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SUPPLEMENTARY MATERIAL
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Properly defined process prior

Kolmogorov existence theorem

We need to prove that the collection of finite-dimensional distributions introduced in
(1) define a stochastic process Y(s). We use the two Kolmogorov consistency conditions
(symmetry under permutation, and dimensional consistency) to show that (1) defines a

proper random process for Y.

Proposition 1. The collection of finite-dimensional distributions introduced in (1)
properly define a stochastic process Y (s). We use the two Kolmogorov consistency con-
ditions: symmetry under permutation, and dimensional consistency, to define properly a

random process for Y.

Proof of Proposition 1:

Symmetry under permutation.

Let pi; = p(Y(s5) = X(¢i(s,)), where ¢;,) is the centering knot of the kernel i(s;) in
the representation of F,(Y) in (1), and let ¢;, be an abbreviation for ¢s,). Then, p;, i,

determine the site-specific joint selection probabilities. If 7(1),...,7(n) is any permutation



of {1,...,n}, then we have

= p(Y(Sl) = X(¢i1)’ S 7Y(8n) = X<¢ln)) = Dir,ins

since the observations are conditionally independent. Then,

p(Y(s1) € Ay,...,Y(sn) € Ay)

= D> p(Y(s1) = X(9i)s -, Y(sn) = X(9:,))0x (500 (A1)

11, in

= p(Y(sr) € Az), -5 Y(Sx(n)) € An(n));

and, the symmetry under permutation condition holds.

Dimensional consistency.

p(Y(s1) € (A1),...,Y(sg) €R,...,Y(s,) € (4,))

o 5X(¢(in))(An)

= p(Y(Sl) S (Al), ce 7Y(Sk_1) € An_1, Y<Sk+1) S Ak‘—l—lu ce ,Y(Sn) S (An))

In (13), we need

(12)

(13)



which holds by Fubini Theorem and the fact that X is a properly defined Gaussian process.

A.2

Proof of Theorem 1.

The covariance function C of the underlying process X has a first order derivative, C’.

We introduce a Taylor expansion for C' with a Lagrange remainder term,

C(|¢11 - ¢12|) = C(|S - S,D + C,(¢i1,i2)5i17i27 (14)

where €, i, = (|, — ¢in| — |5 — §'|) and ¥y, 4, is in between |s — | and |¢p;, — ¢4, ).
Assuming that s and s’ lie on the support of the kernels K;, and Kj;,, respectively, i.e.

|¢i, — s| < €, and |¢;, — s'| < €,. We have,
€iyin S H(bu - ¢12‘ - |5 - SIH S ‘(¢l1 - (blz) - (3 - S,)’ S €y + €iy S 25,

and,

Eiris = —||0iy — in| — |s = 5| = (i, — ¢iy) — (s — &) > — (&, +€,) > —2e,

Thus, —2¢ <¢g;,;, < 2e.

Let p(s) be the potentially infinite vector with all the probabilities masses p;(s) in Fy(Y).
The conditional covariance of the data process Y is written in terms of the covariance C' of
X,

cov(Y (5), Y (s)|p(s): ("), C) = > iy (5)pia (8)C (|1, — dia).
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since the kernels all have compact support, the expression above is the same as

Z Diy (S)pi2<8/>0<|¢i1 - ¢z2|)

11,02;] iy —8|<eiq 5| Pig —5'|<eiq



Using the Taylor approximation in (14), the cov(Y(s), Y (s')|p(s), p(s’), C') can be written

D orals ] [th(s')

C(ls — 5|

Z Piy (S)piz (S/>C/(¢i1,i2)€i1,i2'

i17i2§|¢i1 _S|<€i1 :‘(biQ _5l|<6i2

Since C” is nonnegative and ¢;, ;, € (—2¢, 2¢), we have that for J;, ;, = {(i1,42); [¢s, — 5| <

€1y |¢12 - S/‘ < €i2}7

—2€ Z Piy (3)pi2 (S,)Ol(wimé) < Z Piy (S)pi2 (S/)Cl(qvbihh )5%'171'2

il,izEJil,iz (i1,’i2)EJi1’i2

2 Y pa(9)pua(s)0 (W), (15)

(i1,82)€Jiq ig

IN

where,

Z pzl plz C/<w11 22) —e—0 O

1 l2€J11 ig

because C” is bounded and the sum of probability masses is always bounded by 1. The sum
of probability masses would be always bounded by 1, because by proposition 1 the prior
process is properly defined.

Thus, we obtain

C(ls = 5.

cov(Y(s), Y'(s')p(s), p(s"), €) —em0 C(Is — &) lzpu ] [ZPZQ

Therefore, the conditional covariance of the data process Y approximates the covariance C

of the underlying process X as the bandwiths of the kernel functions go to zero.

A3

Proof of Theorem 2.

The cross-covariance function C o(s, s’) of the underlying process X = (X, X3) has first

order partial derivatives 6C1 o(s, s")/ds and 6C1 o(s, s')/ds’. We introduce a Taylor expansion



for (', » with a Lagrange remainder term,

Cr2(¢i, @in) = Cra(s, ) +(0i—5) [0C12(5,8) /98], gy, i) TP =5) [6C12(5, 8) /0] o)y )

where 1);, is in between s and ¢;,, and v, is in between s’ and ¢;,. We follow the same steps

as in Theorem 1, to bound the first order term of the Taylor expansion, and obtain that

COV(Yl (3), Y2(3,) |P1 (5)7]72(5/), C'1,2) —7e—0 01,2(3, 3,)7

where p;(s), and po(s’) are the potentially infinite dimensional vectors with the all probability

masses in the spatial stick-breaking prior processes Fy(Y1), and Fy (Y2) respectively.

A4

Proof of Theorem 3.

Let v(t, s) be the characteristic function of Y (s). Then,

W(t,s1) — (L, s9) = Eylexp{itY (s1)}] — Eylexp{itY (s2)}]

= Ex {ij(sl) eXp{itX(¢j)}} — Ex {Zm(&) eXp{itX(cbj)}}

J J

= Ex {Z(pj(sl) — p;i(s2)) exp{itX(¢j)}} —s1-sal0 0- (16)

J

Then, Fy, (Y) converges to Fy,(Y) for any locations sy, s9, as long as |s; — sa| — 0.

A.5

Proof of Theorem 4.

The probability masses pi(s) in (1) are pi(s) = ViK;(s) [['—(1 — V;K;(s)). Since the

Jj=1

bandwiths €; converge uniformly to zero, then, p;(s) — 1, as |¢; — s| — 0, where ¢; is the



knot of kernel K;. This holds because ) ;ipi(s) = 1 as. (since the process Y is properly
defined).
Assume now |s; — so| — 0, we need to prove that Y'(s;) converges a.s. to Y(s2).

Let ¢; and ¢y satisty,
|1 — 51| = 0, and [¢2 — 52| = 0. (17)

Thus, we obtain that with probability 1, Y(s;) converges to X (¢;), and Y (s3) to X (¢a).

Since |s1 — 55| — 0, and |1 — @o| < |¢1 — 51| + |2 — 52| + |51 — 5. Then, by (17)
[¢1 — @2 = 0. (18)
We have,
[Y(s1) = Y(s2)| < [Y(s1) = X ()| + [Y(s2) — X(¢2)] + [ X (1) — X ()],

where |Y(s1) — X (é1)] = 0 a.s., as sy — 1] — 05 |Y(s2) — X(¢2)| — 0 a.s., as |sy — ¢a| — 0;
and since X is a.s. continuous, | X (¢1) — X(¢2)| = 0 a.s., as |¢p; — ¢2| — 0 (which holds by
18).

Therefore, |Y(s1) — Y(s2)| = 0 a.s.





