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This supplementary material gives the detailed proofs of the theorems in the paper:
The Lasso under Poisson-like Heteroscedasticity.

0.1 Proofs

The Lasso problem is defined as

β̂(λ) = arg min
β

1

2n
‖Y −Xβ‖22 + λ‖β‖1, (1)

where for some vector x ∈ Rk, ‖x‖r = (
∑k
i=1 |xi|r)1/r.

0.1.1 Proof of Theorem 1

To prove the theorem, we need the next Lemma which gives necessary and sufficient con-
ditions for the Lasso’s sign consistency. They are important to the asymptotic analysis.
Wainwright (2009) gives this condition which follows from KKT conditions.

Lemma 1. For linear model Y = Xβ∗ + ε, assume that the matrix X(S)
T
X(S) is

invertible. Then for any given λ > 0 and any noise term ε ∈ Rn, there exists a Lasso
estimate β̂(λ) which satisfies β̂(λ) =s β

∗, if and only if the following two conditions hold∣∣∣∣X(Sc)
T
X(S)(X(S)

T
X(S))−1

[
1

n
X(S)

T
ε− λsign(β∗(S))

]
− 1

n
X(Sc)

T
ε

∣∣∣∣ ≤ λ, (2)

sign

(
β∗(S) + (

1

n
X(S)

T
X(S))−1

[
1

n
X(S)

T
ε− λsign(β∗(S))

])
= sign(β∗(S)), (3)
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where the vector inequality and equality are taken elementwise. Moreover, if (2) holds
strictly, then

β̂ = (β̂(1), 0)

is the unique optimal solution to the Lasso problem (1), where

β̂(1) = β∗(S) + (
1

n
X(S)

T
X(S))−1

[
1

n
X(S)

T
ε− λsign(β∗)

]
. (4)

As in Wainwright (2009), we state sufficient conditions for (2) and (3). Define

−→
b = sign(β∗(S)),

and denote by ei the vector with 1 in the ith position and zeroes elsewhere. Define

Ui = eTi (
1

n
X(S)

T
X(S))−1

[
1

n
X(S)

T
ε− λ

−→
b

]
,

Vj = XT
j

{
X(S)(X(S)

T
X(S))−1λ

−→
b −

[
X(S)(X(S)

T
X(S))−1X(S)

T − I)
] ε
n

}
.

By rearranging terms, it is easy to see that (2) holds strictly if and only if

M(V ) =

{
max
j∈Sc

|Vj | < λ

}
(5)

holds. If we define M(β∗) = minj∈S |β∗j | (recall that S = {j : β∗j 6= 0} is the sparsity
index), then the event

M(U) =

{
max
i∈S
|Ui| < M(β∗)

}
, (6)

is sufficient to guarantee that condition (3) holds. Finally, a proof of Theorem 1.

Proof. This proof is divided into two parts. First we analysis the asymptotic probability
of event M(V ), and then we analysis the event of M(U).

Analysis ofM(V ) : Note from (5) thatM(V ) holds if and only if
maxj∈Sc |Vj |

λ < 1.
Each random variable Vj is Gaussian with mean

µj = λXT
j X(S)(X(S)

T
X(S))−1

−→
b .

Define Ṽj = XT
j

[
I −X(S)(X(S)

T
X(S))−1X(S)

T
]
ε
n , then Vj = µj + Ṽj . Using the

Irrepresentable condition (defined in Equation (5) in the paper), we have |µj | ≤ (1−η)λ
for all j ∈ Sc, from which we obtain that

1

λ
max
j∈Sc

|Ṽj | < η ⇒ maxj∈Sc |Vj |
λ

< 1.
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By the Gaussian comparison result (17) stated in Lemma 5, we have

P

[
1

λ
max
j∈Sc

|Ṽj | ≥ η
]
≤ 2(p− q) exp{− λ2η2

2 maxj∈Sc E(Ṽ 2
j )
}.

Since

E(Ṽ 2
j ) =

1

n2
XT
j H[V AR(ε)]HXj ,

where H = I −X(S)(X(S)
T
X(S))−1X(S)

T
which has maximum eigenvalue equal to 1,

and V AR(ε) is the variance-covariance matrix of ε, which is a diagonal matrix with the
ith diagonal element equal to σ2 × |xTi β∗|.

Since |xTi β∗| ≤
√
‖xi(S)‖22‖β∗‖22 ≤ maxi ‖xi(S)‖2‖β∗‖2, an operator bound yields

E(Ṽ 2
j ) ≤ σ2

n2
max
i
‖xi(S)‖2‖β∗‖2‖Xj‖22 =

σ2

n
max
i
‖xi(S)‖2‖β∗‖2.

Therefore

P

[
1

λ
max
j
|Ṽj | ≥ η

]
≤ 2(p− q) exp

{
− nλ2η2

2σ2 maxi ‖xi(S)‖2‖β∗‖2

}
.

So we have

P

[
1

λ
max
j
|Vj | < 1

]
≥ 1− P

[
1

λ
max
j
|Ṽj | ≥ η

]
≥ 1− 2(p− q) exp

{
− nλ2η2

2σ2‖β∗‖2 maxi ‖xi(S)‖2

}
.

Analysis of M(U) :

max
i
|Ui| ≤ ‖(

1

n
X(S)

T
X(S))−1

1

n
X(S)

T
ε‖∞ + λ‖( 1

n
X(S)

T
X(S))−1

−→
b ‖∞

Define Zi := eTi ( 1
nX(S)

T
X(S))−1 1

nX(S)
T
ε. Each Zi is a normal Gaussian with mean 0

and variance

var(Zi) = eTi (
1

n
X(S)

T
X(S))−1

1

n
X(S)

T
[V AR(ε)]

1

n
X(S)(

1

n
X(S)

T
X(S))−1ei

≤ σ2‖β∗‖2 maxi ‖xi(S)‖2
nCmin

.

So, for any t > 0, by (17)

P (max
i∈S
|Zi| ≥ t) ≤ 2q exp{− t2nCmin

2σ2‖β∗‖2 maxi ‖xi(S)‖2
},
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by taking t = λη√
Cmin

, we have

P (max
i∈S
|Zi| ≥

λη√
Cmin

) ≤ 2q exp

{
− nλ2η2

2σ2‖β∗‖2 maxi ‖xi(S)‖2

}
.

Recall the definition of Ψ(X, β∗, λ) = λ

[
η (Cmin)−1/2 +

∥∥∥∥( 1
nX(S)

T
X(S)

)−1−→
b

∥∥∥∥
∞

]
, we

have

P (max
i
|Ui| ≥ Ψ(X, β∗, λ)) ≤ 2q exp

{
− nλ2η2

2σ2‖β∗‖2 maxi ‖xi(S)‖2

}
.

By condition M(β∗) > Ψ(X, β∗, λ), we have

P (max
i
|Ui| < M(β∗)) ≥ 1− 2q exp

{
− nλ2η2

2σ2‖β∗‖2 maxi ‖xi(S)‖2

}
.

At last, we have

P [M(V )& M(U)] ≥ 1− 2p exp

{
− nλ2η2

2σ2‖β∗‖2 maxi ‖xi(S)‖2

}

0.1.2 Proof of Corollary 1

Proof. Recall the definition of Γ(X, β∗, σ2):

Γ(X, β∗, σ2) =
η2 uSNR

8 maxi ‖xi(S)‖2(η C
−1/2
min +

√
qC−1min)2 log(p+ 1)

,

where uSNR = n[M(β∗)]2

σ2‖β∗‖2 . So,

nη2

2σ2‖β∗‖2 maxi ‖xi(S)‖2
=

4Γ(X, β∗, σ2)(η C
−1/2
min +

√
q C−1min)2 log(p+ 1)

[M(β∗)]2

By taking

λ =
M(β∗)

2
(
η C

−1/2
min +

√
q C−1min

) ,
we have

Ψ(X, β∗, λ) = λ

[
η (Cmin)−1/2 +

∥∥∥∥∥
(

1

n
X(S)

T
X(S)

)−1−→
b

∥∥∥∥∥
∞

]
≤ λ

[
η C

−1/2
min +

√
qC−1min

]
=

M(β∗)

2
< M(β∗),
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and

nλ2η2

2σ2‖β∗‖2 maxi ‖xi(S)‖2
= Γ(X, β∗, σ2) log(p+ 1).

So, the probability bound in Theorem 1 greater than

1− 2 exp
{
−
(
Γ(X, β∗, σ2)− 1

)
log(p+ 1)

}
,

which goes to one when Γ(X, β∗, σ2, α)→∞.

0.1.3 Proof of Theorem 2

Proof. First prove (b). Without loss of generality, assume for some j ∈ Sc, XT
j X(S)

(
X(S)

T
X(S)

)−1−→
b =

1+ζ with ζ > 0, then Vj = λ(1+ζ)+ Ṽj , where Ṽj = −[X(S)
(
X(S)

T
X(S)

)−1
X(S)

T −
I] εn is a Gaussian random variable with mean 0, so P (Ṽj > 0) = 1

2 . So, P (Vj > λ) ≥ 1
2 ,

which implies that for any λ, Condition (2) (a necessary condition) is violated with
probability greater than 1/2.

For claim (a). Condition (3),

sign

(
β∗(S) + (

1

n
X(S)

T
X(S))−1

[
1

n
X(S)

T
ε− λsign(β∗(S))

])
= sign(β∗(S))

is also a necessary condition for sign consistency. Since 1
nX(S)

T
X(S) = Iq×q, (3) be-

comes

sign

(
β∗(S) +

[
1

n
X(S)

T
ε− λsign(β∗(S))

])
= sign(β∗(S)),

which implies that

sign

(
β∗(S) +

1

n
X(S)

T
ε

)
= sign(β∗(S)). (7)

Without loss of generality, assume for some j ∈ S, β∗j > 0. Then (7) implies β∗j +Zj > 0,

where Zj = eTj
1
nX(S)

T
ε is a Gaussian random variable with mean 0, and variance

var(Zj) = eTj
1

n
X(S)

T
V AR(ε)

1

n
X(S)ej

=
σ2eTj

[
X(S)

T
diag(|Xβ∗|)X(S)

]
ej

n2

=
β∗j

2

c2n,j
,
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where the last equality uses the definition of c2n,j in Theorem 2. To summarize,

P [β̂(λ) =s β
∗] ≤ P [β∗j + Zj > 0]

= P [Zj > −β∗j ]

= P [Zj < β∗j ]

= 1−
∫ ∞
β∗j

1√
2πvar(Zj)

exp{− x2

2var(Zj)
}dx

= 1−
∫ ∞
β∗j /
√
var(Zj)

1√
2π

exp{−x
2

2
}dx

≤ 1− 1√
2π

∫ ∞
β∗j /
√
var(Zj)

(
x

1 + x
+

1

(1 + x)2
) exp{−x

2

2
}dx

= 1−
exp

{
− β∗j

2

2var(Zj)

}
√

2π(1 +
β∗j√
var(Zj)

)

= 1−
exp

{
− c

2
n,j

2

}
√

2π(1 + cn,j)
.

0.1.4 Proof of Theorem 3

To prove Theorem 3, we need some preliminary results.

Lemma 2. Conditioned on X(S) and ε, the random vector V is Gaussian. Its mean
vector is upper bound as

| E[V |ε,X(S)] |≤ λ(1− η)1. (8)

Moreover, its conditional covariance takes the form

cov[V |ε,X(S)] = MnΣ2|1 = Mn[Σ22 − Σ21(Σ11)−1Σ12], (9)

where

Mn = λ2
−→
b T (X(S)

T
X(S))−1

−→
b +

1

n2
εT [I −X(S)(X(S)

T
X(S))−1X(S)

T
]ε. (10)

Lemma 3. Let M1 = λ2
−→
b T (X(S)

T
X(S))−1

−→
b and M2 = 1

n2 ε
T [I−X(S)(X(S)

T
X(S))−1X(S)

T
]ε,

then Mn = M1 +M2. We have when n is big enough

P

[
λ2q

2nC̃max

≤M1 ≤
2λ2q

nC̃min

]
≥ 1− exp{−0.01n}, (11)

P

[
M2 ≥

3σ2
√
C̃max‖β∗‖2
n

]
≤ 1

n
. (12)
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Lemma 4.

P

[
max
i=1,...n

‖xi(S)‖22 ≥ 2C̃max max (16q, 4 log n)

]
≤ 1

n
. (13)

Proofs of these lemmas can be found in Appendix 0.1.7. Now, we prove Theorem 3.

Analysis of M(V ): Define the event T = {Mn ≥ v∗}, where

v∗ =
2λ2q

nC̃min

+
3σ2
√
C̃max‖β∗‖2
n

.

By Lemma 3, we have P [T ] ≤ exp{−0.01n}+ 1
n , when n is big enough.

Let µj = E[Vj |ε,X(S)], Zj = Vj − µj , and Z = (Zj)j∈Sc , then E[Z|X(S), ε] = 0
and cov(Z|X(S), ε) = cov(V |X(S), ε) = MnΣ2|1.

max
j∈Sc

|Vj | = max
j∈Sc

|µj + Zj |

≤ max
j∈Sc

[|µj |+ |Zj |]

≤ (1− η)λ+ max
j∈Sc

|Zj |.

From this inequality, we have

{max
j∈Sc

|Zj | < ηλ} ⊂ {max
j∈Sc

|Vj | < λ}.

Define Z̃ to be a zero-mean Gaussian with covariance v∗Σ2|1. Since

P

[
max
j∈Sc

|Zj | ≥ ηλ | T c
]
≤

∑
j∈Sc

P [|Zj | > ηλ | T c]

≤ (p− q) max
j∈Sc

P
[
|Z̃j | > ηλ

]
≤ 2(p− q) exp{− η2λ2

2v∗C̃max

},

we have

P [max
j∈Sc

|Vj | ≥ λ] ≤ P

[
max
j∈Sc

|Zj | ≥ λ | T c
]

+ P [T ]

≤ 2(p− q) exp{− η2λ2

2v∗C̃max

}+ exp{−0.01n}+
1

n
,

when n is big enough. This says that

P [M(V )] ≥ 1− 2(p− q) exp{− η2λ2

2v∗C̃max

} − exp{−0.01n} − 1

n
.

Analysis of M(U): Now we analyze maxj∈S |Uj |.

max
j
|Uj | ≤

∥∥∥∥(
1

n
X(S)

T
X(S))−1

1

n
X(S)

T
ε

∥∥∥∥
∞

+ λ

∥∥∥∥(
1

n
X(S)

T
X(S))−1

−→
b

∥∥∥∥
∞
.
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Define Λi(·) to be the ith largest eigenvalue of a matrix. Since

λ

∥∥∥∥(
1

n
X(S)

T
X(S))−1

−→
b

∥∥∥∥
∞
≤

λ
√
q

Λmin( 1
nX(S)

T
X(S))

,

by Equation (20) in Corollary 1, we have when n is big enough

P

[
λ

∥∥∥∥(
1

n
X(S)

T
X(S))−1

−→
b

∥∥∥∥
∞
≤

2λ
√
q

C̃min

]
≥ 1− 2 exp(−0.01n).

Let

Wi = eTi (
1

n
X(S)

T
X(S))−1

1

n
X(S)

T
ε,

then conditioned on X(S), Wi is a Gaussian random variable with mean 0, and variance

var(Wi|X(S)) = eTi (
1

n
X(S)

T
X(S))−1

1

n
X(S)

T
[V AR(ε)]

1

n
X(S)(

1

n
X(S)

T
X(S))−1ei

≤ σ2‖β∗‖2 maxi ‖xi(S)‖2
nΛmin( 1

nX(S)
T
X(S))

.

Using (20)

P

[
Λi(

1

n
XTX) ≥ 1

2
C̃min

]
≥ 1− 2 exp(−0.01n),

and Lemma 4, we have

σ2‖β∗‖2 maxi ‖xi(S)‖2
nΛmin( 1

nX(S)
T
X(S))

≤
2σ2‖β∗‖2

√
2C̃max max (16q, 4 log n)

nC̃min

with probability no less than 1− 2 exp{−0.01n} − 1
n .

Define event

T =

σ2‖β∗‖2 maxi ‖xi(S)‖2
nΛmin( 1

nX(S)
T
X(S))

≤
2σ2‖β∗‖2

√
2C̃max max (16q, 4 log n)

nC̃min

 ,

then P (T ) ≥ 1− 2 exp{−0.01n} − 1
n . From the proof of Lemma 5, for any t > 0,

P (|Wi| > t | X(S)) ≤ 2 exp

(
− t2

2var(Wi | X(S))

)
.

The above is also true if we replace var(Wi | X(S) with any upper bound. So we have

P (|Wi| > t | X(S), T ) ≤ 2 exp

− t2

2
2σ2‖β∗‖2

√
2C̃max max (16q,4 logn)

nC̃min

 .
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So

P (|Wi| > t) ≤ P (|Wi| > t |T ) + P (T c)

≤ 2 exp

− t2

2
2σ2‖β∗‖2

√
2C̃max max (16q,4 logn)

nC̃min

+ 2 exp{−0.01n}+
1

n
.

By takeing t = A(n, β∗, σ2) :=

√
4σ2‖β∗‖2 logn

√
2C̃max max(16q,4 logn)

nC̃min
, we have

P

[
max
i∈S
|Wi| > A(n, β∗, σ2)

]
≤ 2q

n
+ 2q exp{−0.01n}+

q

n

=
3q

n
+ 2q exp{−0.01n}.

Summarize,

P

[
max
i
|Ui| ≥ A(n, β∗, σ2) +

2λ
√
q

C̃min

]
≤ 3q

n
+ 2q exp{−0.01n}+ 2 exp{−0.01n} .

At last, if M(β∗) > Ψ̃(n, β∗, λ, σ2), we have when n is big enough

P [M(V ) & M(U)] ≤ 1− 2(p− q) exp{− η2λ2

2v∗C̃max

} − (2q + 3) exp{−0.01n} − 1 + 3q

n
.

0.1.5 Proofs of Corollary 3

Proof. By taking λ = [M(β∗)−A(n,β∗,σ2)]C̃min

4
√
q , we have

Ψ̃(n, β∗, λ, σ2) = A(n, β∗, σ2) +
2λ
√
q

C̃min

=
M(β∗) +A(n, β∗, σ2)

2
< M(β∗),

where the last inequality uses the assumption that M(β∗) > A(n, β∗, σ2).
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λ2

V ∗(n, β∗, λ, σ2)
=

λ2

2λ2q

nC̃min
+ 3σ2

√
C̃max‖β∗‖2
n

=
1

2q

nC̃min
+ 3σ2

√
C̃max‖β∗‖2
nλ2

=
1

2q

nC̃min
+ 48σ2q

√
C̃max‖β∗‖2

n[M(β∗)−A(n,β∗,σ2)]2C̃2
min

.

By the definition of Γ̃(n, β∗, σ2), we have that

λ2η2

2V ∗(n, β∗, λ, σ2)C̃max

= log(p− q + 1)Γ̃(n, β∗, σ2),

so the probability bound in Theorem 3 now becomes,

1− 2 exp

{
− λ2η2

2V ∗(n, β∗, λ, σ2)C̃max

+ log(p− q)
}
− (2q + 3) exp{−0.01n} − 1 + 3q

n

= 1− 2 exp
{
− log(p− q + 1)Γ̃(n, β∗, σ2) + log(p− q)

}
− (2q + 3) exp{−0.01n}

−1 + 3q

n

≥ 1− 2 exp
{
− log(p− q + 1)[Γ̃(n, β∗, σ2)− 1]

}
− (2q + 3) exp{−cn} − 1 + 3q

n

If Condition (14) stated in Corollary 3 holds, then Γ̃(n, β∗, σ2, α)→∞ which guarantees

P [β̂(λ) =s β
∗]→ 1.

0.1.6 Proof of Theorem 4

Proof. Without loss of generality, assume

eTj Σ21(Σ11)−1sign(β∗(S)) = 1 + ζ,

for some j ∈ Sc and ζ > 0. Since E[V |X(S), ε] = λΣ21(Σ11)−1sign(β∗(S)), Vj condi-
tioned on X(S) and ε is a Gaussian random variable with mean λ(1+ζ). So P [Vj > λ(1+
ζ)|X(S), ε] = 1

2 , which implies P [Vj > λ|X(S), ε] ≥ 1
2 . Then we have P (Vj > λ) ≥ 1

2 .
So for any λ,

P [β̂(λ) =s β
∗] ≤ P [max

k
Vk ≤ λ] ≤ 1

2
.
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0.1.7 Proofs of Lemma 2 – Lemma 4

Proof of Lemma 2

Proof. Conditioned on X(S) and ε, the only random component in Vj is the column
in the column vector Xj , j ∈ Sc. We know that (X(Sc)|X(S), ε) ∼ (X(Sc)|X(S)) is
Gaussian with mean and covariance

E[X(Sc)
T |X(S), ε] = Σ21(Σ11)−1X(S)

T
, (14)

var(X(Sc)|X(S)) = Σ2|1 = Σ22 − Σ21(Σ11)−1Σ12. (15)

Consequently, we have,

|E[V |X(S), ε]|

=
∣∣∣Σ21(Σ11)−1X(S)

T
{
X(S)(X(S)

T
X(S))−1λ

−→
b

−
[
X(S)(X(S)

T
X(S))−1X(S)

T − I
] ε
n

}∣∣∣
= |Σ21(Σ11)−1λ

−→
b |

≤ λ(1− η)1,

where the last inequality uses Irreprsentable Condition (defined in Equation (13) in the
paper).

Now, we compute the elements of the conditional covariance

cov(Vj , Vk|ε,X(S)).

Let ~α = X(S)(X(S)
T
X(S))−1λ

−→
b −

[
X(S)(X(S)

T
X(S))−1X(S)

T − I)
]
ε
n , then

Vj = XT
j ~α. So we have

cov(Vj , Vk|ε,X(S)) = ~αT cov(XT
j , X

T
k |ε,X(S))~α = [var(X(Sc)|X(S))]jk ~α

T ~α.

Consequently,

cov(V |ε,X(S)) = ~αT ~α var(X(Sc)|X(S)) = ~αT ~αΣ2|1 = ~αT ~α[Σ22 − Σ21(Σ11)−1Σ12].

By careful calculation, we have ~αT ~α = Mn.

Proof of Lemma 3

Proof. Recall that M1 = λ2
−→
b T (X(S)

T
X(S))−1

−→
b . So,

λ2q

Λmax(X(S)
T
X(S))

≤M1 ≤
λ2q

Λmin(X(S)
T
X(S))

.
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From (20) we have, when n is big enough

P

[
λ2q

2nC̃max

≤M1 ≤
2λ2q

nC̃min

]
≥ 1− 2 exp(−0.01n).

Define % = E[|Z|], where Z ∼ N(0, 1), then for any random variable R ∼ N(0, σ2),

E[|R|] = σ%. Since xTi β
∗ ∼ N(0, β∗(S)

T
Σ11β

∗(S)), we have

E[|xTi β∗|] =

√
β∗(S)

T
Σ11β∗(S)%.

We know thatM2 ≤ 1
n2 ε

T ε. Since E[ε2i ] = E[E[ε2i |X(S)]] = E[σ2|xTi β∗|] = σ2

√
β∗(S)

T
Σ11β∗(S)%,

and E[ε4i ] = E[E[ε4i |X(S)]] = 3E[σ4|xTi β|2] = 3σ4β∗(S)
T

Σ11β
∗(S), we have

P

∑i ε
2
i

n2
≥
σ2(%+

√
3− %2)

√
β∗(S)

T
Σ11β∗(S)

n


= P

[∑
i

ε2i − nσ2%

√
β∗(S)

T
Σ11β∗(S) ≥ nσ2

√
3− %2

√
β∗(S)

T
Σ11β∗(S)

]

≤ nvar(ε2i )

n2σ4(3− %2)β∗(S)
T

Σ11β∗(S)

=
3σ4β∗(S)

T
Σ11β

∗(S)− σ4β∗(S)
T

Σ11β
∗(S)%2

nσ4(3− %2)β∗(S)
T

Σ11β∗(S)

=
1

n

So

P

M2 ≥
σ2(%+

√
3− %2)

√
β∗(S)

T
Σ11β∗(S)

n

 ≤ 1

n
.

While
√
βT1 Σ11β∗(S) ≤

√
C̃max‖β‖2 and % = E(|Z|) ≤

√
E(|Z|2) = 1, where Z is a

standard normal random variable, so

σ2(%+
√

3− %2)

√
β∗(S)

T
Σ11β∗(S)

n
≤ 3σ2

√
C̃max‖β∗‖2
n

.

Then we have

P [M2 ≥
3σ2
√
C̃max‖β∗‖2
n

] ≤ 1

n
.

Proof of Lemma 4
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Proof. By lemma 6, we have for any t > q,

P

[
max
i=1,...n

‖Σ−
1
2

11 xi(S)‖22 ≥ 2t

]
≤ n exp(−t

[
1− 2

√
q

t

]
).

Take t = max (16q, 4 log n), we have

exp(−t
[
1− 2

√
q
t

]
) ≤ exp(−t

[
1− 2

√
1
16

]
)

= exp(− t
2 )

≤ 1
n2 .

So

P

[
max
i=1,...n

‖Σ−
1
2

11 xi(S)‖22 ≥ 2 max (16q, 4 log n)

]
≤ 1

n
.

Since ‖Σ−
1
2

11 xi(S)‖22 ≥ 1
C̃max
‖xi(S)‖22, we have

P

[
max
i=1,...n

‖xi(S)‖22 ≥ 2C̃max max (16q, 4 log n)

]
≤ 1

n
. (16)

0.2 Some Gaussian Comparison Results

Lemma 5. For any mean zero Gaussian random vector (X1, . . . , Xn), and t > 0, we
have

P ( max
1≤i≤n

|Xi| ≥ t) ≤ 2n exp{− t2

2 maxiE(X2
i )
} (17)

Proof. Note that the moment generating function of Xi is

E(etXi) = exp{E(X2
i )t2

2
}.

So for any t > 0,

P (Xi ≥ x) = P (etXi ≥ etx) ≤ E(etXi)

etx
= exp{E(X2

i )t2

2
− xt},

by taking t = x
E(X2

i )
, we have

P (Xi ≥ x) ≤ exp{− x2

2E(X2
i )
}.

So

P (|Xi| ≥ t) = 2P (Xi ≥ t) ≤ 2 exp{− t2

2E(X2
i )
} ≤ 2 exp{− t2

2 maxiE(X2
i )
}.
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So

P ( max
1≤i≤n

|Xi| ≥ t) ≤ 2n exp{− t2

2 maxiE(X2
i )
}.

0.3 Large deviation for χ2 distribution

Lemma 6. Let Z1, . . . , Zn be i.i.d. χ2-variates with q degrees of freedom. Then for all
t > q, we have

P

[
max

i=1,...,n
Zi > 2t

]
≤ n exp(−t

[
1− 2

√
q

t

]
). (18)

The proof of this lemma can be found in Obozinski et al. (2008).

0.4 Some useful random matrix results

In this appendix, we use some known concentration inequalities for the extreme eigenval-
ues of Gaussian random matrices (Davidson and Szarek, 2001) to bound the eigenvalues
of a Gaussian random matrix. Although these results hold more generally, our interest
here is on scalings (n, q) such that q/n→ 0.

Lemma 7 (Davidson and Szarek (2001)). Let Γ ∈ Rn×q be a random matrix whose
entries are i.i.d. from N(0, 1/n), q ≤ n. Let the singular values of Γ be s1(Γ) ≥ . . . ≥
sq(Γ). Then for any t > 0,

max

{
P

[
s1(Γ) ≥ 1 +

√
q

n
+ t

]
, P

[
sq(Γ) ≤ 1−

√
q

n
− t
]}

< exp{−nt2/2}.

Using Lemma 7, we now have some useful results.

Lemma 8. Let U ∈ Rn×q be a random matrix with elements from the standard normal
distribution (i.e., Uij ∼ N(0, 1), i.i.d.) Assume that q/n → 0. Let the eigenvalues of
1
nU

TU be Λ1( 1
nU

TU) ≥ . . . ≥ Λq(
1
nU

TU). Then when n is big enough,

P

[
1

2
≤ Λi(

1

n
UTU) ≤ 2

]
≥ 1− 2 exp(−0.01n). (19)

Proof. Let Γ = 1√
n
U , then Λi(

1
nU

TU) = s2i (Γ). By Lemma 7,

P

[
sq(Γ) ≤ 1−

√
q

n
− t
]
< exp{−nt2/2},
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by taking t = t0 = 1−
√
2
2 − 0.1, we have

P

[
sq(Γ) ≤

√
2

2
+ 0.1−

√
q

n

]
< exp{−nt20/2}.

Since q/n→ 0 by assumption, we have when n is big enough, q/n < 0.1, then

P

[
sq(Γ) <

√
2

2

]
< exp{−nt20/2},

which implies that, for any i = 1, . . . , q,

P

[
Λi(

1

n
(UTU)) <

1

2

]
< exp{−nt20/2}.

Followed the same procedures,

P

[
Λi(

1

n
(UTU)) > 2

]
< exp{−nt21/2},

for t1 =
√

2− 1.1. Then inequality (19) holds immediately.

Corollary 1. Let X ∈ Rn×q be a random matrix, of which, the rows are i.i.d. from the
normal distribution with mean 0 and covariance Σ. Assume that C̃min ≤ Λi(Σ) ≤ C̃max

and q/n→ 0, then there exist a constant c, when n is big enough,

P

[
1

2
C̃min ≤ Λi(

1

n
XTX) ≤ 2C̃max

]
≥ 1− 2 exp(−0.01n). (20)

Proof. Let x′i denote the ith row of X. Let u′i = x′iΣ
− 1

2 , then var(ui) = Iq×q and matrix
U with ith row u′i satisfies the condition in Lemma 8. Then

P

[
1

2
≤ Λi(

1

n
UTU) ≤ 2

]
≥ 1− 2 exp(−0.01n).

Since

C̃minΛ1(
1

n
UTU) ≤ Λi(

1

n
XTX) ≤ C̃maxΛq(

1

n
UTU),

result (20) is obtained immediately.
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