
{
sinc

(π
T
(u−lT )

)
+sinc

(π
T
(u+lT )

)}
= y(u).

Thus, for j = 1, . . . , J , using (2.6) we have

lim
n→∞

E

[∫ u2

u1

xj(u)yn(u)du

]
=

∫ u2

u1

xj(u)

{
J∑

l=1

xl(u)C(lT )

}
du. (A.9)

Then (A.9) and (2.10), for l = 1, . . . , J , imply

lim
n→∞

E[Ĉ(lT )] = C(lT ). (A.10)

Uitilizing a similar argument as above, one can establish that for u ∈ (0, d] and

u ̸= T, . . . , JT , limn→∞E[Ĉ(u)] = C(u), completing the proof of Part (i).

Part (ii). With (A.2), (A.3), and Assumption 2, we have, for sufficiently large

n such that mn > a/d,

E[Ĉ(u)]=

∫ ∞

0
mn

[
{W (mn(u+ v)) +W (mn(u− v))}C(v)

]
dv

− 1

H(u)

∫ ∞

0
mn

[
{W (mn(u+ v)) +W (mn(u− v))}C(v)

∞∑
l=n

f (l)(v)

]
dv

− 1

nH(u)

∫ ∞

0
mn

[
{W (mn(u+v)) +W (mn(u−v))}C(v)

n−1∑
l=1

lf (l)(v)

]
dv.

(A.11)

Observe that

∞∑
l=1

lf (l)(u) =

∞∑
l=1

l
d

du
F (l)(u) =

d

du

∞∑
l=1

lP (N(u) ≥ l)
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=
d

du

∞∑
l=1

l
∞∑
j=l

P (N(u) = j) =
d

du

∞∑
j=1

P (N(u) = j)

j∑
l=1

l

=
1

2

d

du

∞∑
j=1

j(j − 1)P (N(u) = j),

where F (l)(·) is the distribution function of f (l)(·), and N(·) is the counting

process associated with the sampling process. From Daley (1971),

∞∑
j=1

j(j − 1)P (N(u) = j) =

∫ u

0

{
1 + 2

∫ y

0
H(v)dv

}
dy −

∫ u

0
H(v)dv,

and so

∞∑
l=1

lf (l)(u) =
1

2
+

∫ u

0
H(v)dv − 1

2
H(u). (A.12)

In view of (A.12), the sum of the second and third terms of the right side of

(A.11) is absolutely bounded from above by

2
M1

M3

mn

n

∫ ∞

0
|C(v)|

∞∑
l=1

lf (l)(v)dv

≤ 2
M1

M3

mn

n

∫ ∞

0
|C(v)|

[
1

2
+

∫ v

0
H(t)dt− 1

2
H(v)

]
dv

≤ 6
M1M2

M3

mn

n

∫ ∞

0
v |C(v)| dv.

Thus, for sufficiently large n, we have

E[Ĉ(u)] =

∫ ∞

0
mn

[
{W (mn(u+v))+W (mn(u−v))}C(v)

]
dv+O

(mn

n

)
, (A.13)

where O(·) is uniform. After making a suitable transformation, we have

E[Ĉ(u)] =

∫ ∞

−∞
W (v)C

(
u− v

mn

)
dv +O

(mn

n

)
. (A.14)

Note that the covariance function of a bandlimited process is infinitely dif-

ferentiable. Therefore,

C

(
u− v

mn

)
= C(u)+

v

mn
C(1)(u) + · · ·+ vr−1

mr−1
n (r−1)!

C(r−1)(u)+
vr

r! mr
n

C(r)

(
u− αv

mn

)
, (A.15)
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where C(l)(·) is the lth order derivative of C(·) and α is an appropriate real
number in the interval (0, 1). By (A.15) and Property W2 of W (·), we have for
large n,

E[Ĉ(u)]=C(u)+
1

mr
nr!

∫ ∞

−∞
C(r)

(
u− αv

mn

)
vrW (v)dv +O

(mn

n

)
.

By the DCT and the fact that mn → ∞ as n→ ∞,

E[Ĉ(u)] = C(u) +O

(
1

mr
n

)
+O

(mn

n

)
, (A.16)

where O(·) is uniform. For indirect estimation of C(lT ) for l = 1 . . . , J , we have,
by using (A.1) and (A.16) in (A.7),

E[yn(u)] = C(u)− sinc(
πu

T
)C(0)−

Ln∑
l=J+1

E[Ĉ(lT )]

×
{
sinc

(π
T
(u−lT )

)
+sinc

(π
T
(u+lT )

)}
+O

(
1

mr
n

)
+O

(mn

n

)
.(A.17)

With (A.16) and the fact that

Ln∑
l=J+1

|
{
sinc

(π
T
(u−lT )

)
+sinc

(π
T
(u+lT )

)}
| ≤ O(logLn),

the third term of the right side of (A.17) simplifies to

Ln∑
l=J+1

C(lT )
{
sinc

(π
T
(u−lT )

)
+sinc

(π
T
(u+lT )

)}
+O

(
logLn

mr
n

)
+O

(
mn logLn

n

)
.

Further, we have

E(yn(u)) = y(u) +
∞∑

l=Ln+1

C(lT )
{
sinc

(π
T
(u−lT )

)
+ sinc

(π
T
(u+lT )

)}
+O

( 1

mr
n

)
+O

( logLn

mr
n

)
+O

(mn logLn

n

)
.

In view of Assumption 1A,∣∣∣∣ ∞∑
l=Ln+1

C(lT )
{
sinc

(π
T
(u−lT )

)
+sinc

(π
T
(u+lT )

)} ∣∣∣∣≤ ∞∑
l=Ln+1

|C(lT )|=O
(

1

Lq
n

)
.

Thus,

E(yn(u)) = y(u)+O

(
1

Lq
n

)
+O

(
logLn

mr
n

)
+O

(
mn logLn

n

)
, (A.18)
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where O(·) is uniform in u. By (2.6) and (A.18), we have for j = 1, . . . , J ,

E

[∫ u2

u1

xj(u)yn(u)du

]
=

∫ u2

u1

xj(u)
{ J∑

l=1

xl(u)C(lT )
}
du+O

( 1

Lq
n

)
+O

( logLn

mr
n

)
+O

(mn logLn

n

)
. (A.19)

By (A.19) and (2.10), for l = 1, . . . , J , we have

E[Ĉ(lT )] = C(lT )+O

(
1

Lq
n

)
+O

(
logLn

mr
n

)
+O

(
mn logLn

n

)
. (A.20)

Using a similar argument as above, for the range 0 < u ≤ d but u ̸=
T, . . . , JT , one can establish that

E[Ĉ(u)] = C(u)+O

(
1

Lq
n

)
+O

(
logLn

mr
n

)
+O

(
mn logLn

n

)
.

This completes the proof.

Proof of Theorem 2. Observe that

Var [Ĉ(0)] =
1

n2

n∑
i1=1

n∑
i2=1

E[X(ti1)X(ti2)]

=
C(0)

n
+

1

n2

∫ ∞

0
C(v)

∑
1≤i1<i2≤n

f (i2−i1)(v)dv,

and, from Assumption 2,

Var [Ĉ(0)] = O
( 1

n

)
. (A.21)

With Assumption 3, and writing joint moments in terms of cumulant as in Leonov
and Shiryayev (1959) and Parzen (1957), we have for u > d,

E[Ĉ2(u)]=
m2

n

n2H2(u)

n∑
i1=1

n∑
i2=1

n∑
i3=1

n∑
i4=1

E

[
E

{
W (mn(u−ti1+ti2))

×W (mn(u−ti3+ti4))X(ti1)X(ti2)X(ti3)X(ti4)
∣∣ti, i = 1, . . . , n

}]
=

m2
n

n2H2(u)

n∑
i1=1

n∑
i2=1

n∑
i3=1

n∑
i4=1

E

[
W (mn(u−ti1+ti2))W (mn(u−ti3+ti4))

×
{
C(ti1 − ti2)C(ti3 − ti4) + C(ti1 − ti3)C(ti2 − ti4)

+C(ti1 − ti4)C(ti2 − ti3) +Q(ti1 − ti4 , ti2 − ti4 , ti3 − ti4)

}]
.
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Thus, for u > d,

Var [Ĉ(u)]=
m2

n

n2H2(u)

n∑
i1=1

n∑
i2=1

n∑
i3=1

n∑
i4=1

E

[
W (mn(u−ti1+ti2))

×W (mn(u−ti3+ti4))
{
C(ti1−ti3)C(ti2−ti4) + C(ti1−ti4)C(ti2−ti3)

+Q(ti1−ti4 , ti2−ti4 , ti3−ti4)
}]

=I1(u) + I2(u) + I3(u), (A.22)

where I1(u), I2(u) and I3(u) are appropriate summations. Observe that the

terms I1(u) and I2(u) are bounded from above by

I(u) =M1
mn

n

1

nH2(u)

n∑
i1=1

n∑
i2=1

n∑
i3=1

n∑
i4=1

E
[
|mnW (mn(u−ti1+ti2))C(ti1−ti3)C(ti2−ti4)|

]
. (A.23)

It follows from Lemma 1 below that I(u) = O(mn/n) uniformly in u, while
Lemma 2 has I3(u) = O(mn

n ) uniformly in u. Therefore,

Var (Ĉ(u)) = O
(mn

n

)
for d < u <∞ . (A.24)

Consider the indirect estimators Ĉ(T ), . . . , Ĉ(JT ). From (2.10), it is enough
to consider the convergence of the variance covariance matrix of the vector

∫ u2

u1
x1(u)yn(u)du∫ u2

u1
x2(u)yn(u)du

...∫ u2

u1
xJ(u)yn(u)du

 .

For j, j′ ∈ {1, 2, . . . J}, we compute

Cov

(∫ u2

u1

xj(u)yn(u)du,

∫ u2

u1

xj′(u)yn(u)du

)
=

∫ u2

u1

∫ u2

u1

xj(u)xj′(v)Cov(yn(u), yn(v))dudv.

The interchange of the integrals is justified by the finiteness of the double in-
tegral, which follows from arguments similar to those given below to establish

convergence. Note that

Var [yn(u)] = Var

[
Ĉ(u)−sinc(

πu

T
)Ĉ(0)
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−
Ln∑

l=J+1

Ĉ(lT )
{
sinc

(π
T
(u−lT )

)
+sinc

(π
T
(u+lT )

)}]
≤ 3×Var [Ĉ(u)] + 3×Var [sinc(

πu

T
)Ĉ(0)]

+3×Var

[ Ln∑
l=J+1

Ĉ(lT )
{
sinc

(π
T
(u−lT )

)
+ sinc

(π
T
(u+lT )

)}]

= 3×Var

[ Ln∑
l=J+1

Ĉ(lT )
{
sinc

(π
T
(u−lT )

)
+ sinc

(π
T
(u+lT )

)}]
+O

(mn

n

)
+O

(
1

n

)
.

The last inequality follows from (A.24) and (A.21). We now consider the first

term. From (A.24), we have

Var

[ Ln∑
l=J+1

Ĉ(lT )
{
sinc

(π
T
(u−lT )

)
+sinc

(π
T
(u+lT )

)}]

=

Ln∑
l=J+1

Ln∑
l′=J+1

Cov(Ĉ(lT ), Ĉ(l′T ))
{
sinc

(π
T
(u−lT )

)
+ sinc

(π
T
(u+lT )

)}
×
{
sinc

(π
T
(u−l′T )

)
+sinc

(π
T
(u+l′T )

)}
≤ O

(mn

n

)[
Ln∑

l=J+1

∣∣∣∣ {sinc(πT (u−lT )
)
+ sinc

(π
T
(u+lT )

)} ∣∣∣∣
]2

= O

(
mn(logLn)

2

n

)
uniformly in u. Thus, for j, j′ ∈ {1, 2, . . . , J},

Cov

(∫ u2

u1

xj(u)yn(u)du,

∫ u2

u1

xj′(u)yn(u)du

)
= O

(
1

n

)
+O

(mn

n

)
+O

(
mn(logLn)

2

n

)
.

This completes the proof.

Lemma 1. Under the Assumptions of Theorem 2, I(u) = O (mn/n) uniformly

in u.
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Proof of Lemma 1. We partition the range of summation as

{(i1, i2, i3, i4) : 1 ≤ i1, i2, i3, i4 ≤ n} =

24∪
j=1

S1,j

36∪
j=1

S2,j

8∪
j=1

S3,j
∪
S4,

where S1,j , j = 1, . . . , 24, are sets of quadruples of indices having different types

of strict order among themselves (thus i1 < i2 < i3 < i4, i1 < i2 < i4 < i3,

and 22 other permutations), S2,j , j = 1, . . . , 36, are sets of quadruples of indices

exactly two of which are equal and are in strict order with the other two indices

(i1 < i2 < i3 = i4, i1 < i3 = i4 < i2, and 34 other arrangements), S3,j ,

j = 1, . . . , 8, are sets of quadruples of indices exactly three of which are equal

and are in strict order with the fourth (i1 < i2 = i3 = i4, i2 = i3 = i4 < i1, and 6

other arrangements), and S4 is the set {(i1, i2, i3, i4) : 1 ≤ i1 = i2 = i3 = i4 ≤ n}.
Consider S1,1 = {(i1, i2, i3, i4) : 1 ≤ i1 < i2 < i3 < i4 ≤ n}. By using the

transformation ti2 − ti1 = ϑi2−i1 , ti3 − ti2 = ϑi3−i2 and ti4 − ti3 = ϑi4−i3 , and by

the independence of the transformed random variables, we have

M1

nH2(u)

∑
S1,1

E

[
|mnW (mn(u−ti1+ti2))C(ti1−ti3)C(ti2−ti4)|

]

=
M1

nH2(u)

∑
S1,1

E

[
|mnW (mn(u−ϑi2−i1))C(ϑi3−i2 + ϑi2−i1)C(ϑi4−i3 + ϑi3−i2)|

]

=
M1

nH2(u)

∑
S1,1

∫ ∞

0

∫ ∞

0

∫ ∞

0
|mnW (mn(u− v1))| |C(v2 + v1)C(v3 + v2)|

×f (i2−i1)(v1)f
(i3−i2)(v2)f

(i4−i3)(v3)dv1dv2dv3

=
M1

H2(u)

∫ ∞

0

∫ ∞

0

∫ ∞

0
|mnW (mn(u−v1))C(v2+v1)C(v3+v2)|

×
{
1

n

∑
S1,1

f (i2−i1)(v1)f
(i3−i2)(v2)f

(i4−i3)(v3)

}
dv1dv2dv3.

Now note that

1

n

∑
S1,1

f (i2−i1)(v1)f
(i3−i2)(v2)f

(i4−i3)(v3) ≤H(v1)H(v2)H(v3) ≤ M3
2 .

Thus,

M1

nH2(u)

∑
S1,1

E

[
|mnW (mn(u−ti1+ti2))C(ti1−ti3)C(ti2−ti4)|

]

≤ M1M
3
2

M2
3

∫ ∞

0

∫ ∞

0

∫ ∞

0
|mnW (mn(u−v1))C(v2+v1)C(v3 + v2)| dv1dv2dv3.
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With similar arguments, one can establish the boundedness of

M1

nH2(u)

∑
S1,j

E

[
|mnW (mn(u−ti1+ti2))C(ti1−ti3)C(ti2−ti4)|

]
for the partitions S1,j , 2 ≤ j ≤ 22. A slightly different argument is needed for

S1,23 = {(i1, i2, i3, i4) : 1 ≤ i1 < i4 < i3 < i2 ≤ n} and S1,24 = {(i1, i2, i3, i4) :

1 ≤ i2 < i3 < i4 < i1 ≤ n}. Consider the case of S1,24. With ϑi4−i1 = ti4 − ti1 ,

ϑi3−i4 = ti3 − ti4 , and ϑi2−i3 = ti2 − ti3 , and using the fact that ϑi4−i1 , ϑi3−i4 and

ϑi2−i3 are independent random variables, we have

M1

nH2(u)

∑
S1,23

E

[
|mnW (mn(u− ti1 + ti2))C(ti1 − ti3)C(ti2 − ti4)|

]

=
M1

nH2(u)

∑
S1,23

E

[
|mnW (mn(u+ ϑi4−i1 + ϑi3−i4 + ϑi2−i3))|

× |C(ϑi4−i1 + ϑi3−i4)C(ϑi3−i4 + ϑi2−i3)|
]

=
M1

H2(u)

∫ ∞

0

∫ ∞

0

∫ ∞

0
|mnW (mn(u+ v1 + v2 + v3))| |C(v1 + v2)|

×|C(v2 + v3)|
{
1

n

∑
S1,23

f (i4−i1)(v1)f
(i3−i4)(v2)f

(i2−i3)(v3)

}
dv1dv2dv3

≤ M1M
3
2

M2
3

∫ ∞

0

∫ ∞

0

∫ ∞

0
|mnW (mn(u+ v1 + v2 + v3))|

× |C(v1 + v2)C(v2 + v3)| dv1dv2dv3.

The boundedness of the sum over S1,23 can be established in a similar manner.

In subsets S2,j for j = 1, . . . , 36, the summation runs over only three indices.

Consider S2,1 = {(i1, i2, i3, i4) : i1 < i2 < i3 = i4}, and the transformation

ϑi2−i1 = ti2 − ti1 and ϑi3−i2 = ti3 − ti2 . Then

M1

nH2(u)

∑
S2,1

E

[
|mnW (mn(u−ti1+ti2))C(ti1−ti3)C(ti2−ti4)|

]

=
M1

nH2(u)

∑
S2,1

E

[
|mnW (mn(u+ ϑi2−i1))| |C(ϑi2−i1 + ϑi3−i2)C(ϑi3−i2)|

]

=
M1

H2(u)

∫ ∞

0

∫ ∞

0
|mnW (mn(u+ v1))C(v1 + v2)C(v2)|

×
{
1

n

∑
S2,1

f (i2−i1)(v1)f
(i3−i2)(v2)

}
dv1dv2
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≤ M1

H2(u)

∫ ∞

0

∫ ∞

0
|mnW (mn(u+ v1))C(v1 + v2)C(v2)|H(v1)H(v2)dv1dv2

≤ M1M
2
2C(0)

M2
3

∫ ∞

0
mn|W (mn(u+ v1)) |

∫ ∞

0
|C(v2)|dv2dv1.

A similar argument can be used to establish the boundedness of the sums over

29 other sets of quadruples of indices with i1 ̸= i2. A slightly different argument

is needed in the cases of the six sets with i1 = i2. We show the calculations

for S2,31 = {(i1, i2, i3, i4) : i1 = i2 < i3 < i4}, as representative. By using the

transformation ϑi3−i2 = ti3 − ti2 and ϑi4−i3 = ti4 − ti3 , we have

M1

nH2(u)

∑
S2,31

E

[
|mnW (mn(u−ti1+ti2))C(ti1−ti3)C(ti2−ti4)|

]

=
M1

nH2(u)

∑
S2,31

E

[
|mnW (mnu)C(ϑi3−i2)C(ϑi3−i2+ϑi4−i3)|

]

=
M1

H2(u)
·mn|W (mnu) |

∫ ∞

0

∫ ∞

0
|C(v1)C(v1 + v2)|

×
{
1

n

∑
S2,31

f (i3−i2)(v1)f
(i4−i3)(v2)

}
dv1dv2

≤ M1M
2
2

M2
3

·mn|W (mnu) |
∫ ∞

0

∫ ∞

0
|C(v1)C(v1 + v2)|dv1dv2.

For sufficiently large n (such that mn > a/d), the last expression is identically

zero. Since the threshold a/d does not depend on u, this term is identically zero

for large n, uniformly for all u.

Now consider the double sums over the subsets S3,1, . . . , S3,8. We show the

boundedness of the sums over S3,1 = {(i1, i2, i3, i4) : 1 ≤ i1 = i2 = i3 < i4 ≤
n} and S3,2 = {(i1, i2, i3, i4) : 1 ≤ i1 < i2 = i3 = i4 ≤ n}, each case being

representative of the calculations needed. For S3,1,

M1

nH2(u)

∑
S3,1

E

[
|mnW (mn(u−ti1+ti2))C(ti1−ti3)C(ti2−ti4)|

]

=
M1

H2(u)

∫ ∞

0
|mnW (mnu)C(0)C(v)|

{
1

n

∑
S3,1

f (i4−i3)(v)

}
dv

≤ M1M2

M2
3

mn|W (mnu) |C(0)
∫ ∞

0
|C(v)| dv.

For sufficiently large n (such that mn > a/d), the last expression is identically

zero. As the threshold a/d does not depend on u, this term is also identically
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zero for large n, uniformly for all u. On the other hand,

M1

nH2(u)

∑
S3,2

E

[
|mnW (mn(u−ti1+ti2))C(ti1−ti3)C(ti2−ti4)|

]

=
M1

H2(u)

∫ ∞

0
|mnW (mn(u+ v))C(v)C(0)|

{
1

n

∑
S3,2

f (i2−i1)(v)

}
dv

≤ M1M2

M2
3

C2(0)

∫ ∞

0
|W (v)| dv.

The sum over S4 does not involve any random variables, and is bounded as

M1

nH2(u)

∑
S4

E

[
|mnW (mn(u−ti1+ti2))C(ti1−ti3)C(ti2−ti4)|

]
≤ M1

nM2
3

mnW (mnu)C
2(0).

Again for large n such that mn > a/d, the upper bound is identically zero. This

completes the proof.

Lemma 2. Under the Assumptions of Theorem 2, I3(u) = O (mn/n), where

O(·) is uniform in u.

Proof of Lemma 2. From Assumption 3, I3(u) is bounded as

n

mn
|I3(u)|

≤ M1

nM2
3

n∑
i1=1

n∑
i2=1

n∑
i3=1

n∑
i4=1

E
[
mn|W (mn(u−ti1+ti2)) |

×g1(ti1 − ti4)g2(ti2−ti4)g3(ti3−ti4)
]

≤ M1g1(0)

nM2
3

n∑
i1=1

n∑
i2=1

n∑
i3=1

n∑
i4=1

E
[
mn|W (mn(u−ti1+ti2)) |g2(ti2−ti4)g3(ti3−ti4)

]
.

The proof follows from an argument similar to the one used in the proof of

Lemma 1.

Proof of Theorem 3. Part (i). From (2.11), for λ ∈ [−λ0, λ0], we have

E[ϕ̂n(λ)] =
T

2π
E[Ĉ(0)]+

T

π

J∑
l=1

E[Ĉ(lT )]K(bnl) cos(lλT )

+
T

π

[nµf/T ]∑
l=J+1

E[Ĉ(lT )]K(bnl) cos(lλT ). (A.25)
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Note that the second term on the right side of (A.25) is a finite sum. By using
Theorem 1 Part (i), Property K1 of the kernel K(·), and the fact bn → 0 as
n→ ∞, we have

lim
n→∞

E[ϕ̂n(λ)] =
T

2π
C(0) +

T

π

J∑
l=1

C(lT ) cos(lλT )

+ lim
n→∞

T

π

[nµf/T ]∑
l=J+1

E[Ĉ(lT )]K(bnl) cos(lλT ). (A.26)

With the exact expectation of E(Ĉ(lT )) for l > J from (A.5), for large n we have

T

π

[nµf/T ]∑
l=J+1

E[Ĉ(lT )]K(bnl) cos(lλT )

=
T

π

∫ ∞

−∞
W (v)

{ [nµf/T ]∑
l=J+1

K(bnl) cos(lλT )
1

H(lT )
C

(
lT− v

mn

)
×
[
Hn

(
lT− v

mn

)
+Hn

(
−lT+ v

mn

)]}
dv.

From Assumptions 1, 2 and Property K1 of K(·), the integrand is dominated as

|W (v)| sup |K(·)|2M2

M3

[nµf/T ]∑
l=J+1

g

(
lT− v

mn

)
≤ |W (v)| supK(·)2M2

M3
× 2

∞∑
l=0

g (lT ) .

Integrability of the bounding function is ensured by Property W1 of W (·).
As mn → ∞ and bn → 0 as n→ ∞, we have

lim
n→∞

W (v)

[nµf/T ]∑
l=J+1

K(bnl) cos(lλT )
1

H(lT )
C
(
lT − v

mn

)
×
[
Hn

(
lT − v

mn

)
+Hn

(
− lT +

v

mn

)]
=W (v)

∞∑
l=J+1

cos(lλT )C(lT ).

Applying the DCT, we have

lim
n→∞

T

π

[nµf/T ]∑
l=J+1

E[Ĉ(lT )]K(bnl) cos(lλT ) =
T

π

∞∑
l=J+1

C(lT ) cos(lλT ),

and from (A.26),

lim
n→∞

E[ϕ̂n(λ)]=
T

2π
C(0)+

T

π

∞∑
l=1

C(lT ) cos(lλT )=ϕ(λ).
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This completes the proof of Part (i).

Part (ii). From Theorem 1 (ii), we have

E[ϕ̂n(λ)] =
T

2π
C(0)+

T

π

[nµf/T ]∑
l=1

C(lT )K(bnl) cos(lλT )

+

{ J∑
l=1

K(bnl) cos(lλT )

}
×
[
O

(
1

Lq
n

)
+O

(
logLn

mr
n

)
+O

(
mn logLn

n

)]

+

{ [nµf/T ]∑
l=J+1

K(bnl) cos(lλT )

}
×O

(
1

mr
n

)
.

Note that
[nµf/T ]∑
l=J

K(bnl) cos(lλT ) = O

(
1

bn

)
.

Since

ϕ(λ) =
T

2π
C(0)+

T

π

∞∑
l=1

C(lT ) cos(lλT ),

we have

E[ϕ̂n(λ)]−ϕ(λ)=−b
q
nT

π

[nµf/T ]∑
l=1

(1−K(bnl))

(bnl)q
lqC(lT ) cos(lλT )−T

π

∞∑
l=n

C(lT ) cos(lλT )

+O
( 1

Lq
n

)
+O

( logLn

mr
n

)
+O

(mn logLn

n

)
+O

( 1

bnmr
n

)
.

By Assumption 1A,∣∣∣ ∞∑
l=n

C(lT ) cos(lλT )
∣∣∣ ≤ ∞∑

l=n

|C(lT )| = O

(
1

nq

)
.

Using Assumption 1A, Property K2 of K(·), and the DCT, we have

lim
n→∞

[nµf/T ]∑
l=1

(1−K(bnl))

(bnl)q
lqC(lT ) cos(lλT ) =

kq
T q

∞∑
l=1

(lT )qC(lT ) cos(lλT ),

where kq = limn→0(1−K(x))/|x|q, which is non-zero for a qth order kernel K(·).
Thus, we have

E[ϕ̂n(λ)]− ϕ(λ) = O(bqn) +O
( 1

nq

)
+O

( 1

Lq
n

)
+O

( logLn

mr
n

)
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+O
(mn logLn

n

)
+O

( 1

bnmr
n

)
.

The proof is completed by observing that, in view of Assumptions 1A and

3 and the fact Ln → ∞ as n → ∞, the second term on the right side can be

ignored in the presence of the fifth term.

Proof of Theorem 4. From (2.11), we have

Var [ϕ̂n(λ)] ≤
3T 2

(2π)2
Var [Ĉ(0)] +

3T 2

π2
Var

[ J∑
l=1

Ĉ(lT )K(bnl) cos(lλT )

]

+
3T 2

π2
Var

[[nµf/T ]∑
l=J+1

Ĉ(lT )K(bnl) cos(lλT )

]
. (A.27)

From (A.21), the first term on the right side is O (1/n). The second term of right

side of (A.27) is a finite sum, and we have from Theorem 2,

Var

[ J∑
l=1

Ĉ(lT )K(bnl) cos(lλT )

]
= O

(
mn(logLn)

2

n

)
.

Now consider the third term. From Theorem 2,

Var

[ [nµf/T ]∑
l=J+1

Ĉ(lT )K(bnl) cos(lλT )

]

=

[nµf/T ]∑
l=J+1

[nµf/T ]∑
l′=J+1

Cov(Ĉ(lT ), Ĉ(l′T ))K(bnl) cos(lλT )K(bnl
′) cos(l′λT )

≤
{ [nµf/T ]∑

l=J+1

|K(bnl)|
}2

×O
(mn

n

)
.

By Property K1 of K(·), we have

[nµf/T ]∑
l=J+1

|K(bnl)| = O

(
1

bn

)
.

Thus, since mn → ∞ and bn → 0 as n→ ∞,

Var

[ [nµf/T ]∑
l=J+1

Ĉ(lT )K(bnl) cos(lλT )

]
= O

(
mn

nb2n

)
.

This completes the proof.
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