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Abstract: We propose several methods for constructing nested (nearly) orthogonal
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1. Introduction

Construction of (nearly) orthogonal Latin hypercube designs and related
(nearly) orthogonal designs has recently drawn a surge of interest in computer ex-
periments (Santner, Williams, and Notz (2003); Fang, Li, and Sudjianto (2005)).
Such designs can be obtained by using permutation matrices (Ye (1998)), build-
ing on rotation matrices and factorial designs (Steinberg and Lin (2006)), or
coupling small (nearly) orthogonal designs with orthogonal matrices (Bingham,
Sitter, and Tang (2009)). Other work in this direction includes Owen (1994)
Tang (1998), Lin, Mukerjee, and Tang (2009), and Pang, Liu, and Lin (2009).

The purpose of this article is to construct nested (nearly) orthogonal de-
signs intended for running a pair of low-accuracy and high-accuracy computer
experiments (Kennedy and O’Hagan (2000); Qian et al. (2006)). This work is
based on the first author’s Ph.D. thesis (Li (2010)). We define nested (nearly)
orthogonal designs to be two (nearly) orthogonal designs with one nested within
the other. Because taking an arbitrary subset of a (nearly) orthogonal design is
not guaranteed to give a smaller (nearly) orthogonal design, systematic methods
are needed for construction.

We introduce some notation and definitions. Take the correlation of vectors
a = (a1, . . . , an)

′ and b = (b1, . . . , bn)
′ to be

ρ =

∑n
i=1(ai − ā)(bi − b̄)

(n− 1)sasb
,
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where ā =
∑n

i=1 ai, b̄ =
∑n

i=1 bi, and sa and sb are the sample standard deviations

of a and b, respectively. We call a and b are orthogonal if ρ = 0. The average

correlation of an n×m matrix A = (aij) is given by

ρ(A) =

√∑
i<j ρ

2
ij(A)

m(m− 1)/2
, (1.1)

where ρij is the correlation between columns i and j of A. If ρ(A) = 0, A is

orthogonal. Throughout, a design is said to be orthogonal if its columns are

orthogonal to each other.

Let LH(n,m) denote a Latin hypercube of n equally spaced levels inm factors

(McKay, Beckman, and Conover (1979)). Let OLH(n,m) denote an LH(n,m)

with orthogonal columns. Our definition of nested Latin hypercubes is motivated

by the concept of nested orthogonal arrays in Mukerjee, Qian, and Wu (2008),

who define a nested orthogonal array to be an orthogonal array containing a

subarray that is a smaller orthogonal array itself. For integers n1 > n2, a nested

Latin hypercube NLH(n1, n2,m) is a Latin hypercube of n1 levels in m factors

containing a subarray of n2 runs that is an LH(n2,m) itself. Let B ⊂ A be an

NLH(n1, n2,m) and suppose that A and B are orthogonal. Then A, or B ⊂ A,

is called a nested orthogonal Latin hypercube, denoted by NOLH(n1, n2,m). In

Section 3, we construct nested Hadamard matrices that are a pair of Hadamard

matrices of different orders with one nested within the other. Nested Hadamard

matrices serve as an important building block for constructing nested (nearly)

orthogonal designs via the Kronecker product in Section 4.

2. Obtaining Nested Orthogonal Latin Hypercubes Using Nested

Rotation Matrices and Nested Factorial Designs

This section proposes an approach for constructing nested orthogonal Latin

hypercubes by exploiting nesting in rotation matrices and factorial designs. As

in Steinberg and Lin (2006), for an integer d and a prime p, let D1 be a pd × d

full factorial design with columns 1, 2, . . . , d. Each element [a0 + a1x + a2x
2 +

· · · + ad−1x
d−1] of GF (pd) is denoted by a vector [a0, . . . , ad−1], corresponding

to a generalized interaction 1a02a1 . . . dad−1 for D1, e.g., [1 + x] corresponds to

the interaction of factors 1 and 2. Every non-zero element of GF (pd) can be

expressed as [xi] for some integer i. From Theorem 1 of Steinberg and Lin (2006)

for a nonnegative integer k,∣∣[xk], [xk+1], . . . , [xk+d−1]
∣∣ (2.1)

constitutes a pd×d full factorial design, where | · | denotes column juxtaposition.

Two different designs generated by (2.1) are called disjoint if their columns do
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not overlap when expressed in terms of [x] powers. Two such disjoint designs are

mutually orthogonal in that any column of one design is orthogonal to any column

of the other. Juxtaposing, column by column, a set of mutually orthogonal full

factorial designs obtained from (2.1) yields an orthogonal fractional factorial

design that has at most

b =

⌊
pd − 1

d(p− 1)

⌋
(2.2)

mutually orthogonal full factorial design components (Pang, Liu, and Lin (2009)).

Note that (pd − 1)/[d(p− 1)] is an integer for p ≥ 3.

An n× n matrix R is a rotation matrix if R
′
R is proportional to the n× n

identity matrix, denoted by In. Here is a recursive method for constructing such

matrices proposed in Beattie and Lin (1997) and Pang, Liu, and Lin (2009). For

a prime p, let R0 = 1 for c = 0, and let

Rc =

[
Rc−1 −p2

c−1
Rc−1

p2
c−1

Rc−1 Rc−1

]
2c×2c

, for c ≥ 1,

where R′
cRc = acI2c with ac = (p2

c+1 − 1)/(p2 − 1). Let d = 2c. Take D = (dij)

to be a full factorial design in d factors of pd runs with levels 1, . . . , p. Centering

D by replacing dij with

dij −
p+ 1

2
(2.3)

gives

D
′
D = λ1Id, (DRc)

′
(DRc) = λ2Id,

where λ1 = pd(p2− 1)/12 and λ2 = pd(p2d− 1)/12. Here, DRc is an OLH(pd, d),

with each column a permutation on {−(pd−1)/2,−(pd−1)/2+1, . . . , (pd−1)/2}.
A key of the proposed approach is to rotate a nested factorial design. We

take a nested factorial design to be a factorial design containing a small factorial

design as a subset. Such a design can be constructed by juxtaposing two identical

small fractional factorial designs in D1 in (2.1). For d = 2c, the proposed method

has three steps.

Step 1. Construct a p2d × 2d partitioned full factorial design D1 = |D(1)
1 ,D

(2)
1 |

with levels 1, . . . , p that contains |D0
1,D

0
1| as the first pd rows, where D0

1 is a

pd × d full factorial design. Center D1 as in (2.3).

Step 2. For i = 2, . . . , b, with b defined in (2.2), use (2.1) to generate a

p2d × 2d full factorial design Di = |D(1)
i , D

(2)
i | from D1, where D

(1)
i is from

{[x(i−1)d], [x(i−1)d+1], . . . , [x(i−1)d+d−1]} associated with D
(1)
1 , and D

(2)
i is from

{[x(i−1)d], [x(i−1)d+1], . . . , [x(i−1)d+d−1]} associated with D
(2)
1 .
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Step 3. For i = 1, . . . , b, obtain Ai by taking the first d columns of DiRc+1. Put

A = |A1, . . . ,Ab|. Obtain a matrix B by taking the first pd rows of A.

Theorem 1. For A and B constructed above, a prime p and an integer c ≥ 0,

(i) A is an OLH(n1,m); (ii) B ⊂ A and B is an OLH(n2,m), where d = 2c,

b =
⌊
(pd − 1)/[d(p− 1)]

⌋
, n1 = p2d, n2 = pd, and m = bd.

Proof. For i = 1, . . . , b, Ai is an OLH(p2d, d) with each column being a permuta-

tion on {−(p2d−1)/2,−(p2d−1)/2+1, . . . , (p2d−1)/2}. Because D1, . . . ,Db are

mutually orthogonal, A1, . . . ,Ab are mutually orthogonal as well, which proves

part (i).

Let Bi denote the submatrix of Ai consisting of its first pd rows. Since the

first pd rows of D1Rc+1 are |(pd+1)D0
1Rc, (1−pd)D0

1Rc|,B1 = (pd+1)D0
1Rc is

an OLH. By the construction of D2, . . . ,Db, for i = 1, . . . , b, Bi is an OLH(pd, d)

with each column being a permutation on {−(p2d − 1)/2,−(p2d − 1)/2 + (pd +

1), . . . , (p2d − 1)/2}, and B1, . . . ,Bb are mutually orthogonal. Thus, B is an

OLH(pd, bd). Note that B is a Latin hypercube without level collapsing. Clearly,

B ⊂ A and the levels of A and those of B are equally spaced on [−(p2d −
1)/2, (p2d − 1)/2]. This completes the proof.

Example 1. Let p = 3 and c = 1 with d = 2, n1 = 81, n2 = 9, and b = 2. Use

the primitive polynomial f(x) = x2 + 2x + 2 for GF (9). Let D1 = |D(1)
1 ,D

(2)
1 |

be an 81× 4 full factorial design with columns 1, 2, 3, 4, where the first nine rows

of D1 are |D0
1,D

0
1| and D0

1 is a 9 × 2 full factorial design. Then D
(1)
1 = |1, 2|

and D
(2)
1 = |3, 4|, respectively. For i = 2, by taking the polynomial elements

{[x2] = [1 + x], [x3] = [1 + 2x]} in GF (9), obtain a full factorial design D2 =

|12, 122, 34, 342| from D1. For i = 1, 2, let Ai be the first two columns of DiR2,

and let A = |A1,A2|. Let B be the first nine rows of A. From Theorem 1,

B ⊂ A is an NOLH(81, 9, 4); it is given in Table 1.

Example 2. Let p = 2 and c = 1 with d = 2, n1 = 16, n2 = 4, and b = 1.

The pair of designs B ⊂ A from Theorem 1 is an NOLH(16, 4, 2); it is given in

Table 2. Qian (2009) uses random nested permutations to generate nested Latin

hypercube designs that do not have guaranteed (nearly) orthogonal properties.

To illustrate this difference, we used the method in Qian (2009) to generate a

pair of nested Latin hypercube designs of the same size as B ⊂ A 1,000 times.

The mean of the average correlations of these 1,000 pairs of nested designs is

0.4892 for the small design and 0.2115 for the large design, respectively; these

are significantly different from zero.
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Table 1. An NOLH(81, 9, 4) in Example 1, where the subarray above the
dash line is an OLH(9, 4) after every entry is divided by ten.

Run # x1 x2 x3 x4 Run # x1 x2 x3 x4 Run # x1 x2 x3 x4

1 0 0 -20 -40 28 -6 28 29 13 55 15 35 9 -27
2 10 -30 -10 30 29 -5 25 24 8 56 16 32 13 -29
3 -10 30 30 10 30 -7 31 28 6 57 14 38 5 -25
4 30 10 20 40 31 -12 26 27 9 58 -27 -9 -2 -4
5 40 -20 -30 -10 32 -11 23 31 7 59 -26 -12 -1 3
6 20 40 10 -30 33 -13 29 23 11 60 -28 -6 3 1
7 -30 -10 0 0 34 27 9 16 32 61 -24 -8 2 4
8 -20 -40 40 -20 35 28 6 17 39 62 -23 -11 -3 -1
9 -40 20 -40 20 36 26 12 21 37 63 -25 -5 1 -3
10 1 -3 -19 -33 37 31 7 15 35 64 -29 -13 4 -2
11 -1 3 -15 -35 38 29 13 19 33 65 -31 -7 -4 2
12 3 1 -16 -32 39 24 8 18 36 66 -18 -36 34 -22
13 4 -2 -21 -37 40 25 5 22 34 67 -17 -39 35 -15
14 2 4 -17 -39 41 23 11 14 38 68 -19 -33 39 -17
15 -3 -1 -18 -36 42 36 -18 -29 -13 69 -15 -35 38 -14
16 -2 -4 -14 -38 43 37 -21 -28 -6 70 -14 -38 33 -19
17 -4 2 -22 -34 44 35 -15 -24 -8 71 -16 -32 37 -21
18 9 -27 -11 23 45 39 -17 -25 -5 72 -21 -37 36 -18
19 8 -24 -6 28 46 38 -14 -26 -12 73 -22 -34 32 -16
20 12 -26 -7 31 47 33 -19 -27 -9 74 -36 18 -38 14
21 13 -29 -12 26 48 34 -22 -23 -11 75 -35 15 -37 21
22 11 -23 -8 24 49 32 -16 -31 -7 76 -37 21 -33 19
23 6 -28 -9 27 50 18 36 7 -31 77 -33 19 -34 22
24 7 -31 -5 25 51 19 33 8 -24 78 -32 16 -39 17
25 5 -25 -13 29 52 17 39 12 -26 79 -34 22 -35 15
26 -9 27 25 5 53 21 37 11 -23 80 -39 17 -36 18
27 -8 24 26 12 54 22 34 6 -28 81 -38 14 -32 16

3. Construction of Nested Hadamard Matrices

This section presents methods for constructing nested Hadamard matrices,

serving as a stepping-stone for generating new nested (nearly) orthogonal designs

in Section 4. A Hadamard matrix Hn is an n×n orthogonal matrix with entries

±1 (Hedayat, Sloane, and Stufken (1999)). Suppose that A is an Hn and its

subarray consisting of the first m rows and first m columns, denoted by B, is

an Hm. Then A, or more precisely B ⊂ A, is called a nested Hadamard matrix,

denoted by NHM(n,m). Since A has more columns than B, this pair of matrices

can generate nested (nearly) orthogonal designs in which the larger design ac-

commodates more factors than the smaller design, see Section 4. For illustration,

Tables 3 and 4 present an NHM(12, 4) and an NHM(20, 4), respectively. The def-

inition of nested Hadamard matrices does not involve any level-collapsing and is
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Table 2. An NOLH(16, 4, 2) in Example 2, where the subarray above the
dash line is an OLH(4, 2) after every entry is divided by five

15 -5
-5 -15
5 15

-15 5
-1 -13
7 11
-9 3
11 -7
3 9

-13 1
13 -1
-3 -9
-11 7
9 -3
-7 -11
1 13

Table 3. An NHM(12, 4), where the whole array is an H12 and the subarray
in the top left block is an H4

1 1 1 1 1 1 1 1 1 1 1 1
1 -1 1 -1 1 -1 1 1 -1 -1 -1 1
1 -1 -1 1 -1 1 1 1 1 -1 -1 -1
1 1 -1 -1 1 -1 1 -1 1 1 -1 -1
1 1 1 -1 -1 1 -1 -1 1 -1 -1 1
1 1 1 1 -1 -1 -1 1 -1 1 -1 -1
1 -1 1 1 1 -1 -1 -1 1 -1 1 -1
1 -1 -1 1 1 1 -1 -1 -1 1 -1 1
1 1 -1 -1 1 1 -1 1 -1 -1 1 -1
1 -1 -1 -1 -1 -1 -1 1 1 1 1 1
1 -1 1 -1 -1 1 1 -1 -1 1 1 -1
1 1 -1 1 -1 -1 1 -1 -1 -1 1 1

in the spirit of the concept of nested Latin hypercubes in Section 2. In a pair of

nested Latin hypercubes, a small Latin hypercube is nested within a large Latin

hypercube with more runs but the same number of columns. Because Hadamard

matrices are square matrices by definition, in a pair of nested Hadamard matri-

ces, the small and the large matrices have different numbers of rows and different

numbers of columns as well.
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Table 4. An NHM(20, 4), where the subarray in the top left block is an H4

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 -1 1 -1 1 1 1 -1 -1 1 -1 -1 1 1 -1 -1 1 -1 1 -1
1 -1 -1 1 1 1 1 1 -1 -1 -1 1 -1 1 1 -1 -1 -1 -1 1
1 1 -1 -1 1 1 1 -1 1 -1 -1 1 1 -1 -1 1 -1 1 -1 -1
1 -1 -1 1 -1 1 -1 1 1 1 -1 -1 1 -1 -1 1 1 -1 -1 1
1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 1 1 -1 1 1 -1 -1
1 -1 1 -1 1 -1 -1 1 1 1 -1 1 -1 -1 1 1 -1 -1 1 -1
1 1 1 1 -1 -1 1 -1 1 -1 -1 -1 -1 1 -1 1 -1 -1 1 1
1 1 1 1 1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 1 1 -1 1
1 1 1 1 -1 1 -1 1 -1 -1 -1 -1 1 -1 1 -1 -1 1 1 -1
1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 1
1 -1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 -1 1 1 -1 1 -1 1
1 -1 -1 1 1 -1 1 1 -1 -1 1 -1 -1 -1 -1 1 1 1 1 -1
1 1 -1 -1 1 1 -1 -1 1 -1 1 -1 -1 -1 1 -1 1 -1 1 1
1 -1 -1 1 -1 1 -1 -1 1 1 1 1 -1 1 -1 -1 -1 1 1 -1
1 1 -1 -1 -1 -1 1 1 -1 1 1 1 1 -1 -1 -1 -1 -1 1 1
1 -1 1 -1 1 -1 -1 1 1 -1 1 -1 1 1 -1 -1 -1 1 -1 1
1 -1 1 1 -1 -1 1 -1 1 -1 1 1 1 -1 1 -1 1 -1 -1 -1
1 1 -1 1 1 -1 -1 -1 -1 1 1 -1 1 1 1 1 -1 -1 -1 -1
1 1 1 -1 -1 1 -1 1 -1 -1 1 1 -1 1 -1 1 1 -1 -1 -1

3.1. A linear subspace approach

For an odd prime p, s1 = pu1 and s2 = pu2 with u1 = 4 and u2 = 2, we

propose a linear subspace approach to constructing an NHM(2(s1+1), 2(s2+1)).

Let F denote GF (s1) with a primitive polynomial f(x) and s1 = p4, and let α

denote the primitive element [x] of F . The elements of F are denoted by α0 = 0

and αi = αi, for i = 1, . . . , s1 − 1. This approach exploits nesting in a family

of Hadamard matrices as constructed in Paley (1933). The basic idea here to

find a linear subspace of F0 ⊂ F such that
∑

γ∈F0
χ(γ(γ + 1)) = −1. Define the

indication function of the quadratic residues of F Hedayat, Sloane, and Stufken

(1999) as

χ(ξ) =


1, if ξ is a quadratic residue of F ,

0, if ξ = 0,

−1, if ξ is not a quadratic residue of F .

(3.1)

The proposed method has four steps.

Step 1. Obtain an s1 × s1 matrix Q1 = (qij) with

qij = χ(αi − αj), i, j = 0, 1, . . . , s1 − 1. (3.2)



458 JUN LI AND PETER Z. G. QIAN

Put

C1 =


Is1 +

[
0 −1

′

1 Q1

]
, if s1 ≡ 3 (mod 4),[

1 −1

−1 −1

]
⊗ Is1 +

[
1 1

1 −1

]
⊗

[
0 1′

1 Q1

]
, if s1 ≡ 1 (mod 4).

(3.3)

Step 2. Let η be a quadratic nonresidue of F for which {η+a|a ∈ GF (p)\{0}} has
exactly (p− 1)/2 quadratic residues and exactly (p− 1)/2 quadratic nonresidues

of F . Define

F0 = {aη + b|a, b ∈ GF (p)}. (3.4)

Step 3. Let Q2 be the s2×s2 submatrix of Q1 consisting of all qij entries in (3.2)

with αi, αj ∈ F0. Put

C2 =


Is2 +

[
0 −1

′

1 Q2

]
, if s2 ≡ 3 (mod 4),[

1 −1

−1 −1

]
⊗ Is2 +

[
1 1

1 −1

]
⊗

[
0 1′

1 Q2

]
, if s2 ≡ 1 (mod 4).

(3.5)

Let Jn be the n× n matrix of ones. By Paley (1933), Q1 in (3.2) has three

properties.

Property 1. The matrix Q1 is symmetric if s1 ≡ 1 (mod 4), and is skew-

symmetric if s1 ≡ 3 (mod 4).

Property 2. The relationship Q1Js1 = Js1Q1 = 0 holds.

Property 3. The relationship Q1Q
′
1 = s1Is1 − Js1 holds.

Lemma 1 is critical to verifying that these properties also hold for Q2.

Lemma 1. Let B = GF (p) and B1 = GF (p)\{0}. For an odd prime p, suppose

that η is a quadratic nonresidue of F such that {η + a|a ∈ B1} has exactly

(p− 1)/2 quadratic residues and exactly (p− 1)/2 quadratic nonresidues of F
defined in (3.1). Let p0 = (p− 1)/2 and B2 = {c1, . . . , cp0} be a subset of B1 for

which η + ci is a quadratic residue of F , for i = 1, . . . , p0. Then we have∑
γ∈F0

χ(γ(γ + 1)) = −1 (3.6)

for F0 defined in (3.4).

Proof. Note that every element in B1 is a quadratic residue of F . Because∑
b∈B χ(b(b+ 1)) = p− 2,∑

γ∈F0

χ(γ(γ + 1)) =
∑
a∈B1

∑
b∈B

χ((aη + b)(aη + b+ 1)) + (p− 2). (3.7)
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To simplify (3.7), let Λ = {(aη+ b, aη+ b+1)|a ∈ B1, b ∈ B}. For a ∈ B1, let

δa be the number of pairs in Λ satisfying the condition χ((aη+b)(aη+b+1)) = −1.

Since
∑

b∈B χ((aη + b)(aη + b+ 1)) = p− 2δa, (3.7) becomes

(p2 − 2)− 2
∑
a∈B1

δa. (3.8)

For a ∈ B1, define V (a) = {aη + b|b ∈ B1}, so {a(η + a−1b)|b ∈ B1} = aV (1).

Because V (1) has exactly p0 quadratic residues, so does V (a), for a = 2, . . . , p−
1 ∈ B1. Recall that any a ∈ B1 is a quadratic residue and η is a nonresidue of F .

Let ra be the number of pairs in Λ for which both aη + b and aη + b+ 1 are

quadratic residues. For a ∈ B1, link ra and δa as follows. If ra = (p− 1)/2 − 1

so that all the quadratic residues in V (a) are consecutive, then δa = 2. More

generally, δa = 2 + 2 ((p− 1)/2− 1− ra) = (p − 1) − 2ra, which simplifies (3.8)

to

(p2 − 2)− 2
[
(p− 1)2 − 2

∑
a∈B1

ra

]
. (3.9)

We now calculate
∑

a∈B1
ra in (3.9). For a ∈ B1 and b ∈ B, finding a pair of

a, b such that both aη+ b and aη+ b+1 are quadratic residues of F is equivalent

to solving a linear system{
aη + b = a(η + ci),

aη + b+ 1 = a(η + cj), for ci, cj ∈ B2,

as {
a(cj − ci) = 1,

b = aci.

For ci, cj ∈ B2, i ̸= j, precisely one a ∈ B1 satisfies the condition a(cj − ci) = 1.

As p0(p0 − 1) different (ci, cj)’s, i ̸= j, take values in B2,
∑

a∈B1
ra = p0(p0 − 1),

which simplifies (3.9) to (p2− 2)− 2(p− 1) [(p− 1)− ((p− 1)/2− 1)] = −1. The

proof is now complete.

Table 5 provides a list of choices for η for Lemma 1 with p ≤ 13.

As s1 = p4 ≡ 1 (mod 4) and s2 = p2 ≡ 1 (mod 4), the condition C2 ⊂ C1

holds. Theorem 2 is the main result of this construction.

Theorem 2. Under the conditions of Lemma 1, (i) C1 is an Hn1 with n1 =

2(p4 + 1); (ii) Q2 satisfies Properties 1–3 with s1 replaced by s2; (iii) C2 ⊂ C1

and C2 is an Hn2 with n2 = 2(p2 + 1).

Proof. Part (i) is clear from Properties 1–3 for Q1. Since χ(−1) = 1,

Q2 is symmetric. This result, combined with the fact that s2 = p2 ≡ 1 ≡
s1 (mod 4), verifies Property 1. Property 2 follows by noting that F0 has
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Table 5. A list of primitive polynomials of F and their corresponding choices
of η for Lemma 1 with p ≤ 13

p f(x) η

3 x4 + x+ 2 [x]

5 x4 + x3 + 2x+ 3 [x]

7 x4 + 6x3 + x2 + 3 [x]

11 x4 + x2 + 7x+ 7 [10x3 + 4x2 + 4x]

13 x4 + x2 + x+ 2 [12x3 + 2x2 + 3x+ 2]

(s2 − 1)/2 quadratic residues and (s2 − 1)/2 nonresidues of F . The (i, j) ele-

ment of Q2Q2
′,
∑s2−1

k=0 χ(βi − βk)χ(βj − βk), is∑
k ̸=i

χ2(βi−βk)χ((βi−βk)
−1[(βj−βi)+(βi−βk)]) =

∑
k ̸=i

χ((βi−βk)
−1(βj−βi)+1).

(3.10)

Now simplify (3.10) case by case for i = j and i ̸= j. For i = j, (3.10) is∑
k ̸=i χ(1) = s2 − 1. For i ̸= j, let ζ = ζij = (βj − βi)

−1, for βi, βj ∈ F0, and

take F∗
0 = {γζ|γ ∈ F0}. Note that F∗

0 ⊃ GF (p) and F∗
0 has exactly (s2 − 1)/2

quadratic residues and exactly (s2 − 1)/2 nonresidues. Thus, Lemma 1 holds

for F∗
0 and hence (3.10) equals

∑
γ∈F0,γ ̸=0 χ((γζ)

−1 + 1), which, letting γ̃ = γζ,

equals∑
γ̃∈F∗

0 ,γ̃ ̸=0

χ(γ̃−1 + 1) =
∑

γ̃∈F∗
0 ,γ̃ ̸=0

χ2(γ̃2)χ(γ̃−1 + 1) =
∑

γ̃∈F∗
0 ,γ̃ ̸=0

χ(γ̃(γ̃ + 1)) = −1.

The last equality follows from Lemma 1. Thus, Q2Q2
′ = s2Is2 − Js2 , which

verifies Property 3. Parts (ii) and (iii) are direct consequences of part (i).

Example 3. For p = 3, use the primitive polynomial f(x) = x4 + x + 2 for

GF (p4) and let η = [x], where F0 has nine elements. Theorem 2 produces an

NHM(164, 20), with the embedded small Hadamard matrix given in Table 6.

Example 4. For p = 5, use the primitive polynomial f(x) = x4 + x3 + 2x + 3

for GF (p4) and let η = [x], where F0 has 25 elements. Theorem 2 gives an

NHM(1252, 52).

3.2. A subfield approach

To complement the linear subspace approach in Section 3.1, we propose a

subfield approach to constructing NHM’s by replacing the subspace in Step 2 of

the subspace approach with a subfield G of order s2. Take δ = u1/u2 > 1. For
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Table 6. An H20 is nested within an H164 in Example 3.

1 1 1 1 1 1 1 1 1 1 -1 1 1 1 1 1 1 1 1 1
1 1 1 1 -1 -1 1 -1 1 -1 1 -1 1 1 -1 -1 1 -1 1 -1
1 1 1 1 1 -1 -1 -1 -1 1 1 1 -1 1 1 -1 -1 -1 -1 1
1 1 1 1 -1 1 -1 1 -1 -1 1 1 1 -1 -1 1 -1 1 -1 -1
1 -1 1 -1 1 1 1 -1 -1 1 1 -1 1 -1 -1 1 1 -1 -1 1
1 -1 -1 1 1 1 1 1 -1 -1 1 -1 -1 1 1 -1 1 1 -1 -1
1 1 -1 -1 1 1 1 -1 1 -1 1 1 -1 -1 1 1 -1 -1 1 -1
1 -1 -1 1 -1 1 -1 1 1 1 1 -1 -1 1 -1 1 -1 -1 1 1
1 1 -1 -1 -1 -1 1 1 1 1 1 1 -1 -1 -1 -1 1 1 -1 1
1 -1 1 -1 1 -1 -1 1 1 1 1 -1 1 -1 1 -1 -1 1 1 -1
1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 1 1
1 -1 1 1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 1 -1 1 -1 1
1 1 -1 1 1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 1 1 1 -1
1 1 1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 -1 1 -1 1 -1 1 1
1 -1 1 -1 -1 1 1 -1 -1 1 -1 1 -1 1 -1 -1 -1 1 1 -1
1 -1 -1 1 1 -1 1 1 -1 -1 -1 1 1 -1 -1 -1 -1 -1 1 1
1 1 -1 -1 1 1 -1 -1 1 -1 -1 -1 1 1 -1 -1 -1 1 -1 1
1 -1 -1 1 -1 1 -1 -1 1 1 -1 1 1 -1 1 -1 1 -1 -1 -1
1 1 -1 -1 -1 -1 1 1 -1 1 -1 -1 1 1 1 1 -1 -1 -1 -1
1 -1 1 -1 1 -1 -1 1 1 -1 -1 1 -1 1 -1 1 1 -1 -1 -1

integers u1 and u2 with an odd δ, note that λ = (pu1 − 1)/(pu2 − 1) is odd. The

approach here proceeds as follows. As in Section 3.1, Step 1 obtains Q1 from F .

Step 2 takes G to be a subfield of F given by {0, β, . . . , βs2−1}, where β = αλ.

Step 3 takes Q2 to be the submatrix of Q1 with entries χ(βi−βj), for βi, βj ∈ G,
and then uses Q2 to construct C2 in (3.5). Because δ is odd, we have either

s1 ≡ s2 ≡ 1 (mod 4) or s1 ≡ s2 ≡ 3 (mod 4) in (3.3) and (3.5). Thus, C2 is

guaranteed to be a subset of C1.

Proposition 1. For p, u1, u2, and δ defined above, (i) C1 is an Hn1 with

n1 = s1 + 1 for s1 ≡ 3 (mod 4) and n1 = 2(s1 + 1) for s1 ≡ 1 (mod 4); (ii) Q2

satisfies Properties 1–3 with s1 replaced by s2; (iii) C2 ⊂ C1 and C2 is an Hn2

with n2 = s2 + 1 for s2 ≡ 3 (mod 4) and n2 = 2(s2 + 1) for s2 ≡ 1 (mod 4).

This proposition follows by noting that under the assumed conditions, an

element in G is a quadratic residue of G if and only if it is a quadratic residue of

F .

Example 5. Let p = 3, u1 = 3 and u2 = 1 with s1 = 27 and s2 = 3. The pair

of nested arrays C2 ⊂ C1 from Proposition 1 is an NHM(28, 4); it is given in

Table 7.

Since the Kronecker product of two Hadamard matrices yields a larger

Hadamard matrix (Hedayat, Sloane, and Stufken (1999)), this product can be
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used to generate new NHM’s from existing ones. Let F be an Hn and let G be

an Hm. Put K = F ⊗ G. Then G ⊂ K constitutes an NHM(nm,m). More

generally, the Kronecker product of an NHM and a Hadamard matrix, or that

of two NHM’s, yields a larger NHM. This approach, however, cannot obtain the

NHM’s in Theorem 2, where n1 is not a multiple of n2.

4. Using the Kronecker Product to Obtain New Nested (Nearly)

Orthogonal Designs

This section presents two approaches to constructing new nested (nearly)

orthogonal designs by taking the Kronecker product of small (nearly) orthogonal

designs and two-level orthogonal designs. First we give a lemma from Bingham,

Sitter, and Tang (2009).

Lemma 2. Let F be an n1 ×m1 orthogonal matrix with two levels, −1 and +1,

where each of the two levels appears equally often in every column. Let D0 be an

n2×m2 nearly orthogonal design. After centering D0 column by column, define

D = F ⊗D0. (4.1)

Then ρ(D) is √
m2 − 1

m1m2 − 1
ρ2(D0),

with ρ(·) as in (1.1). Furthermore, if D0 is orthogonal, then D is orthogonal.

Remark 1. For ρ(D) and m1
−1ρ2(D0) in Lemma 2, ρ2(D) ≤ m1

−1ρ2(D0),

wherem−1
1 depends on F only. This result and Lemma 2 still hold if an additional

column 1n1 is added to F .

The two approaches impose a nested structure in F or D0 in (4.1). The first

approach has three steps. First, let F be the first m columns of an NHM(n,m),

from Section 3 or another source, and take G to be the subset of F consisting

of its first m rows and m columns. Clearly, G is an Hm. Second, let D0 be a

u× v nearly orthogonal design and for each column, subtract the mean from all

entries. Third, put

A = F ⊗D0, B = G⊗D0. (4.2)

Remark 2. For A and B constructed above, (i) ρ2(A) ≤ (1/m)ρ2(D0); (ii)

B ⊂ A and ρ2(B) ≤ (1/m)ρ2(D0). Furthermore, if D0 is orthogonal, then both

A and B are orthogonal.

Remark 2 can be verified by using Lemma 2 and Remark 1.
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Example 6. Let D0 be the 6× 3 nearly orthogonal Latin hypercube−5 −1 1 −3 3 5

1 5 −5 −3 3 −1

−3 3 5 −1 1 −5


′

,

where the correlation between any two columns is −0.0286 and ρ2(D0) is 0.0008.

Let F be the last four columns of an NHM(8, 4) given by
1 1 1 1 −1 −1 −1 −1

1 −1 1 −1 −1 1 −1 1

1 1 −1 −1 −1 −1 1 1

1 −1 −1 1 −1 1 1 −1


′

.

Remark 2 produces a pair of designs B ⊂ A in 12 factors with 24 runs and 48

runs, respectively, where ρ2(A) < 0.0002 and ρ2(B) < 0.0002.

Taking F to be an Hn in (4.2) gives B ⊂ A with ρ2(A) ≤ (1/n)ρ2(D0) and

ρ2(B) ≤ (1/m)ρ2(D0), where A can accommodate more factors than B.

The second proposed approach takes D0 ⊂ D1 to be a pair of nested (nearly)

orthogonal designs, both with zero mean for each column. Let F be an Hm. Put

A = F ⊗D1, B = F ⊗D0. (4.3)

Remark 3. For A and B constructed above, (i) ρ2(A) ≤ (1/m)ρ2(D1); (ii)

B ⊂ A and ρ2(B) ≤ (1/m)ρ2(D0).

Example 7. Let D0 ⊂ D1 be the NOLH(16, 4, 2) from Table 2. Let F be an

Hm. Then B ⊂ A in (4.3) can accommodate 2m factors. From Remark 3, both

A and B are orthogonal.

Note that Qian, Ai, and Wu (2009) and Qian,, Tang, and Wu (2009) define

a nested orthogonal array to be an orthogonal array containing a subarray that

becomes a smaller orthogonal array after some suitable level-mapping. Inspired

by this definition, in a future project we will define a nested Latin hypercube

as follows. For integers n1 > n2 with n2 dividing n1, NLH(n1, n2,m) denotes a

Latin hypercube of n1 levels in m factors containing a subarray of n2 runs that

becomes an LH(n2,m) after collapsing the n2 groups of n1/n2 consecutive levels

to n2 equally spaced levels. Methods for constructing nested Latin hypercube

designs with (nearly) orthogonal columns according to this definition will be

developed.
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