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Abstract: In some models, both parametric and not, maximum likelihood estimation

fails to be consistent. We investigate why the maximum likelihood method breaks

down with some examples and notice the paradox that, in those same models,

maximum likelihood estimation would have been consistent if the data had been

measured with error. With this motivation we define doubly-smoothed maximum

likelihood as a natural mechanism for adding measurement error without bias. We

show the proposed estimation procedure gives universal consistency in independent

and identically distributed data. Our method of proof is new. The same arguments

can show maximum likelihood itself is universally consistent in a discrete sample

space. It is shown that the asymptotic efficiency can be quite high even when the

bandwidth parameters are held fixed. Practical guidelines for the choice of kernel

and tuning parameter are also given.

Key words and phrases: Consistency, efficiency, measurement error, MLE, spectral

decomposition, NPMLE.

1. Introduction

Although the many successes of the maximum likelihood method make it

seem like a nearly foolproof way to create good estimators, there are important

models where the estimators fail to be consistent, even with independent and

identically distributed (IID) data. These models are both parametric and non-

parametric. We here consider a simple amendment to maximum likelihood that

makes it universally consistent in IID data. By this we mean that the consistency

does not depend on any regularity conditions about the model under investiga-

tion. The simple amendment to maximum likelihood involves kernel smoothing,

but the estimator is consistent for any kernel with any fixed bandwidth. More-

over, it can be made arbitrarily close to maximum likelihood by moving the

bandwidth to zero. This estimator will be called doubly-smoothed maximum like-

lihood estimator (DS-MLE). This paper is concerned with the consistency and

efficiency of DS-MLE. A companion paper Seo and Lindsay (2010) is available

that deals with computation and implementation in a particular model.

http://dx.doi.org/10.5705/ss.2011.255
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Many results about consistency are focused on the consistency of parameter

estimators. Results of this type always depend on a series of regularity condi-

tions because the parametrization of a class of distributions is just a way to label

the distributions, and so is essentially arbitrary. Our notion of universal consis-

tency requires that we separate the concept of consistency from the concept of

parametrization.

To explain this, let us first suppose that {Y1, . . . , Yn} is a random sample

from some unknown probability measure Mτ on Rd. Suppose further that Mτ

is one element of a class of probability distributions, M. If we suppose that

M is indexed by a parameter θ, so M = {Mθ}, then estimation of θ by θ̂n
provides an estimator of the true parameter θτ . Translated into the world of

distributions, the true parameter corresponds to some true distribution Mτ =

Mθτ and θ̂n to an estimator M̂n of Mτ , where M̂n = Mθ̂n
. If the method of

estimation is parametrization invariant, like maximum likelihood, then M̂n does

not depend on the method of parametrization θ. If we say that a parametrically

invariant method of estimation is consistent whenever M̂n converges to Mτ , in

some suitable metric, then consistency is a question free of parametrization. We

will call this distributional consistency.

This consistency notion is independent of the dimension of the parameter

space or a choice of metrics on the parameter space. We here consider models

both parametric and nonparametric, and because of that point of view, we call

θ the model index rather than the parameter, recognizing that there are many

possible ways to index the class of models.

Of course, one could well also be interested whether the index estimator θ̂ is

consistent under a particular choice of index θ. If we establish distributional con-

sistency, it could imply the consistency of the index estimator, but this ultimately

depends on whether the map between the index space and the model distribu-

tions is suitably continuous. We consider this question as well, although it goes

beyond our main point. Our results for universal consistency apply to maximum

likelihood itself in any discrete sample space, and so provide the strongest results

possible in that setting.

The results of this paper can be summarized as follows. In Section 2, we

illustrate the need for this methodology by considering three examples of incon-

sistency, including a parametric model and two nonparametric models. These

examples are also used to motivate our methodology. In Section 3, we describe

our methodology, which is based on kernel smoothing, and then show its univer-

sal consistency in Section 4 and 5. We also discuss the theoretical parametric

and nonparametric efficiency of the proposed methodology in Section 6 and 7,

showing that it can be fully efficient in a number of important settings. Although

our methodology does not require that the bandwidth of the kernel should go to
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zero for the consistency of estimators, we propose a general guideline to deter-

mine a reasonable range of bandwidths in Section 8. We offer further discussion

in Section 9.

2. Examples

To motivate our estimation method, we present two examples in which max-

imum likelihood fails to give consistent estimators even though consistent esti-

mators exist. Our first example is a parametric model.

Example 1 (Normal mixture model). Consider a two-component normal mix-

ture with unknown means µ1, µ2, variances σ
2
1, σ

2
2 and class probability ρ. Then

the likelihood of a sample from this density is

L(θ;x) =
∏
i

[
ρ√
2πσ2

1

exp

(
−(xi − µ1)

2

2σ2
1

)
+

1− ρ√
2πσ2

2

exp

(
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2

2σ2
2

)]
,

(2.3)

where θ = (µ1, µ2, σ1, σ2, ρ). If we do not assume σ2
1 = σ2

2, this likelihood is

unbounded and its global maximum is ∞ : let µ2 = x1 and let σ2
2 go to zero.

Therefore L(θ;x) is not bounded and the parameter values that give the infinite

spikes cannot be used to construct a consistent sequence of estimators Kiefer and

Wolfowitz (1956).

As a simple amendment, suppose that each Xi was replaced by X∗
i = Xi +

hZi, where Zi’s are i.i.d. N(0, 1). In this measurement error model, the distribu-

tion for X∗
i can be explicitly calculated as ρN(µ1, σ

2
1+h2)+(1−ρ)N(µ2, σ

2
2+h2)

and the likelihood based on X∗
i ’s is∏

i

[
ρ√

2π(σ2
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exp

(
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2

2(σ2
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)
+
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2π(σ2
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exp

(
− (x∗i − µ2)

2

2(σ2
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)]
.

(2.4)

Then we can see that this likelihood is bounded above, showing that adding

measurement error is a means to remove the infinite spikes from a parametric

likelihood function. However, if (2.4) is used instead of the original likelihood

(2.3) for the same data, it certainly involves a bias due to adding artificial mea-

surement error. The basic idea of this paper relies on adding measurement error

while avoiding the bias caused by its addition.

Our next example involves a nonparametric maximum likelihood estimator.

A consistent estimator of the nonparametric type is the empirical distribution

function F̂ , which can be derived as the maximum likelihood estimator of a

completely unknown distribution. If one were to allow arbitrary continuous den-

sities, then the likelihood would again be unbounded. However, if we allow only
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discrete densities p(x), then there is a unique global maximum p̂ which satisfies

p̂(xi) = 1/n, assuming the data has no ties. In this same sense, the Kaplan-Meier

estimator is the nonparametric MLE for censored univariate survival data, and

is consistent Kaplan and Meier (1958). In multivariate censored data, however,

the method can fail, and so becomes our second example.

Example 2 (Bivariate survivor function). Let T = (T1, T2) be the pair of

survival times with distribution F (t1, t2) and let C = (C1, C2) be the pair of

censoring times with distribution G(c1, c2). Assuming T and C are indepen-

dent, suppose that we can only observe (T̃1, T̃2) = (min(T1, C1),min(T2, C2)) and

(δ1, δ2) = (I(T1 < C1), I(T2 < C2)), instead of T and C. The nonparametric

MLE of the joint survival function is not unique and not consistent in general.

This non-uniqueness is caused by singly censored observations of which one of

the survival times in (T1, T2) is exactly observed while the other is censored.

The problem with singly censored observations can be easily explained using

the redistribution-to-the-right algorithm for maximum likelihood introduced by

Efron (1967). In Figure (a), the point A is doubly right censored and other points

are not censored, and the algorithm would equally redistribute the mass of point

A to the data points (B,C) found in the upper right quadrant of the point

A. However, in Figure (b), the T1-coordinate of point A is observed but the T2-

coordinate is right censored. In this case, the mass of point A can be redistributed

to any point on the dotted line since they produce the same likelihood. Thus the

NPMLE is not unique.

If the distribution of (T1, T2) is continuous, then with probability one we

gain no further observations along the dotted line and so the ambiguity persists.

If there is positive probability of single censoring, then there exist a multitude of

inconsistent MLEs. The literature contains several methods to fix this inconsis-

tency Dabrowska (1988); Prentice and Cai (1992); van der Laan (1996); Akritas

and Keilegom (2003).

A singly censored data point could be described as having one coordinate

observed precisely and the other vaguely. Our third example has this same

characteristic.

Example 3 (Measurement error problem). Consider a bivariate continuous ran-

dom variable (X,Z) with an unknown distribution function G(x, z). Suppose Z

has no measurement error but random variable X cannot be directly observed,

instead one observes W which is X perturbed by some measurement error. Sup-

pose further that the measurement error distribution of W |X = x is completely

known, say f(w|x), and that W and Z are independent given X. Then the joint

density of (X,W,Z) is f(w|x, z)g(x, z) = f(w|x)g(x, z). Now consider the esti-

mation of the nonparametric distribution G. As in the preceding argument, we
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Figure 1. Estimated marginal cumulative distribution of X. Dashed, dotted,
and solid line represent the true distribution, the MLE, and the DS-MLE,
respectively

restrict attention to G discrete. Since X is not observed, the observed likelihood
is

L(G) =

n∏
i=1

∫
f(wi|x)g(x, zi)dx =

n∏
i=1

∫
f(wi|x = ξ)I(z = zi)dG(ξ, z). (2.5)

In this case, if the data have no ties and f(wi|x = ξ) is a completely known
unimodal density f(w − x) with mode 0, then it is known that the ML estimate
for G is the empirical distribution of (W,Z), which clearly converges to the wrong
distribution Roeder, Carroll, and Lindsay (1996); Gaydos (1997). This failure is
due to the integrand in (2.5), f(wi|x = ξ)I(z = η), which is continuous in W but
discrete in Z. Because of this mixed form of continuous and discrete densities,
when the ML procedure estimates the conditional distribution of X|Z = zi, it
fails to pool information across Z observations. However, if both X and Z had
been measured with error, there would be no inconsistency Roeder, Carroll, and
Lindsay (1996).

In these examples we can see that maximum likelihood failed due to inhomo-
geneity in measurement accuracy. In every case, if we blurred the data by adding
artificial measurement error, the inconsistency would disappear. In a similar vein,
Luo, Stefanski, and Boos (2006) suggest adding noise for variable selection in a
regression setting. Of course, the problem of using maximum likelihood after
adding artificial measurement error to data is that the answer one attains would
not only cause bias but also lose information. The method we consider removes
these problems. Example 1 is extensively discussed in our companion paper Seo
and Lindsay (2010).
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3. Description of a Doubly Smoothed Likelihood Method

Suppose X1, · · · , Xn is a random sample from an unknown probability mea-

sure Mτ on Rd. Now, using a kernel Kh(x, t), we can construct a nonparametric

kernel density estimator

f̂∗
n(t) =

∫
Kh(x, t)dF̂n(x) =

1

n

n∑
i=1

Kh(xi, t), (3.1)

where h is a tuning parameter that controls smoothness and F̂n(x) is the empirical

distribution based on X1, . . . , Xn. By applying the same kernel to the model

density, the smoothed model density is defined as

m∗(t;Mθ) =

∫
Kh(x, t)dMθ(x), (3.2)

where Mθ(x) is the distribution function of a model density mθ(x) indexed by θ.

We can think of m∗ as the density of a new variable T that arises from viewing X

with the measurement error density Kh(x, t). In this case, the smoothed kernel

density can be considered as a nonparametric estimator for the density of the

new variable T .

For our methodology, we rely on two basic assumptions for the kernel.

(A1) Kernel regularity: The kernel Kh(x, t) defined on Rd×Rd is bounded above

and is continuous in x for each t with Kh(x, t) → 0 for each t ∈ Rd as

|x| → ∞.

(A2) Kernel identifiability: If
∫
Kh(x, t)dM1(x) =

∫
Kh(x, t)dM2(x) except for a

set of t of Lebesgue measure zero, then M1 = M2 a.e.

In addition, we assume a finite entropy condition on the true smoothed model

density.

(A3)
∫
m∗(t,Mτ )| log (m∗(t,Mτ )) |dt < ∞

(A1) is a common assumption in the literature. (A2) is needed in our consistency

proof, as it assures that the weak convergence of kernel smoothed probability

measure implies the convergence of the original probability measure. When any

kernel in the exponential family is used, this assumption is easily verified using

the uniqueness of the Laplace transform. (A3) assumes the finite entropy of the

smoothed model.

Under (A1) and (A2), we can see that the smoothed kernel density f̂∗
n(t)

converges, for each t, to the smoothed model density m∗(t;Mθ) on a set of prob-

ability one by the Strong Law Of Large Numbers This convergence is independent
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of the value of the tuning parameter h as long as the same kernel and tuning

parameter are used for both f̂∗
n and m∗.

The doubly-smoothed maximum likelihood estimator (DS-MLE) of θ is de-

fined as the minimizer of the Kullback-Leibler divergence between m∗ and f̂∗
n:

θ̂n = argmin
θ

KL(f̂∗
n(t),m

∗(t;Mθ)) = argmin
θ

∫
log
( f̂∗

n(t)

m∗(t;Mθ)

)
f̂∗
n(t)dt. (3.3)

Clearly the method is invariant to the choice of the model index θ. The cor-

responding DS-MLE of the distribution is Mθ̂n
. We can also easily verify that

minimizing (3.3) is equivalent to maximizing

l∗(θ) =

∫
logm∗(t;Mθ)f̂

∗
n(t)dt =

1

n

n∑
i=1

∫
K(xi, t) logm

∗(t;Mθ)dt. (3.4)

We call (3.4) the doubly-smoothed log-likelihood function because we smooth

both data and model, and (3.4) approaches the usual log-likelihood function as

the tuning parameter goes to zero. Moreover, in a discrete model with degenerate

kernel smoothing, minimizing KL(f̂n(t),m
∗(t;Mθ)) exactly yields the maximum

likelihood estimator of θ. Although the results of this paper are generally ex-

pressed in terms of nondegenerate kernel smoothing, our methods of proof, and

therefore results, apply to any discrete maximum likelihood estimator.

If the model index θ is vector-valued, then solving (3.3) is typically equivalent

to solving the estimating equation∫
∇θ logm

∗(t;Mθ)f̂n(t)dt = 0. (3.5)

The statistical theory of estimating equations then leads to the consistency and

asymptotic normality of this minimum distance estimator of θ Basu and Lindsay

(1994). However, in the case that the model index θ contains nonparametric

components, as in Examples 2 and 3, the consistency of the estimator has not

been established. In the next section, we show Mθ̂n
corresponding to the DSMLE

θ̂n is generally consistent for an essentially arbitrary model.

4. Consistency of M̂n

Our proof is based on almost sure convergence so we need a formal probability

framework. We consider a probability space (Ω,A,P) with elements ω and a

sequence {Xn} of random vectors defined on Ω. The basic result we need is that

the empirical distribution function F̂ω
n (x) = (1/n)

∑
I(Xi(ω) ≤ x) converges

weakly to the true model distribution Mθτ for ω in a set Ω0 ⊂ Ω satisfying

P (Ω0) = 1. For IID data this holds due to the Glivenko-Cantelli Theorem. The
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reader should note that for a fixed ω, the sequences we consider in this section

are not stochastic so we are able to use non-stochastic limiting results.

For simplicity of notation, we write M̂n instead of Mθ̂n
(x). Similarly, Mτ

means Mθτ (x). By distributional consistency we mean that M̂ω
n converges weakly

to Mτ for a set of ω having probability one. This corresponds to showing that

d(M̂ω
n ,Mτ ) → 0 for a set of ω having probability one for any metric d(·, ·) on

the space of probability measures on (Rd,Bd) that metricizes weak convergence

Billingsley (1995).

From the the boundedness of the kernel Kh in (A1), it is easy to show that

m∗(t;M) is bounded above, and that there exists a positive constant Uh satisfying

m∗(t;Mn) < Uh for all n and almost all t.

Lemma 1. Assuming (A1) and (A3), for ω ∈ Ω0, a set having probability one,

and for f̂∗
n(t) =

∫
Kh(t, x)dF̂

ω
n (x), we have

lim
n→∞

∫
log

(
m∗(t;Mτ )

Uh

)
f̂∗
n(t)dt =

∫
log

(
m∗(t;Mτ )

Uh

)
m∗(t;Mτ )dt. (4.1)

Proof. See the Appendix.

For the next theorem, we assume that the maximizer of the doubly smoothed

log-likelihood function exists. To ensure the existence of such a maximum, one

might need to consider the closure of the model space M in the vague topology.

This closure, M, could include subprobability distributions. However, it would

be compact, and so l∗(θ) in (3.4) viewed as l∗(M) would attain a maximum in

M. Moreover, it is clear that the maximum would occur at a genuine probability

distribution, as otherwise l∗(M) could be increased by scalar multiplication of

M . Even without appealing to existence, the following theorem still applies to

any sequence of M̂n’s such that l∗(M̂n) ≥ l∗(Mτ ), and there always exists such

a sequence as long as Mτ ∈ M. In the theorem, the maximizer M̂n of l∗(or the

minimizer of KL(f̂∗
n,m

∗)) can be interpreted as either the global maximizer or

any sequence satisfying l∗(M̂n) ≥ l∗(Mτ ).

Theorem 1. Let M = {Mθ} be a class of probability measures on Rd indexed

by θ. Suppose that X1, · · · , Xn are IID random vectors from the true distribution

Mτ ∈ M. Assuming (A1)−(A3), the minimizer M̂n of KL(f̂∗
n,m

∗) converges

weakly to Mτ on a set of probability one.

A proof of Theorem 1 is given in Appendix. The essence of the proof is very

simple. Like most consistency proofs for maximum likelihood, the concept of

compactness plays an important role. Our proof uses the method of subsequences

along with the properties of vague convergence of probability measures on Rd.

Given any sequence of probability measuresMn on Rd, one can find a subsequence
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Mk that converges vaguely to some subprobability measure M0. After showing

this implies convergence of certain terms, one can use the information inequality

to show that M0 must be the true distribution Mτ . This proof and result also

apply to maximum likelihood estimators on a discrete sample space only with

Assumption (A3).

Theorem 1 establishes the distributional consistency of a chosen estimated

probability measure M̂n but not the consistency of the model index θ̂n. We

consider the consistency of the estimated model index θ̂n for the true θτ in the

next section.

5. Consistency of Index θ

The consistency of a model index θ can often be easily established by using

the distributional consistency result. To establish consistency of θ̂n, we need first

to identify a metric for convergence, say d(θ0, θ1), which would ordinarily be Eu-

clidean distance when θ is a vector. We then need two model index assumptions.

(M1) Model identifiability : The model index θ is identifiable in the probability

measure Mθ.

(M2) Model continuity : Mθn(x)
v→ Mθ0(x) implies that d(θn, θ0) → 0.

Corollary 1. If (A1)−(A3) and (M1)−(M2) hold, then the minimizer θ̂n of

KL(f̂∗
n,m

∗) is consistent for true θτ .

For a vector-valued model index θ, (M1) and (M2) directly imply Corollary

1, as in Example 1. The natural metrics d(·, ·) to apply to model indices that are

themselves distributions, as in Examples 2 and 3, are those that metricize weak

convergence. For these one can often apply subsequence arguments such as is

used in our distributional consistency proof to prove consistency for the model

index θ̂.

For a simple example, suppose one wishes to prove consistency of G estima-

tion in Example 3 when Gτ is the true distribution. Given any subsequence of Gn,

say Gm, there exists a further subsequence Gk such that Gk converges vaguely

to a subdistribution, say G1. But this implies that MGk
converges vaguely to

MG1 . However, Theorem 4.2 implies MGn converges weakly to MGτ , so G1 = Gτ .

This implies that MGn converges to MGτ . This, together with identifiability and

continuity of model index θn proves the convergence of Gn. A similar technique

can be applied when model index θ includes both vector valued parameters and

distributions.

Some remarks on our approach are needed. Unlike the usual ML estimator

that requires several regularity conditions on the parameters and model, if we

smooth both the model and the data, the kernel smoothed model is automatically
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quite regular. This explains how our methodology can cure an inconsistent ML
estimator. Moreover, since we separately address distributional and index con-
sistency, our proof does not require any specific structure for θ. That is, θ can be
a set of parameters or nonparametric distributions, or both. So it can be easily
applied to other consistency studies for the nonparametric or semi-parametric
model. Finally, this proof shows that consistency does not depend on the choice
of tuning parameter.

6. Parametric Efficiency of DS-MLE

In this section we consider the relative efficiency of the DS-MLE in arbitrary
parametric models that are smoothly parameterized, where relative means rel-
ative to the theoretical efficiency of the MLE. We also examine efficiency from
the fixed h point of view. We do so because this is the most stringent point of
view: in any real problem, one would use an actual h. Doing asymptotics with
that value fixed is more conservative than assuming that h is part of a sequence
hn that goes to zero.

6.1. Efficiency loss matrix

We assume that the parametric model mθ has a smooth vector of scores uθ

such that the usual asymptotic theory holds with information matrix J(θ) =
E(uu′). The information in the DS scores u∗ can then be calculated as

E(uu∗′)E(u∗u∗′)−1E(u∗u′),

the inverse of the usual asymptotic variance formula. We then take the loss of
information is to be

E(uu′)−E(uu∗′)E(u∗u∗′)−1E(u∗u′), (6.7)

which can be written as

E(u−Ru∗)(u−Ru∗)′,

where R = E(uu∗′)E(u∗u∗′)−1 is the matrix of regression coefficients that mini-
mizes the last displayed equation in the Loewner ordering of matrices. From this
representation it is clear that u∗ is fully efficient at θ0 if and only if the span of
{u∗1, . . . , u∗p} equals (in the L2(θ0) sense) the span of {u1, . . . , up}.

Some initial results on the efficiency of the (fixed h) DS-MLE can be found
in Basu and Lindsay (1994). An important point from that paper is that there
is not necessarily any loss in efficiency. Moreover, the loss of information that
occurs in using the DS-MLE (as compared to the theoretical efficiency of the
MLE) is always less than the loss in efficiency one would obtain from simply
adding artificial noise directly to the original data.
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6.2. Kernel operators and efficiency

A deeper understanding of possible efficiency loss in DS-MLE can be found

using the spectral theory of kernel operators. Our theoretical calculations are

based on a representation of the DS score function. We start with a vector

parameter model mθ, with vector score function uθ=∇θ logmθ(x). The DS score

vector can be written as

u∗θ(x1) =

∫
Kh(x1, y)

∫
uθ(x2)mθ(x2)Kh(x2, y) dx2

m∗
θ(y)

dy

=

∫
Sθ,h(x1, x2) uθ(x2)mθ(x2)dx2, (6.8)

where the symmetric kernel operator Sθ,h(x1, x2) is defined by

Sθ,h(x1, x2) =

∫
Kh(x1, y)Kh(y, x2)

m∗
θ(y)

dy. (6.9)

Representation (6.8) shows that an analysis of the kernel Sθ,h can be informative

about the transformation that takes us from the score function u to the DS score

u∗.

As tools to do so, we draw extensively from Lindsay et al. (2008). That

paper considered quadratic distances based on general positive definite kernel

functions (such as (6.9)). A general form of their quadratic distances between

two probability measures F and G (or discrete probability densities f and g)

with kernel operator SG (or Sg) is given by

dSG
(F,G) =

∫∫
SG(x, y)d(F −G)(x)d(F −G)(y),

(6.10)
dSg(f, g) =

∑
x

∑
y

Sg(x, y)(f(x)− g(x))(f(y)− g(y)).

With a specific choice of Sg(x, y), (6.10) can produce some important statistical

distances. For example, the L2 and Pearson distances between two discrete

probability densities, f and g, are quadratic distances with Sg(x, y) = I(x = y)

and Sg(x, y) = I(x = y)/
√

g(x)g(y), respectively. Lindsay et al. (2008) presented

more examples with discussion, and used an eigenanalysis to decompose the

limiting distributions of quadratic distances.

Back to the kernel Sθ,h(x1, x2) in (6.9), we now have two observations. First,

the presence of the smoothing kernel K in this formula means that S itself tends

to be a smoother. Second, when used in a quadratic distance, the kernel function

(6.9) would generate an analogue of Pearson’s chi square distance. For this reason

we will call this Pearson’s kernel. The key fact that we wish to draw upon can

be found in Lindsay et al. (2008, Thm. 3.1).
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Theorem 2. A nonnegative definite kernel S satisfying
∫∫

S(x, y)2dM(x)dM(y)

< ∞ can be written as S(x, y) =
∑∞

i=0 λiγi(x)γi(y), where the λi’s and γi’s

are eigenvalues and corresponding normalized eigenvectors of K under baseline

measure M . Moreover,
∑n

i=0 λiγi(x)γi(y) converges strongly to S; that is, for

every g ∈ L2,

lim
n→∞

∫ (∫
S(x, y)g(y)dM(y)−

n∑
i=1

∫
λiγi(x)γi(y)g(y)dM(y)

)2

dM(x) = 0.

To illustrate the methodology, suppose that mθ(x) is the N(θ1, θ2) model

and that the smoothing kernel Kh(x, y) is N(x; y, h2). We can then explicitly

calculate (6.9) to be

(θ2 + h2)

h
√
2θ2 + h2

exp

[
2θ21h

2 − θ2(x
2
1 + x22) + 2(θ2 + h2)x1x2 − 2θ1h

2(x1 + x2)

2h2(2θ2 + h2)

]
,

(6.11)

and derive the spectral representation of Pearson’s kernel under the normal

model.

Proposition 1. Pearson’s kernel, Sθ,h(x1, x2), under the normal model, N(θ1, θ2),

has the spectral representation

Sθ,h(x1, x2) =
∞∑
n=0

λθnγn(x1; θ1, θ2)γn(x1; θ1, θ2), (6.12)

where λθn =
{
θ2/(θ2 + h2)

}n
, γn(x; θ1, θ2) = (1/

√
2nn!)Hn

(
(x− θ1)/

√
2θ2
)
,

and Hn(x) is the Hermite polynomial.

Proof. This can be proved using Mehler’s formula; see the Appendix.

6.3. Spectral conditions for full efficiency with one scalar parameter

We now consider the information lost in a model. Assume that the score

function u can be represented in the eigenfunction basis as u =
∑

ajγj(x).We can

then explicitly calculate u∗ =
∑

ajλjγj(x), and find that the relative efficiency

of u∗ is (∑
a2jλj

)2(∑
a2j

)(∑
a2jλ

2
j

) .
If we create a discrete density for the index j by setting πj = a2j/

∑
a2j , then

relative efficiency can be written as

E2(λJ)

E(λ2
J)

. (6.13)
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From this representation it is clear that the relative efficiency is one if and only

if the random variable λJ is degenerate at some nonzero value; that is, if aj is

nonzero on a set of eigenfunctions that have the same nonzero value of λj .

A similar rule for full efficiency of DS-MLE applies when the dimension of

the score space is p, bigger than one. Now the representation of the scores in the

Pearson kernel basis must give nonzero weights only to a set of eigenfunctions

that correspond to p or fewer distinct eigenvalues. If so, the DS scores can be

represented with positive weights on the same eigenfunctions, and the linear

transformation R makes them equivalent to the likelihood scores.

As an example of this, consider the illustrative normal model. The ML

and DS score for N(θ1, θ2) can be represented in two terms of eigenfunctions of

Pearson’s kernel:

u(θ1, θ2) =

(
x− θ1
θ2

,
(x− θ1)

2 − 1

2θ2

)
=

(
γ1(x; θ1, θ2)√

θ2
,
γ2(x; θ1, θ2)

θ2
√
2

)
,

u∗(θ1, θ2) =

(
ω√
θ2

γ1(x; θ1, θ2),
ω2

θ2
√
2
γ2(x; θ1, θ2)

)
,

where ω = θ2/(θ2 + h2). Then we can see that this two-dimensional score space

is equivalent to that of the DS score, so full efficiency holds.

6.4. Worst case scenarios

We now turn from the best case scenario to the worst case. Consider again

the scalar case, with efficiency calculated in (6.13), and the setting in which

aj is nonzero on a subset of the values λ1, . . . , λm. Elementary optimization

considerations show that (6.13) attains its minimum, over all densities π1, . . . , πm,

when π1+πm = 1. One can then use calculus to show that the minimizing value

of π1 is π1 = λm/(λ1 + λm). This leads to a minimized relative information of

4r/(1 + r)2, where r = λm/λ1.

We conclude that we can always create score functions whose DS scores give

arbitrarily small efficiency simply by choosing r sufficiently small. However, the

original score functions must be rather unsmooth, with a small weight on a large

eigenvalue and a large weight on a small eigenvalue. Curiously, though, full

efficiency does occur if all the weight π1 is on the small eigenvalue λm.

When the DS-MLE is used in models with parameter dimension p > 1, the

richness of the model may increase the presence of scores with such “bad” spectral

representations. This is counterbalanced by the fact that information loss is

measured by how well a model score uj is approximated by the best regression

on the full set of u∗ scores. That is, one can always come closer to approximating

uj by Ru∗ than by u∗j alone. The answer is therefore fairly complicated; in the

next section, we discuss this with nonparametric models.
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7. Nonparametric Full Efficiency

In a non- or semi-parametric model, determining the efficiency of DS-MLE

can become simpler in cases where the model is essentially nonparametic. To

explain this, if the closed linear subspace generated by the set of ML scores of the

model at the truth τ is complete in L2(τ), we say that the model is essentially

nonparametric. In this case, every L2(τ) function h(x) (or
∑

n−1h(xi) in a

sample) is a fully efficient estimator of Eτ [h(X)] = µ(τ) when the expectation is

viewed as a function of the model index. The logic is straightforward: for any

reparametrization (µ, γ) of the index, we have that E(µ,γ)[h(x)−µ] = 0 for all γ,

and so h(x) − µ is the efficient score for µ Bickel et al. (1993); see also Lindsay

(1983) and Tierney and Lambert (1984).

In an essentially nonparametric model, if one can show that the correspond-

ing DS score space is also complete in L2(τ), it is clear that we can approximate

any ML score to an arbitrary high level of precision, and so the information loss

at equation (6.7) can be made arbitrarily small for any finite dimensional score

u. That is, the DS-MLE is theoretically fully efficient.

We start by illustrating these arguments in the normal mixture model,

then extend the arguments to Example 3. Consider the normal mixture model,

m(x;Q, σ2) =
∫
N(x;µ, σ2)dQ(µ) where Q is an unknown mixing distribution

and N(x;µ, σ2) is the normal density. The usual directional ML score function

at µ is

uµ(x) =
N
(
x;µ, σ2

)
m(x;Qτ , σ2)

− 1, (7.1)

and the corresponding DS score function is

u∗µ(x) =

∫
Kh(x, t)

N∗(t;µ, σ2)

m∗(t;Qτ , σ2)
dt− 1, (7.2)

where

N∗(t;µ, σ2) =

∫
Kh(y, t)N(y;µ, σ2)dy,

m∗(t;Qτ , σ
2) =

∫
Kh(y, t)m(y;Qτ , σ

2)dy.

Technically, these are one-sided scores, as we have taken directional deriva-

tives. The one-sided nature of these derivatives means that the scores generate a

closed convex cone. If it is not a closed linear space, there will be non-standard

asymptotics. Examples of this include binomial mixtures when the number of

components in the mixture Qτ is too small. However, if the mixing distribution

Qτ is sufficiently rich, then all the directional scores become two-sided and we

have a closed linear space. In this case we call τ an interior point of the mixture

space.
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In the normal mixture model, the class of interior points is quite rich. For

example, suppose that Qτ is absolutely continuous with density qτ (µ). It is then

sufficient that qτ be continuous and positive valued everywhere. Then for any

fixed ϵ sufficiently small that qτ (µ) is bounded below by B for µ ∈ [µ0−ϵ, µ0+ϵ],

we have that the function

U(µ;µ0 − ϵ, µ0 + ϵ)

qτ (µ)
,

where U(x; a, b) is the uniform density on (a, b), is bounded above for all µ. It

follows that, for α sufficiently small and positive,

(1 + α) qτ (µ)− αU(µ;µ0 − ϵ, µ0 + ϵ)

is a density function. The directional score for this density, at τ, is

1−
∫
U(µ;µ0 − ϵ, µ0 + ϵ)N(x;µ, σ2

0)dµ

m(x;Qτ , σ2)
.

Clearly this approaches −uµ(x) as ϵ approaches 0, and so both uµ(x) and −uµ(x)

are included in the closure of the space of score functions.

Next, we show that the closed linear space M generated by the scores is the

zero mean subspace of L2(τ), when τ is such an interior point, by showing that

the orthogonal complement of M is the zero function. Consider any mean zero

function ρ(x) satisfying Eτ [uµ(x)ρ(x)] = 0 for almost all µ. This can be written

as
∫
ρ(x)N(x;µ, σ2)dx = 0. By the statistical completeness of the normal density

in the parameter µ Lehmann and Casella (1998), we have that ρ(x) is zero almost

everywhere.

Finally, we consider conditions for the DS scores to be complete in this

problem. Let ρ(x) be a mean zero function in L2 that is orthogonal to u∗µ(x) for

all µ:

0 =

∫
ρ(x)u∗µ(x)m(x;Qτ , σ

2)dx

=

∫
ρ(x)

[∫
Kh(y, x)

N∗(y;µ, σ2)

m∗(y;Qτ , σ2)
dy − 1

]
m(x;Qτ , σ

2)dx

=

∫ ∫
ρ(x)Kh(y, x)

N∗(y;µ, σ2)m(x;Qτ , σ
2)

m∗(y;Qτ , σ2)
dxdy. (7.3)

If N∗(y;x, σ2) is a complete parametric family of densities in parameter x, the

inner argument

ρ∗(y) =

∫
Kh(y, x)

ρ(x)m(x;Qτ , σ
2)

m∗(y;Qτ , σ2)
dx (7.4)
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is zero almost surely. Now suppose that the kernel Kh(y, x) is also a complete

parametric family of densities in parameter y. It then follows that ρ(x) is zero

almost surely.

These arguments imply that the nonparametric efficiency of the DS-MLE

depends on the kernel and whether the given model is essentially nonparametric.

If the given model is essentially nonparametric, then we need only check if the

kernel preserves the completeness of the score space.

Example 4. From Example 3, consider the nonparametric estimation of the

distribution of an unobserved variable X with a normal additive measurement

error. Suppose that the measurement error distribution f(w|x) is N(x, σ2) with

known σ2. Then the model density for the observable variable W is mG(w) =∫
N(w;x, σ2)dG(x), where G is an unknown distribution function of X. The ML

score function for G is the gradient function of mG(w) at x:

ux(w) = DG(x) =
N
(
w;x, σ2

)
mG(w)

− 1.

For the normal kernel with variance h2, the smoothed model density for W is

m∗
G(w) =

∫
N(w;x, σ2 + h2)dG(x) and the DS score function is

u∗x(w) =

∫
Kh(y, w)

N
(
w;x, σ2 + h2

)
m∗

G(w)
dy − 1.

As discussed, the ML scores and DS scores are both complete in L2(Gτ ) provided

Gτ is contained in a sufficiently rich family of models.

8. Choice of Kernel and Tuning Parameter

Although, theoretically, any kernel satisfying (K1) and (K2) can be used in

our estimation for the consistency purpose, it is desirable to choose a kernel which

gives an algebraic formula for m∗, the smoothed model density. For instance, in

Example 1, the smoothed model density is the normal density for the normal

kernel due to the convolution property of normal densities. In Example 3, the

model density is not specified, so any kernel can be used. For example, using

a normal kernel can give us a convenient way to estimate the nonparametric

distribution using algorithms for nonparametric normal mixture models.

The most popular approach to choosing a tuning parameter is a model-

specific method that selects the tuning parameter which makes the mean squared

error for some function of the parameters small. Given our very general formu-

lation of the problem, it is difficult to be specific on the implementation of this.

Given our focus on distributional consistency, one approach might be to attempt

to minimize a measure of risk based on d(M̂n,Mτ ).
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Note that our method reduces to maximum likelihood if h goes to zero, so if

the MLE is inconsistent, small values of h must generate estimators with consid-

erable bias. On the other hand, using h too large could reduce the information

in a problem and so result in large variance. The optimal choice of h must have

some tradeoff between these two extremes.

Examination of our examples has led us to suspect that reasonable strategies

for choosing h depend on the structure of the model. Fortunately, in our method

the consistency of estimation does not depend on the choice of the tuning param-

eter, and therefore it is not surprising that the DS-MLE is quite robust to the

choice of h. For this reason, in this section we propose a simple general method

that gives a reasonable range for the tuning parameter.

As a general guideline, we propose to use the spectral degrees of freedom

of the kernel Lindsay et al. (2008); Ray and Lindsay (2008). Notice that there

is no bias in using f̂∗
n to estimate m∗, so the quality of the estimation process

is determined by the variability of the kernel density estimator. If one were to

use a histogram density estimator in our problem, one would naturally measure

the degree of smoothing (and hence the variance reduction) by the number of

bins used in the histogram. The spectral degrees of freedom measure provides

a natural analogue of the “number of bins” for use with other kernel density

estimators.

The limiting distribution of the L2 distance between the smoothed model

densitym∗(t;Mθ) and the smoothed kernel density f̂∗
n, namely

∫
(f̂∗

n(t)−m∗
θ(t))

2dt,

is
∑∞

i=1 λiZ
2
i , where Zi’s are independent N(0, 1) and λi ≥ 0,

∑∞
i=1 λi < ∞. Here

the λi’s are the eigenvalues from a functional spectral decomposition. Now, the

limiting distribution of the distance is an infinite sum of the independent scaled

χ2
1. This can be approximated with a scaled chi-square distribution with an

appropriate degrees of freedom, sDOF:
∑∞

i=1 λiZ
2
i ≈ cχ2

sDOF. By matching the

first two moments Satterthwaite (1941), the Pearson scale factor, c, and the

spectral degrees of freedom, called sDOF, can be obtained. This approximation

generally becomes more accurate as the degrees of freedom increase. Thus, sDOF

has a similar meaning to usual degrees of freedom in χ2 goodness-of-fit test. One

nice feature of sDOF is that it is easy to estimate empirically. For details, see

Lindsay et al. (2008). While there might be some advantages to constructing a

degrees of freedom measure based on Kullback-Leibler distance rather than L2,

it seems to us that the simple and easy to implement sDOF is adequate for our

purposes.

Of course, there are no magic rules for choosing the number of bins to use,

nor the spectral degrees of freedom, but we can eliminate certain unreasonable

choices. For a given tuning parameter h, if the estimated sDOF is less than 5,

say, we are probably oversmoothing. If it is greater than n/5, corresponding to
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five observations per bin, we might suppose the amount of smoothing is becoming

too small.

When it is difficult to find a more appropriate method for choosing the

tuning parameter, sDOF always gives simple and dimensionless information for

the tuning parameter just as the usual degrees of freedom does. Even if we have

a more specific method of choosing h, it might require grid search over different

tuning parameters. In such a case, sDOF has proved to be a very useful tool to

narrow the range of values to consider. The effectiveness of sDOF and how we

can incorporate it with a specific bandwidth selection rule are discussed in the

next section.

9. Discussion

In some ways, our consistency results are quite strong. We show almost sure

convergence to the true distribution for virtually any statistical model, completely

without regularity conditions. However, there is a price paid in the strength of

the convergence results. For example, the empirical CDF F̂n converges to the

true distribution in other strong metrics such as Kolmogorov-Smirnov measure.

Our “weak convergence” results cannot be strengthened because of the kernel

smoothing, which blurs the exact data locations.

The consistency result in Theorem 1 relies on the weak convergence of F̂ ∗
n to

F ∗
τ , where F̂ ∗

n and F ∗
τ are distribution functions of f̂∗

n and f∗
τ , respectively. This

consistency proof can be strengthened or simplified if the convergence also holds

in Mallows distance. In this case, one can prove the convergence of m∗(t, M̂n)

to m∗(t, M̂τ ) in total variation distance by applying similar arguments to those

in Dümbgen, Samworth, and Schuhmacher (2011). The weak convergence of M̂n

can then be readily obtained using the Strong Law of Large Numbers.
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Appendix: Proofs

A.1. Proof of Lemma 1

To prove (4.1), first we apply Fubini’s theorem for nonnegative functions:∫
log
(m∗(t;Mτ )

Uh

)
f̂∗
n(t)dt = −

∫
log
( Uh

m∗(t;Mτ )

)∫
Kh(t, x)dF̂

ω
n (x)dt
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= −
∫∫

log
( Uh

m∗(t;Mτ )

)
Kh(t, x)dtdF̂

ω
n (x)

= − 1

n

∑
i

∫
log
( Uh

m∗(t;Mτ )

)
Kh(t, xi)dt. (A.1)

Using the Strong Law of Large Numbers under (A3) and Fubini’s theorem again,

(A.1) converges to

−
∫∫

log
( Uh

m∗(t;Mτ )

)
Kh(t, x)dtdMτ (x)

=

∫
log
(m∗(t;Mτ )

Uh

)∫
Kh(t, x)dMτ (x)dt

=

∫
log
(m∗(t;Mτ )

Uh

)
m∗(t;Mτ )dt.

on a set Ω0 of probability one.

A.2. Proof of Theorem 1

Fix ω ∈ Ω0. Since M̂n = M̂ω
n is a sequence of distributions on Rd, for any

subsequence {m} ⊂ {n} by Helly’s selection principle we can select a further

subsequence {k} ⊂ {m} such that M̂k is vaguely convergent to a subprobability

measure M0 Kallenberg (1997). If we can show that M0 = Mτ , then we are done

by the method of subsequences (Chung, 1974, Thm. 4.3.4). One can easily justify

the following sequence of inequalities.

0 ≥ lim inf
k

∫
log
(m∗(t;Mτ )

m∗(t; M̂k)

)
f̂∗
k (t)dt

≥ lim inf
k

∫
log
(m∗(t;Mτ )

Uh

)
f̂∗
k (t)dt+ lim inf

k

∫
− log

(m∗(t; M̂k)

Uh

)
f̂∗
k (t)dt

≥ lim
k

∫
log
(m∗(t;Mτ )

Uh

)
f̂∗
k (t)dt+

∫
lim inf

k
log
( Uh

m∗(t; M̂k)

)
f̂∗
k (t)dt

=

∫
log
(m∗(t;Mτ )

Uh

)
m∗(t;Mτ )dt+

∫
log
( Uh

m∗(t;M0)

)
m∗(t;Mτ )dt

=

∫
log
[m∗(t;Mτ )

m∗(t;M0)

]
m∗(t;Mτ )dt ≥ 0. (A.2)

We have the first inequality because M̂k is a minimizer of KL(f̂∗
k ,m

∗). The

second inequality holds because lim infk{ak + bk} ≥ lim infk{ak} + lim infk{bk},
and the third inequality holds by Fatou’s Lemma. Note that log(Uh/m

∗(t; M̂k))

is nonnegative for almost all t.
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The last inequality comes from the information inequality and the fact that

M0 is a subprobability measure. Therefore, equality holds in the information

inequality, which means m∗(t;Mτ ) = m∗(t;M0) on a set of t-values with prob-

ability one under m∗(t;M0). From the kernel identifiability condition (K2),

m∗(t;Mτ ) = m∗(t;M0) implies Mτ = M0. Therefore, every vaguely convergent

subsequence of M̂m vaguely converges to Mτ . This implies M̂m weakly converges

to Mτ (Chung, 1974, Thm. 4.3.4). This also implies that M̂n weakly converges

to Mτ .

A.3. Proof of Proposition 1

Using calculus, Pearson’s kernel (6.11) can be expressed as

h2√
1− ω2

exp
[ 1

1− ω2

{
2ω
(x1 − θ1√

2θ2

)(x2 − θ1√
2θ2

)
−ω2

((x1 − θ1√
2θ2

)2
+
(x2 − θ1√

2θ2

)2)}]
,

where ω = θ2/(θ2 + h2). In Mehler’s formula,

∞∑
n=0

ωn

2nn!
Hn

(
x
)
Hn

(
y
)
=

1√
1− ω2

exp
(2ωxy − ω2(x2 + y2)

1− ω2

)
,

if we replace x and y by (x1 − θ1)/
√
2θ2 and (x2 − θ1)/

√
2θ2, then (6.11) is

Kθ(x1, x2) =

∞∑
n=0

ωn

2nn!
Hn

(x1 − θ1√
2θ2

)
Hn

(x2 − θ1√
2θ2

)
=

∞∑
n=0

ωnγn(x1; θ1, θ2)γn(x1; θ1, θ2),

where γn(x; θ1, θ2) = (1/
√
2nn!)Hn

(
(x− θ1)/

√
2θ2
)
. To prove γn(x; θ1, θ2) terms

are orthogonal under N(θ1, θ2), we use the identity∫
Hn(x)Hm(x) exp(−x2)dx = I[m = n]2nn!

√
π. (A.3)

Using the change variables (x− θ1)/
√
2θ2, (A.3) implies∫

γn(x; θ1, θ2)γm(x; θ1, θ2)
1√
2πθ2

exp
(
− (x− θ1)

2

2θ2

)
dx = I[m = n].
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