Multivariate spatial nonparametric modelling via kernel processes mixing

Montserrat Fuentes and Brian Reich

SUPPLEMENTARY MATERIAL

A. 1

Properly defined process prior
Kolmogorov existence theorem
We need to prove that the collection of finite-dimensional distributions introduced in (1) define a stochastic process $Y(s)$. We use the two Kolmogorov consistency conditions (symmetry under permutation, and dimensional consistency) to show that (1) defines a proper random process for Y.

Proposition 1. The collection of finite-dimensional distributions introduced in (1) properly define a stochastic process $Y(s)$. We use the two Kolmogorov consistency conditions: symmetry under permutation, and dimensional consistency, to define properly a random process for Y.

Proof of Proposition 1:

Symmetry under permutation.
Let $p_{i_{j}}=p\left(Y\left(s_{j}\right)=X\left(\phi_{i\left(s_{j}\right)}\right)\right.$, where $\phi_{i\left(s_{j}\right)}$ is the centering knot of the kernel $i\left(s_{j}\right)$ in the representation of $F_{s_{j}}(Y)$ in (1), and let $\phi_{i_{j}}$ be an abbreviation for $\phi_{\left(i\left(s_{j}\right)\right)}$. Then, $p_{i_{1}, \ldots, i_{n}}$ determine the site-specific joint selection probabilities. If $\pi(1), \ldots, \pi(n)$ is any permutation
of $\{1, \ldots, n\}$, then we have

$$
\begin{align*}
& p_{i_{\pi(1)}, \ldots, i_{\pi(n)}}=p\left(Y\left(s_{\pi(1)}\right)=X\left(\phi_{\pi\left(i_{1}\right)}\right), \ldots, Y\left(s_{\pi(n)}\right)=X\left(\phi_{\pi\left(i_{n}\right)}\right)\right) \\
= & p\left(Y\left(s_{1}\right)=X\left(\phi_{i_{1}}\right), \ldots, Y\left(s_{n}\right)=X\left(\phi_{i_{n}}\right)\right)=p_{i_{1}, \ldots, i_{n}} \tag{12}
\end{align*}
$$

since the observations are conditionally independent. Then,

$$
\begin{aligned}
& p\left(Y\left(s_{1}\right) \in A_{1}, \ldots, Y\left(s_{n}\right) \in A_{n}\right) \\
= & \sum_{i_{1}, \cdots, i_{n}} p\left(Y\left(s_{1}\right)=X\left(\phi_{i_{1}}\right), \ldots, Y\left(s_{n}\right)=X\left(\phi_{i_{n}}\right)\right) \delta_{X\left(\phi\left(i_{1}\right)\right)}\left(A_{1}\right) \ldots \delta_{X\left(\phi\left(i_{n}\right)\right)}\left(A_{n}\right) \\
= & \sum_{i_{1}, \cdots, i_{n}} p_{i_{1}, \ldots, i_{n}} \delta_{X\left(\phi\left(i_{1}\right)\right)}\left(A_{1}\right) \ldots \delta_{X\left(\phi\left(i_{n}\right)\right)}\left(A_{n}\right) \\
= & \sum_{i_{1}, \cdots, i_{n}} p_{i_{\pi(1)}, \ldots, i_{\pi(n)}} \delta_{X\left(\phi\left(i_{\pi(1)}\right)\right)}\left(A_{\pi(1)}\right) \ldots \delta_{X\left(\phi\left(i_{\pi(n)}\right)\right)}\left(A_{\pi(n)}\right) \\
= & p\left(Y\left(s_{\pi(1)}\right) \in A_{\pi(1)}, \ldots, Y\left(s_{\pi(n)}\right) \in A_{\pi(n)}\right),
\end{aligned}
$$

and, the symmetry under permutation condition holds.

Dimensional consistency.

$$
\begin{align*}
& p\left(Y\left(s_{1}\right) \in\left(A_{1}\right), \ldots, Y\left(s_{k}\right) \in \mathcal{R}, \ldots, Y\left(s_{n}\right) \in\left(A_{n}\right)\right) \\
= & \sum_{\left(i_{1}, \ldots, i_{n}\right) \in\{1,2, \ldots\}^{n}} p_{i_{1}, \ldots, i_{n}} \delta_{X\left(\phi_{i_{1}}\right)}\left(A_{1}\right) \cdots \delta_{X\left(\phi_{i_{k}}\right)}(\mathcal{R}) \cdots \delta_{X\left(\phi_{i_{n}}\right)}\left(A_{n}\right) \\
= & \sum_{\left(i_{1}, \ldots, i_{k-1}, i_{k+1}, \ldots, i_{n}\right) \in\{1,2, \ldots\}^{n-1}} \delta_{X\left(\phi_{i_{1}}\right)}\left(A_{1}\right) \cdots \delta_{X\left(\phi_{\left.i_{k-1}\right)}\right)}\left(A_{k-1}\right) \delta_{X\left(\phi_{\left.i_{k+1}\right)}\right)}\left(A_{k+1}\right) \\
& \left.\cdots \delta_{X\left(\phi_{i_{n}}\right)}\right) \\
= & p\left(Y\left(A_{n}\right) \sum_{j=1}^{\infty} p_{i_{1}, \ldots, i_{k-1}, j, i_{k+1}, \ldots, i_{n}}\right. \tag{13}\\
& \left.\left(s_{1}\right), \ldots, Y\left(s_{k-1}\right) \in A_{k-1}, Y\left(s_{k+1}\right) \in A_{k+1}, \ldots, Y\left(s_{n}\right) \in\left(A_{n}\right)\right) .
\end{align*}
$$

In (13), we need

$$
p_{i_{1}, \ldots, i_{k-1}, i_{k+1}, \ldots, i_{n}}=\sum_{j=1}^{\infty} p_{i_{1}, \ldots, i_{k-1}, j, i_{k+1}, \ldots, i_{n}}
$$

which holds by Fubini Theorem and the fact that X is a properly defined Gaussian process.

A. 2

Proof of Theorem 1.

The covariance function C of the underlying process X has a first order derivative, C^{\prime}.
We introduce a Taylor expansion for C with a Lagrange remainder term,

$$
\begin{equation*}
C\left(\left|\phi_{i_{1}}-\phi_{i_{2}}\right|\right)=C\left(\left|s-s^{\prime}\right|\right)+C^{\prime}\left(\psi_{i_{1}, i_{2}}\right) \varepsilon_{i_{1}, i_{2}}, \tag{14}
\end{equation*}
$$

where $\varepsilon_{i_{1}, i_{2}}=\left(\left|\phi_{i_{1}}-\phi_{i_{2}}\right|-\left|s-s^{\prime}\right|\right)$ and $\psi_{i_{1}, i_{2}}$ is in between $\left|s-s^{\prime}\right|$ and $\left|\phi_{i_{1}}-\phi_{i_{2}}\right|$.
Assuming that s and s^{\prime} lie on the support of the kernels $K_{i_{1}}$ and $K_{i_{2}}$, respectively, i.e. $\left|\phi_{i_{1}}-s\right|<\epsilon_{i_{1}}$ and $\left|\phi_{i_{2}}-s^{\prime}\right|<\epsilon_{i_{2}}$. We have,

$$
\varepsilon_{i_{1}, i_{2}} \leq\left|\left|\phi_{i_{1}}-\phi_{i_{2}}\right|-\left|s-s^{\prime}\right|\right| \leq\left|\left(\phi_{i_{1}}-\phi_{i_{2}}\right)-\left(s-s^{\prime}\right)\right| \leq \epsilon_{i_{1}}+\epsilon_{i_{2}} \leq 2 \epsilon,
$$

and,

$$
\varepsilon_{i_{1}, i_{2}} \geq-\left|\left|\phi_{i_{1}}-\phi_{i_{2}}\right|-\left|s-s^{\prime}\right|\right| \geq-\left|\left(\phi_{i_{1}}-\phi_{i_{2}}\right)-\left(s-s^{\prime}\right)\right| \geq-\left(\epsilon_{i_{1}}+\epsilon_{i_{2}}\right) \geq-2 \epsilon,
$$

Thus, $-2 \epsilon \leq \varepsilon_{i_{1}, i_{2}} \leq 2 \epsilon$.
Let $p(s)$ be the potentially infinite vector with all the probabilities masses $p_{i}(s)$ in $F_{s}(Y)$. The conditional covariance of the data process Y is written in terms of the covariance C of X,

$$
\operatorname{cov}\left(Y(s), Y\left(s^{\prime}\right) \mid p(s), p\left(s^{\prime}\right), C\right)=\sum_{i_{1} i_{2}} p_{i_{1}}(s) p_{i_{2}}\left(s^{\prime}\right) C\left(\left|\phi_{i_{1}}-\phi_{i_{2}}\right|\right)
$$

since the kernels all have compact support, the expression above is the same as

$$
\sum_{i_{1}, i_{2} ;\left|\phi_{i_{1}}-s\right|<\epsilon_{i_{1}},\left|\phi_{i_{2}}-s^{\prime}\right|<\epsilon_{i_{2}}} p_{i_{1}}(s) p_{i_{2}}\left(s^{\prime}\right) C\left(\left|\phi_{i_{1}}-\phi_{i_{2}}\right|\right)
$$

Using the Taylor approximation in (14), the $\operatorname{cov}\left(Y(s), Y\left(s^{\prime}\right) \mid p(s), p\left(s^{\prime}\right), C\right)$ can be written

$$
C\left(\left|s-s^{\prime}\right|\right)\left[\sum_{i_{1}} p_{i_{1}}(s)\right]\left[\sum_{i_{2}} p_{i_{2}}\left(s^{\prime}\right)\right]+\sum_{i_{1}, i_{2} ;\left|\phi_{i_{1}}-s\right|<\epsilon_{i_{1}},\left|\phi_{i_{2}}-s^{\prime}\right|<\epsilon_{i_{2}}} p_{i_{1}}(s) p_{i_{2}}\left(s^{\prime}\right) C^{\prime}\left(\psi_{i_{1}, i_{2}}\right) \varepsilon_{i_{1}, i_{2}}
$$

Since C^{\prime} is nonnegative and $\varepsilon_{i_{1}, i_{2}} \in(-2 \epsilon, 2 \epsilon)$, we have that for $J_{i_{1}, i_{2}}=\left\{\left(i_{1}, i_{2}\right) ;\left|\phi_{i_{1}}-s\right|<\right.$ $\left.\epsilon_{i_{1}},\left|\phi_{i_{2}}-s^{\prime}\right|<\epsilon_{i_{2}}\right\}$,

$$
\begin{align*}
-2 \epsilon \sum_{i_{1}, i_{2} \in J_{i_{1}, i_{2}}} p_{i_{1}}(s) p_{i_{2}}\left(s^{\prime}\right) C^{\prime}\left(\psi_{i_{1}, i_{2}}\right) & \leq \sum_{\left(i_{1}, i_{2}\right) \in J_{i_{1}, i_{2}}} p_{i_{1}}(s) p_{i_{2}}\left(s^{\prime}\right) C^{\prime}\left(\psi_{i_{1}, i_{2}}\right) \varepsilon_{i_{1}, i_{2}} \\
& \leq 2 \epsilon \sum_{\left(i_{1}, i_{2}\right) \in J_{i_{1}, i_{2}}} p_{i_{1}}(s) p_{i_{2}}\left(s^{\prime}\right) C^{\prime}\left(\psi_{i_{1}, i_{2}}\right) \tag{15}
\end{align*}
$$

where,

$$
2 \epsilon \sum_{i_{1}, i_{2} \in J_{i_{1}, i_{2}}} p_{i_{1}}(s) p_{i_{2}}\left(s^{\prime}\right) C^{\prime}\left(\psi_{i_{1}, i_{2}}\right) \longrightarrow_{\epsilon \rightarrow 0} 0
$$

because C^{\prime} is bounded and the sum of probability masses is always bounded by 1 . The sum of probability masses would be always bounded by 1, because by proposition 1 the prior process is properly defined.

Thus, we obtain

$$
\operatorname{cov}\left(Y(s), Y\left(s^{\prime}\right) \mid p(s), p\left(s^{\prime}\right), C\right) \longrightarrow_{\epsilon \rightarrow 0} C\left(\left|s-s^{\prime}\right|\right)\left[\sum_{i_{1}} p_{i_{1}}(s)\right]\left[\sum_{i_{2}} p_{i_{2}}\left(s^{\prime}\right)\right]=C\left(\left|s-s^{\prime}\right|\right)
$$

Therefore, the conditional covariance of the data process Y approximates the covariance C of the underlying process X as the bandwiths of the kernel functions go to zero.

A. 3

Proof of Theorem 2.
The cross-covariance function $C_{1,2}\left(s, s^{\prime}\right)$ of the underlying process $X=\left(X_{1}, X_{2}\right)$ has first order partial derivatives $\delta C_{1,2}\left(s, s^{\prime}\right) / \delta s$ and $\delta C_{1,2}\left(s, s^{\prime}\right) / \delta s^{\prime}$. We introduce a Taylor expansion
for $C_{1,2}$ with a Lagrange remainder term,
$C_{1,2}\left(\phi_{i_{1}}, \phi_{i_{2}}\right)=C_{1,2}\left(s, s^{\prime}\right)+\left(\phi_{i_{1}}-s\right)\left[\delta C_{1,2}\left(s, s^{\prime}\right) / \delta s\right]_{\left(s, s^{\prime}\right)=\left(\psi_{i_{1}}, \psi_{i_{2}}\right)}+\left(\phi_{i_{2}}-s^{\prime}\right)\left[\delta C_{1,2}\left(s, s^{\prime}\right) / \delta s^{\prime}\right]_{\left(s, s^{\prime}\right)=\left(\psi_{i_{1}}, \psi_{i_{2}}\right)}$
where $\psi_{i_{1}}$ is in between s and $\phi_{i_{1}}$, and $\psi_{i_{2}}$ is in between s^{\prime} and $\phi_{i_{2}}$. We follow the same steps as in Theorem 1, to bound the first order term of the Taylor expansion, and obtain that

$$
\operatorname{cov}\left(Y_{1}(s), Y_{2}\left(s^{\prime}\right) \mid p_{1}(s), p_{2}\left(s^{\prime}\right), C_{1,2}\right) \longrightarrow_{\epsilon \rightarrow 0} C_{1,2}\left(s, s^{\prime}\right),
$$

where $p_{1}(s)$, and $p_{2}\left(s^{\prime}\right)$ are the potentially infinite dimensional vectors with the all probability masses in the spatial stick-breaking prior processes $F_{s}\left(Y_{1}\right)$, and $F_{s^{\prime}}\left(Y_{2}\right)$ respectively.

A. 4

Proof of Theorem 3.
Let $\psi(t, s)$ be the characteristic function of $Y(s)$. Then,

$$
\begin{align*}
& \psi\left(t, s_{1}\right)-\psi\left(t, s_{2}\right)=E_{Y}\left[\exp \left\{i t Y\left(s_{1}\right)\right\}\right]-E_{Y}\left[\exp \left\{i t Y\left(s_{2}\right)\right\}\right] \\
= & E_{X}\left\{\sum_{j} p_{j}\left(s_{1}\right) \exp \left\{i t X\left(\phi_{j}\right)\right\}\right\}-E_{X}\left\{\sum_{j} p_{j}\left(s_{2}\right) \exp \left\{i t X\left(\phi_{j}\right)\right\}\right\} \\
= & E_{X}\left\{\sum_{j}\left(p_{j}\left(s_{1}\right)-p_{j}\left(s_{2}\right)\right) \exp \left\{i t X\left(\phi_{j}\right)\right\}\right\} \longrightarrow_{\left|s_{1}-s_{2}\right| \rightarrow 0} 0 . \tag{16}
\end{align*}
$$

Then, $F_{s_{1}}(Y)$ converges to $F_{s_{2}}(Y)$ for any locations s_{1}, s_{2}, as long as $\left|s_{1}-s_{2}\right| \rightarrow 0$.

A. 5

Proof of Theorem 4.

The probability masses $p_{i}(s)$ in (1) are $p_{i}(s)=V_{i} K_{i}(s) \prod_{j=1}^{i-1}\left(1-V_{j} K_{j}(s)\right)$. Since the bandwiths ϵ_{i} converge uniformly to zero, then, $p_{i}(s) \rightarrow 1$, as $\left|\phi_{i}-s\right| \rightarrow 0$, where ϕ_{i} is the
knot of kernel K_{i}. This holds because $\sum_{j} p_{j}(s)=1$ a.s. (since the process Y is properly defined).

Assume now $\left|s_{1}-s_{2}\right| \rightarrow 0$, we need to prove that $Y\left(s_{1}\right)$ converges a.s. to $Y\left(s_{2}\right)$.
Let ϕ_{1} and ϕ_{2} satisfy,

$$
\begin{equation*}
\left|\phi_{1}-s_{1}\right| \rightarrow 0, \quad \text { and } \quad\left|\phi_{2}-s_{2}\right| \rightarrow 0 . \tag{17}
\end{equation*}
$$

Thus, we obtain that with probability $1, Y\left(s_{1}\right)$ converges to $X\left(\phi_{1}\right)$, and $Y\left(s_{2}\right)$ to $X\left(\phi_{2}\right)$.
Since $\left|s_{1}-s_{2}\right| \rightarrow 0$, and $\left|\phi_{1}-\phi_{2}\right| \leq\left|\phi_{1}-s_{1}\right|+\left|\phi_{2}-s_{2}\right|+\left|s_{1}-s_{2}\right|$. Then, by (17)

$$
\begin{equation*}
\left|\phi_{1}-\phi_{2}\right| \rightarrow 0 . \tag{18}
\end{equation*}
$$

We have,

$$
\left|Y\left(s_{1}\right)-Y\left(s_{2}\right)\right| \leq\left|Y\left(s_{1}\right)-X\left(\phi_{1}\right)\right|+\left|Y\left(s_{2}\right)-X\left(\phi_{2}\right)\right|+\left|X\left(\phi_{1}\right)-X\left(\phi_{2}\right)\right|,
$$

where $\left|Y\left(s_{1}\right)-X\left(\phi_{1}\right)\right| \rightarrow 0$ a.s., as $\left|s_{1}-\phi_{1}\right| \rightarrow 0 ;\left|Y\left(s_{2}\right)-X\left(\phi_{2}\right)\right| \rightarrow 0$ a.s., as $\left|s_{2}-\phi_{2}\right| \rightarrow 0 ;$ and since X is a.s. continuous, $\left|X\left(\phi_{1}\right)-X\left(\phi_{2}\right)\right| \rightarrow 0$ a.s., as $\left|\phi_{1}-\phi_{2}\right| \rightarrow 0$ (which holds by 18).

Therefore, $\left|Y\left(s_{1}\right)-Y\left(s_{2}\right)\right| \rightarrow 0$ a.s.

