# CONSTRUCTION OF NESTED (NEARLY) ORTHOGONAL DESIGNS FOR COMPUTER EXPERIMENTS 

Jun Li and Peter Z. G. Qian<br>Opera Solutions and University of Wisconsin-Madison


#### Abstract

We propose several methods for constructing nested (nearly) orthogonal designs intended for multi-fidelity computer experiments. Such designs are two (nearly) orthogonal designs with one nested within the other. Our methods exploit nesting in such discrete structures as fractional factorial designs, Hadamard matrices, and rotation matrices. Examples are given illustrating the proposed methods.


Key words and phrases: Computer experiment, design of experiments, Hadamard matrix, Latin hypercube design, nested Hadamard matrix, nested Latin hypercube design, orthogonal array, space-filling design.

## 1. Introduction

Construction of (nearly) orthogonal Latin hypercube designs and related (nearly) orthogonal designs has recently drawn a surge of interest in computer experiments (Santner, Williams, and Notz (2003); Fang, Li, and Sudjianto (200.5)). Such designs can be obtained by using permutation matrices (Ye (1998)), building on rotation matrices and factorial designs (Steinberg and Lin (2006)), or coupling small (nearly) orthogonal designs with orthogonal matrices (Bingham, Sitter, and Tang (2009)). Other work in this direction includes Owen ([1994) Tang (10998), Lin, Mukerjee, and Tang (2009), and Pang, Liu, and Lin (2009).

The purpose of this article is to construct nested (nearly) orthogonal designs intended for running a pair of low-accuracy and high-accuracy computer experiments (Kennedy and O'Hagan (2000); Qian et al. (2006)). This work is based on the first author's Ph.D. thesis (Liil (2070)). We define nested (nearly) orthogonal designs to be two (nearly) orthogonal designs with one nested within the other. Because taking an arbitrary subset of a (nearly) orthogonal design is not guaranteed to give a smaller (nearly) orthogonal design, systematic methods are needed for construction.

We introduce some notation and definitions. Take the correlation of vectors $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)^{\prime}$ and $\mathbf{b}=\left(b_{1}, \ldots, b_{n}\right)^{\prime}$ to be

$$
\rho=\frac{\sum_{i=1}^{n}\left(a_{i}-\bar{a}\right)\left(b_{i}-\bar{b}\right)}{(n-1) s_{a} s_{b}},
$$

where $\bar{a}=\sum_{i=1}^{n} a_{i}, \bar{b}=\sum_{i=1}^{n} b_{i}$, and $s_{a}$ and $s_{b}$ are the sample standard deviations of $\mathbf{a}$ and $\mathbf{b}$, respectively. We call $\mathbf{a}$ and $\mathbf{b}$ are orthogonal if $\rho=0$. The average correlation of an $n \times m$ matrix $\boldsymbol{A}=\left(a_{i j}\right)$ is given by

$$
\begin{equation*}
\rho(\boldsymbol{A})=\sqrt{\frac{\sum_{i<j} \rho_{i j}^{2}(\boldsymbol{A})}{m(m-1) / 2}}, \tag{1.1}
\end{equation*}
$$

where $\rho_{i j}$ is the correlation between columns $i$ and $j$ of $\boldsymbol{A}$. If $\rho(\boldsymbol{A})=0, \boldsymbol{A}$ is orthogonal. Throughout, a design is said to be orthogonal if its columns are orthogonal to each other.

Let $\mathrm{LH}(n, m)$ denote a Latin hypercube of $n$ equally spaced levels in $m$ factors (McKay, Beckman, and Conover ([1979)). Let OLH $(n, m)$ denote an $\mathrm{LH}(n, m)$ with orthogonal columns. Our definition of nested Latin hypercubes is motivated by the concept of nested orthogonal arrays in Mukerjee, Qian, and Wu (2008), who define a nested orthogonal array to be an orthogonal array containing a subarray that is a smaller orthogonal array itself. For integers $n_{1}>n_{2}$, a nested Latin hypercube $\operatorname{NLH}\left(n_{1}, n_{2}, m\right)$ is a Latin hypercube of $n_{1}$ levels in $m$ factors containing a subarray of $n_{2}$ runs that is an $\mathrm{LH}\left(n_{2}, m\right)$ itself. Let $\mathbf{B} \subset \mathbf{A}$ be an $\mathrm{NLH}\left(n_{1}, n_{2}, m\right)$ and suppose that $\boldsymbol{A}$ and $\boldsymbol{B}$ are orthogonal. Then $\boldsymbol{A}$, or $\mathbf{B} \subset \mathbf{A}$, is called a nested orthogonal Latin hypercube, denoted by $\operatorname{NOLH}\left(n_{1}, n_{2}, m\right)$. In Section 3, we construct nested Hadamard matrices that are a pair of Hadamard matrices of different orders with one nested within the other. Nested Hadamard matrices serve as an important building block for constructing nested (nearly) orthogonal designs via the Kronecker product in Section 4.

## 2. Obtaining Nested Orthogonal Latin Hypercubes Using Nested Rotation Matrices and Nested Factorial Designs

This section proposes an approach for constructing nested orthogonal Latin hypercubes by exploiting nesting in rotation matrices and factorial designs. As in Steinberg and Lin (2006), for an integer $d$ and a prime $p$, let $\boldsymbol{D}_{1}$ be a $p^{d} \times d$ full factorial design with columns $1,2, \ldots, d$. Each element $\left[a_{0}+a_{1} x+a_{2} x^{2}+\right.$ $\left.\cdots+a_{d-1} x^{d-1}\right]$ of $G F\left(p^{d}\right)$ is denoted by a vector $\left[a_{0}, \ldots, a_{d-1}\right]$, corresponding to a generalized interaction $1^{a_{0}} 2^{a_{1}} \ldots d^{a_{d-1}}$ for $\boldsymbol{D}_{1}$, e.g., $[1+x]$ corresponds to the interaction of factors 1 and 2 . Every non-zero element of $G F\left(p^{d}\right)$ can be expressed as $\left[x^{i}\right]$ for some integer $i$. From Theorem 1 of Steinberg and Lin (2006) for a nonnegative integer $k$,

$$
\begin{equation*}
\left|\left[x^{k}\right],\left[x^{k+1}\right], \ldots,\left[x^{k+d-1}\right]\right| \tag{2.1}
\end{equation*}
$$

constitutes a $p^{d} \times d$ full factorial design, where $|\cdot|$ denotes column juxtaposition. Two different designs generated by (2. [ (1) are called disjoint if their columns do
not overlap when expressed in terms of $[x]$ powers. Two such disjoint designs are mutually orthogonal in that any column of one design is orthogonal to any column of the other. Juxtaposing, column by column, a set of mutually orthogonal full factorial designs obtained from (2.1) yields an orthogonal fractional factorial design that has at most

$$
\begin{equation*}
b=\left\lfloor\frac{p^{d}-1}{d(p-1)}\right\rfloor \tag{2.2}
\end{equation*}
$$

mutually orthogonal full factorial design components (Pang, Liu, and Lin (2009)). Note that $\left(p^{d}-1\right) /[d(p-1)]$ is an integer for $p \geq 3$.

An $n \times n$ matrix $\boldsymbol{R}$ is a rotation matrix if $\boldsymbol{R}^{\prime} \boldsymbol{R}$ is proportional to the $n \times n$ identity matrix, denoted by $\boldsymbol{I}_{n}$. Here is a recursive method for constructing such matrices proposed in Beattie and Lin (1997) and Pang, Liu, and Lin (2009). For a prime $p$, let $\boldsymbol{R}_{0}=1$ for $c=0$, and let

$$
\boldsymbol{R}_{c}=\left[\begin{array}{r}
\boldsymbol{R}_{c-1}-p^{2^{c-1}} \boldsymbol{R}_{c-1} \\
\hdashline p^{2^{c=1}} \boldsymbol{\boldsymbol { R } _ { c - 1 }}
\end{array} \boldsymbol{R}_{c-1}\right]_{2^{c} \times 2^{c}}, \text { for } c \geq 1
$$

where $\boldsymbol{R}_{c}^{\prime} \boldsymbol{R}_{c}=a_{c} \boldsymbol{I}_{2^{c}}$ with $a_{c}=\left(p^{2^{c+1}}-1\right) /\left(p^{2}-1\right)$. Let $d=2^{c}$. Take $\boldsymbol{D}=\left(d_{i j}\right)$ to be a full factorial design in $d$ factors of $p^{d}$ runs with levels $1, \ldots, p$. Centering $\boldsymbol{D}$ by replacing $d_{i j}$ with

$$
\begin{equation*}
d_{i j}-\frac{p+1}{2} \tag{2.3}
\end{equation*}
$$

gives

$$
\boldsymbol{D}^{\prime} \boldsymbol{D}=\lambda_{1} \boldsymbol{I}_{d}, \quad\left(\boldsymbol{D} \boldsymbol{R}_{c}\right)^{\prime}\left(\boldsymbol{D} \boldsymbol{R}_{c}\right)=\lambda_{2} \boldsymbol{I}_{d},
$$

where $\lambda_{1}=p^{d}\left(p^{2}-1\right) / 12$ and $\lambda_{2}=p^{d}\left(p^{2 d}-1\right) / 12$. Here, $\boldsymbol{D} \boldsymbol{R}_{c}$ is an $\operatorname{OLH}\left(p^{d}, d\right)$, with each column a permutation on $\left\{-\left(p^{d}-1\right) / 2,-\left(p^{d}-1\right) / 2+1, \ldots,\left(p^{d}-1\right) / 2\right\}$.

A key of the proposed approach is to rotate a nested factorial design. We take a nested factorial design to be a factorial design containing a small factorial design as a subset. Such a design can be constructed by juxtaposing two identical small fractional factorial designs in $\boldsymbol{D}_{1}$ in (L., (1). For $d=2^{c}$, the proposed method has three steps.
Step 1. Construct a $p^{2 d} \times 2 d$ partitioned full factorial design $\boldsymbol{D}_{1}=\left|\boldsymbol{D}_{1}^{(1)}, \boldsymbol{D}_{1}^{(2)}\right|$ with levels $1, \ldots, p$ that contains $\left|\boldsymbol{D}_{1}^{0}, \boldsymbol{D}_{1}^{0}\right|$ as the first $p^{d}$ rows, where $\boldsymbol{D}_{1}^{0}$ is a $p^{d} \times d$ full factorial design. Center $\boldsymbol{D}_{1}$ as in (2.31).

Step 2. For $i=2, \ldots, b$, with $b$ defined in (2.2), use (2.]) to generate a $p^{2 d} \times 2 d$ full factorial design $\boldsymbol{D}_{i}=\left|\boldsymbol{D}_{i}^{(1)}, \boldsymbol{D}_{i}^{(2)}\right|$ from $\boldsymbol{D}_{1}$, where $\boldsymbol{D}_{i}^{(1)}$ is from $\left\{\left[x^{(i-1) d}\right],\left[x^{(i-1) d+1}\right], \ldots,\left[x^{(i-1) d+d-1}\right]\right\}$ associated with $\boldsymbol{D}_{1}^{(1)}$, and $\boldsymbol{D}_{i}^{(2)}$ is from $\left\{\left[x^{(i-1) d}\right],\left[x^{(i-1) d+1}\right], \ldots,\left[x^{(i-1) d+d-1}\right]\right\}$ associated with $\boldsymbol{D}_{1}^{(2)}$.

Step 3. For $i=1, \ldots, b$, obtain $\boldsymbol{A}_{i}$ by taking the first $d$ columns of $\boldsymbol{D}_{i} \boldsymbol{R}_{c+1}$. Put $\boldsymbol{A}=\left|\boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{b}\right|$. Obtain a matrix $\boldsymbol{B}$ by taking the first $p^{d}$ rows of $\boldsymbol{A}$.

Theorem 1. For $\boldsymbol{A}$ and $\boldsymbol{B}$ constructed above, a prime $p$ and an integer $c \geq 0$, (i) $\boldsymbol{A}$ is an $\mathrm{OLH}\left(n_{1}, m\right)$; (ii) $\boldsymbol{B} \subset \boldsymbol{A}$ and $\boldsymbol{B}$ is an $\operatorname{OLH}\left(n_{2}, m\right)$, where $d=2^{c}$, $b=\left\lfloor\left(p^{d}-1\right) /[d(p-1)]\right\rfloor, n_{1}=p^{2 d}, n_{2}=p^{d}$, and $m=b d$.

Proof. For $i=1, \ldots, b, \boldsymbol{A}_{i}$ is an $\operatorname{OLH}\left(p^{2 d}, d\right)$ with each column being a permutation on $\left\{-\left(p^{2 d}-1\right) / 2,-\left(p^{2 d}-1\right) / 2+1, \ldots,\left(p^{2 d}-1\right) / 2\right\}$. Because $\boldsymbol{D}_{1}, \ldots, \boldsymbol{D}_{b}$ are mutually orthogonal, $\boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{b}$ are mutually orthogonal as well, which proves part (i).

Let $\boldsymbol{B}_{i}$ denote the submatrix of $\boldsymbol{A}_{i}$ consisting of its first $p^{d}$ rows. Since the first $p^{d}$ rows of $\boldsymbol{D}_{1} \boldsymbol{R}_{c+1}$ are $\left|\left(p^{d}+1\right) \boldsymbol{D}_{1}^{0} \boldsymbol{R}_{c},\left(1-p^{d}\right) \boldsymbol{D}_{1}^{0} \boldsymbol{R}_{c}\right|, \boldsymbol{B}_{1}=\left(p^{d}+1\right) \boldsymbol{D}_{1}^{0} \boldsymbol{R}_{c}$ is an OLH. By the construction of $\boldsymbol{D}_{2}, \ldots, \boldsymbol{D}_{b}$, for $i=1, \ldots, b, \boldsymbol{B}_{i}$ is an $\operatorname{OLH}\left(p^{d}, d\right)$ with each column being a permutation on $\left\{-\left(p^{2 d}-1\right) / 2,-\left(p^{2 d}-1\right) / 2+\left(p^{d}+\right.\right.$ $\left.1), \ldots,\left(p^{2 d}-1\right) / 2\right\}$, and $\boldsymbol{B}_{1}, \ldots, \boldsymbol{B}_{b}$ are mutually orthogonal. Thus, $\boldsymbol{B}$ is an $\operatorname{OLH}\left(p^{d}, b d\right)$. Note that $\boldsymbol{B}$ is a Latin hypercube without level collapsing. Clearly, $\boldsymbol{B} \subset \boldsymbol{A}$ and the levels of $\boldsymbol{A}$ and those of $\boldsymbol{B}$ are equally spaced on $\left[-\left(p^{2 d}-\right.\right.$ $\left.1) / 2,\left(p^{2 d}-1\right) / 2\right]$. This completes the proof.

Example 1. Let $p=3$ and $c=1$ with $d=2, n_{1}=81, n_{2}=9$, and $b=2$. Use the primitive polynomial $f(x)=x^{2}+2 x+2$ for $G F(9)$. Let $\boldsymbol{D}_{1}=\left|\boldsymbol{D}_{1}^{(1)}, \boldsymbol{D}_{1}^{(2)}\right|$ be an $81 \times 4$ full factorial design with columns $1,2,3,4$, where the first nine rows of $\boldsymbol{D}_{1}$ are $\left|\boldsymbol{D}_{1}^{0}, \boldsymbol{D}_{1}^{0}\right|$ and $\boldsymbol{D}_{1}^{0}$ is a $9 \times 2$ full factorial design. Then $\boldsymbol{D}_{1}^{(1)}=|1,2|$ and $\boldsymbol{D}_{1}^{(2)}=|3,4|$, respectively. For $i=2$, by taking the polynomial elements $\left\{\left[x^{2}\right]=[1+x],\left[x^{3}\right]=[1+2 x]\right\}$ in $G F(9)$, obtain a full factorial design $\boldsymbol{D}_{2}=$ $\left|12,12^{2}, 34,34^{2}\right|$ from $\boldsymbol{D}_{1}$. For $i=1,2$, let $\boldsymbol{A}_{i}$ be the first two columns of $\boldsymbol{D}_{i} \boldsymbol{R}_{2}$, and let $\boldsymbol{A}=\left|\boldsymbol{A}_{1}, \boldsymbol{A}_{2}\right|$. Let $\boldsymbol{B}$ be the first nine rows of $\boldsymbol{A}$. From Theorem 1, $\boldsymbol{B} \subset \boldsymbol{A}$ is an $\operatorname{NOLH}(81,9,4)$; it is given in Table 1.

Example 2. Let $p=2$ and $c=1$ with $d=2, n_{1}=16, n_{2}=4$, and $b=1$. The pair of designs $\boldsymbol{B} \subset \boldsymbol{A}$ from Theorem 1 is an $\operatorname{NOLH}(16,4,2)$; it is given in Table 2. Qian (200.9) uses random nested permutations to generate nested Latin hypercube designs that do not have guaranteed (nearly) orthogonal properties. To illustrate this difference, we used the method in Qian ( 2009 ) to generate a pair of nested Latin hypercube designs of the same size as $\boldsymbol{B} \subset \boldsymbol{A} 1,000$ times. The mean of the average correlations of these 1,000 pairs of nested designs is 0.4892 for the small design and 0.2115 for the large design, respectively; these are significantly different from zero.

Table 1. An $\operatorname{NOLH}(81,9,4)$ in Example 1, where the subarray above the dash line is an $\operatorname{OLH}(9,4)$ after every entry is divided by ten.

| Run \# | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | Run \# | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | Run \# | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 0 | -20 | -40 | 28 | -6 | 28 | 29 | 13 | 55 | 15 | 35 | 9 | -27 |
| 2 | 10 | -30 | -10 | 30 | 29 | -5 | 25 | 24 | 8 | 56 | 16 | 32 | 13 | -29 |
| 3 | -10 | 30 | 30 | 10 | 30 | -7 | 31 | 28 | 6 | 57 | 14 | 38 | 5 | -25 |
| 4 | 30 | 10 | 20 | 40 | 31 | -12 | 26 | 27 | 9 | 58 | -27 | -9 | -2 | -4 |
| 5 | 40 | -20 | -30 | -10 | 32 | -11 | 23 | 31 | 7 | 59 | -26 | -12 | -1 | 3 |
| 6 | 20 | 40 | 10 | -30 | 33 | -13 | 29 | 23 | 11 | 60 | -28 | -6 | 3 | 1 |
| 7 | -30 | -10 | 0 | 0 | 34 | 27 | 9 | 16 | 32 | 61 | -24 | -8 | 2 | 4 |
| 8 | -20 | -40 | 40 | -20 | 35 | 28 | 6 | 17 | 39 | 62 | -23 | -11 | -3 | -1 |
| 9 | -40 | 20 | -40 | 20 | 36 | 26 | 12 | 21 | 37 | 63 | -25 | -5 | 1 | -3 |
| $\overline{1} 0$ | - | --3 |  | - $-3{ }^{-}$ | 37 | 31 | 7 | 15 | 35 | 64 | -29 | -13 | 4 | -2 |
| 11 | -1 | 3 | -15 | -35 | 38 | 29 | 13 | 19 | 33 | 65 | -31 | -7 | -4 | 2 |
| 12 | 3 | 1 | -16 | -32 | 39 | 24 | 8 | 18 | 36 | 66 | -18 | -36 | 34 | -22 |
| 13 | 4 | -2 | -21 | -37 | 40 | 25 | 5 | 22 | 34 | 67 | -17 | -39 | 35 | -15 |
| 14 | 2 | 4 | -17 | -39 | 41 | 23 | 11 | 14 | 38 | 68 | -19 | -33 | 39 | -17 |
| 15 | -3 | -1 | -18 | -36 | 42 | 36 | -18 | -29 | -13 | 69 | -15 | -35 | 38 | -14 |
| 16 | -2 | -4 | -14 | -38 | 43 | 37 | -21 | -28 | -6 | 70 | -14 | -38 | 33 | -19 |
| 17 | -4 | 2 | -22 | -34 | 44 | 35 | -15 | -24 | -8 | 71 | -16 | -32 | 37 | -21 |
| 18 | 9 | -27 | -11 | 23 | 45 | 39 | -17 | -25 | -5 | 72 | -21 | -37 | 36 | -18 |
| 19 | 8 | -24 | -6 | 28 | 46 | 38 | -14 | -26 | -12 | 73 | -22 | -34 | 32 | -16 |
| 20 | 12 | -26 | -7 | 31 | 47 | 33 | -19 | -27 | -9 | 74 | -36 | 18 | -38 | 14 |
| 21 | 13 | -29 | -12 | 26 | 48 | 34 | -22 | -23 | -11 | 75 | -35 | 15 | -37 | 21 |
| 22 | 11 | -23 | -8 | 24 | 49 | 32 | -16 | -31 | -7 | 76 | -37 | 21 | -33 | 19 |
| 23 | 6 | -28 | -9 | 27 | 50 | 18 | 36 | 7 | -31 | 77 | -33 | 19 | -34 | 22 |
| 24 | 7 | -31 | -5 | 25 | 51 | 19 | 33 | 8 | -24 | 78 | -32 | 16 | -39 | 17 |
| 25 | 5 | -25 | -13 | 29 | 52 | 17 | 39 | 12 | -26 | 79 | -34 | 22 | -35 | 15 |
| 26 | -9 | 27 | 25 | 5 | 53 | 21 | 37 | 11 | -23 | 80 | -39 | 17 | -36 | 18 |
| 27 | -8 | 24 | 26 | 12 | 54 | 22 | 34 | 6 | -28 | 81 | -38 | 14 | -32 | 16 |

## 3. Construction of Nested Hadamard Matrices

This section presents methods for constructing nested Hadamard matrices, serving as a stepping-stone for generating new nested (nearly) orthogonal designs in Section 4. A Hadamard matrix $\boldsymbol{H}_{n}$ is an $n \times n$ orthogonal matrix with entries $\pm 1$ (Hedayat, Sloane, and Stufken (1999)). Suppose that $\boldsymbol{A}$ is an $\boldsymbol{H}_{n}$ and its subarray consisting of the first $m$ rows and first $m$ columns, denoted by $\boldsymbol{B}$, is an $\boldsymbol{H}_{m}$. Then $\boldsymbol{A}$, or more precisely $\boldsymbol{B} \subset \boldsymbol{A}$, is called a nested Hadamard matrix, denoted by $\operatorname{NHM}(n, m)$. Since $\boldsymbol{A}$ has more columns than $\boldsymbol{B}$, this pair of matrices can generate nested (nearly) orthogonal designs in which the larger design accommodates more factors than the smaller design, see Section 4. For illustration, Tables 3 and 4 present an $\operatorname{NHM}(12,4)$ and an $\operatorname{NHM}(20,4)$, respectively. The definition of nested Hadamard matrices does not involve any level-collapsing and is

Table 2. An $\operatorname{NOLH}(16,4,2)$ in Example 2, where the subarray above the dash line is an $\operatorname{OLH}(4,2)$ after every entry is divided by five

| 15 | -5 |
| ---: | ---: |
| -5 | -15 |
| 5 | 15 |
| -15 | 5 |
| -1 | $-1 \overline{3}$ |
| 7 | 11 |
| -9 | 3 |
| 11 | -7 |
| 3 | 9 |
| -13 | 1 |
| 13 | -1 |
| -3 | -9 |
| -11 | 7 |
| 9 | -3 |
| -7 | -11 |
| 1 | 13 |

Table 3. An $\mathrm{NHM}(12,4)$, where the whole array is an $\boldsymbol{H}_{12}$ and the subarray in the top left block is an $\boldsymbol{H}_{4}$

| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 |
| 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 |
| 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 |
| 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 |
| 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 |
| 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 |
| 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 |
| 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 |
| 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 |
| 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 |
| 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 |

in the spirit of the concept of nested Latin hypercubes in Section 2. In a pair of nested Latin hypercubes, a small Latin hypercube is nested within a large Latin hypercube with more runs but the same number of columns. Because Hadamard matrices are square matrices by definition, in a pair of nested Hadamard matrices, the small and the large matrices have different numbers of rows and different numbers of columns as well.

Table 4. An $\operatorname{NHM}(20,4)$, where the subarray in the top left block is an $\boldsymbol{H}_{4}$

| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 |
| 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 |
| 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 |
| 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 |
| 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 |
| 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 |
| 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 |
| 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 |
| 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 |
| 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 |
| 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 |
| 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 |
| 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 |
| 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 |
| 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 |
| 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 |
| 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 |
| 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 |

### 3.1. A linear subspace approach

For an odd prime $p, s_{1}=p^{u_{1}}$ and $s_{2}=p^{u_{2}}$ with $u_{1}=4$ and $u_{2}=2$, we propose a linear subspace approach to constructing an $\operatorname{NHM}\left(2\left(s_{1}+1\right), 2\left(s_{2}+1\right)\right)$. Let $\mathcal{F}$ denote $G F\left(s_{1}\right)$ with a primitive polynomial $f(x)$ and $s_{1}=p^{4}$, and let $\alpha$ denote the primitive element $[x]$ of $\mathcal{F}$. The elements of $\mathcal{F}$ are denoted by $\alpha_{0}=0$ and $\alpha_{i}=\alpha^{i}$, for $i=1, \ldots, s_{1}-1$. This approach exploits nesting in a family of Hadamard matrices as constructed in Paley (世933). The basic idea here to find a linear subspace of $\mathcal{F}_{0} \subset \mathcal{F}$ such that $\sum_{\gamma \in \mathcal{F}_{0}} \chi(\gamma(\gamma+1))=-1$. Define the indication function of the quadratic residues of $\mathcal{F}$ Hedayat, Sloane, and Stufken (1999) as

$$
\chi(\xi)=\left\{\begin{align*}
1, & \text { if } \xi \text { is a quadratic residue of } \mathcal{F}  \tag{3.1}\\
0, & \text { if } \xi=0, \\
-1, & \text { if } \xi \text { is not a quadratic residue of } \mathcal{F}
\end{align*}\right.
$$

The proposed method has four steps.
Step 1. Obtain an $s_{1} \times s_{1}$ matrix $\boldsymbol{Q}_{1}=\left(q_{i j}\right)$ with

$$
\begin{equation*}
q_{i j}=\chi\left(\alpha_{i}-\alpha_{j}\right), \quad i, j=0,1, \ldots, s_{1}-1 \tag{3.2}
\end{equation*}
$$

Put

Step 2 . Let $\eta$ be a quadratic nonresidue of $\mathcal{F}$ for which $\{\eta+a \mid a \in G F(p) \backslash\{0\}\}$ has exactly $(p-1) / 2$ quadratic residues and exactly $(p-1) / 2$ quadratic nonresidues of $\mathcal{F}$. Define

$$
\begin{equation*}
\mathcal{F}_{0}=\{a \eta+b \mid a, b \in G F(p)\} . \tag{3.4}
\end{equation*}
$$

Step 3. Let $\boldsymbol{Q}_{2}$ be the $s_{2} \times s_{2}$ submatrix of $\boldsymbol{Q}_{1}$ consisting of all $q_{i j}$ entries in (3.2) with $\alpha_{i}, \alpha_{j} \in \mathcal{F}_{0}$. Put

$$
\boldsymbol{C}_{2}=\left\{\begin{array}{r}
\boldsymbol{I}_{s_{2}}+\left[\begin{array}{cc}
0 & -\mathbf{1}^{\prime} \\
\mathbf{1}^{\prime} & \boldsymbol{Q}_{2}
\end{array}\right], \text { if } s_{2} \equiv 3(\bmod 4),  \tag{3.5}\\
{\left[\begin{array}{r}
1-1 \\
\hdashline 1_{1}^{\prime}-1
\end{array}\right] \otimes \boldsymbol{I}_{s_{2}}+\left[\begin{array}{cc}
1 & 1 \\
\hdashline 1_{1}^{\prime}
\end{array}\right] \otimes\left[\begin{array}{ll}
0 & \mathbf{1}^{\prime} \\
\hdashline \mathbf{1}_{2}^{\prime}
\end{array}\right], \text { if } s_{2} \equiv 1(\bmod 4)}
\end{array}\right.
$$

Let $\boldsymbol{J}_{n}$ be the $n \times n$ matrix of ones. By Paley (1933), $\boldsymbol{Q}_{1}$ in ([.2) has three properties.

Property 1. The matrix $\boldsymbol{Q}_{1}$ is symmetric if $s_{1} \equiv 1(\bmod 4)$, and is skewsymmetric if $s_{1} \equiv 3(\bmod 4)$.
Property 2. The relationship $\boldsymbol{Q}_{1} \boldsymbol{J}_{s_{1}}=\boldsymbol{J}_{s_{1}} \boldsymbol{Q}_{1}=\mathbf{0}$ holds.
Property 3. The relationship $\boldsymbol{Q}_{1} \boldsymbol{Q}_{1}^{\prime}=s_{1} \boldsymbol{I}_{s_{1}}-\boldsymbol{J}_{s_{1}}$ holds.
Lemma 1 is critical to verifying that these properties also hold for $\boldsymbol{Q}_{2}$.
Lemma 1. Let $\mathcal{B}=G F(p)$ and $\mathcal{B}_{1}=G F(p) \backslash\{0\}$. For an odd prime $p$, suppose that $\eta$ is a quadratic nonresidue of $\mathcal{F}$ such that $\left\{\eta+a \mid a \in \mathcal{B}_{1}\right\}$ has exactly $(p-1) / 2$ quadratic residues and exactly $(p-1) / 2$ quadratic nonresidues of $\mathcal{F}$ defined in (ㅈ.1). Let $p_{0}=(p-1) / 2$ and $\mathcal{B}_{2}=\left\{c_{1}, \ldots, c_{p_{0}}\right\}$ be a subset of $\mathcal{B}_{1}$ for which $\eta+c_{i}$ is a quadratic residue of $\mathcal{F}$, for $i=1, \ldots, p_{0}$. Then we have

$$
\begin{equation*}
\sum_{\gamma \in \mathcal{F}_{0}} \chi(\gamma(\gamma+1))=-1 \tag{3.6}
\end{equation*}
$$

for $\mathcal{F}_{0}$ defined in (3.4).
Proof. Note that every element in $\mathcal{B}_{1}$ is a quadratic residue of $\mathcal{F}$. Because $\sum_{b \in \mathcal{B}} \chi(b(b+1))=p-2$,

$$
\begin{equation*}
\sum_{\gamma \in \mathcal{F}_{0}} \chi(\gamma(\gamma+1))=\sum_{a \in \mathcal{B}_{1}} \sum_{b \in \mathcal{B}} \chi((a \eta+b)(a \eta+b+1))+(p-2) . \tag{3.7}
\end{equation*}
$$

To simplify ([.3), let $\Lambda=\left\{(a \eta+b, a \eta+b+1) \mid a \in \mathcal{B}_{1}, b \in \mathcal{B}\right\}$. For $a \in \mathcal{B}_{1}$, let $\delta_{a}$ be the number of pairs in $\Lambda$ satisfying the condition $\chi((a \eta+b)(a \eta+b+1))=-1$. Since $\sum_{b \in \mathcal{B}} \chi((a \eta+b)(a \eta+b+1))=p-2 \delta_{a}$, ( $\left.\mathbf{3} .7\right)$ becomes

$$
\begin{equation*}
\left(p^{2}-2\right)-2 \sum_{a \in \mathcal{B}_{1}} \delta_{a} \tag{3.8}
\end{equation*}
$$

For $a \in \mathcal{B}_{1}$, define $V(a)=\left\{a \eta+b \mid b \in \mathcal{B}_{1}\right\}$, so $\left\{a\left(\eta+a^{-1} b\right) \mid b \in \mathcal{B}_{1}\right\}=a V(1)$. Because $V(1)$ has exactly $p_{0}$ quadratic residues, so does $V(a)$, for $a=2, \ldots, p-$ $1 \in \mathcal{B}_{1}$. Recall that any $a \in \mathcal{B}_{1}$ is a quadratic residue and $\eta$ is a nonresidue of $\mathcal{F}$.

Let $r_{a}$ be the number of pairs in $\Lambda$ for which both $a \eta+b$ and $a \eta+b+1$ are quadratic residues. For $a \in \mathcal{B}_{1}$, link $r_{a}$ and $\delta_{a}$ as follows. If $r_{a}=(p-1) / 2-1$ so that all the quadratic residues in $V(a)$ are consecutive, then $\delta_{a}=2$. More generally, $\delta_{a}=2+2\left((p-1) / 2-1-r_{a}\right)=(p-1)-2 r_{a}$, which simplifies (3.8) to

$$
\begin{equation*}
\left(p^{2}-2\right)-2\left[(p-1)^{2}-2 \sum_{a \in \mathcal{B}_{1}} r_{a}\right] . \tag{3.9}
\end{equation*}
$$

We now calculate $\sum_{a \in \mathcal{B}_{1}} r_{a}$ in ([3.9). For $a \in \mathcal{B}_{1}$ and $b \in \mathcal{B}$, finding a pair of $a, b$ such that both $a \eta+b$ and $a \eta+b+1$ are quadratic residues of $\mathcal{F}$ is equivalent to solving a linear system

$$
\left\{\begin{aligned}
a \eta+b & =a\left(\eta+c_{i}\right), \\
a \eta+b+1 & =a\left(\eta+c_{j}\right), \text { for } c_{i}, c_{j} \in \mathcal{B}_{2}
\end{aligned}\right.
$$

as

$$
\left\{\begin{aligned}
a\left(c_{j}-c_{i}\right) & =1, \\
b & =a c_{i} .
\end{aligned}\right.
$$

For $c_{i}, c_{j} \in \mathcal{B}_{2}, i \neq j$, precisely one $a \in \mathcal{B}_{1}$ satisfies the condition $a\left(c_{j}-c_{i}\right)=1$. As $p_{0}\left(p_{0}-1\right)$ different $\left(c_{i}, c_{j}\right)$ 's, $i \neq j$, take values in $\mathcal{B}_{2}, \sum_{a \in \mathcal{B}_{1}} r_{a}=p_{0}\left(p_{0}-1\right)$, which simplifies (3.9) to $\left(p^{2}-2\right)-2(p-1)[(p-1)-((p-1) / 2-1)]=-1$. The proof is now complete.

Table 5 provides a list of choices for $\eta$ for Lemma 1 with $p \leq 13$.
As $s_{1}=p^{4} \equiv 1(\bmod 4)$ and $s_{2}=p^{2} \equiv 1(\bmod 4)$, the condition $\boldsymbol{C}_{2} \subset \boldsymbol{C}_{1}$ holds. Theorem 2 is the main result of this construction.

Theorem 2. Under the conditions of Lemma 1, (i) $\boldsymbol{C}_{1}$ is an $\boldsymbol{H}_{n_{1}}$ with $n_{1}=$ $2\left(p^{4}+1\right)$; (ii) $\boldsymbol{Q}_{2}$ satisfies Properties $1-3$ with $s_{1}$ replaced by $s_{2}$; (iii) $\boldsymbol{C}_{2} \subset \boldsymbol{C}_{1}$ and $\boldsymbol{C}_{2}$ is an $\boldsymbol{H}_{n_{2}}$ with $n_{2}=2\left(p^{2}+1\right)$.

Proof. Part (i) is clear from Properties 1-3 for $\boldsymbol{Q}_{1}$. Since $\chi(-1)=1$, $\boldsymbol{Q}_{2}$ is symmetric. This result, combined with the fact that $s_{2}=p^{2} \equiv 1 \equiv$ $s_{1}(\bmod 4)$, verifies Property 1. Property 2 follows by noting that $\mathcal{F}_{0}$ has

Table 5. A list of primitive polynomials of $\mathcal{F}$ and their corresponding choices of $\eta$ for Lemma 1 with $p \leq 13$

| $p$ | $f(x)$ | $\eta$ |
| ---: | ---: | ---: |
| 3 | $x^{4}+x+2$ | $[x]$ |
| 5 | $x^{4}+x^{3}+2 x+3$ | $[x]$ |
| 7 | $x^{4}+6 x^{3}+x^{2}+3$ | $[x]$ |
| 11 | $x^{4}+x^{2}+7 x+7$ | $\left[10 x^{3}+4 x^{2}+4 x\right]$ |
| 13 | $x^{4}+x^{2}+x+2$ | $\left[12 x^{3}+2 x^{2}+3 x+2\right]$ |

$\left(s_{2}-1\right) / 2$ quadratic residues and $\left(s_{2}-1\right) / 2$ nonresidues of $\mathcal{F}$. The $(i, j)$ element of $\boldsymbol{Q}_{2} \boldsymbol{Q}_{2}{ }^{\prime}, \sum_{k=0}^{s_{2}-1} \chi\left(\beta_{i}-\beta_{k}\right) \chi\left(\beta_{j}-\beta_{k}\right)$, is

$$
\begin{equation*}
\sum_{k \neq i} \chi^{2}\left(\beta_{i}-\beta_{k}\right) \chi\left(\left(\beta_{i}-\beta_{k}\right)^{-1}\left[\left(\beta_{j}-\beta_{i}\right)+\left(\beta_{i}-\beta_{k}\right)\right]\right)=\sum_{k \neq i} \chi\left(\left(\beta_{i}-\beta_{k}\right)^{-1}\left(\beta_{j}-\beta_{i}\right)+1\right) . \tag{3.10}
\end{equation*}
$$

Now simplify (3.T0) case by case for $i=j$ and $i \neq j$. For $i=j$, (3.TD) is $\sum_{k \neq i} \chi(1)=s_{2}-1$. For $i \neq j$, let $\zeta=\zeta_{i j}=\left(\beta_{j}-\beta_{i}\right)^{-1}$, for $\beta_{i}, \beta_{j} \in \mathcal{F}_{0}$, and take $\mathcal{F}_{0}^{*}=\left\{\gamma \zeta \mid \gamma \in \mathcal{F}_{0}\right\}$. Note that $\mathcal{F}_{0}^{*} \supset G F(p)$ and $\mathcal{F}_{0}^{*}$ has exactly $\left(s_{2}-1\right) / 2$ quadratic residues and exactly $\left(s_{2}-1\right) / 2$ nonresidues. Thus, Lemma 1 holds
 equals

$$
\sum_{\tilde{\gamma} \in \mathcal{F}_{0}^{*}, \tilde{\gamma} \neq 0} \chi\left(\tilde{\gamma}^{-1}+1\right)=\sum_{\tilde{\gamma} \in \mathcal{F}_{0}^{*}, \tilde{\gamma} \neq 0} \chi^{2}\left(\tilde{\gamma}^{2}\right) \chi\left(\tilde{\gamma}^{-1}+1\right)=\sum_{\tilde{\gamma} \in \mathcal{F}_{0}^{*}, \tilde{\gamma} \neq 0} \chi(\tilde{\gamma}(\tilde{\gamma}+1))=-1 .
$$

The last equality follows from Lemma 1 . Thus, $\boldsymbol{Q}_{2} \boldsymbol{Q}_{2}{ }^{\prime}=s_{2} \boldsymbol{I}_{s_{2}}-\boldsymbol{J}_{s_{2}}$, which verifies Property 3. Parts (ii) and (iii) are direct consequences of part (i).

Example 3. For $p=3$, use the primitive polynomial $f(x)=x^{4}+x+2$ for $G F\left(p^{4}\right)$ and let $\eta=[x]$, where $\mathcal{F}_{0}$ has nine elements. Theorem 2 produces an NHM $(164,20)$, with the embedded small Hadamard matrix given in Table 6.
Example 4. For $p=5$, use the primitive polynomial $f(x)=x^{4}+x^{3}+2 x+3$ for $G F\left(p^{4}\right)$ and let $\eta=[x]$, where $\mathcal{F}_{0}$ has 25 elements. Theorem 2 gives an NHM (1252, 52).

### 3.2. A subfield approach

To complement the linear subspace approach in Section 3.1, we propose a subfield approach to constructing NHM's by replacing the subspace in Step 2 of the subspace approach with a subfield $\mathcal{G}$ of order $s_{2}$. Take $\delta=u_{1} / u_{2}>1$. For

Table 6. An $\boldsymbol{H}_{20}$ is nested within an $\boldsymbol{H}_{164}$ in Example 3.

| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 |
| 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 |
| 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 |
| 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 |
| 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 |
| 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 |
| 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 |
| 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 |
| 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 |
| 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 |
| 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 |
| 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 |
| 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 |
| 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 |
| 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 |
| 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 |
| 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 |
| 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 |

integers $u_{1}$ and $u_{2}$ with an odd $\delta$, note that $\lambda=\left(p^{u_{1}}-1\right) /\left(p^{u_{2}}-1\right)$ is odd. The approach here proceeds as follows. As in Section 3.1, Step 1 obtains $\boldsymbol{Q}_{1}$ from $\mathcal{F}$. Step 2 takes $\mathcal{G}$ to be a subfield of $\mathcal{F}$ given by $\left\{0, \beta, \ldots, \beta^{s_{2}-1}\right\}$, where $\beta=\alpha^{\lambda}$. Step 3 takes $\boldsymbol{Q}_{2}$ to be the submatrix of $\boldsymbol{Q}_{1}$ with entries $\chi\left(\beta_{i}-\beta_{j}\right)$, for $\beta_{i}, \beta_{j} \in \mathcal{G}$, and then uses $\boldsymbol{Q}_{2}$ to construct $\boldsymbol{C}_{2}$ in (3.5). Because $\delta$ is odd, we have either $s_{1} \equiv s_{2} \equiv 1(\bmod 4)$ or $s_{1} \equiv s_{2} \equiv 3(\bmod 4)$ in $(5.3)$ and (3.5). Thus, $\boldsymbol{C}_{2}$ is guaranteed to be a subset of $\boldsymbol{C}_{1}$.

Proposition 1. For $p, u_{1}, u_{2}$, and $\delta$ defined above, (i) $\boldsymbol{C}_{1}$ is an $\boldsymbol{H}_{n_{1}}$ with $n_{1}=s_{1}+1$ for $s_{1} \equiv 3(\bmod 4)$ and $n_{1}=2\left(s_{1}+1\right)$ for $s_{1} \equiv 1(\bmod 4)$; (ii) $\boldsymbol{Q}_{2}$ satisfies Properties $1-3$ with $s_{1}$ replaced by $s_{2}$; (iii) $\boldsymbol{C}_{2} \subset \boldsymbol{C}_{1}$ and $\boldsymbol{C}_{2}$ is an $\boldsymbol{H}_{n_{2}}$ with $n_{2}=s_{2}+1$ for $s_{2} \equiv 3(\bmod 4)$ and $n_{2}=2\left(s_{2}+1\right)$ for $s_{2} \equiv 1(\bmod 4)$.

This proposition follows by noting that under the assumed conditions, an element in $\mathcal{G}$ is a quadratic residue of $\mathcal{G}$ if and only if it is a quadratic residue of $\mathcal{F}$.

Example 5. Let $p=3, u_{1}=3$ and $u_{2}=1$ with $s_{1}=27$ and $s_{2}=3$. The pair of nested arrays $\boldsymbol{C}_{2} \subset \boldsymbol{C}_{1}$ from Proposition 1 is an $\operatorname{NHM}(28,4)$; it is given in Table 7.

Since the Kronecker product of two Hadamard matrices yields a larger Hadamard matrix (Hedayat, Sloane, and Stufken ([999)), this product can be

used to generate new NHM's from existing ones. Let $\boldsymbol{F}$ be an $\boldsymbol{H}_{n}$ and let $\boldsymbol{G}$ be an $\boldsymbol{H}_{m}$. Put $\boldsymbol{K}=\boldsymbol{F} \otimes \boldsymbol{G}$. Then $\boldsymbol{G} \subset \boldsymbol{K}$ constitutes an $\operatorname{NHM}(n m, m)$. More generally, the Kronecker product of an NHM and a Hadamard matrix, or that of two NHM's, yields a larger NHM. This approach, however, cannot obtain the NHM's in Theorem 2, where $n_{1}$ is not a multiple of $n_{2}$.

## 4. Using the Kronecker Product to Obtain New Nested (Nearly) Orthogonal Designs

This section presents two approaches to constructing new nested (nearly) orthogonal designs by taking the Kronecker product of small (nearly) orthogonal designs and two-level orthogonal designs. First we give a lemma from Bingham, Sitter, and Tang (200.9).

Lemma 2. Let $\boldsymbol{F}$ be an $n_{1} \times m_{1}$ orthogonal matrix with two levels, -1 and +1 , where each of the two levels appears equally often in every column. Let $\boldsymbol{D}_{0}$ be an $n_{2} \times m_{2}$ nearly orthogonal design. After centering $\boldsymbol{D}_{0}$ column by column, define

$$
\begin{equation*}
\boldsymbol{D}=\boldsymbol{F} \otimes \boldsymbol{D}_{0} \tag{4.1}
\end{equation*}
$$

Then $\rho(\boldsymbol{D})$ is

$$
\sqrt{\frac{m_{2}-1}{m_{1} m_{2}-1} \rho^{2}\left(\boldsymbol{D}_{0}\right)},
$$

with $\rho(\cdot)$ as in (II.I). Furthermore, if $\boldsymbol{D}_{0}$ is orthogonal, then $\boldsymbol{D}$ is orthogonal.
Remark 1. For $\rho(\boldsymbol{D})$ and $m_{1}^{-1} \rho^{2}\left(\boldsymbol{D}_{0}\right)$ in Lemma 2, $\rho^{2}(\boldsymbol{D}) \leq m_{1}^{-1} \rho^{2}\left(\boldsymbol{D}_{0}\right)$, where $m_{1}^{-1}$ depends on $\boldsymbol{F}$ only. This result and Lemma 2 still hold if an additional column $\mathbf{1}_{n_{1}}$ is added to $\boldsymbol{F}$.

The two approaches impose a nested structure in $\boldsymbol{F}$ or $\boldsymbol{D}_{0}$ in (4. 1 ). The first approach has three steps. First, let $\boldsymbol{F}$ be the first $m$ columns of an $\mathrm{NHM}(n, m)$, from Section 3 or another source, and take $\boldsymbol{G}$ to be the subset of $\boldsymbol{F}$ consisting of its first $m$ rows and $m$ columns. Clearly, $\boldsymbol{G}$ is an $\boldsymbol{H}_{m}$. Second, let $\boldsymbol{D}_{0}$ be a $u \times v$ nearly orthogonal design and for each column, subtract the mean from all entries. Third, put

$$
\begin{equation*}
\boldsymbol{A}=\boldsymbol{F} \otimes \boldsymbol{D}_{0}, \boldsymbol{B}=\boldsymbol{G} \otimes \boldsymbol{D}_{0} . \tag{4.2}
\end{equation*}
$$

Remark 2. For $\boldsymbol{A}$ and $\boldsymbol{B}$ constructed above, (i) $\rho^{2}(\boldsymbol{A}) \leq(1 / m) \rho^{2}\left(\boldsymbol{D}_{0}\right)$; (ii) $\boldsymbol{B} \subset \boldsymbol{A}$ and $\rho^{2}(\boldsymbol{B}) \leq(1 / m) \rho^{2}\left(\boldsymbol{D}_{0}\right)$. Furthermore, if $\boldsymbol{D}_{0}$ is orthogonal, then both $\boldsymbol{A}$ and $\boldsymbol{B}$ are orthogonal.

Remark 2 can be verified by using Lemma 2 and Remark 1.

Example 6. Let $\boldsymbol{D}_{0}$ be the $6 \times 3$ nearly orthogonal Latin hypercube

$$
\left[\begin{array}{rrrrrr}
-5 & -1 & 1 & -3 & 3 & 5 \\
1 & 5 & -5 & -3 & 3 & -1 \\
-3 & 3 & 5 & -1 & 1 & -5
\end{array}\right]^{\prime}
$$

where the correlation between any two columns is -0.0286 and $\rho^{2}\left(\boldsymbol{D}_{0}\right)$ is 0.0008 . Let $\boldsymbol{F}$ be the last four columns of an $\operatorname{NHM}(8,4)$ given by

$$
\left[\begin{array}{rrrr:rrrr}
1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 \\
1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 \\
1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 \\
1 & -1 & -1 & 1 & -1 & 1 & 1 & -1
\end{array}\right]^{\prime} .
$$

Remark 2 produces a pair of designs $\boldsymbol{B} \subset \boldsymbol{A}$ in 12 factors with 24 runs and 48 runs, respectively, where $\rho^{2}(\boldsymbol{A})<0.0002$ and $\rho^{2}(\boldsymbol{B})<0.0002$.

Taking $\boldsymbol{F}$ to be an $\boldsymbol{H}_{n}$ in ( $\mathbb{L N}^{2}$ ) gives $\boldsymbol{B} \subset \boldsymbol{A}$ with $\rho^{2}(\boldsymbol{A}) \leq(1 / n) \rho^{2}\left(\boldsymbol{D}_{0}\right)$ and $\rho^{2}(\boldsymbol{B}) \leq(1 / m) \rho^{2}\left(\boldsymbol{D}_{0}\right)$, where $\boldsymbol{A}$ can accommodate more factors than $\boldsymbol{B}$.

The second proposed approach takes $\boldsymbol{D}_{0} \subset \boldsymbol{D}_{1}$ to be a pair of nested (nearly) orthogonal designs, both with zero mean for each column. Let $\boldsymbol{F}$ be an $\boldsymbol{H}_{m}$. Put

$$
\begin{equation*}
\boldsymbol{A}=\boldsymbol{F} \otimes \boldsymbol{D}_{1}, \boldsymbol{B}=\boldsymbol{F} \otimes \boldsymbol{D}_{0} . \tag{4.3}
\end{equation*}
$$

Remark 3. For $\boldsymbol{A}$ and $\boldsymbol{B}$ constructed above, (i) $\rho^{2}(\boldsymbol{A}) \leq(1 / m) \rho^{2}\left(\boldsymbol{D}_{1}\right)$; (ii) $\boldsymbol{B} \subset \boldsymbol{A}$ and $\rho^{2}(\boldsymbol{B}) \leq(1 / m) \rho^{2}\left(\boldsymbol{D}_{0}\right)$.

Example 7. Let $\boldsymbol{D}_{0} \subset \boldsymbol{D}_{1}$ be the $\operatorname{NOLH}(16,4,2)$ from Table 2. Let $\boldsymbol{F}$ be an $\boldsymbol{H}_{m}$. Then $\boldsymbol{B} \subset \boldsymbol{A}$ in ( 4.3 ) can accommodate $2 m$ factors. From Remark 3, both $\boldsymbol{A}$ and $\boldsymbol{B}$ are orthogonal.

Note that Qian, Ai, and Wu (200.9) and Qian,, Tang, and Wu (200.9) define a nested orthogonal array to be an orthogonal array containing a subarray that becomes a smaller orthogonal array after some suitable level-mapping. Inspired by this definition, in a future project we will define a nested Latin hypercube as follows. For integers $n_{1}>n_{2}$ with $n_{2}$ dividing $n_{1}, \operatorname{NLH}\left(n_{1}, n_{2}, m\right)$ denotes a Latin hypercube of $n_{1}$ levels in $m$ factors containing a subarray of $n_{2}$ runs that becomes an $\mathrm{LH}\left(n_{2}, m\right)$ after collapsing the $n_{2}$ groups of $n_{1} / n_{2}$ consecutive levels to $n_{2}$ equally spaced levels. Methods for constructing nested Latin hypercube designs with (nearly) orthogonal columns according to this definition will be developed.

## Acknowledgement

The authors thank the Editor, an associate editor, and two referees for their comments and suggestions that have significantly improved the paper. This work is partially supported by NSF grants CMMI 0969616 and DMS 1055214.

## References

Beattie, S. D. and Lin, D. K. J. (1997). Rotated factorial designs for computer experiments, Proceedings of SPES, American Statistical Association. Anaheim, California.
Bingham, D., Sitter, R. R. and Tang, B. (2009). Orthogonal and nearly orthogonal designs for computer experiments. Biometrika 96, 51-65.
Fang, K. F., Li, R. Z. and Sudjianto, A. (2005). Design and Modeling for Computer Experiments. Chapman \& Hall/CRC Press, New York.
Hedayat, A. S., Sloane, N. J. A. and Stufken, J. (1999). Orthogonal Arrays: Theory and Applications. Springer, New York.
Kennedy, M. C. and O'Hagan, A. (2000). Predicting the output from a complex computer code when fast approximations are available. Biometrika 87, 1-13.
Li, J. (2010). Designs for Computer Experiments. Ph.D Thesis, University of WisconsinMadison.
Lin, C. D., Mukerjee, R. and Tang, B. (2009). Construction of orthogonal and nearly orthogonal Latin hypercubes. Biometrika 96, 243-247.
McKay, M. D., Beckman, R. J. and Conover, W. J. (1979). A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21, 239-245.
Mukerjee, R., Qian, P. Z. G. and Wu, C. F. J. (2008). On the existence of nested orthogonal arrays. Discrete Math. 308, 4635-4642.
Owen, A. B. (1994). Controlling correlations in Latin hypercube samples. J. Amer. Statist. Assoc. 89, 1517-1522.
Paley, R. E. A. C. (1933). On orthogonal matrices. J. Math. Physics 12, 311-320.
Pang, F., Liu, M. Q. and Lin, D. K. J. (2009). A construction method for orthogonal Latin hypercube designs with prime power levels. Statist. Sinica 19, 1721-1728.
Qian, P. Z. G. (2009). Nested Latin hypercube designs. Biometrika. 96, 957-970.
Qian, P. Z. G., Ai, M. Y. and Wu, C. F. J. (2009). Construction of nested space-filling designs. Ann. Statist. 37, 3616-3643.
Qian, P. Z. G., Tang, B. and Wu, C. F. J. (2009). Nested space-filling designs for computer experiments with two levels of accuracy. Statist. Sinica 19, 287-300.
Qian, Z., Seepersad, C., Joseph, R., Allen, J. and Wu, C. F. J. (2006). Building surrogate models with detailed and approximate simulations. ASME J. Mechanical Design 128, 668-677.
Santner, T. J., Williams, B. J., and Notz, W. I. (2003). The Design and Analysis of Computer Experiments. Springer, New York.
Steinberg, D. M. and Lin, D. K. J. (2006). A construction method for orthogonal Latin hypercube designs. Biometrika 93, 279-288.
Tang, B. (1998). Selecting Latin hypercubes using correlation criteria. Statist. Sinica 8, 965-977.
Ye, K. Q. (1998). Orthogonal column Latin hypercubes and their applications in computer experiments. J. Amer. Statist. Assoc. 93, 1430-1439.

Opera Solutions, San Diego, CA, 92130, U.S.A.
E-mail: junli1119@gmail.com
Department of Statistics, University of Wisconsin, Madison, WI 53706, U.S.A.
E-mail: peterq@stat.wisc.edu
(Received April 2011; accepted January 2012)

