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Abstract: In this paper we develop a nonparametric multivariate spatial model that

avoids specifying a Gaussian distribution for spatial random effects. Our nonpara-

metric model extends the stick-breaking (SB) prior of Sethuraman (1994), that is

frequently used in Bayesian modelling to capture uncertainty in the parametric

form of an outcome. The stick-breaking prior is extended here to the spatial set-

ting by assigning each location a different, unknown distribution, and smoothing

the distributions in space with a series of space-dependent kernel functions that

have a space-varying bandwidth parameter. This results in a flexible nonstationary

spatial model, as different kernel functions lead to different relationships between

the distributions at nearby locations. This approach is the first to allow both the

probabilities and the point mass values of the SB prior to depend on space. Thus,

there is no need for replications and we obtain a continuous process in the limit.

We extend the model to the multivariate setting by having, for each process, a

different kernel function, but sharing the location of the kernel knots across the dif-

ferent processes. The resulting covariance for the multivariate process is in general

nonstationary and nonseparable. The modelling framework proposed here is also

computationally efficient because it avoids inverting large matrices and calculating

determinants. We study the theoretical properties of the proposed multivariate

spatial process. The methods are illustrated using simulated examples and an air

pollution application to model components of fine particulate matter.

Key words and phrases: Dirichlet processes, nonseparability, nonstationarity, spa-

tial models.

1. Introduction

This paper focuses on the problem of modelling the unknown distribution of

a multivariate spatial process. We introduce a nonparametric model that avoids

specifying a Gaussian distribution for the spatial random effects. This model

is flexible enough to characterize the potentially complex spatial structures of

the tails and extremes of multivariate distributions, and it is computationally

efficient.

Our nonparametric model extends the stick-breaking (SB) prior of Sethura-

man (1994) that is frequently used in Bayesian modelling to capture uncertainty
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in the parametric form of a distribution. For general (non-spatial) Bayesian mod-

elling, the stick-breaking prior offers a way to model a distribution of a parameter

as an unknown quantity to be estimated from the data. The stick-breaking prior

for the unknown distribution F, is

F
d
=

M∑
i=1

piδ(Xi),

where the number of mixture components M may be infinite, pi = Vi
∏i−1

j=1(1 −
Vj), Vi ∼ Beta(a, b) independent across i, δ(Xi) is the Dirac distribution with

point mass at Xi, Xi
i.i.d.∼ Fo, and Fo is a known distribution. A special case

of this prior is the Dirichlet process prior with infinite M and Vi
i.i.d.∼ Beta(1, ν)

(Ferguson (1973)). The stick-breaking prior has been extended to the univariate

spatial setting by incorporating spatial information into either the model for the

values of Xi or the model for the masses pi. Gelfand, Kottas, and MacEach-

ern (2005), Gelfand, Guindani, and Petrone (2007), and Petrone, Guindani, and

Gelfand (2008) model the Xi as vectors drawn from a spatial distribution, in

particular Petrone, Guindani, and Gelfand (2008) extend this type of Dirichlet

mixture model for functional data analysis. However, their model requires repli-

cation. Griffin and Steel (2006) propose a spatial Dirichlet model that permutes

the Vi based on spatial location, allowing the occurrence of Xi to be more or

less likely in different regions of the spatial domain. The kernel functions in our

proposed methodology impose a natural ranking for the different mixture compo-

nents based on distances of locations to knots, which is the role the permutations

and ranking in Griffin and Steel’s approach would play. Reich and Fuentes (2007)

introduce a SB prior allowing the probabilities pi to be space-dependent by using

kernel functions that have independent and identically distributed (i.i.d.) band-

widths (not space-dependent), but this spatial SB prior has a limiting process

that is not continuous. This model is similar to that of Dunson and Park (2008),

who use kernels to smooth the weights in the non-spatial setting. An et al. (2008)

extend the kernel SB prior for use in image segmentation. Reich and Fuentes

(2007) use the kernel SB prior in a multivariate setting, but it has a separable

cross-covariance.

Here we introduce an extension of the stick-breaking prior to the multivariate

spatial setting that allows for nonseparability and nonstationarity in the spatial

cross-dependency between the outcomes of interest. We assign at each location

a different, unknown distribution, and we smooth the distributions in space with

space-dependent kernel functions, allowing then for nonstationarity. This is the

first approach that allows both the probabilities pi and the values Xi to depend
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on space, consequently there is no need for replications, and we obtain a contin-

uous process in the limit. One of the main challenges when analyzing continuous

spatial processes and making Bayesian spatial inference is calculating the likeli-

hood function of the covariance parameters. For large datasets, calculating the

matrix inverses and determinants in the likelihood might not be feasible; the

modelling framework proposed here is computationally efficient because this is

avoided.

We apply our methods to model and characterize the complex spatial struc-

ture of air pollution, in particular to components of fine particulate matter. Fine

particulate matter (PM2.5) is the general term used for a mixture of solid par-

ticles and liquid droplets in the air that are 2.5 microns in diameter and less.

It includes aerosols, smoke, fumes, dust, ash, and pollen. PM2.5 has over 40

components and two of the main ones are nitrate and ammonium. The study

of the association between ambient particulate matter (PM) and human health

has received much attention in epidemiological studies over the past few years,

e.g., Dominici et al. (2002). Their results showed the importance of considering

particle size, composition, and source information when modeling particle pol-

lution health effects. The PM2.5 chemistry changes with space and time so its

association with the heath endpoints could change across space and time. Speci-

ated PM2.5 is measured sparsely, and spatial interpolation is needed to conduct

epidemiological studies of the spatial association of these pollutants and adverse

health effects. We introduce a multivariate spatial model for chemical compo-

nents of PM2.5 across the United States, and focus on nitrate and ammonium.

This is the first study with chemical components of particulate matter that allows

the cross-dependency between components to vary spatially.

The paper is organized as follows. In Section 2, we introduce a univari-

ate spatial model using an extension of the stick-breaking prior, which directly

models nonstationarity. In Section 3, we present a multivariate extension of this

spatial SB model that allows nonseparability and a cross dependency between

spatial processes that is space-dependent. In Section 4, we present the condi-

tional and marginal properties of the spatial SB process prior, and we study

some asymptotic properties. In Section 5, we show the continuity of the limiting

process. In Section 6 we discuss computing methods and MCMC algorithms. In

Section 7, we illustrate the proposed methods with a simulation study. In Section

8, we present the application to air pollution. We conclude with remarks and

comments in Section 9.

2. Univariate Nonstationary Spatial Model

The spatial distribution of a stochastic process Y (s) is modeled using an

extension of the stick-breaking prior that directly models nonstationarity. The
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nonparametric spatial model assigns a different prior distribution to the stochas-

tic process at each location, Y (s) ∼ Fs(Y ). The distributions Fs(Y ) are unknown

and smoothed spatially. The coordinate s is in D ∈ Rd. To simplify notation

throughout this section we take d = 2.

The prior for Fs(Y ) is the potentially infinite mixture

Fs(Y )=

M∑
i=1

pi(s)δ(X(ϕi)) =

M∑
i=1

Vi(s)
∏
j<i

[1− Vj(s)]δ(X(ϕi)), (2.1)

where X is a Gaussian process (GP) with covariance ΣX that has diagonal el-

ements σ2
i . p1(s) = V1(s), pi(s) = Vi(s)

∏i−1
j=1(1 − Vj(s)), Vi(s) = Ki(s)Vi, with

Vi ∼ Beta(a, b) independent over i, and
∑

i pi(s) = 1 for all s (by supplemen-

tal material A.1). The weight function, Ki, is a spatial kernel centered at knot

ϕi ∈ R2 with bandwidth parameter ϵi. More generally we fit elliptical kernels

Ki, with Bi the 2 × 2 matrix that controls the shape of the ellipse. We write

Bi = T (ϕi)T (ϕi)
′, where T (ϕi)

′ denotes the transpose of T (ϕi), and Tkk′(ϕi) is

the (k, k′) element of the matrix T (ϕi). We normalize the kernel functions to

avoid lack of identifiability problems when estimating the Vi components.

In this representation, it is important to notice that the underlying GP X is

defined on the knot space.

The spatial correlation of the process Y (s) is controlled by the bandwidth

parameters associated with knots in the vicinity of s (Section 4). To allow the

correlation to vary from region to region, the bandwidth parameters are modeled

as spatially varying parameters. Thus, we assign to Tij(ϕi), for i, j ∈ {1, 2},
spatial Gaussian priors with non-zero mean and Matérn covariance functions

(Matérn (1960)). For identification purposes we restrict the mean of the diagonal

elements of T to be positive. We also consider isotropic kernels, Bi = ϵiI, with

a log-Gaussian prior for ϵi.

In addition to allowing the correlation (via the bandwidth parameters) to be

a function of space, we allow the variance to be a spatial process. To do this, the

spatial process X(ϕi) has a zero mean-Gaussian process prior with covariance

(Palacios and Steel (2006)),

cov(X(ϕi), X(ϕj)) = σiσjρ(|ϕi − ϕj |), (2.2)

where σi = σ(ϕi) is the the variance of the process X(ϕi), space-dependent, ρ is

a correlation function, and |ϕi − ϕj | denotes the Euclidean distance between ϕi

and ϕj . We assign to log(σ(ϕi)) a spatial Gaussian prior with non-zero mean and

a Matérn covariance function. The knots ϕ are random, with spatially uniform

prior. In practice we work with a discrete spatial uniform prior to facilitate
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sampling of the Gaussian Process (GP) priors that have distances defined in the

knot space.

Higdon, Swall, and Kern (1999) introduced a nonstationarity representation

of a Gaussian process using a kernel convolution. In that representation the

kernels did not have the widths of the elliptical bandwidths space-dependent, only

the angles, and the only kernels considered were squared exponential. Here,apart

from generalizing the type of kernel convolution in Higdon, Swall, and Kern

(1999), the stick-breaking structure adds to the kernel convolution by allowing

for lack of normality, and it introduces the flexibility of having the data determine

the locations of the most relevant knots.

Model (2.1) is a Dirichlet Process (DP) mixture model with spatially varying

weights. The process of interest that we model in practice is Z(s) = Y (s) +

e(s), where Y arrives from the DP model in (2.1), and e(s) ∼ N(0, σ2
0) is the

measurement error process. Thus, in our hierarchical Bayesian framework the

response Z given the Y process (SB prior) is independent over space.

In supplemental material A.1 we show that the representation in (2.1) is a

properly defined process prior. In Section 4 we study the marginal and condi-

tional properties of (2.1) for a stationary process X.

3. Multivariate Spatial Model

We present a nonparametric multivariate spatial model, that is a multivariate

extension of model (2.1). We explain the cross spatial dependency between p

stochastic processes, Y1(s), . . . , Yp(s), by introducing a model for the distribution

of each Yk(s), for k = 1, . . . , p,

Fs(Yk) =
M∑
i=1

Vi,k(s)
∏
j<i

[1− Vj,k(s)]δ(Xk(ϕi)), (3.1)

where, p1,k(s) = V1,k(s), pi,k(s) = Vi,k(s)
∏i−1

j=1(1 − Vj,k(s)), with Vi,k(s) =

Ki,k(s)Vi, Vi ∼ Beta(a, b) independent over i. The kernel functionsKi,k are space-

dependent and modelled as in the univariate case, but having the knots of each

kernel function shared across the p spatial processes. The p-dimensional process

X = (X1, . . . , Xp) has a multivariate normal prior. The cross-covariance for the

multivariate process X at each knot i is Σ(i) = A(ϕi)A
′(ϕi), where A is a full rank

lower triangular, A(ϕi) = {akk′(ϕi)}kk′ , and for each k and k′ in {1, . . . , p}, akk′
are independent spatial Gaussian non-zero mean processes evaluated at location

ϕi. For identification purposes we restrict the mean of the diagonal elements

of A to be positive. Thus, the process (X1(ϕi), . . . , Xp(ϕi)) has a multivariate

normal prior with a covariance Σ(i) that depends on space via the knot locations.

By allowing Σ(i) to depend on i, we obtain a cross covariance between the Yk
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processes that varies with space (nonstationary cross-dependence), and it is in

general nonseparable in the sense that we do not separately model the cross-

dependency between the p processes and the spatial dependency structure. We

allow not only the magnitude of the cross-dependency structure to vary across

space but also its sign; we call this “nonstationarity for the sign” of the cross-

dependency. Most multivariate models, in particular separable models for the

covariance, constrain the cross-dependency to be stationary with respect to its

sign (e.g., Reich and Fuentes (2007)); Choi et al. (2009)).

As an example, a simpler representation of the nonparametric multivariate

spatial model in (3.1) is

Fs(Yk) =

M∑
i=1

Vi,k(s)
∏
j<i

[1− Vj,k(s)]δ(X(ϕi)),

where the V and K random weights are different for each process Yk. This

allows the spatial processes Yk, to have different spatial structure: the V and K

components explain the different spatial structure of the Yk processes, as well

as the strength of the cross-dependence between the Y ′
ks. This simpler version

can offer computational benefits but it does not allow for nonstationarity in the

sign. In the context of speciated particulate matter, the sharing of the underlying

processX, may be justified by the components of PM2.5 sharing pollution sources.

4. Asymptotic Dependence and Weak Convergence

In this section we study the properties of the spatial dependence induced

by our mixture model. Initially, conditioning on the mixture weights, in which

case as the kernel bandwidths become smaller and only the kernels with knots

in the vicinity of the data points would be in the mixture, one would expect to

have a limiting process with similar properties as the base process X. So if X

is stationary, we expect a stationary conditional dependence. The asymptotic

results here aid the understanding of the different components in our mixture

representation. Proofs are in the supplemental material .

4.1. Conditional univariate spatial covariance

Consider the prior in (2.1) for the data process Y. Without loss of generality,

we take Bi = ϵiI, where I is the 2 × 2 identity matrix. Conditional on the

probability masses pi(s) in (2.1), but not on X, the covariance between two

observations is,

cov(Y (s), Y (s′)|p(s), p(s′), C)

=
∑
i

σ2
i pi(s)pi(s

′) +
∑
i1 ̸=i2

pi1(s)pi2(s
′)C(|ϕi1 − ϕi2 |)
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=
∑
i

σ2
i

[
Ki(s)Ki(s

′)V 2
i

∏
j<i

(1− ((Kj(s) +Kj(s
′))Vj +Kj(s)Kj(s

′)V 2
j ))
]

+
∑
i1 ̸=i2

[Ki1(s)Ki2(s
′)Vi1Vi2C(|ϕi1 − ϕi2 |)∏

j1<i1

∏
j2<i2

(1− (Kj1(s)Vj1 +Kj2(s
′)Vj2) +Kj1(s)Kj2(s

′)Vj1Vj2)], (4.1)

where p(s) = (p1(s), p2(s), . . .) denotes the potentially infinite dimensional vector

with the pi(s) in the mixture defined as (2.1), C is the covariance function of X,

and σ2
i = cov(X(ϕi), X(ϕi)).

The conditional covariance of Y as (4.1), as the bandwidths of the kernel

functions become smaller, is stationary and approximates the covariance function

C of the underlying processX, cov(X(s), X(s′)) = C(|s−s′|). This result is stated
in Theorem 1.

Theorem 1. Consider the prior as (2.1) for the process Y , and assume that

Ki is a kernel with compact support for all i, and that C has a bounded and

nonnegative first derivative. Conditioned on the probabilities pi(s) but not X,

the covariance of Y tends to the covariance function C of an isotropic process

X, as the bandwidths of the kernel functions Ki as (2.1) go uniformly to zero.

4.2. Conditional multivariate spatial covariance

Consider the multivariate prior (Fs(Y1), . . . , Fs(Yp)) as (3.1) for the processes

Y1(s), . . . , Yp(s), conditioned on the probabilities pi,1(s) and pi,2(s
′) for each pair

of data processes Y1(s) and Y2(s
′), but not on the corresponding underlying

multivariate process X = (X1, X2), the cross-covariance between any pair Y1(s)

and Y2(s
′), is

cov(Y1(s), Y2(s
′)|p1(s), p2(s′), C)

=
∑
i

pi,1(s)pi,2(s
′)C1,2(ϕi, ϕi) +

∑
i1 ̸=i2

pi1,1(s)pi2,2(s
′)C1,2(ϕi1 , ϕi2)

=
∑
i

[Ki,1(s)Ki,2(s
′)Vi,1Vi,2C1,2(ϕi, ϕi)∏

j<i

(1−Kj,1(s)Vj,1 −Kj,2(s
′)Vj,2 +Kj,1(s)Kj,2(s

′)Vj,1Vj,2)]

+
∑
i1 ̸=i2

[
Ki1,1(s)Ki2,2(s

′)Vi1,1Vi2,2C1,2(ϕi1 , ϕi2)∏
j1<i1

∏
j2<i2

(1−(Kj1,1(s)Vj1,1+Kj2,2(s
′)Vj2,2)+Kj1,1(s)Kj2,2(s

′)Vj1,1Vj2,2)]. (4.2)
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This cross-covariance approximates the cross-covariance function cov(X1(s),

X2(s
′)) = C1,2(s, s

′) of the underlying process X = (X1, X2) used to define the

process prior for Y1 and Y2, for small bandwidths of the kernel functions. The

formal result is in Theorem 2.

Theorem 2. Consider the multivariate prior (Fs(Y1), . . . , Fs(Yp)) for the data

processes Y1(s), . . . , Yp(s) as (3.1), and suppose the cross-covariance function

of the process X = (X1, X2) as (3.1) has first order partial derivatives that are

bounded nonnegative functions, and that the kernels functions associated with the

processes Y1(s) and Y2(s) have compact support. Conditioned on the probabilities

pi,1(s) and pi,2(s
′) for each pair of data processes Y1(s) and Y2(s

′), but not on the

corresponding process X = (X1, X2), the cross-covariance cov(Y1(s), Y2(s
′)) tends

to the cross-covariance function C1,2(s, s
′) of the process X as the bandwidths of

the kernel functions for Fs(Y1) and Fs(Y1) go uniformly to zero.

4.3. Marginal properties: univariate case

We study the marginal properties of the prior as (2.1). We start by assum-

ing that the Vi as (2.1) share the Beta(a, b) prior. Then, E(Vi) = E(V ), and

E(V 2
i ) = E(V 2), for all i. We take Bi = ϵiI to simplify the presentation. We

suppose the covariance, C, of the process X is stationary with C(0) = σ2, and

is an integrable function. We consider independent priors for the bandwidth

and the knot parameters of the kernel functions Ki, and we study the marginal

properties when the Vi components are space dependent functions and X has a

nonstationary variance.

Integrating over the probability masses, the marginal covariance is

cov(Y (s), Y (s′)) = σ2c2E(V 2)
∑
i

[
1− 2c1E(V ) + c2E(V 2)

]i−1

+
∑
i1 ̸=i2

c1,2[1− 2c1E(V ) + c2E(V )2](i1−1)(i2−1)

= σ2 γ(s, s′)

2(1 + b/(a+ 1))− γ(s, s′)

+E(V )2
∑
i1 ̸=i2

c1,2[1− 2c1E(V ) + c2E(V )2](i1−1)(i2−1), (4.3)

where

γ(s, s′) =

∫ ∫
Ki(s)Ki(s

′)p(ϕi, ϵi)dϕidϵi∫∫
Ki(s)p(ϕi, ϵi)dϕidϵi

,

c1 =

∫ ∫
Ki(s)p(ϕi, ϵi)dϕidϵi,
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c2 =

∫ ∫
Ki(s)Ki(s

′)p(ϕi, ϵi)dϕidϵi,

c1,2 =

∫ ∫ ∫ ∫
Ki1(s)Ki2(s

′)C(|ϕi1 − ϕi2 |)p(ϕi1 , ϵi1)dϕi1dϵi1p(ϕi2 , ϵi2)dϕi2dϵi2 .

The first term in (4.3) corresponds to the marginal covariance if the underlying

process X is i.i.d. across space rather than a spatial Gaussian process. The

second term is due to the spatial dependency of the process X. The first term

in (4.3) is a function of s and s′ through the function γ(s, s′), and this can be

written as γ0(s− s′) when the kernel functions are the same across space, rather

than being space-dependent.

Supposing there is a buffer zone to avoid edge effects, c1,2(s, s
′) as (4.3),

denoted by c1,2, is the only component that is a function of the covariance of X.

When the covariance of X is stationary, c1,2(s, s
′) = c0(h). For instance, if X

has a squared exponential covariance with range ρ, under squared exponential

kernel function with a fixed prior for the bandwidth, we obtain that c1,2(s, s
′) is

stationary and, for small values of the kernel bandwidth ϵ,

c1,2 = (2π)2
( ϵ2ρ

ρ+ 2ϵ

)
exp

{
−h′h

2

(ρ(ρ+ 2ϵ)

ρ+ ϵ

)−1}
(4.4)

when (ϵi1 , ϵi2) = (1, ϵ) or (ϵi1 , ϵi2) = (ϵ, 1). The second term in (4.3), as the

kernel bandwidths tend to zero, is the squared exponential correlation function

with range ρ.

From (4.3), one sees that the degree of differentiability of the marginal covari-

ance function for Y is, in general, one degree higher than that of the covariance

of X. In (4.3), the moments of V are not space-dependent, but when V is a func-

tion of space and the kernel bandwidths are also space-dependent, the resulting

marginal covariance is not stationary even for an i.i.d. X.

4.4. Marginal properties: univariate with space-dependent kernels

We calculate the marginal covariance, but we allow the functions Vi to be

space dependent, Vi ∼ Beta(1, τi), E(Vi) = 1/(1 + τi). We also allow the vari-

ance of the process X to be space-dependent, cov(X(ϕi), X(ϕi)) = σ2
i , and the

bandwidth parameters ϵi of the kernel functions to be space-dependent. Then,

we have

cov(Y (s), Y (s′)) =
∑
i

σ2
iE(V 2

i )[1−c1(s)E(Vi)−c1(s
′)E(Vi)+c2(s, s

′)E(V 2
i )]

(i−1)

+
∑
i1 ̸=i2

c(s, s′)E(Vi1Vi2)[1− c1(s)E(Vi1)− c1(s
′)E(Vi2)

+c2(s, s
′)E(Vi1Vi2)]

(i1−1)(i2−1), (4.5)
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where

c1(s) =

∫ ∫
Ki(s)p(ϵi|ϕi)p(ϕi)dϕidϵi,

c2(s, s
′) =

∫ ∫
Ki(s)Ki(s

′)p(ϵi|ϕi)p(ϕi)dϕidϵi,

c(s, s′) =

∫ ∫ ∫ ∫
Ki1(s)Ki2(s

′)C(|ϕi1 − ϕi2 |)p(ϕi1)p(ϵi1 |ϕi1)dϕi1dϵi1

p(ϕi2)p(ϵi2 |ϕi2)dϕi2dϵi2 .

The nonstationarity in the variance is due to the space-dependent variance

σi, the nonstationarity in the correlation (range of dependence) is induced by

the space-dependent bandwidths. In the expression for the marginal covariance

of the process Y as (4.5), we have the integral of the covariance function for

the underlying process X. Thus, the degree of differentiability of the marginal

covariance function for Y , is one degree higher than the degree of differentiability

for the covariance of X.

4.5. Marginal properties: multivariate cross covariance

We present marginal properties of the multivariate spatial representation as

(3.1). We study the marginal cross-covariance between any pair of processes

Y1(s) and Y2(s
′), assuming that the cross-covariance C1,2 between the underlying

processes X1 and X2 is an integrable function. We allow the bandwidth parame-

ters to be functions of the knots. Then, integrating over the probability masses,

the covariance between two observations is

cov(Y1(s), Y2(s
′)) =

∑
i1,i2

E(Vi1,1Vi2,2)c
∗
i1,i2(s, s

′)[1−c∗1,1(s)E(Vi1,1)−c∗2(s
′)E(Vi2,2)

+c∗i1,i2(s, s
′)E(Vi1,1Vi2,2)]

(i1−1)(i2−1), (4.6)

where

c∗1,k(s) =

∫ ∫
Ki,k(s)p(ϕi,k)p(ϵi,k|ϕi,k)dϕi,kdϵi,k,

c∗2(s, s
′) =

∫ ∫ ∫ ∫
Ki,1(s)Ki,2(s

′)p(ϕi,1)p(ϵi,1|ϕi,1)dϕi,1dϵi,1

p(ϕi,2)p(ϵi,2|ϕi,2)dϕi,1dϵi,2,

c∗i1,i2(s, s
′) =

∫ ∫ ∫ ∫
Ki1,1(s)Ki2,2(s

′)C1,2(ϕi1 , ϕi2)p(ϕi1,1)p(ϵi1,1|ϕi1,1)dϕi1,1dϵi1,1

p(ϕi2,2)p(ϵi2,2|ϕi2,2)dϕi2dϵi2,2.

The marginal covariance in (4.6) allows for a lack of stationarity in the

sign of the spatial cross-dependency structure; this is induced by the change of
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sign in the cross-covariance C1,2 of the underlying process X. The dependency

structure in (4.6) is in general nonseparable, in the sense that we cannot separate

the dependence between Y1 and Y2 and the spatial dependence between locations

s and s′.

4.6. Weak convergence

In this section we study the weak convergence for a spatial process Y (s)

with process prior Fs(Y ) as in (2.1), with the purpose of understanding if Fs1(Y )

approximates Fs2(Y ) when s1 is close to s2.

Theorem 3. Let Y (s) be a random field, with random distribution given by Fs(Y )

as in (2.1). If the probability masses pi(s) in (2.1) are almost surely continuous,

then Y (s1) converges weakly to Y (s2) with probability one as |s1 − s2| → 0.

If the kernel functions Ki(s) as (2.1) are continuous functions, then the

probability masses pi(s) are almost surely continuous and Fs1(Y ) tends to Fs2(Y )

as |s1 − s2| → 0, Theorem 3. From Theorem 3, we do not need X to be almost

surely continuous to have weak convergence for Y . However, to have almost sure

continuity for Y , we need X to be almost surely continuous, Theorem 4.

5. Continuous Realizations for the Limiting Process

Unlike other nonparametric spatial models in the literature (Gelfand et al.

(2004)), our representation does not require repeated measures at the observation

locations, because the latent process specification has a continuous realization

in the limit. If the underlying surface of interest is continuous and smooth,

this continuity is not only desirable but it also offers computational benefits in

relation to spatially discontinuous SB priors (e.g., Reich and Fuentes (2007)).

For instance, a discontinuous spatial SB would need several mixture components

to characterize a spatial Gaussian process, while we only need one component

with the model introduced here.

Theorem 4. Let Y (s) be a random field given through Fs(Y ) as (2.1). If the

underlying stationary process is almost surely (a.s.) continuous in s for every

s ∈ R2, then as the bandwidth parameters go uniformly to zero and the knots

become more dense, the process Y has a.s. continuous realizations.

Kent (1989) shows that if the covariance of X admits a second order Taylor-

series expansion with remainder that goes to zero at a rate of 2 + δ for some

δ > 0, then X is a.s. continuous.
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6. Computing Methods

6.1. Truncation

It is useful in practice to consider finite approximations to an infinite stick-

breaking process. We focus on a truncation approximation to (2.1),

N∑
i=1

pi(s)δ(X(ϕi)) + (1−
N∑
i=1

pi(s))δ(X(ϕ0)),

that results in a distribution Fs,N such that Fs,N → Fs, with Fs the distribution

of the stick-breaking process at location s. If p0(s) denotes the probability mass

on X(ϕ0), we have, a.s.,
∑N

i=0 pi(s) = 1 for all s. The proof of this result is a

straightforward extension of Theorem 3 in Dunson and Park (2008).

Papaspiliopoulos and Roberts (2008) introduce an elegant computational

approach to working with an infinite mixture for Dirichlet processes mixing.

However, their approach would not be efficient in our setting, because it relies

on Markovian properties of all parameters, and the spatial varying parameters

in our model (e.g. bandwidths) are not (discrete) conditionally autoregressive

spatial processes, but rather continuous spatial processes.

6.2. MCMC details

For computational purposes, let g(s) ∼ Categorical(p1(s), . . . , pM (s)) to in-

dicate Z(s)’s mixture component, so that Z(s)|g(s) is normal with mean X(ϕg(s))

and diagonal covariance Σe, the covariance of the nugget effect. We wrute

Xj(ϕi) =
∑

k akj(ϕi)Uk(ϕi), where U1, . . . , Up are independent spatial processes

with mean zero, cov(Uj(ϕ1), . . . , Uj(ϕM )) = Ωj , with the (u, v) element of Ωj as

ρj(ϕu, ϕv). Using this parameterization, g(sl), Uk(ϕi), and akk′(ϕi) have conju-

gate full conditional posteriors and are updated using Gibbs sampling. The full

conditionals for g(s) and Uk(ϕi) are

P (g(s) = m) =
pm(s)Φ(X(ϕm),Σe)∑M
i=1 pi(s)Φ(X(ϕi),Σe)

, (6.1)

where Φ(X(ϕm),Σe) is the multivariate normal density with mean X(ϕm) and

covariance Σe, Uk(ϕi)’s full conditional is normal with

V ar [Uk(ϕi)|rest]−1 = {Ω−1
k }ii +

n∑
l=1

p∑
k′=1

I (g(sl) = i)

(
akk′

σk′

)2

(6.2)

E [Uk(ϕi)|rest] = V ar [Uk(ϕi)|rest][
−
∑
l ̸=i

{Ω−1
k }liUk(ϕl) +

n∑
l=1

p∑
k′=1

I (g(sl) = i)
rk′(sl)akk′

σ2
k′

]
,
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and rk′(sl) = Yk′(sl)−
∑

k ̸=k′ akk′(ϕi)Uk(ϕi). The full conditional for akk′(ϕi) is

nearly identical to the full conditional of Uk(ϕi) and is not given here.

We sampled the nugget variances from their conjugate inverse gamma full

conditionals. Conjugacy does not hold in general for the stick-breaking parame-

ters Vi, Bi, or ϕi, or the spatial range parameters; these parameters are updated

using Metropolis sampling with Gaussian candidate draws. For the stick-breaking

parameters Vi at iteration t, we generate the candidate value V ∗
i ∼ N(V

(t−1)
i , c),

where V
(t−1)
i is the value from the previous iteration and c is a tuning parame-

ter. Then V
(t)
i is set to V ∗

i with probability min{1, R}, and to V
(t−1)
i otherwise.

To compute the acceptance ratio R, we calculate the stick-breaking probabilities

using all the current values of the parameters, denoted p
(t−1)
m (s), and using all

the current values with V
(t−1)
i replaced by the candidate V ∗

i , denoted p∗m(s). The

acceptance ratio is then

R =

 n∏
l=1

p∗g(sl)(sl)

p
(t−1)
g(sl)

(sl)

 Be(V ∗
i ; a, b)

Be(V
(t−1)
i ; a, b)

,

where Be(V ; a, b) is the beta prior density. The remaining stick-breaking pa-

rameters Bi and ϕi are updated similarly. Candidates with no posterior mass

are rejected and the candidate standard deviations are tuned to give acceptance

rate near 0.4. We draw 25,000 MCMC samples and discard the first 5,000 as

burn-in. Convergence is monitored using trace plots of the deviance as well as

several representative parameters.

The number of sample points, n, is often used in spatial methods to describe

the computational burden of the model because evaluating the Gaussian likeli-

hood requires inverting an n×n covariance matrix, which is challenging for large

n. In the proposed mixture model, most of the computational time is spent eval-

uating spatial processes defined at the M knots. Therefore, M may be a more

relevant summary of computational complexity. For smooth processes, M < n

knots may be sufficient, resulting in a dimension reduction and improved com-

puting for large n. However, for processes with small spatial range, the model

may require M = n or even M > n knots, which is infeasible for large data sets.

A good starting value for M is the expected effective number of observations. We

easily determine if M is large enough by evaluating the posterior distribution of

the mixture probabilities and determining if pM , the residual mass not accounted

by the other M − 1 mixture probabilities, is small enough. The stick-breaking

prior process does not need to be an infinite mixture and, in many cases, a small

number of components can explain well the underlining spatial structure.
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7. Simulation Study

We generated bivariate spatial data on a 15×15 regular grid of spatial loca-

tions spanning [0, 1]2. With (y1(s), y2(s))
′ the observation at location s ∈ [0, 1]2,

generated the spatial data by first drawing two independent bivariate Gaus-

sian processes (z
(1)
1 (s), z

(1)
2 (s))′ and (z

(2)
1 (s), z

(2)
2 (s))′ with stationary and separa-

ble covariances Cov
[
(z

(j)
1 (s), z

(j)
2 (s))′, (z

(j)
1 (t), z

(j)
2 (t)′)

]
= exp (−||s− t||/ρj)Σj ,

where ρ1 = 0.05, ρ2 = 0.25, Σ1 =

(
1 0.8

0.8 1

)
, and Σ2 =

(
1 −0.8

−0.8 1

)
. These

stationary Gaussian processes were used to generate non-stationary and/or non-

Gaussian processes in the following ways.

1. Stationary, Gaussian: µk(s) = z
(1)
k (s).

2. Non-stationary, Gaussian: µk(s) =
√
w(s)z

(1)
k (s) + [1−

√
w(s)]z

(2)
k (s).

3. Stationary, Non-Gaussian: µk(s) = f
[
z
(1)
k (s)

]
.

4. Non-stationary, Non-Gaussian: µk(s)=f
[√

w(s)z
(1)
k (s)+[1−

√
w(s)]z

(2)
k (s)

]
.

Here w(s) = exp(−10
[
(s1 − 0.2)2 + (s2 − 0.2)2

]
), f(c) = G−1(Φ(c)), Φ is the

standard normal CDF, and G is the Gamma(2,2) CDF. The second design is a

linear combination of two Gaussian processes, with weight for the first component

high in the lower left corner near s = (0.2, 0.2)′, and low in the upper right corner.

Therefore, the spatial range is small (following ρ1) and the cross-correlation is

positive (following Σ1) in the lower left; the spatial range is large (following ρ2)

and the cross-correlation is negative (following Σ2) in the lower left. The third

design is stationary, but the function f transforms the marginal distribution

from standard normal to the right-skewed Gamma(2,2). The final design is non-

stationary and non-Gaussian.

For each design we generatedK = 25 data sets by first drawing µ as described

above, and then adding error with mean 0 and standard deviation 0.5 at each

location and each response type. All observations for the first response y1 were

retained, while the second response y2 was eliminated for a randomly selected

subset of 20% of the spatial locations. Table 1 reports the mean squared error

between the true and posterior mean µ for the second response for each model,

separately for locations with “complete data” and with “partial data”.

We fit four models to each data set. The first model was the stationary, Gaus-

sian model yj(s) ∼ N(µj(s), σ
2
j ), where µ(s) was a bivariate Gaussian process

with separable covariance Cov[(µ1(s), µ2(s))
′, (µ1(t), µ2(t)

′)]=exp (−||s−t||/ρ)Σ.
For priors we took σ2

j ∼ InvGamma(0.1,0.1), Σ ∼ Wishart(2.1,0.1I2), and ρ ∼
Unif(0,1). The prior distribution for the variance parameter σ2

0 of the measure-

ment error process was InvGamma(0.1,0.1). The second model was also Gaussian
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with a separable covariance, but we allowed for nonstationarity using the kernel

convolution model for µj(s) (Higdon, Swall, and Kern (1999)):

µj(s) =
M∑
k=1

wjk(||s− ϕk||)θk, (6.3)

where θk
i.i.d.∼ N(0, 1), wjk as the kernel function described below, and the ϕk ∈ R2

were fixed spatial knots. We chose the kernel function to approximate the Matérn

covariance

Cov
[
(µ1(s), µ2(s))

′, (µ1(s+ h), µ2(s+ h))′
]

=
τ2

2ν−1Γ(ν)

(
2ν1/2||h||

ρ

)ν

Kν

(
2ν1/2||h||

ρ

)
, (6.4)

where K is the modified Bessel function, τ2 > 0 controls the variance, ρ > 0

controls the spatial range of the correlation, and ν > 0 controls the smoothness

of the process. The Matérn kernel function with spatially-varying range is

wjk(u) = τ2j
γ(νj + 1)1/2ν

νj/4+1/4
j |u|νj/2−1/2

π1/2Γ(νj/2 + 1/2)Γ(νj)1/2ρ
νj/2+1/2
jk

Kνj/2+1/2

(
2ν

1/2
j |u|
ρjk

)
. (6.5)

We took log(ρjk) to be Gaussian with mean ρ̄j and covariance Cov(log(ρjk),

log(ρjl)) = δ2j exp (−||ϕk − ϕl||/ηj), independent across response type j. For pri-

ors we took νj ∼ Unif(0,10), τ−2
j , δj ∼ Gamma(0.01,0.01), ρ̄j ∼ N(-2,1), and ηj ∼

Unif(0,1). Note the prior 95% interval for exp(ρ̄j) was roughly (0,1), comparable

to that of for the spatial range in Model 1. The knots had a spatial uniform

prior.

In addition to the Gaussian model, we fit two versions of the spatial stick-

breaking model. Both models used uniform kernels. The first was the stationary

model of Reich and Fuentes (2007): the model in Section 2 with constant band-

widths and cross-covariance, and the with i.i.d. X. The second was the full

model in Section 3 that allows not only X, but also the bandwidths and cross-

correlations to be spatial continuous processes. The knots had a spatial discrete

uniform prior. The number of mixture components was fixed at M = 225 for all

mixture models.

Overall, the proposed model outperformed its competitors, bringing a sig-

nificant reduction in the MSE. For complete data locations, in the stationary

Gaussian case, all model performed similarly, except for the Reich and Fuentes

(2007) SB prior that slightly underperformed other competitors. In the fourth

setting, using our proposed nonparametric model, there was a reduction of 41%
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Table 1. Mean squared error (standard error) for the simulation study.

(a) Complete data locations

Simulation Design Model
Stationary Gaussian Stationary Non-stationary Stationary Non-stationary

Gaussian Gaussian non-Gaussian non-Gaussian
Yes Yes 0.46 (0.01) 0.46 (0.01) 0.47 (0.01) 0.46 (0.01)
No Yes 0.53 (0.03) 0.78 (0.05) 0.45 (0.01) 0.45 (0.01)
Yes No 0.70 (0.01) 0.39 (0.01) 0.46 (0.02) 0.39 (0.01)
No No 0.61 (0.02) 0.49 (0.03) 0.50 (0.02) 0.36 (0.01)

(b) Partial data locations

Simulation Design Model
Stationary Gaussian Stationary Non-stationary Stationary Non-stationary

Gaussian Gaussian non-Gaussian non-Gaussian
Yes Yes 0.70 (0.02) 0.75 (0.03) 0.72 (0.02) 0.62 (0.03)
No Yes 0.71 (0.02) 0.83 (0.03) 0.57 (0.02) 0.56 (0.03)
Yes No 0.71 (0.02) 0.71 (0.02) 0.57 (0.02) 0.57 (0.03)
No No 0.72 (0.02) 0.70 (0.02) 0.57 (0.02) 0.52 (0.02)

in the MSE for complete data locations with respect to the standard stationary

Gaussian process, a reduction of 27% when compared to the kernel convolution

nonstationary Gaussian model, and a reduction of 28% when compared to the

spatial SB prior of Reich and Fuentes (2007). Similarly, in the second setting,

there is a reduction of 15% in the MSE when compared to the spatial SB prior

of Reich and Fuentes (2007).

The proposed model also outperformed all other models at partial data loca-

tions. Our nonparametric model is capable of characterizing complex nonstation-

ary, and/or non-Gaussian data structures, as well as simpler stationary surfaces,

and it seems to outperform the alternatives in the literature.

To evaluate how the proposed method captures the cross-dependence be-

tween data processes, in Figure 2 we compare the true cross covariance for the

simulation design with Gaussian nonstationary data, with the average of the

posterior mean of the cross-covariance for the full model. The similar patterns

in Figure 2 indicate that our method can reproduce cross-dependence structure;

similar results were obtained for other designs.

8. Analysis of Nitrate and Ammonium

Nitrate and ammonium are two of the greatest contributors to the PM2.5

mass, and studies conducted separately for each pollutant have found significant

association with adverse health outcomes (e.g., Hughes et al. (2002), Batalha

et al. (2002), and Clarke et al. (2000)). To illustrate the multivariate model
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(a) Monitoring data locations

(b) Ammonium

(c) nitrate

Figure 1. Comparison between the true cross-covariance structure and the
posterior mean of the cross-covariance using the proposed method.
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(a) True cross-covariance

(b) Estimated cross-covariance

Figure 2. Maps of monitoring data locations and log-transformed ammonium
and nitrate data.

proposed here, we analyze monthly average values of ammonium and nitrate for

January, 2007 at 209 monitoring stations in the US. These data were obtained

from the US EPA http://www.epa.gov/airexplorer/index.htm. The data are

plotted in Figure 1.

Spatial locations were projected to a flat surface using the Mercantor pro-

jection and re-scaled to [0, 1]2. The data are right-skewed, so we used a log

transformation for each pollutant and, for each pollutant, we removed a second-

order mean trend with linear and quadratic effects for latitude and longitude,

and the interaction between latitude and longitude, to account for large-scale

spatial variation.

We compared the four models described in Section 7 using five-fold cross

validation. For the stick-breaking models we found M = 225 terms sufficient to

http://www.epa.gov/airexplorer/index.htm
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Table 2. Five-fold cross validation root mean squared error and coverage
probability for ammonium and nitrate.

(a) Root mean squared error

Stationary Gaussian Ammonium nitrate
Yes Yes 0.253 0.268
No Yes 0.302 0.316
Yes No 0.239 0.263
No No 0.227 0.259

(b) Coverage probability of 90% predictive intervals

Stationary Gaussian Ammonium nitrate
Yes Yes 0.920 0.938
No Yes 0.951 0.966
Yes No 0.928 0.956
No No 0.941 0.938

approximate the infinite dimensional model. For all models, the priors were those

in Section 7, using different space-dependent uniform kernels for each pollutant

by sharing knots and bandwidth. Observations were allocated to the five training

data sets randomly over space and species. The mean root squared prediction

(RMSE) error and coverage probabilities are given in Table 2. Our proposed

multivariate nonstationary nonGaussian model reduces the RMSE by 24% for

ammonium and 18% for nitrate when compared to the kernel convolution non-

stationary Gaussian approach. It also outperforms the Gaussian model, and the

nonparametric approach of Reich and Fuentes (2007), though, the gain is more

moderate in that case. Our model reaches the nominal coverage probability, this

did not seem to be a problem for any of the models.

There is also considerable variation in the bandwidths in Figure 3, where

we plot theit posterior mean. The largest bandwidths are in the Midwest and

Southwest, where both pollutants show smoother spatial patterns.

Convergence was monitored using trace plots of the deviance and several

parameters. The deviance converged after 1,000 iterations, which was the burn-

in used in these simulations.

Finally, we conducted a sensitivity analysis to various modeling assumptions.

We refit the model, increasing the number of terms in the mixture model to

M = 400, and with squared-exponential kernels. Figure 4 plots the fitted values

in the logarithmic scale (mean of the posterior predictive distribution). The

fitted values are similar for the different kernel types and when we increase the

number of terms in the mixture model. We also looked at sensitivity with respect

to prior distributions for model parameters. We include here results for the
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Figure 3. Posterior mean of the bandwidth parameter.

range parameter (one of the most difficult parameters to estimate). We refit the

entire model using a log-normal distribution prior for the range parameters with

location parameter 0 and squared scale LogNormal(0,1), rather than uniform

priors. The correlation between the fitted values from both models with the

different prior distributions, and between the residuals after removing the spatial

trend, varied between 0.997 and 1 for both pollutants. We also studied sensitivity

to the distributions of knots; results not shown here indicate that the results were

robust to their prior distribution. In summary, the results appear to be robust

to the choice of kernel and prior distributions, as well to varying the number of

mixture components and the prior distribution for knot selection.

9. Discussion

In this paper we introduce a nonparametric framework for modelling multi-

variate spatial processes that is flexible enough to admit complex nonstationary

dependency and cross-dependency structures without specifying a Gaussian dis-

tribution. One advantage of our approach is that is computationally efficient and

therefore useful in situations where several complex spatial processes need to be

modelled simultaneously.

The univariate kernel stick breaking version provides an alternative to re-

cently developed spatial stick-breaking processes (Griffin and Steel (2006); Dun-

son and Park (2008); Gelfand, Guindani, and Petrone (2007); Reich and Fuentes

(2007)). The univariate version has a continuous limiting process, rather than

discrete as in the other approaches, and it allows for non-stationarity.

Here many of the tools developed for Dirichlet processes can be applied with

some modifications, and that allowes us to study statistical properties. The

application in the paper is to a multivariate spatial process, but our framework
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(a) Ammonium, Uniform kernel, M=225 (b) Nitrate, Uniform kernel, M=225

(c) Ammonium, Gauss kernel, M=225 (d) Nitrate, Gauss kernel, M=225

(e) Ammonium, Uniform kernel, M=400 (f) Nitrate, Uniform kernel, M=400

Figure 4. Posterior mean (in log scale) for models with different kernels
(Uniform or Gaussian) and different number of terms in the mixture (M =
225 or M = 400).
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can be applied to multivariate spatial-temporal processes by using space-time

kernels. We plan to carry out this extension.
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