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Supplementary material

A.1

Properly defined process prior

Kolmogorov existence theorem

We need to prove that the collection of finite-dimensional distributions introduced in

(1) define a stochastic process Y (s). We use the two Kolmogorov consistency conditions

(symmetry under permutation, and dimensional consistency) to show that (1) defines a

proper random process for Y.

Proposition 1. The collection of finite-dimensional distributions introduced in (1)

properly define a stochastic process Y (s). We use the two Kolmogorov consistency con-

ditions: symmetry under permutation, and dimensional consistency, to define properly a

random process for Y.

Proof of Proposition 1:

Symmetry under permutation.

Let pij = p(Y (sj) = X(φi(sj)), where φi(sj) is the centering knot of the kernel i(sj) in

the representation of Fsj(Y ) in (1), and let φij be an abbreviation for φ(i(sj)). Then, pi1,...,in

determine the site-specific joint selection probabilities. If π(1), . . . , π(n) is any permutation
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of {1, . . . , n}, then we have

piπ(1),...,iπ(n)
= p(Y (sπ(1)) = X(φπ(i1)), . . . , Y (sπ(n)) = X(φπ(in)))

= p(Y (s1) = X(φi1), . . . , Y (sn) = X(φin)) = pi1,...,in , (12)

since the observations are conditionally independent. Then,

p(Y (s1) ∈ A1, . . . , Y (sn) ∈ An)

=
∑

i1,··· ,in

p(Y (s1) = X(φi1), . . . , Y (sn) = X(φin))δX(φ(i1))(A1) . . . δX(φ(in))(An)

=
∑

i1,··· ,in

pi1,...,inδX(φ(i1))(A1) . . . δX(φ(in))(An)

=
∑

i1,··· ,in

piπ(1),...,iπ(n)
δX(φ(iπ(1)))(Aπ(1)) . . . δX(φ(iπ(n)))(Aπ(n))

= p(Y (sπ(1)) ∈ Aπ(1), . . . , Y (sπ(n)) ∈ Aπ(n)),

and, the symmetry under permutation condition holds.

Dimensional consistency.

p(Y (s1) ∈ (A1), . . . , Y (sk) ∈ R, . . . , Y (sn) ∈ (An))

=
∑

(i1,...,in)∈{1,2,... }n

pi1,...,inδX(φi1 )
(A1) · · · δX(φik )

(R) · · · δX(φin )
(An)

=
∑

(i1,...,ik−1,ik+1,...,in)∈{1,2,... }n−1

δX(φi1 )
(A1) · · · δX(φik−1

)(Ak−1)δX(φik+1
)(Ak+1)

· · · δX(φin )
(An)

∞
∑

j=1

pi1,...,ik−1,j,ik+1,...,in

= p(Y (s1) ∈ (A1), . . . , Y (sk−1) ∈ Ak−1, Y (sk+1) ∈ Ak+1, . . . , Y (sn) ∈ (An)). (13)

In (13), we need

pi1,...,ik−1,ik+1,...,in =
∞
∑

j=1

pi1,...,ik−1,j,ik+1,...,in
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which holds by Fubini Theorem and the fact that X is a properly defined Gaussian process.

A.2

Proof of Theorem 1.

The covariance function C of the underlying process X has a first order derivative, C ′.

We introduce a Taylor expansion for C with a Lagrange remainder term,

C(|φi1 − φi2|) = C(|s− s′|) + C ′(ψi1,i2)εi1,i2 , (14)

where εi1,i2 = (|φi1 − φi2| − |s− s′|) and ψi1,i2 is in between |s− s′| and |φi1 − φi2 |.

Assuming that s and s′ lie on the support of the kernels Ki1 and Ki2 , respectively, i.e.

|φi1 − s| < ǫi1 and |φi2 − s′| < ǫi2 . We have,

εi1,i2 ≤ ||φi1 − φi2 | − |s− s′|| ≤ |(φi1 − φi2)− (s− s′)| ≤ ǫi1 + ǫi2 ≤ 2ǫ,

and,

εi1,i2 ≥ −||φi1 − φi2 | − |s− s′|| ≥ −|(φi1 − φi2)− (s− s′)| ≥ −(ǫi1 + ǫi2) ≥ −2ǫ,

Thus, −2ǫ ≤ εi1,i2 ≤ 2ǫ.

Let p(s) be the potentially infinite vector with all the probabilities masses pi(s) in Fs(Y ).

The conditional covariance of the data process Y is written in terms of the covariance C of

X,

cov(Y (s), Y (s′)|p(s), p(s′), C) =
∑

i1i2

pi1(s)pi2(s
′)C(|φi1 − φi2|),

since the kernels all have compact support, the expression above is the same as

∑

i1,i2;|φi1−s|<ǫi1 ,|φi2−s
′|<ǫi2

pi1(s)pi2(s
′)C(|φi1 − φi2 |).
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Using the Taylor approximation in (14), the cov(Y (s), Y (s′)|p(s), p(s′), C) can be written

C(|s− s′|)

[

∑

i1

pi1(s)

][

∑

i2

pi2(s
′)

]

+
∑

i1,i2;|φi1−s|<ǫi1 ,|φi2−s
′|<ǫi2

pi1(s)pi2(s
′)C ′(ψi1,i2)εi1,i2 .

Since C ′ is nonnegative and εi1,i2 ∈ (−2ǫ, 2ǫ), we have that for Ji1,i2 = {(i1, i2); |φi1−s| <

ǫi1 , |φi2 − s′| < ǫi2},

−2ǫ
∑

i1,i2∈Ji1,i2

pi1(s)pi2(s
′)C ′(ψi1,i2) ≤

∑

(i1,i2)∈Ji1,i2

pi1(s)pi2(s
′)C ′(ψi1,i2)εi1,i2

≤ 2ǫ
∑

(i1,i2)∈Ji1,i2

pi1(s)pi2(s
′)C ′(ψi1,i2), (15)

where,

2ǫ
∑

i1,i2∈Ji1,i2

pi1(s)pi2(s
′)C ′(ψi1,i2) −→ǫ→0 0,

because C ′ is bounded and the sum of probability masses is always bounded by 1. The sum

of probability masses would be always bounded by 1, because by proposition 1 the prior

process is properly defined.

Thus, we obtain

cov(Y (s), Y (s′)|p(s), p(s′), C) −→ǫ→0 C(|s− s′|)

[

∑

i1

pi1(s)

][

∑

i2

pi2(s
′)

]

= C(|s− s′|).

Therefore, the conditional covariance of the data process Y approximates the covariance C

of the underlying process X as the bandwiths of the kernel functions go to zero.

A.3

Proof of Theorem 2.

The cross-covariance function C1,2(s, s
′) of the underlying process X = (X1, X2) has first

order partial derivatives δC1,2(s, s
′)/δs and δC1,2(s, s

′)/δs′. We introduce a Taylor expansion
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for C1,2 with a Lagrange remainder term,

C1,2(φi1 , φi2) = C1,2(s, s
′)+(φi1−s) [δC1,2(s, s

′)/δs](s,s′)=(ψi1
,ψi2

)+(φi2−s
′) [δC1,2(s, s

′)/δs′](s,s′)=(ψi1
,ψi2

)

where ψi1 is in between s and φi1 , and ψi2 is in between s′ and φi2 . We follow the same steps

as in Theorem 1, to bound the first order term of the Taylor expansion, and obtain that

cov(Y1(s), Y2(s
′)|p1(s), p2(s

′), C1,2) −→ǫ→0 C1,2(s, s
′),

where p1(s), and p2(s
′) are the potentially infinite dimensional vectors with the all probability

masses in the spatial stick-breaking prior processes Fs(Y1), and Fs′(Y2) respectively.

A.4

Proof of Theorem 3.

Let ψ(t, s) be the characteristic function of Y (s). Then,

ψ(t, s1)− ψ(t, s2) = EY [exp{itY (s1)}]− EY [exp{itY (s2)}]

= EX

{

∑

j

pj(s1) exp{itX(φj)}

}

− EX

{

∑

j

pj(s2) exp{itX(φj)}

}

= EX

{

∑

j

(pj(s1)− pj(s2)) exp{itX(φj)}

}

−→|s1−s2|→0 0. (16)

Then, Fs1(Y ) converges to Fs2(Y ) for any locations s1, s2, as long as |s1 − s2| → 0.

A.5

Proof of Theorem 4.

The probability masses pi(s) in (1) are pi(s) = ViKi(s)
∏i−1

j=1(1 − VjKj(s)). Since the

bandwiths ǫi converge uniformly to zero, then, pi(s) → 1, as |φi − s| → 0, where φi is the
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knot of kernel Ki. This holds because
∑

j pj(s) = 1 a.s. (since the process Y is properly

defined).

Assume now |s1 − s2| → 0, we need to prove that Y (s1) converges a.s. to Y (s2).

Let φ1 and φ2 satisfy,

|φ1 − s1| → 0, and |φ2 − s2| → 0. (17)

Thus, we obtain that with probability 1, Y (s1) converges to X(φ1), and Y (s2) to X(φ2).

Since |s1 − s2| → 0, and |φ1 − φ2| ≤ |φ1 − s1|+ |φ2 − s2|+ |s1 − s2|. Then, by (17)

|φ1 − φ2| → 0. (18)

We have,

|Y (s1)− Y (s2)| ≤ |Y (s1)−X(φ1)|+ |Y (s2)−X(φ2)|+ |X(φ1)−X(φ2)|,

where |Y (s1)−X(φ1)| → 0 a.s., as |s1−φ1| → 0; |Y (s2)−X(φ2)| → 0 a.s., as |s2−φ2| → 0;

and since X is a.s. continuous, |X(φ1)−X(φ2)| → 0 a.s., as |φ1 − φ2| → 0 (which holds by

18).

Therefore, |Y (s1)− Y (s2)| → 0 a.s.
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