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Abstract: We propose a shrinkage method to estimate the coefficient function in a

functional linear regression model when the value of the coefficient function is zero

within certain sub-regions. Besides identifying the null region in which the coef-

ficient function is zero, we also aim to perform estimation and inferences for the

nonparametrically estimated coefficient function without over-shrinking the values.

Our proposal consists of two stages. In stage one, the Dantzig selector is employed

to provide initial location of the null region. In stage two, we propose a group

SCAD approach to refine the estimated location of the null region and to provide

the estimation and inference procedures for the coefficient function. Our consid-

erations have certain advantages in this functional setup. One goal is to reduce

the number of parameters employed in the model. With a one-stage procedure, it

is needed to use a large number of knots in order to precisely identify the zero-

coefficient region; however, the variation and estimation difficulties increase with

the number of parameters. Owing to the additional refinement stage, we avoid this

necessity and our estimator achieves superior numerical performance in practice.

We show that our estimator enjoys the Oracle property; it identifies the null region

with probability tending to 1, and it achieves the same asymptotic normality for

the estimated coefficient function on the non-null region as the functional linear

model estimator when the non-null region is known. Numerically, our refined es-

timator overcomes the shortcomings of the initial Dantzig estimator which tends

to under-estimate the absolute scale of non-zero coefficients. The performance of

the proposed method is illustrated in simulation studies. We apply the method in

an analysis of data collected by the Johns Hopkins Precursors Study, where the

primary interests are in estimating the strength of association between body mass

index in midlife and the quality of life in physical functioning at old age, and in

identifying the effective age ranges where such associations exist.

Key words and phrases: B-spline basis function, functional linear regression, group

smoothly clipped absolute deviation approach, null region.

1. Introduction

We study the functional linear regression (FLR) model

Yi = µ+

D∑
d=1

∫ T

0
Xid(t)βd(t)dt+ ei, (1.1)
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where Yi denotes the ith response, Xid(t) are realizations of random processes

Xd(t), βd(t) are the corresponding smooth coefficient functions on [0, T ], and ei ∼
N(0, σ2) are random errors independent of Xid(t), i = 1, . . . , n. The response Y

reflects the weighted cumulative effects of functional predictors Xd(t), and the

coefficient functions βd(t) represent the corresponding weights. In practice, it is

often of interest to know which areas of Xd(t) contribute to the value of Y and in

what magnitude. That is, we are interested in learning the null region in which

βd(t) = 0, and in estimating the values of βd(t) when they are non-zero.

Regression models with functional predictors have application in functional

data analysis (FDA), and lately in longitudinal data analysis (LDA) when the

longitudinal covariate measurements are collected intensively. Ramsay and Sil-

verman (2005) and Ferraty and Vieu (2006) reviewed theoretical and method-

ological developments and gave many examples. A non-exhaustive list of recent

works includes the followings. Estimation of βd(t) with a spline approach was

proposed by Cardot, Ferraty, and Sarda (2003). Crambes, Kneip, and Sarda

(2009) proposed a smoothing spline estimator of βd(t) with a new penalty term

to ensure existence of the estimator, and studied its asymptotic behavior. Fan

and Zhang (2000) studied the FLR problem with a functional response. Cai

and Hall (2006) investigated prediction issues in FLR. With an additional link

function in model (1.1), Müller and Stadtmüller (2005) studied the generalized

functional linear model. Yao, Müller, and Wang (2005) extended the scope of the

problem to cover longitudinal data. James, Wang, and Zhu (2009) emphasized

the importance of the interpretability of βd(t) and proposed to use a version of

the Dantzig selector (Candes and Tao (2007)) for this purpose. They equated the

problem of identifying zero-value regions of the corresponding order derivative of

βd(t) to that of variable selection in a multiple linear regression setting; however,

to precisely identify the null region of βd(t), the Dantzig selector needs to use a

large number of knots, and the quality of the estimated βd(t) deteriorates on the

non-null region with the increasing number of knots. It is known that with the

number of parameters increasing and increasing with sample size, the variation

of estimation increases. We illustrate this phenomenon in our specific setting in

Section 4. Further, the asymptotic distribution, a property tends to be desired

by a functional data analysis approach, is not reported for their estimator. We

derived the asymptotic distribution for our proposed estimator in Section 3.

In this paper, we propose a two-stage estimator to simultaneously identify

the null region of βd(t) and estimate βd(t) on the non-null region. The goal behind

this approach is to avoid having a large number of parameters in either stage and

still maintain a high quality of estimation performance. We roughly identify the

null region at stage one, and adaptively regularize the estimate of βd(t) on the

null and non-null regions at stage two, applying different group penalties. At
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stage one, an initial estimator identifies and preferably over-estimates the null

region; the desired precision is reached at the second stage. When the number

of parameters is large, a direct implementation of the Dantzig selector gives

poor estimation of the coefficient function in the non-null region. Our two-stage

procedure simplies the problem, naturally reduces over-shrinking of the coefficient

functions in the non-null region, and achieves superior numerical performance.

We structure the paper as follows. In Section 2, we present our proposed

method as a B-spline approximation coupled with shrinkage, which takes the

advantage of the local property of B-spline basis functions. In Section 3, we show

that the proposed estimator enjoys the Oracle property and we give its asymptotic

distribution. Simulation studies are reported in Section 4. In Section 5, we

apply the proposed method to data from the Johns Hopkins Precursors Study

to investigate the effect of body mass index at midlife on a quality of life index

for physical functioning at old age. Concluding remarks are given in Section 6.

Assumptions for the theoretical properties and sketch of the proofs are provided

in the Appendix. The exact algorithms to implement the proposed method,

detailed proofs, and additional numerical results are reported in a supplementary

document.

2. Estimation of Coefficient Functions and Their Null Regions

To simplify the notation and presentation, we take D = 1, suppress the

subscript d in model (1.1), and write

Yi = µ+

∫ T

0
Xi(t)β(t)dt+ ei. (2.1)

We assume ei ∼ N(0, σ2) and µ = 0. Without loss of generality, we let σ = 1.

Generalization of the method to the cases D > 1 is discussed in Section 2.3. The

asymptotic properties under (2.1) can be extended to model (1.1).

As in James, Wang, and Zhu (2009), we assume that the processes Xi(t) are

known while, in practice, Xi(t) are usually not completely observable. Instead,

the observations (Yi, tij , Xij) are available for i = 1, . . . , n and j = 1, . . . ,mi,

where Xij = Xi(tij). In practice, Xi(t) are measured at discrete and perhaps

irregular time points and it is common to include a pre-smoothing step. See

Ramsay and Silverman (2005) for insight and illustrations, and Hall and Van

Keilegom (2008) for theoretical considerations. We report the effects of pre-

smoothing in the numerical studies.

For estimating the coefficient function, β(t), as well as identifying its null

region, denoted by T , we use B-splines. Given k0,n + 1 evenly-spaced knots,

0 = τ0 < τ1 < τ2 < · · · < τk0,n−1 < τk0,n = T , let Ij = [τj−1, τj ] for j =
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Figure 1. Local support of B-spline basis function.

1, . . . , k0,n. Associated with this set of knots, there are (k0,n + h) B-spline ba-

sis functions, BBB0(t) = (B0,1(t), . . . , B0,k0,n+h(t))
T , each of which is a piecewise

polynomial of degree h with support on at most h + 1 subintervals Ij . The

upper panel of Figure 1 shows the seven basis functions with h = 2 and knots

{0.0, 0.2, 0.4, 0.6, 0.8, 1.0}. Given the sample size n and the k0,n + 1 knots, the

coefficient function can be expressed as

β(t) = BBBT
0 (t)bbb0 + e0(t), (2.2)

where bbb0 = (b0,1, . . . , b0,k0,n+h)
T is the B-spline approximation coefficient, e0(t)

is an approximation error that is uniformly bounded on [0, T ] with the bound

going to 0 as k0,n goes to infinity. For details on B-spline approximation, see

Schumaker (1981). Using the B-spline approximation for β(t) in (2.2), (2.1) can

be re-written as

Yi = zzzT0,ibbb0 + ϵ0,i, or YYY = ZZZ0bbb0 + ϵϵϵ0, (2.3)

where zzz0,i is a (k0,n + h) × 1 vector with the jth element
∫ T
0 Xi(t)B0,j(t)dt,

ϵ0,i = ei +
∫ T
0 Xi(t)e0(t)dt, and YYY and ZZZ0 are, respectively, the n× 1 vector and

n× (k0,n + h) matrix that contain Yi and zzz0,i as entries.

Note that the choices of BBB0(t), Ij , and consequently, the values of bbb0, e0(t),

ϵ0,i and zzz0,i, vary with the sample size n. To simplify notation, the subscript n
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is suppressed; we use the subscript 0 to indicate the association with the initial

stage.

2.1. Initial estimate of the null region

It is convenient to let the end points of T fall on the end points of certain

subintervals Ij . With the initial knots {τj}
k0,n
j=0 , assume each Ij is entirely con-

tained either in T or in T c, the complement of T . Having no prior information

on the location of T , we use a moderate number of evenly-spaced internal knots

on [0, T ]. The initial location of T can be roughly established through Ij and an

estimate of bbb0 in (2.3).

We use the Dantzig selector to estimate bbb0 at this stage, argminbbb||bbb||l1 sub-

ject to |ZZZT
0,k(YYY − ZZZ0bbb)| ≤ λD, with ZZZT

0,k being the kth column of ZZZ0, λD =√
2 log(k0,n + h), and ||bbb||l1 denoting the L1 norm of bbb. We denote this initial

estimate of bbb0 by b̃bb0. The conditions of equivalence between the Dantzig selector

and LASSO have been reported in James, Radchenko, and Lv (2009), Bickel, Ri-

tov, and Tsybakov (2009), and references therein. It is not essential to have high

precision during this stage, so other regularization estimators such as LASSO

or SCAD can be used here, even though the simulation outcomes from James,

Wang, and Zhu (2009) imply numerical advantages of the Dantzig selector over

LASSO. For further details on the Dantzig selector, see Candes and Tao (2007).

With the B-spline basis supported on at most h + 1 subintervals, the value

of BBBT
0 (t)bbb0 on a single subinterval Ij is determined by h+1 coefficients in bbb0. For

example, in Figure 1, the estimated β(t) for any t ∈ [0.4, 0.6] depends only on

the coefficients of the three basis functions in the lower panel. When the h + 1

coefficients associated with Ij are all 0, the subinterval Ij is contained in the

null region of BBBT
0 (t)bbb0; otherwise, it is in the non-null region. In practice, even if

Ij ⊂ T , its associated h+1 coefficients in bbb0 might not all be 0, but we only need

a rough estimate of null region at this stage. We simply use a small threshold

value at the initial stage to identify the subintervals within the null region of

β(t). Thus, if the absolute values of all h+1 coefficients are smaller than dn, we

classify the corresponding Ij as part of T . The union of all identified subintervals

is taken as the initial estimate of T , denoted by T̂ (0). We let the threshold value

dn go to 0 as n goes to infinity. The rates of dn and k0,n are given and discussed

in Section 3, and their numerical determination is in Section 4.

2.2. Null region refinement and function estimation

The second stage of our estimator refines the estimated location of T and

the estimate of β(t) on T c. We develop a grouped smoothly-clipped absolute

deviation (SCAD) method and a boundary grid-search algorithm at the second
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stage to refine the null region and to achieve the estimate of β(t) on T c. The

asymptotic distribution of the estimated β(t) can be naturally established. Our

estimator overcomes the concerns of large numbers of parameters, maintains the

sparse property, readily adopts the existing efficient computation algorithm, and

achieves desired numerical and theoretical qualities.

In Stage 1, k0,n+1 evenly-spaced internal knots are placed in [0, T ] to identify

the initial estimate of T ; in Stage 2, we use a grid-search based algorithm to

find the refined null region within T̂ (0) by examining a sequence of working null

regions Tw ⊆ T̂ (0). We let the search algorithm and the penalty determination

in grouped SCAD share the same objective function so that we can conduct the

evaluation jointly. A practical algorithm of specifying a sequence of Tw’s is given
in the supplementary document.

Having T̂ (0), we remove all initial knots within T̂ (0), and place k1,n + 1

evenly-spaced knots on T̂ (0),c, with k1,n < k0,n in general. With the grid size in

the boundary search procedure not related to k1,n, the determination of grid size

is a numerical decision. The smaller grid size gives more precise boundary but

can lead to a computationally more demanding task. In our simulation studies,

we used a grid size of 0.02T , where T is the range of t.

Using the new set of knots corresponding to each Tw, we generate a new

set of B-spline basis functions BBBw
1 (t) and the corresponding new variables, zzzw1,i,

following the same procedure described below (2.3). Moreover, (2.1) can be re-

written as

Yi = zzzwT
1,i bbb

w
1 + ϵw1,i, or YYY = ZZZw

1 bbb
w
1 + ϵϵϵw1 , (2.4)

where bbbw1 , zzz
w
1,i and ZZZw

1 are equivalently defined as bbb0, zzz0,i and ZZZ0, respectively, in

(2.3), and the ith entry of ϵϵϵw1 is ϵw1,i = ei+
∫ T
0 Xi(t)e

w
1 (t)dt, with the approximation

error ew1 (t) = β(t)−BBBwT
1 (t)bbbw1 . As in (2.3), ZZZw

1 , bbb
w
1 , BBB

w
1 (t), and ϵϵϵw1 vary with the

sample size n. The subscript n is suppressed to simplify the notation, and the

subscript 1 indicates the association with the refinement stage.

To estimate bbbw1 , we propose a group penalized least squares method. Ac-

cording to Tw, the coefficients in bbb are divided into groups bbbN,w (null) and bbbS,w
(signal). Specifically, if a subinterval is part of Tw, then all coefficients bi that

are associated with this subinterval are put into bbbN,w; the group bbbS,w contains

the remainder.

Different penalty functions are available in the literature, including the L2

penalty of ridge regression, the L1 penalty of LASSO regression (Tibshirani

(1996)), and the SCAD penalty function (Fan and Li (2001)). We use the SCAD

penalty function with coefficients in the two groups bbbN,w and bbbS,w penalized sep-

arately. Using the L2 penalty does not help us to identify T , and Zou (2006)

pointed out that the LASSO estimator is not consistent, which prevented us from
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considering the group LASSO (Yuan and Lin (2006)). That SCAD penalizes less

on coefficients with large absolute values allows the non-zero coefficient functions

to be better estimated. With the division of bbb into bbbN,w and bbbS,w, bbb
w
1 is estimated

as the minimizer of the objective function

n∑
i=1

(Yi − zzzw1,ibbb)
2 + n {pλ(||bbbN,w||l1) + pλ(||bbbS,w||l1)} ,

where pλ(·) is the SCAD penalty of Fan and Li (2001), defined through its deriva-

tive p′λ(|θ|) = λ{I(|θ| ≤ λ)+ [(aλ− |θ|)+/(a− 1)λ]I(|θ| > λ)}; a is usually taken

as 3.7, and λ is a tuning parameter selected by the criterion C(Tw, λ), which can

be the generalized cross validation criterion (GCV), Akaike’s information crite-

rion (AIC), the Bayesian information criterion (BIC; Schwarz), or the residual

information criterion (RIC), as specified in the supplementary document. By

calculating a criterion for each working Tw, we simultaneously select the Tw and

λ, that minimize it. Penalizing the coefficients, bbb, in groups helps to shrink the

coefficients in bbbN,w to zero, simultaneously.

Given an initial value of bbbw1 , the local quadratic approximation (LQA) is

used in the algorithm of Fan and Li (2001) to approximate the penalty function.

However, as pointed out in Zou and Li (2008), the LQA estimator does not

provide a sparse representation. Instead, Zou and Li (2008) proposed a one-step

local linear approximation (LLA) and converted the SCAD problem to a LASSO

regression that utilized the LARS algorithm of Efron et al. (2004) to get the

sparse estimate. We use the LLA for the group penalty in our method for the

same reason.

Let b̃bb1 be the initial estimate, which can be the ordinary least squares es-

timator, and b̃bb1N,w and b̃bb1S,w be the coefficients inside and outside the working

null region Tw, respectively. We approximate the group penalty pλ(||bbbN,w||l1) by

pλ(||bbbN,w||l1) ≈ pλ(||b̃bb1N,w||l1) + p′λ(||b̃bb1N,w||l1){||bbbN,w||l1 − ||b̃bb1N,w||l1}.

The penalty pλ(||bbbS,w||l1) is approximated equivalently. Using these approxima-

tions, we estimate bbbw1 by minimizing the objective function

Qn(Tw, λ, bbb)=
n∑

i=1

(Yi−zzzw1,ibbb)2+n
{
p′λ(||b̃bb1N,w||l1)||bbbN,w||l1+p′λ(||b̃bb1S,w||l1)||bbbS,w||l1

}
.

(2.5)

With ||bbbN,l||lw and ||bbbS,l||lw as the L1 norms of bbbN,w and bbbS,w and p′λ(||b̃bb1N,w||l1)
and p′λ(||b̃bb1S,w||l1) as weights, the task of minimizing Qn(bbb) can be carried out us-

ing the adaptive LASSO of Zou (2006) and the efficient LARS algorithm of Efron

et al. (2004). By the LLA, the coefficients within the same group are penalized
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with the weights according to their group memberships. When p′λ(||b̃bb1S,w||l1) → 0

as λ → 0, the coefficients in bbbS,w are barely penalized. As a result, the estimation

bias of β(t) on T c
w, induced by the shrinkage penalty, can be greatly reduced.

For a fixed dimension of the regression parameters, we note that Wang,

Chen, and Li (2007) developed an alternative group SCAD estimator using the

L2-norm and the local quadratic approximation. Their estimator does not have

a sparse representation, so our procedure is more suitable here.

To summarize, we take the refined estimate of the null region, T̂ , as

T̂ = arg min
Tw⊆T̂ (0)

C(Tw, argmin
λ>0

C(Tw, λ)). (2.6)

With

b̂bb1 = argmin
bbb

Qn(T̂ , argmin
λ>0

C(T̂ , λ), bbb), (2.7)

the refined estimate of β(t) is

β̂(t) = BBBT
1 (t)b̂bb1,

where BBB1(t) are the B-spline basis functions associated with T̂ .

2.3. Generalization to D > 1

We have taken D = 1 in (1.1). When D > 1, all steps can be carried out

without much modification, as follows. After obtaining variables zzz0,i for each

βd(t), the Dantzig selector can be applied to obtain initial estimates simulta-

neously for each βd(t) by including the variables zzz0,i of all βd(t) in (2.3). The

adaptive knots and the variables zzz1,i in (2.4) can then be obtained one by one for

each d. Finally, after having the variables zzzw1,i of all βd(t) in (2.4), the refinement

procedure with group SCAD is performed with the coefficient bbb in Qn(Tw, λ, bbb)
partitioned into 2D groups, two groups being associated with each βd(t).

3. Oracle Property

In this section, we show that, under certain conditions, our estimator enjoys

the Oracle property for identifying T and for estimating β(t) on T c. The con-

ditions and the proofs of the theorems are deferred to the Appendix or to the

supplementary document.

Recall that the parameters bbb0 and bbb1 in (2.3) and (2.4) vary with the sample

size n. In the asymptotic studies, we denote them as bbb0(n) and bbb1(n), respectively.

Similarly, B1(t) is denoted as B1(n, t), the initial estimator of bbb0(n) as b̃bb0(n), and

the refined estimator of bbb1(n) as b̂bb1(n). The tuning parameter λ is denoted as

λn.

For the estimator in the initial stage, we have an asymptotic result.
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Theorem 1. Let b̃bb0(n) = (b̃0,1(n), . . . , b̃0,k0,n+h(n))
T be the Dantzig estimate

of bbb0(n), with ei ∼ N(0, 1) and µ = 0. For the tuning parameter λD(n) =√
2 log(k0,n + h) in the Dantzig selector, and under the conditions A1-A6 in the

Appendix, we have

(i) ||b̃bb0(n)− bbb0(n)||l2 = Op{n−1/2k0,n(log k0,n)
1/2};

(ii) sup|b̃0,j(n)| = Op{n−1/2k0,n(log k0,n)
1/2} for b0,j(n) associated with T ;

(iii)With probability tending to 1,

T ⊆ T̂ (0) and T̂ (0) ∩ T c ⊆ Ω(k0,n),

where, with r ≥ 3 as in the condition A1, Ω(k0,n) = {t ∈ [0, T ] : 0 < |β(t)|
< k−r+2

0,n } is a sub-region of [0, T ], converging to the empty set as n → ∞.

Theorem 1 shows that the Dantzig selector estimate of bbb0(n) is consistent.

The L2 convergence rate follows from Bickel, Ritov, and Tsybakov (2009); see

also Raskutti, Wainwright, and Yu (2010); The sup-norm convergence rate can be

derived following Lounici (2008); proof of part (iii) is given in the supplementary

document.

Let the n × (k1,n + h) matrix ZZZ1(n) = (zzz1,1, zzz1,2, . . . , zzz1,n)
T , where zzz1,i is

defined in (2.4). Recall that the estimate of the coefficient function is β̂(t) =

BBBT
1 (n, t)b̂bb1(n), where BBB1(n, t) contains the B-spline basis functions at the re-

finement stage. Further, divide the basis functions BBB1(n, t) into BBB1N (n, t) and

BBB1S(n, t) and the matrix ZZZ1(n) into ZZZ1N (n) and ZZZ1S(n), according to the mem-

bership of their corresponding coefficients bbb1N (n), related to the null region T̂ (0),

and bbb1S(n).

For the estimator in the refinement stage, we have an asymptotic result.

Theorem 2. Assume the conditions A1-A8 in the Appendix and an initial es-

timator with the rate ||b̃bb1(n) − bbb1(n)||l2 = Op(n
−1/2k1,n), with ei ∼ N(0, 1) and

µ = 0.

(i) For t ∈ T , we have β̂(t) = 0 , with probability tending to 1.

(ii) For t ∈ T c, we have( n

k1,n

)1/2
[β̂(t)− β(t)− Bn(t)−Wn(t)]

D−→ N [0, σ2(t)],

where Bn(t) denotes the estimation bias, Wn(t) = β(t)−BBBT
1 (n, t)bbb1(n) is the

B-spline approximation error, and

σ2(t) = lim
n→∞

BBBT
1S(n, t)[

(k1,n
n

)
ZZZT

1S(n)ZZZ1S(n)]
−1BBB1S(n, t),
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( n

k1,n

)1/2
|Bn(t)| = Op(n

1/2k−r
1,n),( n

k1,n

)1/2
|Wn(t)| = Op(n

1/2k
−r−1/2
1,n ).

(iii)With n−1k2r1,n → ∞ in A5, we have( n

k1,n

)1/2
[β̂(t)− β(t)]

D−→ N [0, σ2(t)].

The assumed rate for the initial estimator b̃bb1(n) is verified for the ordinal

least squares estimator in the supplementary document.

Properties in Theorems 1 and 2 correspond to the Oracle properties reported

in Zou (2006). Precisely, with a large n, we are able to identify the correct sub-

regions in which the coefficient functions are non-zero; furthermore, we are able

to estimate the values of the coefficient functions on the non-null regions as if we

knew their exact locations.

4. Finite Sample Numerical Performances

We conducted simulation studies to evaluate the finite sample performance

of our estimators.

Study 1. In this simulation study, we considered two covariate functions and

the model

Yi = 2 +

∫ 10

0
Xi1(t)β1(t)dt+

∫ 10

0
Xi2(t)β2(t)dt+ ei,

for i = 1, . . . , n, with random errors ei ∼ N(0, 1). The covariate functions Xi1(t)

and Xi2(t) were quadratic spline functions on [0, 10] with 50 equally-spaced knots

and the corresponding coefficients were generated uniformly from [−5, 5]. We

took m = 50 observations within [0, 10] from the true functions as the observed

data and re-constructed Xi1(t) and Xi2(t) by B-spline approximations. We used

coefficient functions β1(t) and β2(t) as follows.

1. β1(t) was a piecewise quadratic function generated from quadratic B-spline

functions with evenly-spaced knots at {0.0, 0.5, . . . , 9.5, 10.0}, while its coeffi-

cients were from a 22×1 vector with the last eight entries (2.0, 2.3, 2.5, 2.7, 2.7,

2.7, 2.6, 2.6)T , and the rest of the entries zero.

2. The non-zero part of β2(t) was a Trigonometric function:

β2(t) =

{
3.5 sin

{
π(t+3)

5

}
if t > 7;

0 if t ≤ 7.
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Figure 2. Plots of β1(t) and β2(t) for Study 1.

These coefficient functions are plotted in Figure 2. The shape of the function β1(t)

is commonly observed in biological studies; it indicates the pattern of growing

into a stable state. As shown in the figure, β1(t) = 0 on [0, 6] and β2(t) = 0 on

[0, 7].

In each study, we generated 250 data sets with sample size n = 150. To

evaluate the performance of the estimator, the estimated functions β̂1(t) and

β̂2(t) were compared to the corresponding true functions. For the comparison,

we report two quantities,

A0 =
1

l0

∫
T
|β̂d(t)− βd(t)|dt A1 =

1

l1

∫
T c

|β̂d(t)− βd(t)|dt.

For β1(t), T = [0, 6], T c = (6, 10], and l0 = 6, l1 = 4. For β2(t), T = [0, 7], T c =

(7, 10], and l0 = 7, l1 = 3. The quantity A0 measures the integrated absolute

differences between the estimated coefficient functions and the true functions on

the null regions, while A1 measures it on the non-null regions.

We first evaluate the performance of the Dantzig estimates of βd(t) (d = 1, 2)

with different numbers of knots. Ideally, in order to reach high precision in de-

termining the null region with a direct application of the Dantzig selector, one

would need a very large number of knots. However, performance also deteriorates

when the number of parameters is very large. Here, we can decide the number

of variables in our problem, and design the procedure to improve numerical per-

formance. Below, we show the effect of the total number of knots, k0,n + 1, on
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Table 1. Integrated absolute biases of the least squares and the Dantzig
estimates for Study 1. Each entry is the Monte Carlo average of Aj , j = 0
or 1; the corresponding standard deviation is reported in parentheses.

β1(t) β2(t)
Estimator k0,n A0 A1 A0 A1

Least Squares 50 2.220 (1.414) 3.272 (2.150) 1.905 (1.253) 3.982 (2.783)

Dantzig Selector 50 0.005 (0.010) 0.695 (0.090) 0.004 (0.007) 0.792 (0.114)
Dantzig Selector 100 0.010 (0.019) 1.416 (0.100) 0.009 (0.014) 1.687 (0.136)
Dantzig Selector 200 0.008 (0.021) 2.318 (0.102) 0.006 (0.013) 2.661 (0.141)
Dantzig Selector 300 0.007 (0.020) 2.724 (0.104) 0.004 (0.011) 3.120 (0.133)

the performance of the Dantzig estimator of βd(t), varying the number of knots

among k0,n = 50, 100, 200, and 300.

The performances of the estimated coefficient functions by least squares with

k0,n = 50, and the Dantzig selector with k0,n = 50, 100, 200, and 300, are

summarized in Table 1. The entries of the table give the Monte Carlo averages

of A0 and A1 over the 250 generated data sets, while the corresponding standard

deviation is reported in parentheses. Since the same Xi1(t) and Xi2(t) were

generated for each value of k0,n, the results of the Dantzig estimator in Table

1 differ only by k0,n. Table 1 shows that the least square estimator performed

poorly on both regions, even with 50 knots. The Dantzig estimator performed

well on the null region throughout, which is indicated by the small values of

A0. However, its estimation of βd(t) on the non-null regions was increasingly

worse with growth in the number of knots. The poor performance of the Dantzig

estimator on the non-null regions in Table 1 indicates the necessity of a refining

stage.

We next evaluate the performance of the proposed one-step group SCAD

estimator. The method, as described in Sections 2.1 to 2.3 with D = 2, re-

fined the initial null region estimates and estimated βd(t) on the non-null regions

simultaneously, using the proposed algorithm. Based on the theoretical rates

in Section 3, we let k0,n = ck0n
0.23, k1,n = ck1n

0.20, and dn = cdn
−0.25. We

used a 10-fold cross validation on five data sets to choose the c’s, and then fixed

them throughout the simulation. With the grid-search algorithm to determine

the boundary of null regions, we do not expect outcomes to be sensitive to the

choices of ck0 and cd, and a bad choice could simply lead to more computa-

tion in locating the boundaries at the second stage. This is indeed the case.

The 10-fold CV results are indifferent over the range of cd we tried, cd varying

from 0.05 to 0.5 (dn varying between 0.014 and 0.143). The CV values varied

near their minimums for k0,n between 35 and 55 for all five data sets. We used

k0,n = 50 ≈ 13n0.23, k1,n = 12 ≈ 4.5n0.20, and dn = 0.2n−0.25. For comparison,



ZERO-VALUE COEFFICIENT FUNCTION AT SUB-REGIONS 37

Table 2. Integrated absolute biases of the least squares, the Dantzig selector,
the adaptive LASSO (adpLASSO), and the one-step group SCAD (gSCAD)
estimates for Study 1. Each entry is the Monte Carlo average of Aj , j = 0
or 1; the corresponding standard deviation is reported in parentheses.

β1(t) β2(t)
Estimator A0 A1 A0 A1

Oracle Estimator - 0.157 (0.041) - 0.166 (0.046)
Least Squares 2.205 (1.432) 3.283 (2.549) 1.963 (1.256) 4.088 (2.716)

Dantizig Selector 0.006 (0.013) 0.692 (0.094) 0.006 (0.010) 0.821 (0.132)

adpLASSO AIC 0.041 (0.030) 0.193 (0.059) 0.036 (0.028) 0.214 (0.069)
adpLASSO BIC 0.031 (0.031) 0.212 (0.059) 0.025 (0.029) 0.240 (0.074)

gSCAD AIC 0.024 (0.033) 0.143 (0.038) 0.024 (0.030) 0.155 (0.048)
gSCAD BIC 0.004 (0.013) 0.140 (0.037) 0.003 (0.009) 0.154 (0.049)

we calculated the adaptive LASSO estimates of βd(t) by estimating the B-spline

coefficients associated with the same adaptive knots, with the adaptive weights

(Zou (2006)) being the inverse of absolute values of initial estimates by least

squares. The criterion C(Tw, λ) was specified as GCV, AIC, BIC, or RIC, de-

fined in the supplementary document. The same set of criteria were also used to

select the tuning parameter in adaptive LASSO. The performances of estimated

coefficient functions with AIC and BIC criteria, as well as the Oracle estimates

that used the known null regions, are summarized in Table 2. The results with

GCV and RIC, which are comparable to those with AIC and BIC, are reported in

the supplementary document. The outcomes show that the criteria work about

equally well. We tried different k0,n values but, as expected, they do not play

much of a role in our procedure.

It may seem surprising that the Oracle estimator gives slightly larger A1

values than the proposed estimators. This is due to the fact that the proposed

estimators shrink the small non-zero values on the boundary toward zero, and

consequently achieve less varied and better estimated outcomes near the null

boundary.

The initial null regions of β1(t) and β2(t) identified by the Dantzig selector

and the refined null regions of the one-step group SCAD method are shown in

Table 3, where the averages of the lower and upper limits of the estimated null

regions over the 250 generated data sets, as well as the corresponding standard

deviations in parentheses, are summarized. The true null regions are [0, 6] for

β1(t) and [0, 7] for β2(t), respectively.

As shown in Tables 2 and 3, the least squares estimates of βd(t) are poor

on both null and non-null regions of βd(t). The Dantzig selector tends to have

less favorable performance on the non-null regions of βd(t). Moreover, the initial
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Table 3. Null region estimates for Study 1. Each entry is the Monte Carlo
average of estimated boundary of the null region; the corresponding standard
deviation is reported in parentheses.

β1(t) β2(t)
Estimator lower upper lower upper

Dantzig Selector 0.008 (0.064) 6.230 (0.175) 0.002 (0.038) 7.123 (0.202)

gSCAD AIC 0.011 (0.091) 5.773 (0.479) 0.004 (0.063) 6.666 (0.528)
gSCAD BIC 0.010 (0.082) 6.058 (0.171) 0.003 (0.051) 6.951 (0.181)

null region identified by it tends to be larger than the true region. The one-step

group SCAD method seems to satisfactorily estimate the coefficient functions

on both null and non-null regions. Furthermore, by refining the null region

initial estimates, our method, particularly using the BIC or RIC criterion, tends

to identify the null regions of βd(t) with a greater accuracy than the Dantzig

selector. The one-step group SCAD method also outperforms adaptive LASSO

on both null and non-null regions.

The full simulation results with GCV, AIC, BIC, and RIC criteria, reported

in the supplementary document, show that the performances of the criteria in

the method are, in general, satisfactory; see Wang, Li, and Tsai (2007) for an-

other report of using these four criteria in comparison of performances of SCAD

methods. The results show that BIC and RIC are less conservative in identifying

the null regions. This is expected because the BIC and RIC criteria put heavier

penalty on the effective number of parameters than the AIC criterion (Shi and

Tsai (2002)).

One advantage of the proposed estimators is that they readily provide infer-

ences for non-zero coefficient functions. Here, we computed the variance of the

point estimator given in Theorem 2 and constructed the pointwise 95% confi-

dence interval according to the asymptotic normality results in Theorem 2 for t

in the non-null regions. At each point, the true value of coefficient function β1(t)

or β2(t) was compared with the computed pointwise 95% confidence interval, and

the coverage probabilities (CP) of the confidence intervals were computed over

the 250 generated data sets. Besides CP, we also calculated the Monte Carlo

biases, standard deviations (SD), and mean square errors (MSE) for points in

the non-null regions. For β1(t), we took t = 6.1, 6.2, . . . , 10.0, and for β2(t),

t = 7.1, 7.2, . . . , 10.0. Using AIC and BIC, the entries of Table 4 give the av-

erages of Monte Carlo biases, SDs, MSEs, and CP over these points, while the

corresponding standard deviation is reported in parentheses. The coverage prob-

abilities of the confidence intervals, computed over the 250 generated data sets

at these points in the non-null regions of β1(t) and β2(t), are plotted in Figure 3,

for AIC and BIC. Table 4 shows that the estimators based on AIC and BIC
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Figure 3. Empirical coverage probabilities (CP) of 95% pointwise confi-
dence intervals for coefficient estimate over non-null region of β1(t) and
β2(t) for Study 1, by AIC and BIC. For β1(t), the points are taken at
t = 6.1, 6.2, . . . , 10.0; for β2(t), the points are taken at t = 7.1, 7.2, . . . , 10.0.

Table 4. Monte Carlo bias, standard deviation (SD), mean squared error
(MSE), and empirical coverage probability (CP) of 95% pointwise confidence
intervals of group SCAD (gSCAD) estimates for Study 1. Each entry is the
average over the selected points in the non-null region of β1(t) or β2(t); the
corresponding standard deviation is reported in parentheses.

β1(t)
Estimator Ave. MC Bias Ave. MC SD Ave. MC MSE CP

gSCAD AIC 0.004 (0.013) 0.201 (0.213) 0.085 (0.331) 0.932 (0.047)
gSCAD BIC -0.001 (0.019) 0.195 (0.218) 0.084 (0.339) 0.928 (0.094)

β2(t)
Estimator Ave. MC Bias Ave. MC SD Ave. MC MSE CP

gSCAD AIC -0.006 (0.031) 0.224 (0.247) 0.110 (0.394) 0.924 (0.053)
gSCAD BIC -0.012 (0.043) 0.221 (0.242) 0.107 (0.378) 0.915 (0.098)

perform similarly on the non-null regions and all yield coverage probabilities of

the pointwise confidence intervals close to the nominal level 0.95. The slightly

lower coverage probabilities than the nominal level is due to the shrinkage of the

estimates for t close to the boundary of the null regions, as shown in Figure 3.

The GCV and RIC criteria have similar performances to AIC and BIC; their

results are reported in the supplementary document.
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Figure 4. Plot of β(t) for Study 2.

We also briefly investigated the effects of having irregularly spaced time

points by dropping 10% and 20% of the observations on Xi1(t) and Xi2(t) at

random from the simulated data, followed by a pre-smoothing step. Our proce-

dure was then applied to the pre-smoothed data. The relative performance of

least squares, the Dantzig selector, the adaptive LASSO, and the one-step group

SCAD, were similar to what is seen in Tables 1-4. We noted a slight decrease in

the average coverage probabilities. For example, for group SCAD with the AIC

criterion, the coverage probabilities for β1(t) and β2(t) were 90.6% and 88.7% for

10% dropped, and 87.7% and 85.6% for 20% dropped. A further investigation in-

dicated that the decrease in average coverage probabilities mainly occurred near

the boundary of null regions. This observation implies that the performance of

our estimators near the boundary of null regions tends to be subject to the in-

fluence of the locations and numbers of observations on the covariate functions

Xi1(t) and Xi2(t).

Study 2. We conducted a second simulation study with

Yi = 2 +

∫ 1

0
Xi(t)β(t)dt+ ei,

and ei ∼ N(0, 0.25). The covariate functions Xi(t) were generated and re-

constructed on [0, 1] by the same methods as in Study 1. The coefficient function

was β(t) = max[0, 8 log(t + 1) sin{3.5π(t − 0.2)}], shown in Figure 4. Its null

region is T = [0.0, 0.2]
∪
[0.486, 0.771].
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Figure 5. Empirical coverage probabilities (CP) of 95% pointwise con-
fidence intervals for coefficient estimate over non-null region of β(t)
for Study 2, by AIC and BIC. The points are taken at t =
0.21, 0.22, . . . , 0.48, 0.78, 0.79, . . . , 0.99, 1.00.

We generated 250 data sets with sample size n = 500. The 10-fold CV

results suggested the use of a much smaller k0,n; we took k0,n = 20, k1,n = 10,

and dn = n−0.25. The equivalent results to those in Study 1 are reported in

Tables 5 to 7. The 95% CI overage probabilities (CP) are reported over t =

0.21, 0.22, . . . , 0.48, 0.78, 0.79, . . . , 1.00 within T c. Tables 5 and 6 show that the

method has better performance overall in estimating β(t) and identifying the

null region of β(t) than the other methods, and behaves similarly as the oracle

estimator. The Dantzig estimator tends to yield larger A1, as usual. We repeated

the simulation with k0,n = 50 while keeping the rest of the setup unchanged. The

Monte Carlo averages of A0 for least-squares, Dantzig, adaptive LASSO (AIC),

and grouped SCAD (AIC) were 3.755, 0.001, 0.198, and 0.043, respectively, while

the corresponding values for A1 were 3.840, 0.849, 0.268, and 0.246. Similar

performances were obtained using other criteria. We note that the outcomes for

adaptive LASSO and our method change little, mainly due to the slight changes

of boundaries and the knot locations at the second stage. The least-squares and

Dantzig estimators again suffered from the large number of parameters.

5. The Johns Hopkins Precursors Study

The impact of cumulative lifelong risk exposure on quality of life (QoL) in

old age is of great interest to researchers. We applied our method to data from
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Table 5. Integrated absolute biases of the least squares, the Dantzig selector,
the adaptive LASSO (adpLASSO), and the one-step group SCAD (gSCAD)
estimates for Study 2. Each entry is the Monte Carlo average of Aj , j = 0
or 1; the corresponding standard deviation is reported in parentheses.

Estimator A0 A1

Oracle Estimator - 0.257 (0.054)
Least Squares 0.246 (0.060) 0.240 (0.054)

Dantzig Selector 0.006 (0.007) 0.485 (0.069)

adpLASSO AIC 0.066 (0.063) 0.246 (0.063)
adpLASSO BIC 0.023 (0.041) 0.278 (0.079)

gSCAD AIC 0.038 (0.076) 0.230 (0.054)
gSCAD BIC 0.009 (0.020) 0.226 (0.056)

Table 6. Null region estimates for Study 2. Each entry is the Monte Carlo
average of estimated boundary of the null region; the corresponding standard
deviation is reported in parentheses.

[0.000, 0.200] [0.486, 0.771]
Estimator lower upper lower upper

Dantzig Selector 0.001 (0.009) 0.199 (0.016) 0.502 (0.014) 0.749 (0.008)

gSCAD AIC 0.001 (0.009) 0.194 (0.021) 0.507 (0.019) 0.744 (0.016)
gSCAD BIC 0.001 (0.009) 0.199 (0.016) 0.502 (0.014) 0.749 (0.008)

Table 7. Monte Carlo bias, standard deviation (SD), mean squared error
(MSE), and empirical coverage probability (CP) of 95% pointwise confidence
intervals of group SCAD (gSCAD) estimates for Study 2. Each entry is the
average over the selected points in the non-null region of β1(t) or β2(t); the
corresponding standard deviation is reported in parentheses.

β1(t)
Estimator Ave. MC Bias Ave. MC SD Ave. MC MSE CP

gSCAD AIC -0.012 (0.055) 0.296 (0.173) 0.120 (0.265) 0.950 (0.016)
gSCAD BIC -0.020 (0.072) 0.286 (0.183) 0.120 (0.272) 0.951 (0.020)

the Johns Hopkins Precursors Study to investigate the effect of body mass index

(BMI) at midlife on the quality of life at older ages. In this, we focused on

the outcome of physical functioning (PF), an important QoL measure among

the elderly, collected through the SF-36 health survey questionnaires (Ware and

Sherbourne (1992)), with a score that ranged from 0 to 100. We restricted our

analysis to data from 107 participants who had their PF scores assessed between

70 and 76 years of age. The age range of interest for the BMI was 40 to 70 years.

The transformed PF score, y = 10 ∗ asin
√

PF/100 was used as the response in

model (2.1).

To obtain each participant’s trajectory of BMI on [40, 70], we first pre-
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Figure 6. The estimated coefficient function for BMI in the Johns Hopkins
Precursors Study. The upper panel shows the initial estimate by Dantzig
selector. The lower panel shows the refined estimate by the proposed one-
step group SCAD estimator with the dotted lines being the 95% pointwise
CI for it in the refined non-null region [46, 64]. The AIC and RIC criteria
yield the same refined estimates.

smoothed the available BMI records for each subject (Ramsay and Silverman

(2005)). The pre-smoothed and centered BMI trajectories on [38, 72] were then

fitted by quadratic B-splines with evenly-spaced knots of {38, 40, . . . , 70, 72}. In
the initial stage of the method, the functional coefficient on [40, 70] was approxi-

mated by quadratic splines with evenly-spaced knots of {40, 42, . . . , 68, 70}. The
Dantzig selector, with the tuning parameter selected by leave-one-out cross val-

idation, yielded the initial null region [40, 52] ∪ [58, 70]. The initial estimate of

β(t) by the Dantzig selector is plotted in Figure 6.

During the refining stage, we specified the working null regions as [40, 52 −
l] ∪ [58 + l, 70] and let l = 0, . . . , 10. Using the method proposed in Section 2.2,

the refined null region selected by both AIC and RIC was [40, 46]∪ [64, 70]. The

two criteria also led to identical refined estimates of β(t) on [40, 70], as well as

the same pointwise 95% confidence intervals; they are plotted in Figure 6.

Figure 6 shows that greater values of BMI between ages 46 and 64 seem to

be associated with greater decrease in the PF scores in early to mid 70 years

of age. The 95% pointwise confidence intervals of β(t) on [46, 64], albeit not
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significant, are almost all in the negative range. In contrast to our approach,

the Dantzig selector identified a larger null region and shrunk the estimated

coefficient function on the non-null region toward zero. This is consistent with

what we observed in the simulation study. The zero coefficient function in the

mid-forties and younger implies that a greater BMI at this age range does not

contribute much to additional risk of decreasing PF scores, after factoring in

body weight patterns in the subsequent two decades. On the other hand, the

zero coefficient function after the mid-sixties could be due to a mixture of two

forces; high BMI is harmful in general, but being too thin may not be a good

sign among the elderly either.

The non-significant finding could be due to the relatively small number of

participants in our sample and the modest association between BMI and the

PF scores, not uncommon in this kind of study. To better understand whether

we had sufficient power to confirm a modest association, we conducted a small

power analysis. In the analysis, we specified the true coefficient function as the

curve estimated by the proposed method. Then, conditional on the available

BMI records, we generated new PF scores according to the fitted model and

applied the method to calculate 95% confidence intervals. The proportions of

pointwise 95% confidence intervals that were completely negative at ages 50,

55, and 60, with the λ in SCAD penalty being fixed at the value selected in

the data analysis, were 0.496, 0.256, and 0.522, respectively. The finding from

the Precursors Study data nevertheless suggests the potential for added benefit

of slower decline in physical functioning at old age in keeping a healthy body

weight in midlife.

6. Concluding Remarks

With the development in variable selection when the number of predictors

is large, we advance a method to estimate coefficient functions in functional

linear model when the values of the functions are zero in certain sub-regions.

Our aim is a functional data analysis (FDA) tool in which the final estimator

on the non-null region behaves just like a regular FDA solution. Our estimator

successfully attains the properties we desire: it maintains the sparsity and Oracle

properties in the estimated coefficient functions, asymptotic normality applies,

and it achieves superior numerical performances compared to existing alternatives

in both identification of T and the estimation of β(t). The proposed procedure

borrows strength from existing efficient algorithms and can be easily carried out.

An additional point is that in functional data analysis, we select the number

of basis functions and determine the number of parameters needed. When the

number is unavoidably large, as in the variable selection problems in genomic

studies, even the best estimator can be poor. When we reduce the number
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of parameters, we simplify the nature of the problem and consequently obtain

improved results. There are alternatives to what we have proposed. In our

method, as indicated in the supplementary document, we shrank the limits of

each null interval in a symmetric way with a grid size of 0.02T . More effective

search ideas, such as a combination of shrinking and expanding around the limits,

could be conducted and should lead to some improvement. The performance of

the estimates on the non-null region can be further improved by an adaptive

selection of knots, as in the regular B-spline smoothing estimation. We have not

pursued these directions here.
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Supplementary Document

SuppDoc.pdf describes the aglorithms, the technical proofs, and provides

additional tables and figures for the outcomes of the numerical studies.

Appendix: Assumptions and Technical Details

We provide the assumptions behind the theoretical properties and sketch

their proofs in the Appendix; refer to the supplementary document for further

details.

A.1. Notation and assumptions

Recall that k0,n+1, k1,n+1 are the numbers of knots, and ZZZ0(n) and ZZZ1(n)

are the design matrices in models (2.3) and (2.4) for the two stages, respectively.

LetZZZ∗
0(n) be a standardized version ofZZZ0(n) such that Ψz0∗=n−1ZZZ∗T

0 (n)ZZZ∗
0(n)

has its diagonal elements, Ψz0∗(j, j) ≡ 1, for all j. Take δb0(n) = b̃bb0(n)− bbb0(n),

and let δb0,T (n) and δb0,T c(n) be δb0(n), corresponding to null and signal regions,

respectively, with s(n) the number of non-zero coefficients in bbb0(n). Recall the

definitions of ZZZ1N (n) and ZZZ1S(n) in Section 3. To show the Oracle properties of

the proposed estimator, consider the following conditions.

A1: β(t) has rth (r ≥ 3) bounded derivative on [0, T ].

A2:
∫ T
0 |Xi(t)|dt ≤ M ′kr−1

1,n , for i = 1, . . . , n and some constant M ′ < ∞.
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A3: For some integer s less than k0,n + h and non-zero δbo(n),

min
|s(n)|≤s

min
|δb0,T (n)|l1≤|δb0,T c (n)|l1

|ZZZ∗T
0 (n)δb0(n)|l2

|
√
n|δb0,T c(n)|l2

> 0.

A4: For a constant γ > 1 and s ≥ s(n),

maxi̸=jΨz0∗(i, j) ≤
1

3γs
.

A5: For k0,n, n
−1k2r−2

0,n log k0,n → 0 and n−1k2r0,n log k0,n → ∞.

For k1,n, n
−1k2r−4

0,n k31,n → ∞.

A6: For the threshold value dn, dnn
1/2k−1

0,n(log k0,n)
−1/2 → ∞ and dnk

r−2
0,n → 0.

A7: For the tuning parameter λn, λn → 0 and λnk
r−2
0,n → ∞.

A8: There are constants 0 < c′1 < c′2 such that

c′1k
−1
1,n ≤ λmin{n−1ZZZT

1 (n)ZZZ1(n)} ≤ λmax{n−1ZZZT
1 (n)ZZZ1(n)} ≤ c′2k

−1
1,n,

where λmin(A) and λmax(A) denote the smallest and largest eigenvalues of

the matrix A. The same eigenvalue condition as for n−1ZZZT
1 (n)ZZZ1(n) holds

for the matrices n−1ZZZT
1N (n)ZZZ1N (n) and n−1ZZZT

1S(n)ZZZ1S(n). In addition,

λmax{n−1ZZZT
1N (n)ZZZ1S(n)ZZZ

T
1S(n)ZZZ1N (n)} < c3k

−1
1,n,

for a constant c3 > 0.

Condition A2 is weaker than one assumed in James, Wang, and Zhu (2009).

The restricted eigenvalue condition A3 from Bickel, Ritov, and Tsybakov (2009)

controls the singularity of the first stage design matrix to ensure the L2 rate,

while A4 is required to warrant the sup-norm rate in Theorem 1. The rate of the

threshold value dn given in condition A6 guarantees that, with probability tending

to 1 as n → ∞, T is correctly identified by T̂ (0). Condition A8 is analogous

to one in Fan and Peng (2004) when the number of predictors increases with n.

It appears as lemmas in Zhou, Shen, and Wolfe (1998) and Zhu, Fung, and He

(2008); to avoid redundancy, we simply use it as a condition.

A.2. Sketch Proof of Theorem 2

We use an > Op(bn) and an ≥ Op(bn) to denote that, as n → ∞ with prob-

ability tending to 1, bn/an → 0 and bn/an is bounded from above, respectively.

Here we sketch the key steps in the proof of Theorem 2. Recall that bbb1N (n) and
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bbb1S(n) are the division of bbb1(n) according to T̂ (0). Since bbb1N (n) contains the co-

efficients associated with T̂ (0), by Theorem 1 (iii), these coefficients are either as-

sociated with T or with Ω(k0,n). Consequently, by A5, ||bbb1N (n)||l1 = Op(k
−r+2
0,n ).

Following the proof of Part (iii) of Theorem 1 in the supplementary document,

it is easy to see that ||bbb1S(n)||l1 ≥ Op(1).

We assume the initial value b̃bb1(n) satisfies ||b̃bb1(n)−bbb1(n)||l2 = Op(n
−1/2k1,n).

Note that b̃bb1N (n) and b̃bb1S(n) are the division of b̃bb1(n) according to T̂ (0). Given

||b̃bb1N (n) − bbb1N (n)||l1 ≤ C||b̃bb1N (n) − bbb1N (n)||l2 = Op(n
−1/2k1,n), ||bbb1N (n)||l1 =

Op(k
−r+2
0,n ), and A5, we have that ||b̃bb1N (n)||l1 = Op(k

−r+2
0,n ) and ||b̃bb1S(n)||l2 ≥

Op(1). Given A7, with probability tending to 1, we have that p′λn
(||b̃bb1N (n)||l1) =

λn and p′λn
(||b̃bb1S(n)||l1) = 0.

Let Qn be Qn(T̂ , λ, bbb) in (2.5), and focus on the expansion of Qn{b̂bb1(n)} −
Qn{bbb1(n)} as

[b̂bb1(n)− bbb1(n)]
TZZZT

1 (n)ZZZ1(n)[b̂bb1(n)− bbb1(n)]− 2(ZZZT
1 (n)ϵϵϵ1(n))

T [b̂bb1(n)− bbb1(n)]

+nλn(||b̂bb1N (n)||l1 − ||bbb1N (n)||l1)
≥ [b̂bb1(n)− bbb1(n)]

TZZZT
1 (n)ZZZ1(n)[b̂bb1(n)− bbb1(n)]− 2(ZZZT

1 (n)ϵϵϵ1(n))
T [b̂bb1(n)− bbb1(n)]

+nλn(||b̂bb1N (n)− bbb1N (n)||l1 − 2||bbb1N (n)||l1),

where b̂bb1N (n), b̂bb1S(n) and bbb1N (n), bbb1S(n) are the divisions of b̂bb1(n) and bbb1(n),

respectively, according to their association with T̂ (0). Handling the null and

non-null coefficients separately, we show, with some detailed derivation, that a

non-optimal bound for the convergence rate of b̂bb1(n) holds as ||b̂bb1(n)−bbb1(n)||l2 ≤
Op(n

−1/2k
3/2
1,n ); this rate is sufficient for us to use in the proof of Theorem 2. The

proof of b̂1,j(n) = 0, with probability tending to 1, for any b̂1,j(n) associated with

T̂ (0), is a direct consequence of this convergence. Part (i) is proved.

We have p′λn
(||b̃bb1N (n)||l1) = λn and p′λn

(||b̃bb1S(n)||l1) = 0 with probability

tending to 1. We now give the key steps that lead to the asymptotic distribution

of β̂(t) for t ∈ T c. For large n, we have( n

k1,n

)1/2
(β̂(t)− β(t))

=
( n

k1,n

)1/2
BBBT

1S(n, t){b̂bb1S(n)− bbb1S(n)}+
( n

k1,n

)1/2
{BBBT

1 (n, t)bbb1(n)− β(t)}

=BBBT
1S(n, t){

(k1,n
n

)
ZZZT

1S(n)ZZZ1S(n)}−1{( n

k1,n
)−1/2ZZZT

1S(n)eee(n)}

+BBBT
1S(n, t){

(k1,n
n

)
ZZZT

1S(n)ZZZ1S(n)}−1[(
n

k1,n
)−1/2ZZZT

1S(n){ϵϵϵ1(n)− eee(n)}]

+BBBT
1S(n, t){

(k1,n
n

)
ZZZT

1S(n)ZZZ1S(n)}−1{( n

k1,n
)−1/2ZZZT

1S(n)ZZZ1N (n)bbb1N (n)}
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+
( n

k1,n

)1/2
{BBBT

1 (n, t)bbb1(n)− β(t)}

= Un(t) +
( n

k1,n

)1/2
B′

n(t) +
( n

k1,n

)1/2
B′′
n(t) +

( n

k1,n

)1/2
Wn(t).

By Huang (1998), Un(t) is the asymptotic normal component, Bn(t) = B′
n(t) +

B′′
n(t) is the estimation bias, and Wn(t) contains the spline approximation error.

Given that eee(n) ∼ N(0, In), we have that, for t ∈ T c,

Un(t)
D−→ N [0, σ2(t)],

where σ2(t) = limn→∞BBBT
1S(n, t){(k1,n/n)ZZZT

1S(n)ZZZ1S(n)}−1BBB1S(n, t).

By A8, λmax((k1,n/n)ZZZ1S(n)ZZZ
T
1S(n)) ≤ c′2. Thus, we have sup |ϵ1,i − ei|

≤ M ′Ck−r
1,n for some constant C, and ||(n/k1,n)−1/2ZZZT

1S(n)(ϵϵϵ1(n) − eee(n))||l2 ≤
C ′n1/2k−r

1,n for some constant C ′. Then( n

k1,n

)1/2
|B′

n(t)| = Op(n
1/2k−r

1,n).

Also by A8, we have( n

k1,n

)−1
bbbT1N (n)ZZZT

1N (n)ZZZ1S(n)ZZZ
T
1S(n)ZZZ1N (n)bbb1N (n) ≤ c

′2
2 ||bbb1N (n)||2l2 .

By A5, each coefficient in bbb1N (n) is bounded by C ′k−r+2
0,n for some constant C ′.

Combined with the fact that k−r+2
0,n = op(1) by A7, we can show that( n

k1,n

)1/2
|B′′

n(t)| = op(1).

Therefore, we have ( n

k1,n

)1/2
|Bn(t)| = Op(n

1/2k−r
1,n).

The term Wn(t) is the B-spline approximation error at β(t). Given A1 and

the B-spline approximation property, we have( n

k1,n

)1/2
|Wn(t)| = Op(n

1/2k
−r−1/2
1,n ).

Therefore we have, for t ∈ T c,( n

k1,n

)1/2
[β̂(t)− β(t)− Bn(t)−Wn(t)]

D−→ N [0, σ2(t)].

Part (ii) is proved.
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Assuming the additional stronger condition n−1k2r1,n → ∞ in A5, it follows

that (n/k1,n)
1/2|Bn(t)| = op(1) and (n/k1,n)

1/2|Wn(t)| = op(1). Therefore we

have, for t ∈ T c, ( n

k1,n

)1/2
[β̂(t)− β(t)]

D−→ N [0, σ2(t)].

Part (iii) is proved.
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