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Abstract: Post-stratification is used to improve the precision of survey estimators

when categorical auxiliary information is available from external sources. In natu-

ral resource surveys, such information may be obtained from remote sensing data

classified into categories and displayed as maps. These maps may be based on clas-

sification models fitted to the sample data. Such “endogenous post-stratification”

violates the standard assumptions that observations are classified without error

into post-strata, and post-stratum population counts are known. Properties of

the endogenous post-stratification estimator (EPSE) are derived for the case of

sample-fitted nonparametric models, with particular emphasis on monotone regres-

sion models. Asymptotic properties of the nonparametric EPSE are investigated

under a superpopulation model framework. Simulation experiments illustrate the

practical effects of first fitting a nonparametric model to survey data before post-

stratifying.
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1. Introduction

Post-stratification (Särndal, Swensson, and Wretman (1992, Chap. 7.6)) is

the primary method in use today for improving the precision of survey estima-

tors by calibrating the estimates to known population quantities. Calibration

is achieved by adjusting the sample weights so that their totals over the strata

match the stratum population counts, which is useful to ensure consistency be-

tween surveys and other data products released by government agencies. Cali-

bration can facilitate interpretability of the sample weights, because the stratum

counts are often highly visible quantities such as the sizes of important subpop-

ulations. Improvement in precision is achieved when stratum membership has

predictive power for the survey variables, since post-stratification is a form of

model-assisted estimation with regression on categorical covariates. Relative to

other calibration methods such as regression estimation or more general model-

assisted estimation, post-stratification has the important practical advantages of

simplicity and interpretability, often with only a modest loss in efficiency.

In order to post-stratify, categorical auxiliary information is required from

sources external to the survey. In surveys of natural resources such as forest
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inventories, auxiliary information is often obtained from remote sensing data.

These data are typically not directly interpretable, since they are composed of

reflectance values at different wavelengths and various indices derived from those

values. Models are applied to the remote sensing data to transform them into

more useful and interpretable quantities, such as predicted biomass or landcover

types. The resulting derived variables are classified into categories, displayed

as pixel-based maps and used in post-stratification for surveys. In particular,

these are the methods used by the U.S. Forest Service in producing estimators

for the Forest Inventory and Analysis (FIA; see Frayer and Furnival (1999)). The

FIA relies on post-stratification using classification maps derived from satellite

imagery and other ancillary information. The assurance of some consistency

between the maps derived from remote sensing data and estimates derived from

field survey data is regarded as an important practical advantage of the method.

The models used for transformation of remote sensing variables into forestry-

relevant variables are built using statistical methods and empirical data. In order

to ensure the relevance and accuracy of the post-stratification variables with re-

spect to the survey being post-stratified, the sample data themselves are a very

attractive option for the model building. For example, the FIA data represent a

source of high quality ground-level information of forest characteristics, so there

is a clear desire for being “allowed” to use them in estimating the classification

maps used later for post-stratification. However, in traditional survey theory, the

post-stratification variables are considered fixed with respect to the population,

and the stratum counts are assumed known without error. Using a model fitted

on sample data to post-stratify the sample data violates these assumptions, so

that existing results on post-stratification do not apply. Breidt and Opsomer

(2008) coined the term endogenous post-stratification estimation (EPSE) for this

scenario, and studied it for the case of a sample-fitted generalized linear model,

from which the post-strata are constructed by dividing the range of the model

predictions into predetermined intervals. Under the generalized linear model

set-up, Breidt and Opsomer (2008) obtained the design consistency of the en-

dogenous post-stratification estimator for general unequal-probability sampling

designs. Model consistency and asymptotic normality of the endogenous post-

stratification estimator (EPSE) were also established, showing that EPSE has

the same asymptotic variance as the traditional post-stratified estimator with

fixed strata. Simulation experiments demonstrated that the practical effect of

first fitting a model to the survey data before post-stratifying is small, even for

relatively small sample sizes.

The results in Breidt and Opsomer (2008) provided some “weak justifica-

tion” for using FIA data in estimating classification maps to be used for post-

stratification (see Czaplewski (2010)). The restriction of those results to paramet-

ric models limits their applicability in the FIA context, where the methods being
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used are often nonparametric in nature (e.g. Moisen and Frescino (2002)). As a

specific example of this, McRoberts, Nelson, and Wendt (2002) explored nearest-

neighbor methods for creating strata for FIA, which effectively corresponds to

using a nonparametric EPSE-like method even though it was not acknowledged

as such.

In this paper, we extend the EPSE methodology to the nonparametric esti-

mation context, and hence strengthen the justification for inferential methods in

current use by the U.S. Forest Service in FIA applications. We show here that

the superpopulation results obtained for EPSE by Breidt and Opsomer (2008)

continue to hold in this nonparametric setting, justifying the use of the non-

parametric EPSE, the corresponding normal-theory confidence interval, and the

standard variance estimator. We focus on the case where the underlying model is

nonparametric but monotone, which is the most practically reasonable scenario

in surveys since the model is used to divide the sample into homogeneous classes.

Our theoretical results are valid for a general class of nonparametric estimators

that includes kernel regression and penalized spline regression.

In the following section we give the definitions of the estimators we propose

in this paper. The asymptotic results are given in Section 3. Section 4 examines

some of the models and estimators satisfying the outlined conditions, and in

Section 5 we present both a numerical illustration and the results of a small

simulation study. Application of the NEPSE methods to U.S. Forest Service

data for a region of Utah appears in Section 6, followed by a discussion section.

The proofs of the asymptotic results are collected in the Appendix.

2. Definition of the Estimator

Consider a finite population UN = {1, . . . , i, . . . , N}. For each i ∈ UN , an

auxiliary vector xi is observed. A probability sample s of size n is drawn from UN

according to a sampling design pN(·), where pN(s) is the probability of drawing

the sample s. Assume πiN = Pr {i ∈ s} =
∑

s:i∈s pN(s) > 0 for all i ∈ UN , and

define πijN = Pr {i, j ∈ s} =
∑

s:i,j∈s pN(s) for all i, j ∈ UN . For compactness of

notation we suppress the subscript N and write πi, πij in what follows. Various

study variables, generically denoted yi, are observed for i ∈ s.

The targets of estimation are the finite population means of the survey vari-

ables, ȳN = N−1
∑

UN
yi. A purely design-based estimator (with all randomness

coming exclusively from the selection of s) is provided by the Horvitz-Thompson

estimator (HTE)

ȳπ =
1

N

∑
i∈s

yi
πi
.

Post-stratification (PS) and endogenous post-stratification are methods that take

advantage of auxiliary information available for the population to improve the
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efficiency of design-based estimators. Following Breidt and Opsomer (2008),

we first introduce some non-standard notation for PS that is useful in our later

discussion of endogenous PS. Using the {xi}i∈UN
and a real-valued function m(·),

a scalar index {m(xi)}i∈UN
is constructed and used to partition UN into H strata

according to predetermined stratum boundaries −∞ ≤ τ0 < τ1 < · · · < τH−1 <

τH ≤ ∞. Typically, m(·) is the true relationship between a specific study variable

zi and the auxiliary variable/vector xi. We assume the additive error model

zi = m(xi) + σ(xi)ϵi, (2.1)

where σ2(xi) is the unknown variance function, and E(ϵi|xi) = 0,Var(ϵi|xi) = 1.

Breidt and Opsomer (2008) considered the particular case in which the index

function m(·) is parameterized by a vector, λ. We write mλ(xi) in that case.

For exponents ℓ = 0, 1, 2 and stratum indices h = 1, . . . ,H, define

ANhℓ(m) =
1

N

∑
i∈UN

yℓi I{τh−1<m(xi)≤τh},

A∗
Nhℓ(m) =

1

N

∑
i∈UN

yℓi
I{i∈s}

πi
I{τh−1<m(xi)≤τh},

(2.2)

where I{C} = 1 if the event C occurs, and zero otherwise. In this notation,

stratum h has population stratum proportion ANh0(m), design-weighted sample

post-stratum proportion A∗
Nh0(m), and design-weighted sample post-stratum y-

mean A∗
Nh1(m)/A∗

Nh0(m). The traditional design-weighted PS estimator (PSE)

for the population mean ȳN = N−1
∑

i∈UN
yi is then

µ̂∗
y(m) =

H∑
h=1

ANh0(m)
A∗

Nh1(m)

A∗
Nh0(m)

=
∑
i∈s

{
H∑

h=1

ANh0(m)
N−1π−1

i I{τh−1<m(xi)≤τh}

A∗
Nh0(m)

}
yi =

∑
i∈s

w∗
is(m)yi, (2.3)

where the sample-dependent weights {w∗
is(m)}i∈s do not depend on {yi}, and so

can be used for any study variable.

For the important special case of equal-probability designs, in which πi =

nN−1, we write

Anhℓ(m) =
1

n

∑
i∈s

yℓi I{τh−1<m(xi)≤τh}.

In this case, the equal-probability PSE for the population mean ȳN is

µ̂y(m) =
H∑

h=1

ANh0(m)
Anh1(m)

Anh0(m)
=
∑
i∈s

wis(m)yi,
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Table 1. Data for example of EPSE calculations for n = 4 sample from pop-
ulation with N = 9 and m̂(x) computed by ordinary least squares estimation
of simple linear regression model.

xi, i ∈ UN -3.0 -2.0 -1.0 -1.0 0.0 1.0 2.0 3.0 4.0
zi, i ∈ s -3.0 -1.0 1.0 3.0

m̂(xi) = 1.4xi -4.2 -2.8 -1.4 -1.4 0 1.4 2.8 4.2 5.6
h 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0

where the weights {wis(m)}i∈s are obtained by substituting nN−1 for πi in (2.3).

In parametric PS, the vector λ is known. In parametric endogenous PS, the

vector λ is not known and needs to be estimated from the sample {xi, zi : i ∈
s} using, for example, maximum likelihood estimation or estimating equations.

Thus, mλ(xi) is estimated by mλ̂(xi), and the endogenous post-stratification

estimator (EPSE) for the population mean ȳN is then defined as

µ̂∗
y(mλ̂) =

H∑
h=1

ANh0(mλ̂)
A∗

Nh1(mλ̂)

A∗
Nh0(mλ̂)

=
∑
i∈s

w∗
is(mλ̂)yi.

This parametric EPSE was studied in Breidt and Opsomer (2008). We consider

now the case where m(·) is not assumed to follow a specific parametric shape.

Again, m is typically the true regression relationship between a specific study

variable zi and an auxiliary variable/vector xi as in model (2.1).

The estimator µ̂∗
y(m) is infeasible, becausem(·) is unknown. We can estimate

m(·) from the sample {(xi, zi) : i ∈ s} by nonparametric regression, and here we

explicitly consider both kernel and spline-based methods. However, results should

also apply to such other nonparametric and semi-parametric fitting methods

as regression trees, neural nets, GAMs, etc. Writing m̂ for the nonparametric

estimator, the nonparametric endogenous post-stratified estimator is then defined

as

µ̂∗
y(m̂) =

H∑
h=1

ANh0(m̂)
A∗

Nh1(m̂)

A∗
Nh0(m̂)

. (2.4)

For the special case of equal-probability designs, in which πi = nN−1, the

equal-probability NEPSE for the population mean ȳN is

µ̂y(m̂) =

H∑
h=1

ANh0(m̂)
Anh1(m̂)

Anh0(m̂)
=
∑
i∈s

wis(m̂)yi. (2.5)

To demonstrate the endogenous post-stratification calculations, we examine

an equal-probability sample of size n = 4 selected from a finite population of

size N = 9. Table 1 provides the data. As would be the case in practice, the
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auxiliary variable xi is observed for all population elements, while the survey

variable zi is only observed for the sample elements. The HTE is z̄π = 0. Given

the small sample size, we consider parametric EPSE with m̂ obtained as the

ordinary least squares fit of the simple linear regression model to the sample data

{(xi, zi) : i ∈ s}, yielding m̂(x) = 0+1.4x. A single boundary at τ1 = 0.7 divides

the data into two strata based on the m̂(xi) values. The quantities required to

compute the EPSE in (2.5) are given by

ANh0(m̂) Anh1(m̂) Anh0(m̂)

h = 1 5/9 1
4(−3 + (−1)) = −1 2/4

h = 2 4/9 1
4(1 + 3) = 1 2/4

and the EPSE is

µ̂z(m̂) =
5

9

(−1)

2/4
+

4

9

1

2/4
= −2

9
.

In the next section, we study the theoretical properties of the NEPSE. It is

sufficient to consider the following simpler estimators

Aτℓ(m̂) =
1

N

∑
i∈UN

yℓi I{m̂(xi)≤τ},

A∗
τℓ(m̂) =

1

N

∑
i∈UN

I{i∈s}

πi
yℓi I{m̂(xi)≤τ},

for a generic boundary value τ ∈ {τ0, τ1, . . . , τH}. For equal probability designs

we write

Anτℓ(m̂) =
1

n

∑
i∈s

yℓi I{m̂(xi)≤τ}.

The form of these estimators suggests the use of tools from empirical process

theory, which we turn to next.

3. Main Results

3.1. Superpopulation model assumptions

We need the concept of bracketing number of empirical process theory (van

der Vaart and Wellner (1996)). For any ε > 0, any class G of measurable

functions, and any norm ∥ · ∥G defined on G, N[ ](ε,G, ∥ · ∥G) is the bracket-

ing number, i.e., the minimal positive integer M for which there exist ε-brackets

{[lj , uj ] : ∥lj − uj∥G ≤ ε, ∥lj∥G , ∥uj∥G < ∞, j = 1, . . . ,M} to cover G.
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Assumption 1. The covariates {xi} are independent and identically distributed

random p-vectors with nondegenerate continuous joint probability density func-

tion f(x) having compact support. The function u → Pr(m(x) ≤ u) is Lipschitz

continuous of order 0 < γ ≤ 1, and

Pr(m(x) ≤ τh−1) < Pr(m(x) ≤ τh)

for h = 1, . . . ,H.

Assumption 2. The sample s is selected according to an equal-probability design

of fixed size n, with πi = nN−1 → π ∈ [0, 1] as N → ∞.

Assumption 3. The nonparametric estimator m̂(·) satisfies

sup
x

|m̂(x)−m(x)| = o(1) a.s..

Assumption 4. There exists a space D of measurable functions that satisfies

m ∈ D, Pr(m̂ ∈ D) → 1 as n → ∞, and∫ ∞

0

√
logN[ ](λ,F , ∥ · ∥2) dλ < ∞,

where F = {x → I{d(x)≤τ} : d ∈ D}.

Assumption 5. Given [xi]i∈UN
, the study variables [yi]i∈UN

are conditionally

independent of the post-stratification variables [zi]i∈UN
, and yi | xi are condition-

ally independent random variables with E (y2ℓi | xi) ≤ K1 < ∞ for ℓ = 0, 1, 2.

These assumptions follow those of Section 3.2 in Breidt and Opsomer (2008),

generalized to the nonparametric setting. In Section 4, we discuss specific com-

binations of nonparametric models and estimators that satisfy them. As noted

earlier, we focus on monotone models, because they are of primary interest in

applications and because it is easier to establish Assumption 4. Intuitively, all

that is required is that the class of functions is not too large, which is represented

by the bracketing number of the class. When the class is too large, the bracketing

integral in Assumption 4 fails to be finite. The class of monotone functions is

one example of a well-behaved class, but other classes exist as well. Consider

for example the class D = Cα
M (X ) of all continuous functions f : X → IR with

||f ||α ≤ M , where

||f ||α = max
k.≤α

sup
x

|Dkf(x)|+max
k.=α

sup
x,y

|Dkf(x)−Dkf(y)|
||x− y||α−α

,

α is the largest integer strictly smaller than α, k = (k1, . . . , kd), D
k = ∂k.

∂x
k1
1 ...∂x

kd
d

,

and k. =
∑

ki. Suppose that the support X of x is a bounded, convex subset of
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IRp with nonempty interior. Then it follows from Corollary 2.7.2 in van der Vaart

and Wellner (1996) that logN[ ](λ,D, ∥ · ∥2) ≤ Kλ−p/α for some 0 < K < ∞, and

hence it can be easily seen that Assumption 4 holds provided α > p.

3.2. Central limit theorem

For ℓ = 0, 1, 2, take ατℓ(m) = E (yℓi I{m(xi)≤τ}). We start with a crucial

lemma that shows that Aτℓ(m̂) is asymptotically equivalent to E (yℓi I{m̂(xi)≤τ} |
m̂) +Aτℓ(m)− ατℓ(m).

Lemma 1. Under Assumptions 1−5, for ℓ = 0, 1, 2,

Aτℓ(m̂)− E (yℓi I{m̂(xi)≤τ} | m̂)−Aτℓ(m) + ατℓ(m) = op(N
−1/2), (3.1)

Anτℓ(m̂)− E (yℓi I{m̂(xi)≤τ} | m̂)−Anτℓ(m) + ατℓ(m) = op(n
−1/2). (3.2)

We are now ready to state the main result of the paper.

Theorem 1. Under Assumptions 1−5,{
1

n

(
1− n

N

)}−1/2

(µ̂y(m̂)− ȳN )
d→ N(0, Vym),

where

Vym =

H∑
h=1

Pr{τh−1 < m(xi) ≤ τh}Var(yi|τh−1 < m(xi) ≤ τh).

The proofs of both results are deferred to the Appendix.

3.3. Variance estimation

For the estimation of the variance Vym we follow Result 3 of Breidt and

Opsomer (2008), omitting the proof.

Theorem 2. If

V̂ym̂ =
H∑

h=1

A2
Nh0(m̂)

Anh0(m̂)

Anh2(m̂)−A2
nh1(m̂)/Anh0(m̂)

Anh0(m̂)− n−1
, (3.3)

and Assumptions 1−5 hold,{
1

n

(
1− n

N

)}−1/2

V̂
−1/2
ym̂ (µ̂y(m̂)− ȳN )

d→ N(0, 1).
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4. Applying the Results

The results in the previous sections are expressed under quite general condi-

tions on the class D and the estimator m̂. We now give some particular models

for the regression function m and some particular estimators m̂ for which the

conditions are satisfied. The underlying models we consider are at least partly

monotone, which is reasonable in this context because the function m is used to

split the data into homogeneous cells.

4.1. Monotone regression

Let

D = {d : RX → IR : d monotone and sup
x∈RX

|d(x)| ≤ K}

for some K < ∞, where RX is a compact subset of IR. Suppose for simplicity

that the functions in D are monotone decreasing. Then, the class F defined in

Assumption 4 is itself a set of one-dimensional bounded and monotone functions,

and hence

logN[ ](λ,F , ∥ · ∥2) ≤ K1λ
−1

for some K1 < ∞, by Theorem 2.7.5 in van der Vaart and Wellner (1996). It

follows that Assumption 4 holds.

Let m̂ be any estimator of m for which supx∈RX
|m̂(x) −m(x)| = o(1) a.s..

Then, provided the true regression function m is monotone and bounded, we

have Pr(m̂ ∈ D) → 1 as n → ∞. The estimator m̂ does not need to be mono-

tone itself, a classical local polynomial or spline estimator does the job. Hence,

Theorem 1 applies in this case. Moreover, the case of generalized monotone re-

gression functions, obtained by using e.g. a logit transformation, works as well.

See Subsection 4.4 for more details.

4.2. Partially linear monotone regression

Consider now

D = {RX → IR : (xT
1 , x2)

T → βTx1 + d(x2) : β ∈ B ⊂ IRk compact,

d monotone, sup
x2∈RX2

|d(x2)| ≤ K},

where RX = RX1 × RX2 is a compact subset of IRk+1. Suppose for simplicity

that all coordinates of an arbitrary x1 ∈ RX1 and β ∈ B are positive. Divide B

into r = O(λ−2k) pairs (βL
i , β

U
i ) (i = 1, . . . , r) that cover B and are such that∑k

l=1(β
U
il − βL

il )
2 ≤ λ4. Similarly, divide RX1 into s = O(λ−2k) pairs (xL

1j ,x
U
1j)

(j = 1, . . . , s) that cover RX1 and are such that
∑k

l=1(x
U
1jl − xL1jl)

2 ≤ λ4. Let

dL1 ≤ dU1 , . . . , d
L
q ≤ dUq be the q = O(exp(Kλ−1)) ∥ · ∥∞-brackets for the space
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of bounded and monotone functions (see Theorem 2.7.5 in van der Vaart and
Wellner (1996)). Then, for each β ∈ B and d monotone and bounded, there exist
i, j and l such that, for all (x1, x2) ∈ RX ,

ℓLijl(x2) := I{βUT
i xU

1j+dUl (x2)≤τ}

≤ I{βTx1+d(x2)≤τ}

≤ I{βLT
i xL

1j+dLl (x2)≤τ} := uUijl(x2).

It is easy to see that the brackets (x1, x2) → (ℓLijl(x2), u
U
ijl(x2)) are λ-brackets

with respect to the ∥ · ∥2-norm. The number of these brackets is bounded by
λ−4k exp(Kλ−1), and hence Assumption 4 holds.

The estimator m̂ can, as in the previous example, be chosen as any uniformly
consistent estimator of m. Then, Pr(m̂ ∈ D) → 1 provided the true regression
function m belongs to D. This shows that Theorem 1 also holds for this case.

4.3. Single index monotone regression

Our next example concerns a single index model with a monotone link func-
tion. Let

D={RX → IR : x → d(βTx) : β∈B⊂IRk compact, d monotone, sup
u

|d(u)|≤K},

where RX is a compact subset of IRk. The treatment of this case is similar to
that of the partial linear monotone regression model. We omit the details.

4.4. Generalized nonparametric monotone regression

The use of generalized linear models in EPSE was initially discussed in Breidt
and Opsomer (2008). This approach enjoys the benefit of being able to han-
dle categorical response variables, and has (in many cases) obvious and easily
interpretable boundary values. Let the covariate xi be univariate for ease of
presentation, and write

E(zi|xi) = µ(xi),Var(zi|xi) = σ2(xi) := V (µ(xi)).

Consider the case of a known monotone link function g(·), such that g(µ(xi)) =
m(xi), following the framework of McCullagh and Nelder (1989). The quasi-
likelihood function Q(µ(x), z) satisfies

∂

∂µ(x)
Q(µ(x), z) =

z − µ(x)

V (µ(x))
,

as in McCullagh and Nelder (1989). The function m(x) can be estimated non-
parametrically, as suggested by Green and Silverman (1994) and Fan, Heckman,
and Wand (1995), among others.
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Now approximate the function m(x) locally by a pth-degree polynomial

m(x) ≈ β0 + β1(x − xi) + · · · + βp(x − xi)
p, and maximize the weighted quasi-

likelihood to estimate the function m(x) at each location x on the support of xi,

as suggested by Fan, Heckman, and Wand (1995),∑
i∈s

1

πi
Q(g−1(β0 + β1(x− xi) + · · ·+ βp(x− xi)

p), zi)Kh(xi − x), (4.1)

whereKh(·) = (1/h)K(·/h) andK(·) is a kernel function (for details, see Simonoff

(1996) and Silverman (1999)).

Let (β̂0x, β̂1x, . . . , β̂px) be the minimizer of (4.1). Then m̂(x) = β̂0x, and

Ê(z|X = x) = g−1(m̂(x)) = g−1(β̂0x). One can retain the boundary values for

variable z, {τ0, τ1, . . . , τH}, and define A∗
Nhℓ(m̂) as in (2.2):

A∗
Nhℓ(m̂) =

1

N

∑
i∈UN

yℓi
I{i∈s}

πi
I{τh−1<g−1(m̂(xi))≤τh}, (4.2)

for l = 0, 1, 2. Given (4.2), a natural estimator for the population mean ȳN is

the same as in (2.4). The verification of Assumptions 3 and 4 is similar to the

verification in Subsection 4.1, and is therefore omitted.

5. Simulations

5.1. Numerical example

In Section 2, we illustrated the endogenous post-stratification calculations

with a linear regression example. To demonstrate the more interesting use

of nonparametric regression, we briefly discuss a second small example with

penalized splines, as justified in Subsection 4.1. Figure 1 shows data for an

equal-probability sample of size n = 25 selected from a finite population of size

N = 100. Here, m̂ is estimated using the sample data {(xi, zi) : i ∈ s}, a penal-

ized spline with 10 knots, and a smoothing parameter that allows approximately

five degrees of freedom. A single boundary at τ1 = 0.44 divides the data into two

strata based on the m̂(xi) values. The “rug” lines at the bottom of the graph

indicate the known xi values for i ∈ UN . Using the notation of Section 2, we

have the tabled values

ANh0(m̂) Anh1(m̂) Anh0(m̂)

h = 1 1
100(30)

1
25(0.24)

1
25(8)

h = 2 1
100(70)

1
25(24.41)

1
25(17)
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Figure 1. Equal-probability sample of n = 25 (xi, zi) values from a finite
population of size N = 100 fitted with a penalized spline, m̂, with ten knots
and five degrees of freedom. “Rug” lines at the bottom of the graph represent
xi for i ∈ UN . Boundary value τ1 determines the strata, h = 1 and h = 2.

where 0.24 and 24.41 are the sums of the sample zi values in each stratum. Based

on this, the HTE is z̄π = 0.99 and the estimated mean using (2.5) is

µ̂z(m̂) =
1

100
(30)

0.24

8
+

1

100
(70)

24.41

17
= 1.01.

5.2. Monte Carlo study

The main goal of the simulation was to assess the design efficiency of the

NEPSE relative to competing survey estimators. The simulations were performed

in a setting that mimics a survey in which characteristics of multiple study vari-

ables are estimated using one set of weights. We considered several different sets

of weights for estimation of a mean: the Horvitz-Thompson estimator (HTE)

weights {n−1}i∈s, the PSE weights {wis(m)}i∈s, the NEPSE weights {wis(m̂)}i∈s,
and the simple linear regression (REG) weights (e.g., Särndal, Swensson, and

Wretman (1992, p.233)). We used H = 4 strata with fixed, known boundaries

τ = (−∞, 0.5, 1.0, 1.5,∞) for PSE and NEPSE. The HTE did not use auxiliary

information; the PSE used auxiliary information with a known model; the REG

used auxiliary information with a fitted parametric model, and the NEPSE used

auxiliary information with a fitted nonparametric model. Specifically, we used a

linear penalized spline with approximate degrees of freedom determined by the

smoothing parameter (Ruppert, Wand, and Carroll (2003, Sec. 3.13)).
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We generated a population of size N = 1, 000 with eight survey variables

of interest. The values x1, . . . , xN were independent and uniformly distributed

on (0, 1). The first variable, ratio, was generated according to a regression

through the origin or ratio model (see e.g. Särndal, Swensson, and Wretman

(1992, p.226)), with mean 1 + 2(x − 0.5) and with independent normal errors

with variance 2σ2x. For the next six variables (yi), we took their mean functions

to be

2
gk(x)−minx∈[0,1] gk(x)

maxx∈[0,1] gk(x)−minx∈[0,1] gk(x)
,

where
quad: g1(x) = 1 + 2(x− 0.5)2,

bump: g2(x) = 1 + 2(x− 0.5) + exp(−200(x− 0.5)2),

jump: g3(x) = {1 + 2(x− 0.5)}I{x≤0.65} + 0.65I{x>0.65},

expo: g4(x) = exp(−8x),

cycle1: g5(x) = 2 + sin(2πx),

cycle4: g6(x) = 2 + sin(8πx).

This means that the minimum was 0 and the maximum was 2 for each of the

first seven mean functions. Finally, the eighth survey variable was

noise: g7(x) = 8.

Independent normal errors with mean zero and variance equal to σ2 were then

added to each of these mean functions. The variance function for the ratio

model was chosen so that, averaging over the covariate x, we had E[v(x)] = σ2.

Thus, the heteroskedastic ratio variable and the remaining seven study variables

all had the same variance, averaged over x.

For given values of σ, we fixed the population (that is, simulated N values

for each of the eight variables of interest) and drew 1,000 replicate samples of

size n, each via simple random sampling without replacement from this fixed

population. We constructed HTE and REG weights using standard methods.

We then computed the ratio of the MSE for each competing estimator to that of

the NEPSE.

In the first simulation experiment, we consider in detail the case in which

the PS variable follows a regression through the origin or ratio model. We used

the ratio variable as the PS variable and computed PSE weights with known

m(x) = 1 + 2(x− 0.5) and NEPSE weights with (approximately) 2 or 5 degrees

of freedom (df) in the smoothing spline. The weights were then applied to the

remaining seven study variables. We also varied the noise variance (σ = 0.25

or σ = 0.5). With 2 df, the smoothing spline yields the linear (parametric)

fit, and thus corresponds to EPSE. Results for this case, presented in Table 2,
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are qualitatively similar to those in Table 1 of Breidt and Opsomer (2008) (the

results are different because the earlier paper fits regression through the origin

instead of simple linear regression, and uses different signal-to-noise ratios since

the mean functions are not scaled to [0,2]).

NEPSE dominates HTE in every case except cycle4 (since NEPSE does

not have enough df to capture the four cycles and so its estimate of the mean

function is oversmoothed and nearly constant) and noise, where NEPSE fits an

entirely superfluous model. REG beats NEPSE for ratio, where REG has the

correct working model, and is slightly better for bump, which is highly linear over

most of its range. REG is also slightly better for cycle4 and for noise. NEPSE

performs far better than REG for all of the other variables.

The effect of changing degrees of freedom in NEPSE is negligible in this

example, since the true model for the PS variable is in fact linear. The effect

of increasing noise variance is quite substantial, bringing the performance of all

estimators closer together, as expected. Finally, NEPSE is essentially equivalent

to the PSE in terms of design efficiency, even for n = 50, implying that the

effect of basing the PS on a nonparametric regression instead of on stratum

classifications and stratum counts known without error from a source external to

the survey is negligible for moderate to large sample sizes.

In the second simulation, we fixed n = 100, df ≈ 5, σ = 0.25 and considered

four different PS variables: ratio, quad, bump, and cycle1. The latter three

allowed us to investigate the behavior of NEPSE when monotonicity did not hold.

Table 3 summarizes the design efficiency results as ratios of the MSE of the HTE,

PSE(4), or REG over the MSE of the NEPSE(4). Overall, the behavior of the

NEPSE is consistent with expectations. Even for the non-monotone functions,

NEPSE produces a large improvement in efficiency relative to the HTE for the

variable on which the PS is based, and usually for other variables as well. NEPSE

is as good or better (i.e. MSE ratio > 0.95) than REG in all but 12 of the 32

cases considered: NEPSE loses out in particular when the true model is linear or

nearly so (bump). The noise variable shows that, when a variable is not related

to the stratification variable, the efficiency is near that of the HTE (since the

stratification is unnecessary).

We also assessed the coverage of confidence intervals computed using the

normal approximation from Theorem 1 and the variance estimator from The-

orem 2. Coverage of nominal 95% confidence intervals, µ̂y(m̂) ± 1.96{n−1(1 −
nN−1)V̂ym̂}1/2, was consistently in the range of 93% to 96%.

6. Application

We illustrate the applicability of the NEPSE approach using pilot study data

collected by the U.S. Forest Service in a region of Utah. The field-based data
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Table 2. Ratio of MSE of Horvitz-Thompson (HTE), post-stratification on
4 strata (PSE(4)), and linear regression (REG) estimators to MSE of non-
parametric endogenous post-stratification estimator on 4 strata (NEPSE(4)).
Numbers greater than one favor NEPSE. Based on ratio post-stratification
variable in 1,000 replications of simple random sampling of size n = 50 from
a fixed population of size N = 1, 000. Replications in which at least one
stratum had fewer than two samples are omitted from the summary: 4 reps
at df ≈ 2, σ = 0.5 and 33 reps at df ≈ 5, σ = 0.5.

(σ = 0.25) (σ = 0.5)
Response NEPSE(4) versus NEPSE(4) versus
Variable df ≈ HTE PSE(4) REG HTE PSE(4) REG
ratio 2 4.98 1.01 0.74 2.19 1.02 0.91

5 4.68 0.95 0.69 2.21 1.03 0.91
quad 2 2.34 1.03 2.56 1.62 1.05 1.75

5 2.29 1.01 2.51 1.50 0.97 1.62
bump 2 3.22 1.00 0.94 1.88 1.00 0.95

5 3.26 1.01 0.95 1.90 1.02 0.96
jump 2 2.19 1.00 1.80 1.40 0.99 1.26

5 2.13 0.97 1.76 1.33 0.94 1.20
expo 2 1.88 0.99 1.17 1.29 1.01 1.07

5 1.88 0.99 1.17 1.28 1.01 1.06
cycle1 2 3.10 1.04 1.56 1.97 1.03 1.26

5 3.04 1.02 1.53 1.96 1.02 1.25
cycle4 2 0.96 1.00 0.92 0.98 1.02 0.95

5 0.98 1.02 0.94 1.00 1.05 0.98
noise 2 0.93 1.00 0.96 0.92 1.00 0.96

5 0.92 0.99 0.95 0.93 1.01 0.97

collection methods and variables are similar to those currently in use in the For-

est Inventory and Analysis (FIA) program, while the remote sensing variables

are among those being considered as post-stratification variables in this context

(see e.g. Blackard et al. (2008)). FIA is the primary source of information in the

United States for assessing status and trends in forested areas, including size,

health, growth, mortality, and removals of trees by species. The pilot study is

designed to assess the increased use of remote sensing information in the inven-

tory.

The population in this example is a set of N = 1, 707 90m×90m plots that

were classified as forest and for which extensive remote-sensing data are avail-

able. The n = 250 sample plots were selected with equal probability from that

population, and a large number of field-based variables were measured on those

plots. We considered variables that are representative of the variables typically

collected as part of the FIA: basal area of live trees per acre (BA), net annual

growth of sound live trees (GROW), stand age (STAG), and a binary forest type code
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Table 3. Ratio of MSE of Horvitz-Thompson (HTE), post-stratification on
4 strata (PSE(4)), and linear regression (REG) estimators to MSE of non-
parametric endogenous post-stratification estimator on 4 strata (NEPSE(4)).
Numbers greater than one favor NEPSE. Based on four different PS vari-
ables in 1,000 replications of simple random sampling of size n = 100 from
a fixed population of size N = 1, 000.

PS Variable Estimator ratio quad bump jump expo cycle1 cycle4 noise

HTE 5.17 2.46 3.48 2.12 2.13 3.31 0.99 0.95
ratio PSE(4) 0.98 1.03 1.02 0.97 1.01 1.02 1.00 1.00

REG 0.71 2.49 0.97 1.70 1.19 1.64 0.90 0.97
HTE 0.97 5.47 1.01 1.53 1.31 0.97 0.98 0.96

quad PSE(4) 1.01 1.00 1.02 1.02 1.04 1.00 1.03 0.99
REG 0.13 5.53 0.28 1.23 0.73 0.48 0.89 0.98
HTE 4.07 1.93 4.13 2.02 2.30 2.70 1.13 0.95

bump PSE(4) 1.27 1.33 0.76 1.07 1.11 0.96 1.05 1.00
REG 0.56 1.95 1.15 1.62 1.29 1.34 1.03 0.97
HTE 2.89 1.01 2.53 1.26 1.35 5.68 1.00 0.97

cycle1 PSE(4) 1.01 1.00 1.06 1.04 0.96 0.92 1.03 1.01
REG 0.40 1.02 0.70 1.01 0.75 2.81 0.91 0.99

(FOTP), chosen here as “Aspen” (code 901). We constructed the NEPSE post-

strata using BA, since this is a commonly used forestry indicator for the amount

of harvestable wood on a plot and is a key FIA variable. From the remote sensing

data, we chose as the auxiliary variable the so-called Greenness index (GREEN).

This is a frequently used summary of reflectances at different frequencies with

good predictive properties for forestry variables (Crist and Cicone (1984)). As

in traditional post-stratification, we then applied the resulting NEPSE weights

to all of the other survey variables.

As in the simulation study, a linear penalized spline was used in the re-

gression of BA on GREEN to form the nonparametric endogenous post-strata. For

comparison, the data were analyzed at two levels of degrees of freedom and for

four different numbers of strata. The degrees of freedom levels were determined

by adjusting the smoothing parameter and the strata were determined by using

appropriate quantiles of the {m̂(xi)}Ni=1 values. For comparison, we also ap-

plied the Horvitz-Thompson estimator (HTE) that does not use any auxiliary

information.

Figure 2 shows the n = 250 BA versus GREEN values, plotted as open cir-

cles, for the Utah pilot study data. Also shown are ‘+’ symbols indicating the

penalized spline fitted values, {m̂(xi)}Ni=1, using four degrees of freedom. The

three gray lines indicate the post-stratum boundaries for the four-stratum case,

computed as the quartiles of the fitted values. In this case, the relationship is
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Figure 2. BA vs. GREEN values (n = 250) for a U.S. Forest Service pilot study
in Utah. Plus signs (+) indicate penalized spline fitted values, {m̂(xi)}Ni=1,
using four degrees of freedom, where N = 1, 707. Gray lines are boundaries
for the case of four post-strata, based on quartiles of the fitted values.

monotone but nonlinear, so that this application falls under the setting of Sub-

section 4.1. In actual large-scale forestry survey practice, additional auxiliary

variables can be expected to be available and more complicated models would

undoubtedly be required.

Table 4 shows the estimates and estimated standard deviations for the four

forestry variables considered, using NEPSE and HTE. At both df levels and for

all numbers of strata, the estimated standard error for each variable is smaller

for NEPSE than for HTE. The results are reasonably insensitive to the amount

of smoothing and the number of post-strata. Averaging across these factors, the

HTE has standard error averaging 19% higher than NEPSE for BA, 7% higher

for GROW, 4% higher for STAG, and 25% higher for FOTP.

In this particular illustration, the NEPSE-derived post-strata could be in-

terpreted as corresponding to levels of (predicted) tree basal area per acre (e.g.

thinly stocked stratum vs. heavily stocked stratum), facilitating interpretation

by forest scientists and other users of FIA data. While a single covariate, GREEN,

was used here, in actual large-scale forestry survey practice, additional auxiliary

variables can be expected to be available and more complicated models would

undoubtedly be applied. The interpretation of the strata would remain the same,

which is a strong practical advantage of NEPSE. More sophisticated models are
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Table 4. Estimates of finite population means for BA, GROW, and STAG, and
estimated population proportion of Aspen (FOTP = 901) with estimated
standard errors in parentheses. The numbers in parentheses after “NEPSE”
indicate the number of strata.

Estimator BA, ft2 GROW, ft3 STAG FOTP

HTE 26.80 (1.20) 7.92 (1.82) 112.98 (4.87) 0.088 (0.017)
df = 4

NEPSE(2) 26.92 (1.09) 8.02 (1.79) 112.64 (4.63) 0.089 (0.016)
NEPSE(4) 26.30 (0.98) 7.49 (1.67) 114.27 (4.67) 0.080 (0.014)
NEPSE(8) 26.23 (0.95) 6.98 (1.65) 114.12 (4.69) 0.072 (0.013)
NEPSE(16) 26.07 (0.97) 6.98 (1.63) 113.16 (4.77) 0.068 (0.012)

df = 8
NEPSE(2) 26.92 (1.09) 8.02 (1.79) 112.64 (4.63) 0.089 (0.016)
NEPSE(4) 26.30 (0.98) 7.49 (1.67) 114.27 (4.67) 0.080 (0.014)
NEPSE(8) 26.31 (0.99) 7.32 (1.75) 114.31 (4.70) 0.073 (0.013)
NEPSE(16) 26.04 (1.01) 7.12 (1.70) 113.67 (4.75) 0.072 (0.012)

also likely to result in increased efficiency, and hence a larger decrease in the

estimated standard errors relative to HTE, compared to that seen in Table 4.

7. Discussion

In this article, we have obtained the theoretical properties of NEPSE, a

new post-stratification-based estimator that uses a sample-fitted nonparametric

index to create the post-strata. The finite-sample properties of the estimator are

shown in a simulation study, and the applicability of the method is illustrated

on a forestry dataset.

There are a number of open issues related to implementation of NEPSE

in surveys. Perhaps most importantly, the choice of the number of strata and

the selection of the boundaries are of clear interest to practitioners. As noted

above, we expect that in many situations these will be dictated by the application.

Nevertheless, a data-driven approach that provides guidance in this respect would

be desirable, and is currently being investigated.
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Appendix

Proof of Lemma 1. The expression on the left hand side of (3.1) is

N−1
∑
i∈UN

{yℓi I{m̂(xi)≤τ} − yℓi I{m(xi)≤τ} − E [yℓi I{m̂(xi)≤τ} | m̂] + E [yℓi I{m(xi)≤τ}]}.

Let

H={(x, y) → yℓI{d(x)≤τ}−yℓI{m(x)≤τ}−E [yℓI{d(x)≤τ}]+E [yℓI{m(x)≤τ}] : d∈D},

where D is as in Assumption 4.

In a first step we show that the class H is Donsker. From Theorem 2.5.6 in

van der Vaart and Wellner (1996), it suffices to show that∫ ∞

0

√
logN[ ](λ,H, ∥ · ∥2) dλ < ∞. (A.1)

From Assumption 4 we know that the class

F = {(x, y) → yℓI{d(x)≤τ} : d ∈ D}

satisfies (A.1) with H replaced by F , and hence the same holds for H itself, since

the three other terms in H do not change its bracketing number.

Let

ĥ(x, y) = yℓ
(
I{m̂(x)≤τ} − I{m(x)≤τ}

)
− E

[
yℓ
(
I{m̂(x)≤τ} − I{m(x)≤τ}

)∣∣∣ m̂] ,
where (x, y) is independent of the fit, m̂(·). Then

Var
(
ĥ(x, y) | m̂

)
= Var

(
yℓ
(
I{m̂(x)≤τ} − I{m(x)≤τ}

)∣∣∣ m̂)
≤ E

[(
yℓ
(
I{m̂(x)≤τ} − I{m(x)≤τ}

))2∣∣∣∣ m̂]
= E

[
y2ℓ
(
I{m̂(x)≤τ} − I{m(x)≤τ}

)2∣∣∣ m̂]
= E

[
E
[
y2ℓ
(
I{m̂(x)≤τ} − I{m(x)≤τ}

)2∣∣∣ m̂,x
]∣∣∣ m̂]

= E
[
E[y2ℓ | m̂,x]

(
I{m̂(x)≤τ} − I{m(x)≤τ}

)2∣∣∣ m̂]
= E

[
E[y2ℓ | x]

(
I{m̂(x)≤τ} − I{m(x)≤τ}

)2∣∣∣ m̂]
≤K1 {Pr(m̂(x) ≤ τ,m(x) > τ | m̂)

+Pr(m̂(x) > τ,m(x) ≤ τ | m̂)} , (A.2)

where K1 is given in Assumption 5. Let ϵ > 0 be given. By Assumption 1,

F (u) = Pr(m(x) ≤ u) is uniformly continuous, so there exists δ > 0 such that
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|u1 − u2| ≤ δ implies |F (u1) − F (u2)| < ϵ. We show that Pr(m̂(x) ≤ τ,m(x) >

τ | m̂) = op(1). Consider

Pr
(
Pr(m̂(x) ≤ τ,m(x) > τ | m̂) > ϵ

)
≤ Pr

(
Pr(m̂(x) ≤ τ,m(x) > τ | m̂) > ϵ, sup

x
|m̂(x)−m(x)| ≤ δ

)
+Pr

(
sup
x

|m̂(x)−m(x)| > δ
)

≤ Pr
(
Pr(m(x)− δ ≤ τ,m(x) > τ | m̂) > ϵ

)
+ o(1)

= Pr
(
Pr(m(x)− δ ≤ τ,m(x) > τ) > ϵ

)
+ o(1)

= I{F (τ+δ)−F (τ)>ϵ} + o(1) = o(1), (A.3)

by choice of δ, where the second inequality follows from Assumption 3. Similarly,

Pr(m̂(x) > τ,m(x) ≤ τ | m̂) = op(1). (A.4)

For fixed η > 0, λ > 0 consider

Pr
(
N1/2|Aτℓ(m̂)− E [yℓi I{m̂(xi)≤τ} | m̂]−Aτℓ(m) + ατℓ(m)| > λ

)
= Pr

(
N−1/2

∣∣∣ ∑
i∈UN

ĥ(xi, yi)
∣∣∣ > λ

)
≤ Pr

(
N−1/2

∣∣∣ ∑
i∈UN

ĥ(xi, yi)
∣∣∣ > λ,Var (ĥ(x, y) | m̂) < η, m̂ ∈ D

)
+Pr

(
N−1/2

∣∣∣ ∑
i∈UN

ĥ(xi, yi)
∣∣∣ > λ,Var (ĥ(x, y) | m̂) ≥ η, m̂ ∈ D

)
+Pr(m̂ /∈ D)

≤ Pr
(

sup
h∈H,Var (h)<η

N−1/2
∣∣∣ ∑
i∈UN

h(xi, yi)
∣∣∣ > λ

)
+Pr(Var (ĥ(x, y) | m̂) ≥ η) + Pr(m̂ /∈ D)

= d1N + d2N + d3N .

As N → ∞, d1N = o(1) as η ↓ 0 by Corollary 2.3.12 in van der Vaart and Wellner

(1996) and the fact that H is Donsker. Also, d2N = o(1) by the arguments in

(A.2)–(A.4), and d3N = o(1) by Assumption 4. This establishes (3.1), and similar

arguments verify (3.2).

Proof of Theorem 1. Note that ANhℓ(M) = Aτhℓ(M) − Aτh−1ℓ(M) and

Anhℓ(M) = Anτhℓ(M)−Anτh−1ℓ(M), for M = {m, m̂}. Let

αhℓ(m) = ατhℓ(m)− ατh−1ℓ(m) = E [yℓi I{τh−1<m(xi)≤τh}].
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Then, applying Lemma 1 to two consecutive boundary values, τh−1 and τh, we
have that the differences of the expressions are

ANhℓ(m̂)− E [yℓi I{τh−1<m̂(xi)≤τh} | m̂]−ANhℓ(m) + αhℓ(m) = op(N
−1/2), (A.5)

Anhℓ(m̂)− E [yℓi I{τh−1<m̂(xi)≤τh} | m̂]−Anhℓ(m) + αhℓ(m) = op(n
−1/2). (A.6)

Given (A.5) and (A.6), the remainder of the proof is very similar to the
corresponding proof in Breidt and Opsomer (2008). We mention highlights of
that proof (in the NEPSE context) and omit much of the detail. Begin by
taking ah = ANh0(m) − Anh0(m) and bh = ANh1(m) − Anh1(m). Calculation of
appropriate covariances shows that ah = Op

(
n−1/2

)
and bh = Op

(
n−1/2

)
. By

arguments similar to those in (A.2),

E

[{
E [yℓi I{τh−1<m̂(xi)≤τh} | m̂]− αhℓ(m)

}2
]

≤ E
[
K1

{
Pr(τh−1 < m̂(xi) ≤ τh,m(xi) > τh | m̂)

+Pr(τh−1 < m̂(xi) ≤ τh,m(xi) ≤ τh−1 | m̂)

+Pr(m̂(xi) > τh, τh−1 < m(xi) ≤ τh | m̂)

+Pr(m̂(xi) ≤ τh−1, τh−1 < m(xi) ≤ τh | m̂)
}]

. (A.7)

We want to show that (A.7) converges to 0 as n → ∞. For a given ϵ > 0,

Pr
(
Pr(τh−1 < m̂(xi) ≤ τh,m(xi) > τh | m̂) > ϵ

)
≤ Pr

(
Pr(m̂(xi) ≤ τh,m(xi) > τh | m̂) > ϵ

)
= o(1),

by (A.3). Similar reasoning shows that each of the terms inside the expectation in
(A.7) is op(1). By uniform integrability, (A.7) is o(1). Thus, E [yℓi I{τh−1<m̂(xi)≤τh}
| m̂] converges to αhℓ(m) in mean square, and hence in probability.

Next,

ANhℓ(m)− αhℓ(m) = Op

(
N−1/2

)
and Anhℓ(m)− αhℓ(m) = Op

(
n−1/2

)
by the Central Limit Theorem. Further, Anhl(m) and ANhl(m) are Op(1) by the
Weak Law of Large Numbers.

Since αh0(m) > 0 by Assumption 1, we have

1

Anh0(m̂)
=

1

αh0(m)
+ op(1). (A.8)

We substitute (A.5), (A.6), and (A.8), and apply the established order results to
show that the NEPSE error,

µ̂y(m̂)− ȳN =

H∑
h=1

{
ANh0(m̂)Anh1(m̂)−Anh0(m̂)ANh1(m̂)

Anh0(m̂)

}
,
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can be rewritten as

µ̂y(m̂)− ȳN (A.9)

=
H∑

h=1

{
αh1(m)

αh0(m)
(ANh0(m)−Anh0(m))−(ANh1(m)−Anh1(m))

}
+op

(
n−1/2

)
,

showing the asymptotic distribution is the same as that obtained when m(·) is

known.

To derive the asymptotic distribution, we apply the Central Limit Theorem

to (A.9) and refer to previously mentioned covariance computations. The limiting

distribution of the NEPSE error is normal with mean zero and the variance is

approximated by

Var (µ̂y(m̂)− ȳN )

≃ − 1

n

(
1− n

N

) H∑
h=1

α2
h1(m)

αh0(m)
+

1

n

(
1− n

N

)( H∑
h=1

αh1(m)

)2

+Var (ȳπ − ȳN )

=
1

n

(
1− n

N

){
−

H∑
h=1

α2
h1(m)

αh0(m)
+ [E (yi)]

2 +Var (yi)

}
.

By definition of expectation given an event,

αh1(m)

αh0(m)
= E [yi | τh−1 < m(xi) ≤ τh]

and

E (y2i )=
H∑

h=1

αh0(m)
{
Var (yi | τh−1<m(xi)≤τh)+[E (yi | τh−1 < m(xi)≤τh)]

2
}
,

from which the variance given in Theorem 1 follows.
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