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Abstract: The performance of the Lasso is well understood under the assumptions of

the standard sparse linear model with homoscedastic noise. However, in several ap-

plications, the standard model does not describe the important features of the data.

This paper examines how the Lasso performs on a non-standard model that is mo-

tivated by medical imaging applications. In these applications, the variance of the

noise scales linearly with the expectation of the observation. Like all heteroscedas-

tic models, the noise terms in this Poisson-like model are not independent of the

design matrix. Under a sparse Poisson-like model for the high-dimension regime

that allows the number of predictors (p) ≫ sample size (n), we give necessary and

sufficient conditions for the sign consistency of the Lasso estimate. Simulations re-

veal that the Lasso performs equally well in terms of model selection performance

on both Poisson-like data and homoscedastic data (with properly scaled noise vari-

ance), across a range of parameterizations.

Key words and phrases: Heteroscedasticity, Lasso, Poisson-like model, sign consis-

tency.

1. Introduction

The Lasso (Tibshirani (1996)) is widely used in high dimensional regression

for variable selection. Its model selection performance has been well studied

under a standard sparse and homoskedastic regression model. Several researchers

have shown that, under sparsity and regularity conditions, the Lasso can select

the true model asymptotically even when p ≫ n (Donoho, Elad, and Temlyakov

(2006); Meinshausen and Buhlmann (2006); Tropp (2006); Zhao and Yu (2006);

Wainwright (2009)).

To define the Lasso estimate, suppose the observed data are independent

pairs {(xi, Yi)} ∈ Rp × R, i = 1, 2, . . . , n, following the linear regression model

Yi = xTi β
∗ + ϵi, (1.1)

where xTi is a row vector representing the predictors for the ith observation, Yi is

the corresponding ith response variable, the ϵi’s are independent and mean zero
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noise terms, and β∗ ∈ Rp. If X ∈ Rn×p denotes the n × p design matrix with

xTk = (Xk1, . . . ,Xkp) as its kth row and with Xj = (Xj1, . . . ,Xjn)
T as its jth

column, then

X =


xT1
xT2
...

xTn

 = (X1, X2, . . . , Xp) .

Let Y = (Y1, . . . , Yn)
T and ϵ = (ϵ1, ϵ2, . . . , ϵn)

T ∈ Rn. The Lasso estimate

(Tibshirani (1996)) is defined as the solution to a penalized least squares problem

(with regularization parameter λ):

β̂(λ) = argmin
β

1

2n
∥Y −Xβ∥22 + λ∥β∥1, (1.2)

where for some vector x ∈ Rk, ∥x∥r = (
∑k

i=1 |xi|r)1/r.
In previous research on the Lasso, the above model has been assumed where

the noise terms are i.i.d. and independent of the predictors (hence homoskedas-

tic). We call this the standard model.

Candes and Tao (2007) suggested that compressed sensing, a sparse method

similar to the Lasso, could reduce the number of measurements needed by such

medical technology as Magnetic Resonance Imaging (MRI). This methodology

was later applied to MRI by Lustig et al. (2008). The standard model was useful

to their analyses, but it is not appropriate for such other imaging methods as

PET and SPECT (Fessler (2000)).

PET provides an indirect measure for the metabolic activity of a specific

tissue. To take an image, a biochemical metabolite must be identified that is

attractive to the tissue under investigation. This biochemical metabolite is la-

beled with a positron emitting radioactive material and is then injected into the

subject. The substance circulates through the subject, emitting positrons; when

the tissue gathers the metabolite, the radioactive material concentrates around

the tissue.

The positron emissions can be modeled by a Poisson point process in three

dimensions with an intensity rate proportional to the varying concentrations of

the biochemical metabolite. Therefore, an estimate of the intensity rate is an

estimate of the level of biochemcial metabolite. However, the positron emissions

are not directly observed. After each positron is emitted it very quickly annihi-

lates a nearby electron, sending two X-ray photons in nearly opposite directions

(at the speed of light) Vardi, Shepp, and Kaufman (1985). These X-rays are

observed by several sensors in a ring surrounding the subject.
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A physical model of this system informs the estimation of the intensity level

of the Poisson process from the observed data. It can be expressed as a Poisson

model where the sample size n represents the number of sensors, Y is a vector

of observed values, β∗
j represents the Poisson intensity rate for a small cubic

volume (a voxel) inside the subject, the design matrix X specifies the physics of

the tomography and emissions process, and p is the number of voxels wanted,

the more voxels, the finer the resolution of the final image.

Because the positron emissions are modeled by a Poisson point process, the

variance of each observed value Yi is equal to the expected value E(Yi). Motivated

by the Poissonian model, this paper studies the Lasso under the sparse Poisson-

like model
Y = Xβ∗ + ϵ,

E(ϵ | X) = 0,

Cov(ϵ | X) = σ2 × diag(|Xβ∗|),
ϵ X(Sc) | X(S),

(1.3)

where σ2 > 0 and the sparsity index set is defined as

S = {1 ≤ j ≤ p : βj ̸= 0}, with the cardinality q = #S such that 0 < q < p.

In the definition of the Poisson-like model, ϵ conditioned on X consists of in-

dependent Gaussian variables, Cov(ϵ | X), the variance-covariance matrix of ϵ

conditioned on X, is σ2 × diag(|Xβ∗|), an n×n diagonal matrix with the vector

σ2 × |Xβ∗| down the diagonal, and X(S) and X(Sc) denote two matrices con-

sisting of the relevant column vectors (with nonzero coefficients) and irrelevant

column vectors (with zero coefficients), respectively. This is a heteroscedastic

model.

We do not develop a penalized maximum likelihood estimator for the Poisson-

like model, our main interest is to study how the Lasso performs under a depar-

ture from the standard linear model. Such results are useful when the “true”

model is unknown. The Poisson-like model’s likelihood function is non-convex

and this presents computational challenges. Before tackling these, we believe

it is advantageous to first understand the performance of the computationally

tractable Lasso. We do carry out some simulation studies to compare the pure

Lasso and the penalized maximum likelihood method in Example 3. To tackle

the non-convex problem of penalized maximum likelihood method, we put the

true variance of response in the likelihood function. Still, we find that the pure

Lasso outperforms the penalized maximum likelihood method for our simulated

data in terms of sign consistency.

Since the Lasso provides a computationally feasible way to select a model

(Osborne, Presnell, and Turlach (2000); Efron et al. (2004); Rosset (2004); Zhao

and Yu (2007)), it can be applied in non-standard settings to give sparse solutions.

In this paper we show that the Lasso is robust to the heteroscedastic noise of the



102 JINZHU JIA, KARL ROHE AND BIN YU

sparse Poisson-like model. Under the Poisson-like model, for general scalings of

p, q, n, and β∗, this paper investigates when the Lasso is sign consistent, and when

it is not, with theoretical and simulation studies. Our results are comparable to

the results for the standard model: when a measure of the signal to noise ratio

is large, the Lasso is sign consistent.

1.1. Overview of previous work

The Lasso (Tibshirani (1996)) is well established as a popular technique

to simultaneously select a model and provide regularized estimated coefficients.

Under the standard homoscedastic linear model, we give a brief overview of this

literature.

In noiseless setting, ϵ = 0, with contributions from a broad range of re-

searchers (Chen, Donoho, and Saunders (1998); Donoho and Huo (2001); Elad

and Bruckstein (2002); Feuer and Nemirovski (2003); Tropp (2004); Candes and

Tao (2006)), there is now an understanding of sufficient conditions on determinis-

tic predictors {Xi, i = 1, . . . , n} and sparsity index S = {j : β∗
j ̸= 0} for which the

true β∗ can be recovered exactly. Results by Donoho (2004), as well as Candes

and Tao (2005), provide high probability results for random ensembles X.

There is also a substantial body of work focusing on the noisy setting. Knight

and Fu (2000) analyze the asymptotic behavior of the optimal solution for fixed

dimension (p) for Lr regularization with r ∈ (0, 2]. Both Tropp (2006) and

Donoho, Elad, and Temlyakov (2006) provide sufficient conditions for the support

of the optimal solution to (1.2) to be contained within the support of β∗. Mein-

shausen and Buhlmann (2006) focuse on model selection for Gaussian graphical

models; Zhao and Yu (2006) consider linear regression and more general noise

distributions. For the case of Gaussian noise and Gaussian predictors, these

papers establish that under particular mutual incoherence conditions and the

appropriate choice of the regularization parameter λ, the Lasso can recover the

sparsity pattern with probability converging to one for particular regimes of n, p

and q. Zhao and Yu (2006) used a particular mutual incoherence condition, the

Irrepresentable Condition, which they show is almost necessary when p is fixed.

The Irrepresentable Condition was found in Fuchs (2005) and Zou (2006) as well.

For i.i.d. Gaussian or sub-Gaussian noise, Wainwright (2009) established a sharp

relation between the problem dimension p, the number q of nonzero elements in

β∗, and the number of observations n that are required for sign consistency. The

conditions on the Lasso can be stringent in high dimensions. If the correlations

between variables are small, the Irrepresentable Condition usually holds and not

otherwise. See also Fan and Lv (2010).
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1.2. Our work

Some definitions are needed. Let

sign(x) =


1 if x > 0,

0 if x = 0,

−1 if x < 0,

and take =s so that β̂(λ) =s β
∗ if and only if sign(β̂(λ)) = sign(β∗) elementwise.

Definition 1. The Lasso is sign consistent if there exists a sequence λn such

that P
(
β̂(λn) =s β

∗
)
→ 1 as n → ∞.

This paper studies the sign consistency of the Lasso applied to data from

the sparse Poisson-like model, and also gives non-asymptotic results for both

the deterministic design and the Gaussian random design. The non-asymptotic

results give the probability that β̂(λ) =s β
∗, for any λ, p, q, and n, and the sign

consistency results follow. We also give necessary conditions for the Lasso to

be sign consistent under the sparse Poisson-like model. It is shown that the

Irrepresentable Condition is necessary for the Lasso’s sign consistency under this

model; it is also necessary under the standard model (Zhao and Yu (2006); Zou

(2006); Wainwright (2009)).

The sufficient conditions for sign consistency for the deterministic and ran-

dom Gaussian designs require that the variance of the noise be not too large and

that the smallest nonzero element of |β∗| be not too small. Write the smallest

nonzero element of |β∗| as
M(β∗) = min

j∈S
|β∗

j |.

For a deterministic design, assume that

Λmin

(
1

n
X(S)TX(S)

)
≥ Cmin > 0,

where Λmin(·) denotes the minimal eigenvalue of a matrix and Cmin is some

positive constant; for a random Gaussian design, assume that

Λmin(Σ11) ≥ C̃min > 0 and Λmax(Σ) ≤ C̃max < ∞,

where Σ11 ∈ Rq×q is the variance-covariance matrix of the true predictors,

Σ ∈ Rp×p is the variance-covariance matrix of all predictors, Λmax(·) denotes

the maximal eigenvalue of a matrix, and C̃min and C̃max are some positive con-

stants. An essential quantity for determining the probability of sign recovery is

an (unconventional) signal to noise ratio

uSNR =
n[M(β∗)]2

σ2∥β∗∥2
. (1.4)
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The numerator corresponds to the signal strength for sign recovery. The most

difficult sign to estimate in β∗ is the element that corresponds to M(β∗). When

the smallest element is larger, estimating the signs is easier, and the signal is

more powerful. For the noise term in the denominator, ∥β∗∥2 is fundamental in

the scaling of the noise. The typical definition of SNR is

SNR =
βTX ′Xβ∑n
i=1 var(ϵi)

.

Roughly speaking, increasing some β′
js makes the signals stronger, so SNR in-

creases, but uSNR might decrease because the denominator increases while the

numerator stays the same.

When uSNR is large, the Lasso is sign consistent. Specifically, the sufficient

condition for a deterministic design requires that

uSNR = Ω

(
q log(p+ 1) max

i
∥xi(S)∥2

)
,

where an = Ω(bn) means that an/bn → ∞. The sufficient conditions for a random

Gaussian design requires that

uSNR ≥ 8 log n

√
2C̃maxmax(4q, log n)

C̃min

,

and

uSNR = Ω(q log(p− q + 1)) .

These conditions all require that the (unconventional) signal to noise ratio be

large. Thus the Poisson-like model and the standard model require that the

variance of the noise be small compared to the size of the signal. Simulations in

Section 4 support this.

The remainder of the paper is organized as follows. Section 2 analyzes the

Lasso estimator when the design matrix is deterministic. Section 3 considers

the case in which the rows of X are i.i.d. Gaussian vectors. Both sections give

necessary and sufficient conditions for the Lasso to be sign consistent. In Section

4, simulations demonstrate the fundamental role of the uSNR and show that the

Lasso performs similarly on both homoscedastic and Poisson-like data. Section

5 gives some concluding thoughts. Proofs are presented in the supplementary

materials.

2. Deterministic Design

This section examines sign consistency of the Lasso under the sparse Poisson-

like model for a nonrandom design matrix X. Let xi(S) = eTi X(S), where ei is
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the unit vector with ith element one and the rest zero. Because S = {j : β∗
j ̸= 0}

is the sparsity index set, xi(S) is a row vector of dimension q. Take β∗(S) =

(β∗
j )j∈S and

−→
b = sign(β∗(S)), and suppose the Irrepresentable Condition holds:

for some constant η ∈ (0, 1],∥∥∥∥X(Sc)TX(S)
(
X(S)TX(S)

)−1−→
b

∥∥∥∥
∞

≤ 1− η. (2.1)

In addition, assume that

Λmin

(
1

n
X(S)TX(S)

)
≥ Cmin > 0, (2.2)

where Λmin denotes the minimal eigenvalue and Cmin is some positive constant.
Condition (2.2) guarantees that matrix X(S)TX(S) is invertible. These con-
ditions are also needed in Wainwright (2009) for sign consistency of the Lasso
under the standard model. Let

Ψ(X, β∗, λ) = λ

[
η (Cmin)

−1/2 +

∥∥∥∥∥
(
1

n
X(S)TX(S)

)−1−→
b

∥∥∥∥∥
∞

]
.

Theorem 1. Suppose that (X, Y ) follows the sparse Poisson-like model at (1.3)
with each column of X normalized to l2-norm

√
n. Assume that (2.1) and (2.2)

hold. If λ satisfies M(β∗) > Ψ(X, β∗, λ), then with probability greater than

1− 2 exp

{
− nλ2η2

2σ2∥β∗∥2max1≤i≤n ∥xi(S)∥2
+ log(p)

}
the Lasso has a unique solution β̂(λ) with β̂(λ) =s β

∗.

Theorem 1 can be thought as a straightforward result from Theorem 1 in
Wainwright (2009). In Wainwright (2009), sign consistency of the Lasso estimate
is given for a standard model with sub-Gaussian noise with parameter σ2.
In the Poisson-like model, since var(ϵi|xi) = σ2|xTi β∗| ≤ σ2maxi ∥xi(S)∥2∥β∗∥2,
the noise can be thought of as sub-Gaussian variables with parameter
σ2maxi ∥xi(S)∥2∥β∗∥2. A proof of Theorem 1 is in the supplementary materials.

Theorem 1 gives a non-asymptotic result on the Lasso’s sparsity pattern
recovery property. The next corollary specifies a sequence of λ’s that can asymp-
totically recover the true sparsity pattern. The essential requirements are that

nλ2

maxi ∥xi(S)∥2∥β∗∥2 log(p+ 1)
→ ∞ and M(β∗) > Ψ(X, β∗, λ).

Take

Γ(X, β∗, σ2) =
η2 uSNR

8maxi ∥xi(S)∥2(η C
−1/2
min +

√
q C−1

min)
2 log(p+ 1)

.
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Corollary 1. Suppose that (X, Y ) follows the sparse Poisson-like model at (1.3)
with each column of X normalized to l2-norm

√
n. Assume that (2.1) and (2.2)

hold. Take λ such that

λ =
M(β∗)

2
(
η C

−1/2
min +

√
q C−1

min

) . (2.3)

Then β̂(λ) =s β
∗ with probability greater than

1− 2 exp
{
−
(
Γ(X, β∗, σ2, α)− 1

)
log(p+ 1)

}
.

If Γ(X, β∗, σ2) → ∞, then P [β̂(λ) =s β
∗] converges to one.

A proof of Corollary 1 is in the supplementary materials.
The corollary gives a class of heteroscedastic models for which the Lasso

gives a sign consistent estimate of β∗. This class requires that Γ(X, β∗, σ2) → ∞
which means that

uSNR =
n[M(β∗)]2

σ2∥β∗∥2
= Ω

(
q log(p+ 1)max

i
∥xi(S)∥2

)
, (2.4)

or that uSNR grows fast enough.
The next corollary addresses the classical settings, where p, q and β∗ are all

fixed and n goes to infinity. This is a straightforward result from Corollary 1.
Since M(β∗) and ∥β∗∥2 do not change with n, Γ(X, β∗, σ2, α) → ∞ in Corollary
1 when (1/n)max1≤i≤n ∥xi(S)∥2 → 0.

Corollary 2. Suppose that (X, Y ) follows the sparse Poisson-like model (1.3)
with each column of X normalized to l2-norm

√
n. Assume that (2.1) and (2.2)

hold. In the classical case when p, q and β∗ are fixed, if

1

n
max
1≤i≤n

∥xi(S)∥2 → 0, (2.5)

then with λ at (2.3), as n → ∞, P
[
β̂(λ) =s β

∗
]
→ 1.

Condition (2.5) is not a strong one. Suppose

0 < Λmax

(
1

n
X(S)TX(S)

)
≤ Cmax < ∞,

where Λmax(·) is the maximum eigenvalue of a matrix and Cmax is a positive
constant. Then∥∥∥∥ 1√

n
xi(S)

∥∥∥∥2
2

=

∥∥∥∥ 1√
n
eTi X(S)

∥∥∥∥2
2

≤ Λmax

(
1

n
X(S)TX(S)

)
≤ Cmax,

1

n
max
1≤i≤n

∥xi(S)∥2 =
1√
n

max
1≤i≤n

∥∥∥∥ 1√
n
xi(S)

∥∥∥∥
2

≤ 1√
n
C1/2
max → 0.
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Theorem 2 (Necessary Conditions). Suppose that (X, Y ) follows the sparse

Poisson-like model at (1.3). Assume that (2.2) holds.

(a) Suppose (1/n)X(S)TX(S) = Iq×q. For any j, let

c2n,j =
n2β∗

j
2

σ2eTj

[
X(S)Tdiag(|Xβ∗|)X(S)

]
ej

(2.6)

and cn = minj cn,j. Then

P
[
β̂(λ) =s β

∗
]
≤ 1−

exp
{
−c2n/2

}
√
2π(1 + cn)

.

(b) If ∥∥∥∥X(Sc)TX(S)
(
X(S)TX(S)

)−1−→
b

∥∥∥∥
∞

= 1 + ζ > 1, (2.7)

then P
[
β̂(λ) =s β

∗
]
≤ 1/2.

A proof of Theorem 2 is in the supplementary materials.

Statement (a) holds for the homoscedastic model by removing diag(|Xβ∗|)
from the denominator of (2.6).

From Statement (b), the Irrepresentable Condition (2.1) is necessary for

the Lasso’s sign consistency. This is known from both Zhao and Yu (2006)

and Wainwright (2009). Zhao and Yu (2006) point out that the Irrepresentable

Condition is almost necessary and sufficient for the Lasso to be sign consistent

under the standard homosedastic model when p and q are fixed. Wainwright

(2009) has it as necessary under the standard model for any p and q.

3. Gaussian Random Design

Suppose the rows of X are i.i.d. from a p-dimensional multivariate Gaussian

distribution with mean 0 and variance-covariance matrix Σ. Take the variance-

covariance matrix of the relevant predictors and the covariance between the ir-

relevant predictors and the relevant predictors to be, respectively,

Σ11 = E

(
1

n
X(S)TX(S)

)
and Σ21 = E

(
1

n
X(Sc)TX(S)

)
.

Let Λmin(·) denote the minimum eigenvalue of a matrix and Λmax(·) denote the

maximum eigenvalue of a matrix. To get the main results, the following regularity

conditions are needed. First, for some positive constants C̃min and C̃max that do

not depend on n,

Λmin(Σ11) ≥ C̃min > 0 and Λmax(Σ) ≤ C̃max < ∞; (3.1)
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second, the Irrepresentable Condition

∥Σ21(Σ11)
−1−→b ∥∞ ≤ 1− η, (3.2)

for some constant η ∈ (0, 1]. Assumptions (3.1) and (3.2) are standard assump-

tions. Define

V ∗(n, β∗, λ, σ2) =
2λ2q

nC̃min

+
3σ2

√
C̃max∥β∗∥2
n

,

A(n, β∗, σ2) =

√√√√4σ2∥β∗∥2 log n
√
2C̃maxmax(16q, 4 log n)

nC̃min

, and

Ψ̃(n, β∗, λ, σ2) = A(n, β∗, σ2) +
2λ

√
q

C̃min

.

Theorem 3. Consider the sparse Poisson-like model at (1.3) under Gaussian

random design. Suppose that the variance-covariance matrix Σ satisfies condi-

tions (3.1) and (3.2). Further, suppose that q/n → 0. Then for any λ such that

M(β∗) > Ψ̃(n, β∗, λ, σ2), when n is big enough β̂(λ) =s β
∗ holds with probability

greater than

1−2 exp

{
− λ2η2

2V ∗(n, β∗, λ, σ2)C̃max

+ log(p− q)

}
−(2q+3) exp{−0.01n}− 1 + 3q

n
.

A proof of Theorem 3 is in the supplementary materials.

Theorem 3 gives a non-asymptotic result on the Lasso’s sparsity pattern

recovery property. The next corollary specifies a sequence of λ’s that asymptot-

ically recovers the true sparsity pattern on a well behaved class of models. This

class of models restricts the relationship between the data (X), the coefficients

(β∗), and the distribution of the noise (ϵ). Thus, λ should be chosen such that

λ2η2

2V ∗(n, β∗, λ, σ2)C̃max

− log(p− q) → ∞ and M(β∗) > Ψ̃(n, β∗, λ, σ2).

The results for deterministic design are similar to the results for Gaussian

random design. Conditions (3.1) and (3.2) for a random design case can be

viewed as the population version of those for a deterministic design.

Take

Γ̃(n, β∗, σ2) =

nη2

4q log(p− q + 1)
C̃max

C̃min

+
96σ2q∥β∗∥2 log(p− q + 1)

√
C̃3
max

[M(β∗)−A(n, β∗, σ2)]2C̃2
min

−1

.
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Corollary 3. Consider the sparse Poisson-like model at (1.3) under Gaussian

random design. Suppose Σ satisfies conditions (3.1) and (3.2), and suppose

M(β∗) > A(n, β∗, σ2) and q/n → 0. If

λ =
[M(β∗)−A(n, β∗, σ2)]C̃min

4
√
q

,

then when n is big enough β̂(λ) =s β
∗ holds with probability greater than

1− 2 exp
{
−log(p− q + 1)[Γ̃(n, β∗, σ2)− 1]

}
− (2q + 3) exp{−0.01n} − 1 + 3q

n
.

If
n

q log(p− q + 1)
→ ∞ and

n[M(β∗)−A(n, β∗, σ2)]2

σ2∥β∗∥2 q log(p− q + 1)
→ ∞, (3.3)

then P [β̂(λ) =s β
∗] converges to one.

A proof of Corollary 3 is in the supplementary materials.

The condition that M(β∗) ≥ A(n, β∗, σ2) is equivalent to

uSNR ≥ 8C̃−1
min log n

√
2C̃maxmax(4q, log n), (3.4)

and the conditions at (3.3) imply that

uSNR = Ω(q log(p− q + 1)) . (3.5)

Thus when uSNR is large, the Lasso can identify the sign of the true predictors.

Theorem 4 (Necessary Conditions). Consider the sparse Poisson-like model at

(1.3) under Gaussian random design, and suppose the variance-covariance matrix

Σ satisfies (3.1). If

∥Σ21(Σ11)
−1−→b ∥∞ = 1 + ζ > 1, (3.6)

then P
[
β̂(λ) =s β

∗
]
≤ 1

2 ;

A proof of Corollary 4 is in the supplementary materials.

In the next section, simulations are used to directly compare the performance

of the Lasso between the Poisson-like model and the standard homoscedastic

model.
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4. Simulation Studies

Our first example investigates a peculiarity of the uSNR at (1.4): functions

of β∗ appear in both the signal and in the noise. The second example compares

the model selection performance of the Lasso under the standard sparse linear

model to the model selection performance of the Lasso under the sparse Poisson-

like model. The third example compares the performance of the Lasso against the

performance of penalized maximum likelihood in the sparse Poisson-like model.

In the first and third example, all data were generated from the sparse Poisson-

like model; In the second, the performance of the Lasso is compared between

homoscedastic noise and Poisson-like noise. The parameterizations of the stan-

dard homoscedastic models differ only in that the noise terms are homoscedas-

tic. To ensure a fair comparison, the variance of the noise terms in the standard

model is set equal to the average variance of the noise terms in the corresponding

Poisson-like model.

All simulations were done in R with the LARS package (Efron et al. (2004)).

Example 1. Consider an initial model with n = 400, p = 1, 000, q = 20, σ2 = 1,

and each element of the design matrix X drawn independently from N(0, 1).

Once X was drawn, it was fixed through all of the simulations. It was also used

in Example 2. We took

β∗
j =


βmax if j ≤ 10,

βmin if 11 ≤ j ≤ 20,

0 otherwise.

The first simulation design hadM(β∗) = βmin = 5 and changed the value of βmax;

the second simulation design fixed ∥β∥2 and changed the value of M(β∗). One

model was present in both designs: βmax = 40 and βmin = 5. Here ∥β∗∥2 = 127

and uSNR = 400× 52/127 ≈ 78.

The first simulation design had ten different parameterizations: βmin = 5 and

βmax ∈ {100, 90, 80, 70, 60, 50, 40, 30, 20, 10}; the second simulation design had ten

different parameterizations, each fixing ∥β∗∥2 and altering βmin such that uSNR

did not change from the first simulation design (to keep ∥β∗∥2 fixed, βmax had

to change accordingly). The values of the parameters for the two designs are in

Tables 1 and 2. We also list conventional SNR in these two tables, from which

we see that there is almost no relation between SNR and uSNR.

For each simulation design, the Monte Carlo estimate for the probability of

correctly estimating the signs is plotted against uSNR in Figure 1: each point

along the solid line in Figure 1 corresponds to the first simulation design and

each point along the dashed line corresponds to the second. Success is defined as
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Table 1. The first simulation. Numbers in the table are rounded to the
nearest integer.

βmax 100 90 80 70 60 50 40 30 20 10
∥β∗∥2 317 285 253 222 190 159 127 96 65 35
uSNR 32 35 39 45 53 63 78 104 153 283
SNR 375 338 300 262 225 188 151 114 78 43

Table 2. The second simulation. Numbers in the table are rounded.

βmin = M(β∗) 3.2 3.3 3.6 3.8 4.1 4.5 5.0 5.8 7.0 9.5
βmax 40 40 40 40 40 40 40 40 40 39
uSNR 32 35 39 45 53 63 78 104 153 283
SNR 151 151 151 151 151 151 151 151 152 152

Figure 1. Probability of Success vs. uSNR in Example 1. Each probability
was estimated with 500 simulations.

the existence of a λ that makes β̂(λ) =s β
∗. The probability of success for each

point was estimated with 500 trials.

Figure shows that as uSNR increases, the probability of success increases.

What is remarkable is the similarity between the solid and dashed lines. This

simulation demonstrates that increasing the elements of β∗ can have either a

positive or a negative effect on the probability of successfully estimating the

signs, and shows that these effects are well characterized by uSNR.

Example 2. The only difference from Example 1 is that here the noise terms

are homoscedastic. To ensure a fair comparison, the variance of the noise was

always set equal to the average variance of the noise terms in the corresponding

Poisson-like model.
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Figure 2. The performance of the Lasso on homoscedastic data and on
Poisson-like data.

(a) Design 1: ∥β∗∥2 shrinking (b) Design 2: βmin growing

Figure 3. The relationship between uSNR and the number of false negatives
/ false positives.

In Figure 2, uSNR is plotted against the probability of success. As in

Example 1, success is defined as the existence of a λ which makes β̂(λ) =s β∗,

and the probability of success for each point was estimated with 500 trials. In

the figure, the dashed lines are nearly indistinguishable from the solid lines,

suggesting that the Lasso is robust to one type of heteroscedastic noise.

To further understand the estimation errors, Figure 3 plots the number of
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false positives,

FP = #{j : β̂j ̸= 0 but βj = 0},

and the number of false negatives,

FN = #{j : β̂j = 0 but βj ̸= 0},

for the Lasso with both homoscedastic data and Poisson-like data. Figure 3(a)

follows the first simulation design, and Figure 3(b) follows the second. In each

of the simulations, the tuning parameter λ was chosen to minimize the cross-

validated mean squared error prediction accuracy with the function cv.lars() in

the LARS package (Efron et al. (2004)).

In Figures 3(a) and 3(b) the dashed lines are indistinguishable from each

other, suggesting that the number of false positives does not depend on the noise

model. Additionally, the solid lines are indistinguishable.

Example 3. When the noise terms are normally distributed with equal variance,

the Lasso is the penalized maximum likelihood estimator; this is not the case in

the sparse Poisson-like model. This example demonstrates that, in terms of model

selection consistency, the Lasso appears to outperform the penalized maximum

likelihood estimator for the sparse Poisson-like model. We also compare the

prediction error of the methods. Results show that the penalized MLE has a

smaller prediction error when the weights are well chosen.

The likelihood function for the Poisson-like model is

n∏
i=1

1√
2πσ2|xTi β|

exp

{
−(yi − xiβ)

2

σ2|xTi β|

}
.

So the ℓ1 penalized maximum likelihood is

argmaxβ∈Rp

n∑
i=1

[
−(yi − xiβ)

2

σ2|xTi β|
− 1

2

n∑
i=1

log[σ2|xTi β|]

]
− λ∥β∥1. (4.1)

The objective function in (4.1) is not convex. For this simulation, given

the true parameters, we replaced σ2|xTi β| with the known variance of the noise

σ2|xTi β∗|, and solved the (convex) weighted Lasso problem

argmin
β

1

2n
∥W (Y −Xβ)∥22 + λ∥β∥1, (4.2)

whereW is a diagonal matrix withWii = (σ2|xTi β∗|)−1/2. This example shows the

standard Lasso outperformed the weighted Lasso (4.2), suggesting that for the
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(a) Probability of success (b) Prediction Error

Figure 4. Comparisons of the standard Lasso and the Penalized MLE.

Poisson-like data, the standard Lasso outperforms penalized maximum likelihood

when considering variable selection.

In the simulation, we set n = 400, p = 1, 000, q = 20 , σ2 = 1, and

β∗ = [5, . . . , 5︸ ︷︷ ︸
10

, βmax, . . . , βmax︸ ︷︷ ︸
10

, 0, . . . , 0︸ ︷︷ ︸
980

]′,

where βmax took values in {1, 2, . . . , 10}× 10. Each element of the design matrix

X was drawn independently from N(0, 1). Once X was drawn, it was fixed

through all of the simulations. Then, both the standard Lasso and ℓ1 penalized

likelihood were fit to each pair (X, Y ), and each fit was examined to see if it

successfully estimated the sign of β∗. The comparison were performed 500 times

and the results are shown in Figure 4(a).

Figure 4(a) displays the results for the standard Lasso and the weighted

Lasso. This figure shows that the standard Lasso greatly outperformed the

weighted Lasso. In this contrived example, the weighted Lasso has the advantage

of knowing the true variance of noise, and this led to a drastic decrease in per-

formance compared to the standard Lasso. In practice, when the variance of the

noise terms is not known, the penalized maximum likelihood estimator would be

difficult to optimize and would likely have even worse statistical performance.

In this example, the standard Lasso outperformed the weighted Lasso on

sign estimation because the standard Lasso had a greater chance of satisfying

the irrepresentable condition. We examined this for n = 400, p = 1, 000, Xij ∼
N(0, 1), and

β∗ = [5, . . . , 5︸ ︷︷ ︸
10

, 10, . . . , 10︸ ︷︷ ︸
10

, 0, . . . , 0︸ ︷︷ ︸
980

]′.
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Here the standard Lasso satisfied the irrepresentable condition 98% of the time,

but the weighted Lasso satisfiedit only 15% of the time.

Figure 4(b) compares the prediction error of the standard Lasso estimator

and the penalized maximum likelihood estimator. When calculating prediction

error, we independently drew 1,000 new samples and calculated

MSE =

∑1,000
i=1 (y∗i − x∗Ti β̂)2

1, 000
,

where (x∗Ti , y∗i ), i = 1, . . . , 1, 000, were new samples independent of the training

data; β̂ is the estimation of regression coefficients via standard Lasso or weighted

Lasso. In each run of the simulation, the tuning parameter λ was selected by

10-fold cross validation with cv.lars() in the LARS package (Efron et al. (2004)).

The square root of average MSE is reported in Figure 4(b). It shows that the

weighted Lasso (penalized maximum likelihood) had a smaller prediction error

than the standard Lasso, unlike for sign estimation.

To see why the weighted Lasso performed better in terms of prediction,

Figure 5 gives boxplots of estimated coefficients β̂ for both standard Lasso and

the weighted Lasso when βmin = 5 and βmax = 10. Figure 5 shows that the

standard Lasso estimated the zeros in β∗ very well, while the weighted Lasso

estimated many of the zero elements of β∗ to be nonzero. At the same time,

the weighted Lasso estimated the nonzero elements of β∗ with less bias and

variance than the standard Lasso, explaining why the weighted Lasso has poor

sign estimation, but slightly better prediction performance.

5. Conclusion

This paper aims to understand if the sign consistency of the Lasso is robust to

the heteroscedastic errors in a Poisson-like model motivated by certain problems

in high-dimensional medical imaging (Fessler (2000)). We found that, for sign

consistency, the Lasso is robust to this violation of homoscedasticity. Theoretical

results for the sparse Poisson-like model are similar to results for the standard

model. Simulations suggest that the Lasso performs similarly in terms of model

selection performance on both Poisson-like data and homoscedastic data when

the variance of the noise is scaled appropriately.

Our results do not extend to general heteroskedastic models as our tech-

niques are highly tuned to the specific the Poisson-like model. High dimensional

regression under misspecified models is an important and extensive area for future

research. It is our hope that this paper prompts others to study the challenging

problems in this area.
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Figure 5. Comparisons of the standard Lasso and the weighted Lasso. The
horizontal axes correspond to the true coefficients. The vertical axes corre-
spond to the estimated coefficients. Each plot is the results of 500 simula-
tions.
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