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Abstract: Owing to the fact that general semiparametric inference procedures are

still underdeveloped for multivariate interval-censored event time data, we pro-

pose semiparametric maximum likelihood estimation for the gamma-frailty Cox

model under mixed-case interval censoring. We establish the consistency of the

semiparametric maximum likelihood estimator (SPMLE) for the model parame-

ters, including the regression coefficients and the cumulative hazard functions in

the Cox model, and the variance of the gamma frailty. The SPMLEs of the cumu-

lative hazard functions are shown to have a n1/3-rate of convergence, while those of

the regression coefficients and the frailty variance have a n1/2-rate of convergence;

here n denotes the number of study units. The asymptotic normality of the regres-

sion coefficients and the frailty variance is also established, with the asymptotic

variance given by the inverse of the efficient Fisher information matrix. A profile-

likelihood approach is proposed for estimating the asymptotic variance. Based on

the self-consistency equations and the contraction principle, we propose a stable

and efficient computation algorithm. Simulation results reveal that the large sam-

ple theories work quite well in finite samples. We analyze a dataset from an AIDS

clinical trial by the proposed methods to assess the effects of the baseline CD4 cell

counts on the times to CMV shedding in blood and urine.

Key words and phrases: Correlated data, interval censoring, proportional hazards,

self-consistency.

1. Introduction

Data on survival or event time are often subject to censoring due to limi-

tations in the observational process. For example, right censoring occurs when

time to the event is beyond the end of observation, while interval censoring oc-

curs when the observation is only made at several examination times, and hence

one can only know that the event time lies in some interval bracketed by two

examination times. The incomplete nature of censored event time data compli-

cates the subsequent statistical analysis, including event time regression analysis

where the covariate effects on the event time are to be assessed. In particular,

interval-censored data generally create more difficulties than right-censored data
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in both theory and computation. For instance, for the Cox model under the

“case k” interval censoring where there are k examination times per subject, it

has been shown that the maximum likelihood estimator of the regression param-

eter is asymptotically normal and efficient, but that of the baseline cumulative

hazard function has only a n1/3-rate of convergence (Huang and Wellner (1997)),

slower than the n1/2-rate achieved with right-censored data (Andersen and Gill

(1982)). Also, in contrast to convenient computation via the partial likelihood

(Cox (1972)) under right censoring, the computation of the maximum likelihood

estimator for the Cox model with interval censoring may involve a high dimen-

sional Newton-Raphson iteration (Finkelstein (1986)). The monograph by Sun

(2006) provides a comprehensive review of the problems on event time analysis

with interval-censored data.

The results mentioned above pertain to univariate interval-censored data.

The challenges from interval censoring become even more prominent when mul-

tivariate event time data are considered, because correlations among multiple

event times cause a further complication. Some marginal regression approaches

based on working independence have been proposed for the Cox model (Gog-

gins and Finkelstein (2000), Kim and Xue (2002)), the proportional odds model

(Chen, Tong, and Sun (2007)), and the additive hazards model (Tong, Chen, and

Sun (2008)). It is expected that such methods lose information since correlations

among event times are not accounted for. The full-likelihood approaches based

on the frailty Cox model have also been developed, but only for the specific

“case 1” interval censoring where there is only one examination time for each

event per subject (Chen, Tong, and Sun (2009), Wen and Chen (2011)), or for

restricted maximum likelihood estimation (Xiang, Ma, and Yau (2011)). A semi-

parametric maximum likelihood approach under general “mixed-case” interval

censoring, where the number of examination times for each event per subject can

vary randomly, is still lacking for the analysis of multivariate interval-censored

data.

In this work we consider semiparametric maximum likelihood estimation for

the gamma-frailty Cox model with bivariate mixed-case interval-censored event

time data. Our motivation comes from a dataset from the ACTG 181 clinical trial

on HIV-infected patients (Goggins and Finkelstein (2000), Sun (2006)), where the

effects of baseline CD4 cell counts on the times to shedding of cytomegalovirus

(CMV) in the urine and blood are of interest, and data on CMV shedding times

are subject to interval censoring since they are determined only at intermittent

clinic visits. We formally establish the consistency of the semiparametric max-

imum likelihood estimator (SPMLE) for the model parameters, including the

regression coefficients and the cumulative hazard functions in the Cox model,

and the variance parameter for the gamma frailty. In particular, the SPMLEs of
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the cumulative hazard functions are shown to have a n1/3-rate of convergence,

while the SPMLEs of the regression coefficients and the frailty variance param-

eter have a n1/2-rate of convergence; hereinafter n denotes the number of study

units. The asymptotic normality of the finite-dimensional parameters, includ-

ing the regression coefficients and the frailty variance, is also established, with

the asymptotic variance given by the inverse of the efficient Fisher information

matrix. A profile-likelihood approach is proposed for estimating the asymptotic

variance. Based on a set of self-consistency equations and the contraction princi-

ple, we propose a stable and efficient computation algorithm for semiparametric

maximum likelihood estimation of the gamma-frailty Cox model under general

types of interval censoring, extending an earlier version of the algorithm proposed

by Wen and Chen (2011) for the “case 1” interval-censored or “current status”

data. Simulation results reveal that the large sample theories developed for the

SPMLE work quite well in the finite sample setting. We assess the effects of the

baseline CD4 cell counts on the times to CMV shedding in blood and urine using

the proposed method.

2. The Data and Model

Let T1 and T2 denote two possibly correlated failure times in one study unit

(e.g. subject or family), and Z1 and Z2 the vectors of covariates that may affect T1

and T2, respectively. To assess the effects of Zj on Tj (j = 1, 2), while accounting

for correlation between T1 and T2, the gamma-frailty Cox model proposed by

Vaupel, Manton, and Stallard (1979) may be utilized. Suppose η is a gamma

random variable with mean 1 and variance γ > 0. We consider three types of

gamma frailty models that assume that, conditional on (η, Z1, Z2), T1 and T2 are

independent with the marginal cumulative hazard function of Tj (j = 1, 2) given

by one of

η exp(β′Zj)Λ(t), (2.1)

η exp(β′Zj)Λj(t), (2.2)

η exp(β′
jZj)Λj(t). (2.3)

In these models, β and the βj ’s denote vectors of unknown regression pa-

rameters, and Λ and the Λj ’s denote functions of unspecified baseline marginal

cumulative hazards. Hence the correlation between T1 and T2 is accounted for

by the shared but unobserved frailty η, with a larger value of γ corresponding

to a stronger correlation. Model (2.1) assumes homogeneous baseline hazards as

well as covariate effects for T1 and T2; model (2.2) assumes homogeneous baseline

hazards but heterogeneous covariate effects; model (2.3) assumes heterogeneous

baseline hazards as well as covariate effects.
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In bivariate interval-censored data, Tj , j = 1, 2, is not observed exactly but
is known only to occur within some censoring interval (Lj , Rj ] with Lj < Rj .
To define how the pair (Lj , Rj) is generated for each j, we consider the ‘mixed-
case’ interval censoring as defined in Schick and Yu (2000). Let Kj be a random
positive integer denoting the number of examination times for Tj in a study

unit, and Uj = {U (j)
Kj ,l

: l = 1, . . . ,Kj ,Kj = 1, 2, . . .} a triangular array of

random examination times with U
(j)
Kj ,1

< · · · < U
(j)
Kj ,Kj

. Then Lj = U
(j)
Kj ,l−1 and

Rj = U
(j)
Kj ,l

when Tj ∈ (U
(j)
Kj ,l−1, U

(j)
Kj ,l

] for l = 1, . . . ,Kj + 1, with U
(j)
Kj ,0

≡ 0 and

U
(j)
Kj ,Kj+1 ≡ ∞.

The following assumptions are imposed on the censoring mechanism. (i)
{Kj , Uj , j = 1, 2} and {η, Tj , j = 1, 2} are independent conditioned on {Zj , j =
1, 2}. (ii) The conditional distribution of {Kj , Uj , j = 1, 2} given {Zj , j = 1, 2}
does not depend on parameters of interest. Also, assume that η is indepen-
dent of (Z1, Z2). Then, the likelihood under (2.3) for a single observation O =
{Lj , Rj , Zj , j = 1, 2} is

L(θ,Λ1,Λ2)(O) = Eη

{ 2∏
j=1

[
exp(−ηeβ

′
jZjΛj(Lj))− exp(−ηeβ

′
jZjΛj(Rj))

]}
= S(L1, L2|Z1, Z2)− S(L1, R2|Z1, Z2)

−S(R1, L2|Z1, Z2) + S(R1, R2|Z1, Z2), (2.4)

where θ = (β′
1, β

′
2, γ)

′, Eη is the expectation with respect to η, and

S(t1, t2|Z1, Z2) = (1 + γeβ
′
1Z1Λ1(t1) + γeβ

′
2Z2Λ2(t2))

−1/γ

is the unconditional joint survival function of (T1, T2) under (2.3). The likelihood
under (2.2) can be obtained by setting β1 = β2 in (2.4) and that under model
(2.1) can be obtained by further setting Λ1 = Λ2.

The identifiability of model (2.3), the most complicated model considered in
our setup, is established in Appendix A.2.

3. Semiparametric Maximum Likelihood Estimation

In this section we discuss semiparametric maximum likelihood estimation of
(θ,Λ1,Λ2) under (2.3) with bivariate interval-censored data, where θ=(β′

1, β
′
2, γ)

′.
Semiparametric maximum likelihood estimation under (2.1) and (2.2) can be
analogously obtained with slight modifications. Let the observed data O1, . . . , On

be n i.i.d. copies of O with Oi = {Lj,i, Rj,i, Zj,i, j = 1, 2}. The likelihood function
of (θ,Λ1,Λ2) based on {Oi, i = 1, . . . , n} is

Ln(θ,Λ1,Λ2) =

n∏
i=1

L(θ,Λ1,Λ2)(Oi). (3.1)
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We now establish the existence of the semiparametric maximum likelihood es-

timator (SPMLE) that maximizes this likelihood. For every fixed θ, we first show

that there exist random elements Λ̂1θ and Λ̂2θ in the space of right-continuous

non-decreasing functions that maximize Ln. Let Lj(n) = maxi Lj,i for j = 1, 2.

From (3.1) it is clear that Λ̂jθ(Rj,k) = ∞ for those Rj,k > Lj(n), and Λ̂jθ(Lj(n)) <

∞ as Ln would be 0 otherwise. By the fact that limy→∞ exp(−Cy) → 0 for pos-

itive constant C, we have that there exist positive constants M1 and M2 such

that, for each fixed θ,

max
Λ1(L1(n))≤M1,Λ2(L2(n))≤M2

Ln(θ,Λ1,Λ2)> sup
Λ1(L1(n))>M1 or Λ2(L2(n))>M2

Ln(θ,Λ1,Λ2).

The existence of (Λ̂1θ, Λ̂2θ) thus follows from the continuity of Ln. Further, due

to the compactness of the parameter space Θ of θ, the maximizer, say θ̂, of the

continuous function θ 7→ Ln(θ, Λ̂1θ, Λ̂2θ) exists. Let Λ̂1 = Λ̂
1θ̂

and Λ̂2 = Λ̂
2θ̂
,

then (θ̂, Λ̂1, Λ̂2) maximizes Ln(θ,Λ1,Λ2).

Since the likelihood function Ln depends on the baseline cumulative haz-

ards (Λ1,Λ2) only through their values at the examination times {Lj,i, Rj,i; i =

1, . . . , n, j = 1, 2}, it is easy to see that the SPMLE of the baseline cumulative

hazards is unique only within the class of all right-continuous non-decreasing step

functions with possible jumps only at {Lj,i, Rj,i; i = 1, . . . , n, j = 1, 2}. Hence,

we need only restrict the search of SPMLE of Λ1 and Λ2 within this class of

functions.

Our theorems establish asymptotic properties for the proposed SPMLE ζ̂ =

(θ̂, Λ̂1, Λ̂2) of ζ = (θ,Λ1,Λ2).

Theorem 1 (Consistency and rate of convergence). Under conditions (C1)−(C6)

in Appendix A.1, the SPMLE ζ̂ is consistent; that is, θ̂
P→ θ0 and each Λ̂j(t)

P→
Λj0(t) for every t in (τ1, τ2). The rate of convergence of SPMLE is of order only

n−1/3 under the metric d∗ defined in (A.1), d∗(ζ̂, ζ0) = Op(n
−1/3).

Theorem 2 (Asymptotic normality). Under conditions (C1)−(C6) in Appendix

A.1,
√
n(θ̂−θ0)

d−→ N(0, I−1
0 ). The asymptotic variance I−1

0 is the inverse of the

efficient Fisher information matrix I0, whose existence is examined in Appendix

A.4.

In theory, the variance estimation of θ̂ can be obtained by inverting the

observed information matrix. However we note that the information matrix

does not have a closed form, which makes this approach to variance estimation

difficult to implement. One approach is to numerically approximate the observed

information matrix by

Îij ≡ −n−1ρ−2
n

[
log L̃n(θ̂ + ρnei + ρnej)− log L̃n(θ̂ + ρnei)
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− log L̃n(θ̂ + ρnej) + log L̃n(θ̂)
]
, (3.2)

where L̃n(θ) = supΛ1,Λ2
Ln(θ,Λ1,Λ2), i.e., L̃n(θ̂) = Ln(θ̂, Λ̂1, Λ̂2), ei is a d-

dimensional unit vector with the ith element equal to 1, and ρn is a tuning

constant with an order of n−1/2. This method of approximation was used by

Wen and Chen (2011), among others.

Remark 1. Although the overall convergence rate for (θ̂, Λ̂1, Λ̂2) is Op(n
−1/3),

the convergence rate for θ̂ achieves the usual parametric rate Op(n
−1/2). This

extends the results of Huang and Wellner (1997) from the univariate Cox model

to the bivariate gamma-frailty Cox model under interval censoring.

4. Computation Algorithm

In this section, we first state the main idea underlying our computation

method for the SPMLE, then describe in detail the algorithm. For simplicity, here

we only focus on the computation algorithm for the model (2.3). The algorithms

for (2.1) and (2.2) can be obtained in a similar way.

For j = 1, 2, let 0 = cj,0 < cj,1 < · · · < cj,nj < cj,nj+1 = ∞ denote the

distinct ordered values of the examination times {Lj,i, Rj,i; i = 1, . . . , n}. As

discussed in Section 3, to obtain the SPMLE we can simply consider Λj a right-

continuous non-decreasing step function with possible jumps only at time points

{cj,1, . . . , cj,nj}. In this case Λj can be represented by Λj(t) =
∑

l:cj,l≤t vj,l, where

vj = (vj,1, . . . , vj,nj )
′ is a vector of nonnegative parameters with vj,l representing

the jump size of Λj at cj,l. Then in terms of the parameters (θ, v1, v2), the

logarithm of the likelihood Ln can be written as

ℓ(θ, v1, v2) =
n∑

i=1

log {ALL,i −ALR,i −ARL,i +ARR,i} (θ, v1, v2),

where

ALL,i(θ, v1, v2) =
(
1 + γeβ

′
1Z1,i

{ ∑
l:c1,l≤L1,i

v1,l

}
+ γeβ

′
2Z2,i

{ ∑
l:c2,l≤L2,i

v2,l

})−1/γ
,

ALR,i(θ, v1, v2) =
(
1 + γeβ

′
1Z1,i

{ ∑
l:c1,l≤L1,i

v1,l

}
+ γeβ

′
2Z2,i

{ ∑
l:c2,l≤R2,i

v2,l

})−1/γ
,

ARL,i(θ, v1, v2) =
(
1 + γeβ

′
1Z1,i

{ ∑
l:c1,l≤R1,i

v1,l

}
+ γeβ

′
2Z2,i

{ ∑
l:c2,l≤L2,i

v2,l

})−1/γ
,

ARR,i(θ, v1, v2) =
(
1 + γeβ

′
1Z1,i

{ ∑
l:c1,l≤R1,i

v1,l

}
+ γeβ

′
2Z2,i

{ ∑
l:c2,l≤R2,i

v2,l

})−1/γ
,
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with v1,0 = v2,0 = 0, and v1,n1+1 = v2,n2+1 = ∞.

For 1 ≤ k ≤ nj , j = 1, 2, the partial derivative of ℓ with respect to vj,k takes

the form
∂ℓ

∂vj,k
(θ, v1, v2) = aj,k(θ, v1, v2)− bj,k(θ, v1, v2),

where aj,k(θ, v1, v2) and bj,k(θ, v1, v2) are positive functions given by

aj,k(θ, v1, v2) =
∑

i:Rj,i≥cj,k

eβ
′
jZj,i{A1+γ

RL,i −A1+γ
RR,i}(θ, v1, v2)

{ALL,i −ALR,i −ARL,i +ARR,i}(θ, v1, v2)
,

bj,k(θ, v1, v2) =
∑

i:Lj,i≥cj,k

eβ
′
jZj,i{A1+γ

LL,i −A1+γ
LR,i}(θ, v1, v2)

{ALL,i −ALR,i −ARL,i +ARR,i}(θ, v1, v2)
.

A necessary condition for (θ̂, v̂1, v̂2) to be the maximizer is (∂/∂vj,k)ℓn(θ̂, v̂1, v̂2) =

aj,k(θ̂, v̂1, v̂2)− bj,k(θ̂, v̂1, v̂2) = 0, which leads to the “self-consistency” equations

v̂j,k = v̂j,k
aj,k(θ̂, v̂1, v̂2) +M0

bj,k(θ̂, v̂1, v̂2) +M0

, k = 1, . . . , nj , j = 1, 2, (4.1)

where M0 ≥ 0 is a chosen constant whose rationale will be given later. Let

D = ({D1,1, . . . , D1,n1}′, {D2,1, . . . , D2,n2}′), where

Dj,k ≡ Dj,k(θ, v1, v2) = vj,k
aj,k(θ, v1, v2) +M0

bj,k(θ, v1, v2) +M0
, k = 1, . . . , nj , j = 1, 2.

Then, we have (v̂1, v̂2) = D(θ̂, v̂1, v̂2), i.e., (v̂1, v̂2) is a fixed point of D(θ̂, ·, ·),
which motivates the computational approach.

Since the parameter γ is restricted to be positive, for stability in computation

we use the reparametrization γ∗ = log γ. With a slight abuse of notation, we

denote by θ the parameter set (β′
1, β

′
2, γ

∗)′. Using the Newton-Raphson method

and the self-consistency equations in (4.1), we propose the following procedure

to iteratively compute the SPMLE (θ̂, Λ̂1(t), Λ̂2(t)):

Step 1. Choose an initial value (θ(1), v
(1)
1 , v

(1)
2 ) ∈ Rd × (0,∞)n1 × (0,∞)n2 .

Step 2. Update each current estimate (θ(k), v
(k)
1 , v

(k)
2 ) for k ≥ 1.

Step 2.1. Update θ(k) to θ(k+1) by

θ(k+1) = θ(k) − ℓ−1
θθ (θ

(k), v
(k)
1 , v

(k)
2 )ℓθ(θ

(k), v
(k)
1 , v

(k)
2 ),

where ℓθ and ℓθθ are the first and second derivatives of ℓ with

respect to θ, respectively.
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Step 2.2. Update (v
(k)
1 , v

(k)
2 ) to (v

(k+1)
1 , v

(k+1)
2 ) by

(v
(k+1)
1 , v

(k+1)
2 ) = D(θ(k+1), v

(k)
1 , v

(k)
2 ). (4.2)

Step 3. If the updated estimate (θ(k+1), v
(k+1)
1 , v

(k+1)
2 ) is close to (θ(k), v

(k)
1 , v

(k)
2 ),

then stop the procedure and let (θ̂, Λ̂1(t), Λ̂2(t)) = (θ(k),
∑

l:c1,l≤t
v
(k)
1,l ,∑

l:c2,l≤t v
(k)
2,l ); otherwise, return to Step 2.

In the procedure, Step 2.1 is essentially the one-step Newton-Raphson

method for maximizing ℓ(θ, v1, v2) with v1 and v2 being fixed, and Step 2.2 is

based on (4.1).

It is worth noting that the logarithm of the likelihood function Ln is not

concave in Λ, hence the existing algorithms for nonparametric maximum likeli-

hood estimation with interval-censored data, such as the iterative convex mino-

rant (ICM) algorithm and its variants (Groeneboom and Wellner (1992), Huang

(1996), Wellner and Zhan (1997)), cannot be applied to the problem we consider.

We now describe the rationale of the self-consistency equations (4.1) leading

to the proposed algorithm. From the facts that both aj,k and bj,k are positive

functions, and ∂ℓ/∂vj,k = aj,k−bj,k = 0, ∂2ℓ/∂vj,k
2 = ∂aj,k/∂vj,k−∂bj,k/∂vj,k < 0

at (θ̂, v̂1, v̂2), we can choose a constant M0 ≥ 0 large enough such that

∣∣∣∣∂Dj,k

∂vj,k
(θ̂, v̂1, v̂2)

∣∣∣∣ =
∣∣∣∣∣∣1 + v̂j,k

∂aj,k
∂vj,k

(θ̂, v̂1, v̂2)−
∂bj,k
∂vj,k

(θ̂, v̂1, v̂2)

bj,k(θ̂, v̂1, v̂2) +M0

∣∣∣∣∣∣ ∈ (0, 1) (4.3)

for all k = 1, . . . , nj , j = 1, 2. By the Mean Value Theorem and the continuity

of ∂Dj,k/∂vj,k, we know from (4.3) that there exists 0 < b0 < 1 such that

|Dj,k(θ, u1, u2) − Dj,k(θ, v1, v2)| ≤ b0|uj,k − vj,k| for k = 1, . . . , nj , j = 1, 2, and

(θ, u1, u2), (θ, v1, v2) near (θ̂, v̂1, v̂2). If d̃{(u1, u2), (v1, v2)} =
∑2

j=1

∑nj

k=1 |uj,k −
vj,k|, then d̃ is a metric satisfying d̃{D(θ, u1, u2), D(θ, v1, v2)} ≤ b0d̃{(u1, u2),
(v1, v2)} for all (θ, u1, u2) and (θ, v1, v2) near (θ̂, v̂1, v̂2). This implies that the

system of simultaneous equations (4.2) forms a locally contractive iteration, and

hence converges by the contraction principle (see, for example, Rudin (1973,

p.220).

Although a sufficiently large M0 may theoretically be needed in order to

satisfy the condition (4.3) for local convergence, a large M0 may adversely slow

down the convergence. To solve the dilemma, we may start with M0 = 0 for

convenience. If the algorithm has shown a trend towards convergence during

early iterations, then we fix M0 = 0 throughout; otherwise, we increase M0 to

a larger value in later iterations to ensure convergence. In all of our simulations
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and data analysis, we found that the convenience choice of M0 = 0 leads to con-

vergent results, and using a variety of values of M0 leads to the same convergent

solution. Therefore, the specification of M0 seems not to be a sensitive issue in

computation.

The self-consistency equations may have multiple solutions as the informa-

tion loss due to censoring and missing data (if any) becomes heavier (see Wellner

and Zhan (1997) for the examples of this issue with doubly- and interval-censored

data). However, our simulation studies have shown that the proposed algorithm

is not sensitive to initial values for θ and (v1, v2), various different choices of the

initial values usually lead to the same solution. Also, multiple initial values can

be used to check whether the algorithm is trapped in a local maximum or not.

Remark 2. Note that v̂j,k is kept at 0 if its initial value is 0. Hence, the proposed

algorithm always starts with non-zero initial values for the jump sizes (v1, v2) to

avoid stopping prematurely at a zero point.

Remark 3. It is not necessary that all the intervals {Lj,i, Rj,i; i = 1, . . . , n, j =

1, 2} be given mass by the SPMLE. For example, in (2.2) or (2.3) , where sep-

arate cumulative hazards are specified for T1 and T2, the theory developed for

the univariate interval-censored data (e.g., Hudgens (2005)) can be applied to

know which intervals contain no mass for Λj . For these intervals, the proposed

algorithm does result in a value of v̂j,k very close to 0 (< 10−8) in our numerical

study under (2.2) or (2.3).

5. Simulation Studies

We report on the assessment of the numerical performances of the proposed

SPMLE and the adequacy of the normal approximation. All the computation

was done on an ordinary PC with MATLAB. We conducted 400 replications in

each setting of each simulation study.

In the first simulation study, two related survival times T1 and T2 were

simulated from the frailty Cox model (2.2) for each individual, where Λ1(t) =

0.8t0.8, Λ2(t) = 0.8t1.2, and η followed a gamma distribution with mean 1 and

variance γ0. For each Tj , j = 1, 2, Kj = 2 examination time points U
(j)
2,1 <

U
(j)
2,2 were generated as the order statistics of a random sample of size 2 from

Unif(0, 1.5), and the censoring interval (Lj , Rj ] was just (0, U
(j)
2,1 ] if Tj < U

(j)
2,1 ,

and was set to (U
(j)
2,2 ,∞) if Tj > U

(j)
2,2 ; otherwise, (Lj , Rj ] = (U

(j)
2,1 , U

(j)
2,2 ]. The

covariates Zj , j = 1, 2, were Bernoulli with a success probability of 0.5. The

number of subjects was n = 200 or 400. Various combinations of values for

(β0, γ0), with β0 = 0, 0.5, or 1, and γ0 = 0.4 or 1.2, were considered.
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Table 1. Results for the first simulation study under model (2.2). SDp: the
average of standard error estimates; CP: the coverage probability of the 95%
confidence interval.

n = 200 n = 400

γ0 β0 Parameter Bias SD MSE SDp CP Bias SD MSE SDp CP

0.4 0 β 0.001 0.181 0.033 0.170 93.75 -0.011 0.122 0.015 0.118 94.50

γ 0.045 0.221 0.051 0.238 97.75 0.008 0.154 0.024 0.157 96.00

0.5 β 0.022 0.168 0.029 0.171 96.25 -0.003 0.124 0.016 0.117 92.25

γ 0.039 0.202 0.042 0.220 98.25 0.012 0.142 0.020 0.145 96.25

1 β 0.049 0.195 0.041 0.192 96.25 0.016 0.132 0.018 0.129 94.00

γ 0.035 0.193 0.038 0.214 98.00 0.014 0.137 0.019 0.140 96.75

1.2 0 β 0.009 0.212 0.045 0.208 95.00 0.006 0.146 0.021 0.143 95.25

γ 0.130 0.407 0.183 0.408 96.00 0.044 0.288 0.085 0.268 94.50

0.5 β 0.038 0.213 0.047 0.211 94.50 0.021 0.144 0.021 0.144 95.00

γ 0.137 0.386 0.168 0.385 95.50 0.052 0.265 0.073 0.252 94.00

1 β 0.083 0.239 0.064 0.234 96.00 0.043 0.153 0.025 0.157 96.25

γ 0.137 0.372 0.157 0.376 96.50 0.061 0.254 0.068 0.245 94.50

In the second simulation study, we considered the frailty Cox model (2.3)

under the same scenario as in the first simulation study, except that here Z1 was

Bernoulli with success probability 0.5, and Z2 was Unif(−1, 1). The covariate

effects were given as β10 = 0, 0.5 or 1 and β20 = 0.5. For each simulated sample,

we applied the algorithm described in Section 4 and formula (3.2) to calculate

the SPMLE θ̂ and the estimated information matrix for variance estimation. The

ρn in (3.2) was set to n−1/2. The algorithm was declared convergent when the

change in any parameter estimate at successive iterations was less than 10−7.

In Tables 1 and 2, these results are shown: “Bias”, the average of θ̂−θ0 over

replications; “SD”, the simulation standard deviation of the estimates; “MSE”,

the simulation mean squared error of the estimates; “SDp”, the average of the

standard error estimates; “CP”, the coverage probability of the 95% confidence

intervals obtained by normal approximation. It is seen that the proposed SPMLE

is essentially unbiased, and the proposed standard error estimates are quite close

to the simulation standard deviations. Also, the coverage probabilities of the

95% confidence intervals match the nominal value well, implying that Theorem 2

works well for the proposed SPMLE in the finite-sample settings considered. The

Q-Q plots in Figure 1 also confirm the adequacy of the normal approximation

theory, where we depict the standardized SPMLE (nÎ)1/2(θ̂ − θ0) versus the

standard normal variate, based on the simulation scenario under model (2.3)

with β10 = β20 = 0.5, γ0 = 1.2, and n = 400.

In the simulation study under model (2.3) with (β10, β20, γ0) = (0.5, 0.5, 1.2),

the average CPU time per replication (in seconds) for implementing the proposed
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Table 2. Results for the second simulation study under model (2.3). SDp:
the average of standard error estimates; CP: the coverage probability of the
95% confidence interval.

n = 200 n = 400

γ0 (β10, β20) Parameter Bias SD MSE SDp CP Bias SD MSE SDp CP

0.4 (0, 0.5) β1 -0.006 0.230 0.053 0.238 96.50 -0.009 0.171 0.029 0.166 93.50

β2 0.017 0.242 0.059 0.220 92.50 0.025 0.155 0.025 0.152 96.00

γ 0.032 0.222 0.050 0.238 97.75 0.014 0.151 0.023 0.159 96.25

(0.5, 0.5) β1 0.016 0.224 0.051 0.237 97.00 -0.002 0.179 0.032 0.163 92.75

β2 0.017 0.241 0.059 0.219 91.50 0.026 0.156 0.025 0.151 95.50

γ 0.032 0.215 0.047 0.229 98.25 0.011 0.153 0.023 0.152 94.75

(1, 0.5) β1 0.043 0.252 0.065 0.257 96.50 0.019 0.183 0.034 0.174 94.75

β2 0.020 0.241 0.058 0.220 93.25 0.025 0.155 0.025 0.151 95.25

γ 0.036 0.219 0.049 0.228 96.50 0.008 0.151 0.023 0.149 95.75

1.2 (0, 0.5) β1 0.011 0.312 0.098 0.292 94.25 0.010 0.215 0.046 0.202 93.00

β2 0.018 0.269 0.073 0.268 95.75 0.027 0.189 0.036 0.183 94.75

γ 0.121 0.414 0.186 0.410 96.25 0.059 0.288 0.087 0.272 94.75

(0.5, 0.5) β1 0.043 0.311 0.099 0.295 95.00 0.024 0.205 0.043 0.202 96.25

β2 0.016 0.269 0.073 0.266 95.50 0.027 0.189 0.037 0.182 95.50

γ 0.131 0.405 0.181 0.400 96.50 0.056 0.265 0.073 0.263 96.00

(1, 0.5) β1 0.097 0.337 0.123 0.319 93.75 0.045 0.214 0.048 0.215 95.50

β2 0.014 0.272 0.074 0.267 95.25 0.030 0.188 0.036 0.182 94.50

γ 0.148 0.403 0.184 0.399 96.50 0.068 0.265 0.075 0.261 95.25

Figure 1. Q-Q plots of standardized estimates versus the standard normal
distribution under the simulation scenario for model (2.3) with β10 = β20 =
0.5, γ0 = 1.2, and n = 400.
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Table 3. Analysis of CMV shedding data.

Model Parameter Estimate Standard Error p-value log likelihood
(2.1) β 0.8326 0.1851 0.0000 -459.4535

γ 0.0003 0.2114 -
(2.2) β 1.3617 0.2996 0.0000 -397.9190

γ 1.4597 0.5244 -
(2.3) β1 1.3962 0.4743 0.0032 -397.9144

β2 1.3490 0.3272 0.0000
γ 1.4559 0.5256 -

procedure for both point and interval estimation, was 18.3 (n = 100), 50.2 (n =

200), and 269.3 (n = 400). The CPU time for the case of γ0 = 0.4 was similar.

6. Data Analysis

We applied the proposed inference procedures to the ACTG 181 data where

the effects of baseline CD4 cell counts on the times to shedding of cytomegalovirus

(CMV) in the urine and blood are of interest. In this study, the presence of CMV

shedding was determined from the urine and blood samples collected at clinical

visits for each patient. The sample collection times differed from patient to

patient, resulting in “mixed-case” interval censoring for blood and urine CMV

shedding times bracketed by the last negative and first positive lab test dates.

There also were left- and right-censored CMV shedding times owing to shedding

that occurred before the first visit or had not started by the last visit.

We fit the gamma-frailty Cox models (2.1), (2.2), and (2.3) to the CMV

shedding time data using the computation algorithm proposed in Section 4. Fol-

lowing Goggins and Finkelstein (2000), the covariate Z1 = Z2 is binary with a

value 1 if the number of baseline CD4 counts is less than 75 cells/µl and with

a value 0 otherwise. Results from all the three models, shown in Table 3, imply

that the baseline CD4 counts do have a significant effect on the CMV shedding

times in either blood and urine; patients with baseline CD4 cell counts below 75

(cells/µl) have significantly higher risk of CMV shedding in blood or urine than

those with baseline CD4 cell counts above 75 (cells/µl). The models (2.2) and

(2.3) seem to produce remarkably better fit than the model (2.1), suggesting that

the CMV shedding times in blood and urine may have different baseline survival

functions. This can also be confirmed from Figure 2, where the estimated base-

line survival functions for CMV shedding times in blood and urine are depicted.

We note from Table 3 that models (2.2) and (2.3) fit the data equally well. Figure

3 shows the estimated marginal survival functions for CMV shedding times in

blood and urine under the model (2.2).
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Figure 2. Estimates of marginal baseline survival functions for blood and
urine CMV shedding.

Figure 3. Estimates of marginal survival functions for CMV shedding time
data under model (2.2).
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7. Concluding Remarks

Interval censoring creates substantial challenges for subsequent statistical

analysis in both theory and computation. This is particularly so for bivariate

or multivariate event time data. In the literature, analysis procedures for multi-

variate interval censored data are mainly limited to parametric or non-likelihood

based methods; general theories and computation methods for semiparametric

inference are still underdeveloped.

In this work, we have developed a semiparametric maximum likelihood infer-

ence procedure for bivariate interval-censored data based on the gamma-frailty

Cox model. In the proposed procedure, the baseline cumulative hazard functions

are estimated as non-decreasing right-continuous step functions, with potential

jumps at the examination times bracketing the event times. We do not impose a

specific form such as piecewise linear on the baseline cumulative hazard functions.

We have established large sample theories for the proposed SPMLE. As in the

case of univariate interval censoring, the SPMLE for the regression coefficients

can achieve the n1/2-rate of convergence, and is asymptotically normal with the

asymptotic variance given by the inverse of the efficient Fisher information ma-

trix, while the SPMLE of the cumulative hazard functions can achieve only a

n1/3-rate of convergence. A computation algorithm utilizing the self-consistency

equations and contraction principle is proposed, which provides a stable and ef-

ficient tool for implementing the proposed SPMLE. Note that the theories and

computation method are proposed under a very general “mixed-case” interval

censoring, which includes the “case 1” and “case k” interval censoring as special

cases.

The proposed inference framework extends those in Chang, Wen, and Wu

(2007) and Wen and Chen (2011) from current status data to general mixed-case

interval censoring. The extension involves major difficulties. First, in obtaining

asymptotic theories including the consistency, rate of convergence and asymptotic

normality, we need to pay attention to the distribution of the random number

Kj of the examination times for event Tj (j = 1, 2), as well as the distribution of

the random examination times Uj = {UKj ,l : l = 1, . . . ,Kj}, j = 1, 2. We employ

a technique of characterizing Uj by a triangular array of random variables, and

apply some existing empirical process theories. Second, in computation, although

we have applied a computation algorithm similar to that in Wen and Chen (2011),

the self-consistency equations involved in the current work are more complicated

than those under current status data.

As commented by a referee, the shared frailty model has some limitations.

For example, dependence and non-proportionality are confounded in the shared

gamma frailty model (Elbers and Ridder (1982)). A natural extension of the
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shared frailty model to allow separate parameters for the association and non-

proportionality is to consider the correlated frailty model proposed by Yashin,

Vaupel, and Iachine (1995). In this work, we focus exclusively on the shared

gamma frailty model owing to the fact that it has a long tradition in modeling

multivariate survival times. In particular, we address the inference and com-

putation of the shared frailty model under general interval censoring that has

not been well addressed in the literature, even though the shared gamma frailty

has been widely studied under right censoring. In fact, the proposed idea of us-

ing self-consistency in computation should work in the correlated gamma frailty

model, and our theoretical results for the shared gamma frailty model may be

extended to the correlated gamma frailty model after suitable modification. De-

tails for such an extension, however, go beyond the scope of this work, and will

be studied in another work.

In addition, it is possible to extend our proposal to multivariate interval-

censored data with general frailty distribution. Extensions to regression models

more general than the Cox model, such as the semiparametric transformation

models (Zeng and Lin (2007)), also deserve further research.
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Appendix

We use the notation Pn, P0, and P for the expectations taken under the

empirical distribution, the true underlying distribution, and a given model, re-

spectively. Let Ω be the class of right-continuous non-decreasing functions that

are bounded at t = τ , the termination of the study period. Define the metric d∗

on the parameter space Θ× Ω× Ω as

d∗(ζ, ζ̃) = {∥θ − θ̃∥2 + ∥Λ1 − Λ̃1∥21 + ∥Λ2 − Λ̃2∥22}1/2, (A.1)

where ∥ · ∥ is the Euclidean norm, ∥Λj∥2j =
∫ ∑∞

kj=1

∑kj
l=1 fKj ,l(kj , u)Λ

2
j (u)du,

and fKj ,l(kj , u) denotes the density of (Kj , U
(j)
Kj ,l

). For simplicity the proofs are

presented under the simpler setting where the distribution of {Kj , Uj , j = 1, 2}
is independent of {Zj , j = 1, 2}, although the proposed method can allow the

dependent case.
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A.1. Regularity conditions

Throughout the proofs of the proposition and theorems, we require regular-

ity conditions. (C1) The distribution of Zj , j = 1, 2, is not concentrated on any

proper subspace of Rdj and has a bounded support. (C2) There exists a positive

ξ such that P (U
(j)
Kj ,l

− U
(j)
Kj ,l−1 ≥ ξ) = 1 for l = 2, . . . ,Kj , j = 1, 2. (C3) Given

Kj , j = 1, 2, each U
(j)
Kj ,l

, l = 1, . . . ,Kj , has a continuous density; the union of

the support for conditional distribution U
(j)
Kj ,l

given Kj , l = 1, . . . ,Kj , j = 1, 2,

is an interval [τ1, τ2] with 0 < τ1 < τ2 < ∞. (C4) The true parameter is

ζ0 = (θ0,Λ10,Λ20), where θ0 = (β′
10, β

′
20, γ0)

′ is an interior point of its pa-

rameter space with dimension d; Λj0 is continuously differentiable and satisfies

M−1 < Λj0(τ1) < Λj0(τ2) < M. (C5) If m(ζ) = logL∗(ζ) with L∗ given in (A.2),

for any ζ near ζ0, P0(m(ζ)−m(ζ0)) ≼ −d∗(ζ, ζ0)
2, where ≼ means smaller than,

up to a constant. (C6) There exist t∗1 and t∗2 in (τ1, τ2) for which there are d+ 2

different values of (δ1, δ2, z1, z2) such that if

(u′1
∂

∂θ
+ u2

∂

∂y1
+ u3

∂

∂y2
)

∣∣∣∣
(θ1,y1,y2)=(θ0,Λ10(t∗1),Λ20(t∗2))

log(1 + δ1γe
β′
1z1y1 + δ2γe

β′
2z2y2)

−1/γ = 0

for each of these d+2 values, then u1 = u2 = u3 = 0. Here (δ1, δ2) = (1, 0), (0, 1)

or (1, 1) and zj is in the support of Zj .

Remark 4. Conditions (C1)−(C5) have been similarly made in the context of

univariate interval censoring studies (Huang and Wellner (1997), Zeng, Cai, and

Yu Shen (2006), Ma (2010)). In particular, (C2) rules out accurately observed

failure times and makes the number of monitoring times Kj bounded. Condition

(C6) is also similarly made with multivariate “case 1” interval-censored data

under the gamma-frailty model (Chang, Wen, and Wu (2007)), and is needed

for both the identifiability of the parameters and the invertibility of the efficient

Fisher information.

Remark 5. In practice, (C6) can be verified numerically. We illustrate it by

assuming Z1 and Z2 are binary and univariate (d = 3). Let G : R5 7→ R5 be the

function whose components are of the form

(θ, y1, y2) 7→ (1 + δ1γe
β1z1y1 + δ2γe

β2z2y2)
−1/γ ,

for (δ1, δ2, z1, z2) = (1, 0, 0, 0), (1, 0, 1, 0), (0, 1, 0, 0), (0, 1, 0, 1), and (1, 1, 0, 0). We

can validate (C6) by showing that the Jacobian determinant of G, JG, at (θ0,

Λ10(t
∗
1),Λ20(t

∗
2)) is not zero for some t∗1 and t∗2 in [τ1, τ2]. For example, consider
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the model with θ0 = (1, 0.5, 1.2)′,Λ10(t) = 0.8t0.8, and Λ20(t) = 0.8t1.2, one

of the parameter settings in our simulations. Choosing t∗1 = t∗2 = 1 we have

JG = −0.0094, showing (C6) is satisfied for this model.

A.2. The identifiability

We discuss the identifiability of the model parameters ζ = (θ,Λ1,Λ2) under

model (2.3). Rewrite the likelihood (2.4) as

L∗(ζ) =

K1+1∑
l1=1

K2+1∑
l2=1

∆
(1)
K1,l1

∆
(2)
K2,l2

{QK1,K2,l1−1,l2−1 −QK1,K2,l1−1,l2

−QK1,K2,l1,l2−1 +QK1,K2,l1,l2} , (A.2)

where ∆
(j)
Kj ,l

= I{U (j)
Kj ,l−1 < Tj ≤ U

(j)
Kj ,l

} for l = 1, . . . ,Kj + 1, j = 1, 2, and

QK1,K2,s,t = (1 + γeβ
′
1Z1Λ1(U

(1)
K1,s

) + γeβ
′
2Z2Λ2(U

(2)
K2,t

))−1/γ .

Suppose L∗(ζ) = L∗(ζ0) with probability 1. We first claim that, to establish

the identifiability, it suffices to show that θ = θ0 and Λj(t
∗
j ) = Λj0(t

∗
j ) for j = 1, 2

and some t∗1, t
∗
2 ∈ [τ1, τ2]. To see this, consider ∆

(1)
K1,K1+1 = ∆

(2)
K2,K2+1 = 1 with

U
(1)
K1,K1

= t∗1 or U
(2)
K2,K2

= t∗2, so that one of

(1 + γeβ
′
1Z1Λ1(t

∗
1) + γeβ

′
2Z2Λ2(U

(2)
K2,K2

))−1/γ

= (1 + γ0e
β′
10Z1Λ10(t

∗
1) + γ0e

β′
20Z2Λ20(U

(2)
K2,K2

))−1/γ0 ,

(1 + γeβ
′
1Z1Λ1(U

(1)
K1,K1

) + γeβ
′
2Z2Λ2(t

∗
2))

−1/γ

= (1 + γ0e
β′
10Z1Λ10(U

(1)
K1,K1

) + γ0e
β′
20Z2Λ20(t

∗
2))

−1/γ0 ,

holds. The claim follows by noting that both sides of the two displays are mono-

tone in U
(2)
K2,K2

and U
(1)
K1,K1

, respectively.

Now examine possible cases in the identity L∗(ζ)=L∗(ζ0): ∆
(1)
K1,1

=∆
(2)
K2,K2+1

= 1 with (U
(1)
K1,1

, U
(2)
K2,K2) = (t∗1, t

∗
2); ∆

(1)
K1,K1+1 = ∆

(2)
K2,1

= 1 with (U
(1)
K1,K1

, U
(2)
K2,1

)

= (t∗1, t
∗
2); and ∆

(1)
K1,K1+1 = ∆

(2)
K2,K2+1 = 1 with (U

(1)
K1,K1

, U
(2)
K2,K2) = (t∗1, t

∗
2). We

thus have

(1 + δ1γe
β′
1z1Λ1(t

∗
1) + δ2γe

β′
2z2Λ2(t

∗
2))

−1/γ

= (1 + δ1γ0e
β′
10z1Λ10(t

∗
1) + δ2γ0e

β′
20z2Λ20(t

∗
2))

−1/γ0

for (δ1, δ2) = (1, 0), (0, 1), (1, 1), and all (z1, z2) in the support of (Z1, Z2). Taking

specifically the d+2 different values of (δ1, δ2, z1, z2) in (C6) for the above display,

the Inverse Function Theorem and the claim made in the last paragraph imply

the identifiability of the model parameters.
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A.3. Proof of Theorem 1 (Consistency and rate of convergence)

Consistency. We apply Wald’s theorem (van der Vaart (1998, p.48)). Take

w(ζ) = log{[L∗(ζ)+L∗(ζ0)]/[2L∗(ζ0)]}. By compactness of the parameter sets of

θ and Λj , j = 1, 2, w(ζ) is uniformly bounded. Also, ζ 7→ w(ζ)(Y ) is continuous

at ζ, relative to the product of the Euclidean and two weak topologies, for every

Y = {U (j)
Kj ,l

,∆
(j)
Kj ,l

, Zj , l = 1, . . . ,Kj , j = 1, 2} such that U
(j)
Kj ,1

, . . . , U
(j)
Kj ,Kj

are

continuous points of Λj for j = 1, 2. In fact, by (C3), ζ 7→ w(ζ)(Y ) is continuous

at ζ for almost every Y and every given (Λ1,Λ2). Because ζ̂ is the SPMLE,

Pnw(ζ̂) = Pn{(1/2) log(L∗(ζ̂)/L∗(ζ0)) + (1/2) log 1} ≥ 0 = Pnw(ζ0). On the

other hand, by the concavity of g(u) ≡ log((u + 1)/2) and Jensen’s Inequality,

we have P0w(ζ) = P0g{L∗(ζ)/L∗(ζ0)} ≤ g(P0{L∗(ζ)/L∗(ζ0)}) = 0 for any ζ, and

equality holds only if θ = θ0 and Λj = Λj0 on (τ1, τ2) from the identifiability of

the parameters. Therefore, it follows directly from Wald’s theorem that θ̂
P→ θ0

and Λ̂j(t)
P→ Λj0(t) for every τ1 < t < τ2 and j = 1, 2.

Rate of convergence. Before obtaining the rate of convergence of the SPMLE, we

require some definitions from van der Vaart (1998). Given two functions l and

u, the bracket [l, u] is the set of all functions f with l ≤ f ≤ u. An ε-bracket in

L2(P ) = {f : Pf2 < ∞} is a bracket [l, u] with P (u − l)2 < ε2. For a subclass

C of L2(P ), the bracketing number N[ ](ε, C, L2(P )) is the minimum number of

ε-bracket needed to cover C.
With the established consistency, we can restrict θ to N0, a neighborhood of

θ0, and Λj to Ω0 = {Λ ∈ Ω|M−1 ≤ Λ(τ1) ≤ Λ(τ2) ≤ M}. Let Ψ = {m(ζ)|ζ ∈
N0×Ω2

0}, where m(ζ) = logL∗(ζ). It is easy to see that each element in Ψ is uni-

formly bounded and satisfies P0(m(ζ)−m(ζ0))
2 ≼ d∗(ζ, ζ0)

2. By Lemma 1 below,

the bracketing integral J[ ](δ,Ψ, L2(P )), defined as
∫ δ
0 (logN[ ](ε,Ψ, L2(P )))1/2dε,

is of order O(δ1/2). Consequently, Lemma 19.36 of van der Vaart (1998) gives

P ∗ sup
d∗(ζ,ζ0)<δ

|
√
n(Pn − P0)(m(ζ)−m(ζ0))| ≼ δ1/2(1 +

δ1/2

δ
√
n
),

where P ∗ is the outer expectation. According to Theorem 3.2.5 of van der Vaart

and Wellner (1996), this, together with (C5), implies d∗(ζ, ζ0) = Op(n
−1/3).

Lemma A.1. logN[ ](ε,Ψ, L2(P )) = O(1/ε).

Proof. First consider the functions in Ψ for a fixed θ. Given the ε-brackets

Λ
Lj

j ≤ Λj ≤ Λ
Uj

j , it is easy to get a bracket (mL,mU ) for m(ζ) with

mL ≡ logEη

{ 2∏
j=1

[ Kj∑
l=1

∆
(j)
Kj ,l

{
exp[−ηeβ

′
jZjΛ

Uj

j (U
(j)
Kj ,l−1)]
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− exp[−ηeβ
′
jZjΛ

Lj

j (U
(j)
Kj ,l

)]
}]}

,

mU ≡ logEη

{ 2∏
j=1

[ Kj∑
l=1

∆
(j)
Kj ,l

{
exp[−ηeβ

′
jZjΛ

Lj

j (U
(j)
Kj ,l−1)]

− exp[−ηeβ
′
jZjΛ

Uj

j (U
(j)
Kj ,l

)]
}]}

.

Due to (C2), we can choose ε small enough that mL is well-defined. Further, by

the Mean Value Theorem, we have

|mL −mU |2 ≼
2∑

j=1

Kj∑
l=1

∆
(j)
Kj ,l

{(ΛUj

j − Λ
Lj

j )2(U
(j)
Kj ,l−1) + (Λ

Uj

j − Λ
Lj

j )2(U
(j)
Kj ,l

)}.

Thus brackets for Λj of ∥ · ∥j -size ε can translate into brackets for m(ζ) of

L2(P )-size proportional to ε. By Example 19.11 of van der Vaart (1998), we can

cover the set of all Λj by exp(C/ε) brackets of size ε for some constant C. Allow

θ to vary freely as well; because θ is finite-dimensional and (∂/∂θ)m(ζ)(Y ) is

uniformly bounded in (ζ, Y ), this increases the entropy only slightly. Lemma 1

is thus proved.

A.4. Efficient information

Here we derive the efficient score for θ and establish the invertibility of the

efficient Fisher information.

Efficient score. Denote the score function for θ by m0(ζ). The score functions

for Λ1 and Λ2 are

m1(ζ)[h1] = eβ
′
1Z1

{K1+1∑
l1=2

K2+1∑
l2=1

AK1,K2,l1,l2h1(U
(1)
K1,l1−1)

+

K1∑
l1=1

K2+1∑
l2=1

BK1,K2,l1,l2h1(U
(1)
K1,l1

)
}
,

m2(ζ)[h2] = eβ
′
2Z2

{K1+1∑
l1=1

K2+1∑
l2=2

AK1,K2,l1,l2h2(U
(2)
K2,l2−1)

+

K1+1∑
l1=1

K2∑
l2=1

BK1,K2,l1,l2h2(U
(2)
K2,l2

)
}
,

respectively, where

AK1,K2,l1,l2 =∆
(1)
K1,l1

∆
(2)
K2,l2

(−Q1+γ
K1,K2,l1−1,l2−1 +Q1+γ

K1,K2,l1−1,l2
)

L∗(ζ)
,
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BK1,K2,l1,l2 =∆
(1)
K1,l1

∆
(2)
K2,l2

(−Q1+γ
K1,K2,l1,l2−1 +Q1+γ

K1,K2,l1,l2
)

L∗(ζ)
,

and h1 and h2 are any functions in L2(P ), where L2(P ) = {h :
∫ τ2
τ1

h2(x)dx < ∞}.
The efficient score for θ is defined as m∗(ζ) = m0(ζ)−m1(ζ)[h

∗
1]−m2(ζ)[h

∗
2],

where h∗
1 and h∗

2 are d-vector functions satisfying

P [(m0(ζ)−m1(ζ)[h
∗
1]−m2(ζ)[h

∗
2])(m1(ζ)[h1] +m2(ζ)[h2])] = 0 (A.3)

for any h1 and h2 in L2(P ). Here and in the sequel it should be understood

that all operators on h∗
1 or h∗

2 are applied in a componentwise manner. We now

establish the existence of (h∗
1,h

∗
2).

Consider h2 = 0 in (A.3) to get

P (m0(ζ)m1(ζ)[h1]) = P ((m1(ζ)[h
∗
1] +m2(ζ)[h

∗
2])m1(ζ)[h1]),

which can be written as∫
h1(x)c1(x)dx

=

∫
h1(x)

[
h∗
1(x)a1(x) +

∫
{b11(x, y)h∗

1(y) + b12(x, y)h
∗
2(y)}dy

]
dx,

where

c1(x)=

∞∑
k1=1

k1+1∑
l1=2

fK1,l1−1(k1, x)E
[K2+1∑

l2=1

m0(ζ)e
β′
1Z1AK1,K2,l1,l2 |K1=k1, U

(1)
K1,l1−1=x

]

+

∞∑
k1=1

k1∑
l1=1

fK1,l1(k1, x)E
[K2+1∑

l2=1

m0(ζ)e
β′
1Z1BK1,K2,l1,l2 |K1=k1, U

(1)
K1,l1

=x
]
,

a1(x) =

∞∑
k1=1

k1+1∑
l1=2

fK1,l1−1(k1, x)E
[K2+1∑

l2=1

e2β
′
1Z1A2

K1,K2,l1,l2 |K1 = k1, U
(1)
K1,l1−1 = x

]

+

∞∑
k1=1

k1∑
l1=1

fK1,l1(k1, x)E
[K2+1∑

l2=1

e2β
′
1Z1B2

K1,K2,l1,l2 |K1 = k1, U
(1)
K1,l1

= x
]
,

b11(x, y)=

∞∑
k1=1

k1∑
l1=2

{
fK1,l1−1,l1(k1, x, y)

E
[K2+1∑

l2=1

e2β
′
1Z1AK1,K2,l1,l2BK1,K2,l1,l2 |K1=k1, U

(1)
K1,l1−1=x,U

(1)
K1,l1

=y
]}
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+

∞∑
k1=1

k1∑
l1=2

{
fK1,l1−1,l1(k1, y, x)

E
[K2+1∑

l2=1

e2β
′
1Z1AK1,K2,l1,l2BK1,K2,l1,l2 |K1=k1, U

(1)
K1,l1−1=y, U

(1)
K1,l1

=x
]}

,

b12(x, y) =

∞∑
k1=1

∞∑
k2=1

k1+1∑
l1=2

k2+1∑
l2=2

{
fK1,K2,l1−1,l2−1(k1, k2, x, y)

E
[
eβ

′
1Z1+β′

2Z2A2
K1,K2,l1,l2 |K1=k1,K2=k2, U

(1)
K1,l1−1=x,U

(2)
K1,l2−1=y

]}
+

∞∑
k1=1

∞∑
k2=1

k1+1∑
l1=2

k2∑
l2=1

{
fK1,K2,l1−1,l2(k1, k2, x, y)

E
[
eβ

′
1Z1+β′

2Z2AK1,K2,l1,l2BK1,K2,l1,l2 |

K1 = k1,K2 = k2, U
(1)
K1,l1−1 = x,U

(2)
K1,l2

= y
]}

+
∞∑

k1=1

∞∑
k2=1

k1∑
l1=1

k2+1∑
l2=2

{
fK1,K2,l1,l2−1(k1, k2, x, y)

E
[
eβ

′
1Z1+β′

2Z2BK1,K2,l1,l2AK1,K2,l1,l2 |

K1 = k1,K2 = k2, U
(1)
K1,l1

= x,U
(2)
K1,l2−1 = y

]}
+

∞∑
k1=1

∞∑
k2=1

k1∑
l1=1

k2∑
l2=1

{
fK1,K2,l1,l2(k1, k2, x, y)

E
[
eβ

′
1Z1+β′

2Z2B2
K1,K2,l1,l2 |K1 = k1,K2 = k2, U

(1)
K1,l1

= x,U
(2)
K1,l2

= y
]}

.

Here fKj ,s, fKj ,s,t, and fK1,K2,s,t denote the densities of (Kj , U
(j)
Kj ,s

), (Kj , U
(j)
Kj ,s

,

U
(j)
Kj ,t

) and (K1,K2, U
(1)
K1,s

, U
(2)
K2,t

), respectively. Therefore

c1(x) = h∗
1(x)a1(x) +

∫
{b11(x, y)h∗

1(y) + b12(x, y)h
∗
2(y)}dy.

Similar arguments by considering h1 = 0 in (A.3) give

c2(x) = h∗
2(x)a2(x) +

∫
{b21(x, y)h∗

1(y) + b22(x, y)h
∗
2(y)}dy,
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with

c2(x)=

∞∑
k2=1

k2+1∑
l2=2

fK2,l2−1(k2, x)E
[K1+1∑

l1=1

m0(ζ)e
β′
2Z2AK1,K2,l1,l2 |K2=k2, U

(2)
K2,l2−1=x

]

+

∞∑
k2=1

k2∑
l2=1

fK2,l2(k2, x)E
[K1+1∑

l1=1

m0(ζ)e
β′
2Z2BK1,K2,l1,l2 |K2=k2, U

(2)
K2,l2

=x
]
,

a2(x) =

∞∑
k2=1

k2+1∑
l2=2

fK2,l2−1(k2, x)E
[K1+1∑

l1=1

e2β
′
2Z2A2

K1,K2,l1,l2 |K2 = k2, U
(2)
K2,l2−1 = x

]

+

∞∑
k2=1

k2∑
l2=1

fK2,l2(k2, x)E[

K1+1∑
l1=1

e2β
′
2Z2B2

K1,K2,l1,l2 |K2 = k2, U
(2)
K2,l2

= x],

b22(x, y) =

∞∑
k2=1

k2∑
l2=2

{
fK2,l2−1,l2(k2, x, y)E

[K1+1∑
l1=1

e2β
′
2Z2AK1,K2,l1,l2BK1,K2,l1,l2 |

K2 = k2, U
(2)
K2,l2−1 = x,U

(2)
K2,l2

= y
]}

+
∞∑

k2=1

k2∑
l2=2

{
fK2,l2−1,l2(k2, y, x)E

[K1+1∑
l1=1

e2β
′
2Z2AK1,K2,l1,l2BK1,K2,l1,l2 |

K2 = k2, U
(2)
K2,l2−1 = y, U

(2)
K2,l2

= x
]}

,

b21(x, y) =

∞∑
k1=1

∞∑
k2=1

k1+1∑
l1=2

k2+1∑
l2=2

{
fK1,K2,l1−1,l2−1(k1, k2, y, x)

E
[
eβ

′
1Z1+β′

2Z2A2
K1,K2,l1,l2 |K1=k1,K2=k2, U

(1)
K1,l1−1=y, U

(2)
K1,l2−1=x

]}
+

∞∑
k1=1

∞∑
k2=1

k1∑
l1=1

k2+1∑
l2=2

{
fK1,K2,l1,l2−1(k1, k2, y, x)

E
[
eβ

′
1Z1+β′

2Z2AK1,K2,l1,l2BK1,K2,l1,l2 |

K1 = k1,K2 = k2, U
(1)
K1,l1

= y, U
(2)
K1,l2−1 = x

]}
+

∞∑
k1=1

∞∑
k2=1

k1+1∑
l1=2

k2∑
l2=1

{
fK1,K2,l1−1,l2(k1, k2, y, x)
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E
[
eβ

′
1Z1+β′

2Z2BK1,K2,l1,l2AK1,K2,l1,l2 |

K1 = k1,K2 = k2, U
(1)
K1,l1−1 = y, U

(2)
K1,l2

= x
]}

+

∞∑
k1=1

∞∑
k2=1

k1∑
l1=1

k2∑
l2=1

{
fK1,K2,l1,l2(k1, k2, y, x)

E
[
eβ

′
1Z1+β′

2Z2B2
K1,K2,l1,l2 |K1 = k1,K2 = k2, U

(1)
K1,l1

= y, U
(2)
K1,l2

= x
]}

.

Because aj > 0, we can write

B
[
h∗
1

h∗
2

]
≡

[
I11 +B11 B12

B21 I22 +B22

] [
h∗
1

h∗
2

]
=

[
( c1a1 )

( c2a2 )

]
,

where Ijj is the identity operator and Bij(h
∗
j ) =

∫
bij(x, y)h

∗
j (y)dy/aj(x), i, j =

1, 2. Because each Bij is a compact operator on L2(P ), by Theorem 4.25 in

Rudin (1973) it suffices to show the operator B is one-to-one to establish its

invertibility. Now suppose B([h1, h2]′) = 0. By reversing the above derivation

with c1(x) = c2(x) = 0, we can obtain P (m1(ζ)[h1] + m2(ζ)[h2])
2 = 0, and

hence m1(ζ)[h1] + m2(ζ)[h2] = 0 a.s. Setting ∆
(1)
K1,K1+1 = ∆

(2)
K2,K2+1 = 1 in

m1(ζ)[h1]+m2(ζ)[h2] = 0, we conclude that eβ
′
1Z1h1(U

(1)
K1,K1

)+eβ
′
2Z2h2(U

(2)
K2,K2

) =

0, which implies h1 = h2 = 0 by the non-degeneracy of Z1 and Z2. Therefore B
is invertible and hence the existence of (h∗

1,h
∗
2) is established.

Invertibility of efficient Fisher information. We now prove that the efficient

Fisher information I0, defined as P0(m
∗(ζ0)m

∗(ζ0)
′), is positive definite. Let

v ∈ Rd. Since v′I0v = P0(v
′m∗(ζ0))

2 ≥ 0, it suffices to show that v′I0v = 0

implies v = 0.

Suppose v′I0v = 0, then v′m∗(ζ0) = 0 a.s. Consider ∆
(1)
K1,1

= ∆
(2)
K2,K2+1 = 1

with (U
(1)
K1,1

, U
(2)
K2,K2) = (t∗1, t

∗
2), ∆

(1)
K1,K1+1 = ∆

(2)
K2,1

= 1 with (U
(1)
K1,K1

, U
(2)
K2,1

) =

(t∗1, t
∗
2), and ∆

(1)
K1,K1+1 = ∆

(2)
K2,K2+1 = 1 with (U

(1)
K1,K1

, U
(2)
K2,K2) = (t∗1, t

∗
2) in

v′m∗(ζ0) = 0. Some algebra concludes that

v′(
∂

∂θ
− h∗

1(t
∗
1)

∂

∂y1
− h∗

2(t
∗
2)

∂

∂y2
)

∣∣∣∣
(θ1,y1,y2)=(θ0,Λ10(t∗1),Λ20(t∗2))

log(1 + δ1γe
β′
1Z1y1 + δ2γe

β′
2Z2y2)

−1/γ = 0

for (δ1, δ2) = (1, 0), (0, 1), (1, 1) and almost every (Z1, Z2). Using condition (C6),

we know v = 0. This completes the proof.
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A.5. Asymptotic normality

Define

m01(ζ)[h1] =
∂

∂ε

∣∣∣∣
ε=0

m0(θ,Λ1ε,Λ2),

m02(ζ)[h2] =
∂

∂ε

∣∣∣∣
ε=0

m0(θ,Λ1,Λ2ε),

m11(ζ)[h̃1, h1] =
∂

∂ε

∣∣∣∣
ε=0

m1(θ,Λ1ε,Λ2)[h̃1],

m12(ζ)[h̃1, h2] =
∂

∂ε

∣∣∣∣
ε=0

m1(θ,Λ1,Λ2ε)[h̃1],

m21(ζ)[h̃2, h1] =
∂

∂ε

∣∣∣∣
ε=0

m2(θ,Λ1ε,Λ2)[h̃2],

m22(ζ)[h̃2, h2] =
∂

∂ε

∣∣∣∣
ε=0

m2(θ,Λ1,Λ2ε)[h̃2],

where (∂/∂ε)|ε=0Λjε = hj , j = 1, 2. We first verify that

√
nP0m

∗(θ0, Λ̂1, Λ̂2) = oP (1). (A.4)

Apply a Taylor expansion to m∗(θ0,Λ1,Λ2)(Y ) at the point (Λ10(U
(1)
K1,1

), . . .,

Λ10(U
(1)
K1,K1

), Λ20(U
(2)
K2,1

), . . . ,Λ20(U
(2)
K2,K2

)) to get

P0m
∗(θ0,Λ1,Λ2) = P0m

∗(ζ0) + P0 {m01(ζ0)[Λ1 − Λ10] +m02(ζ0)[Λ2 − Λ20]

−m11(ζ0)[h
∗
1,Λ1 − Λ10]−m12(ζ0)[h

∗
1,Λ2 − Λ20]

− m21(ζ0)[h
∗
2,Λ1 − Λ10]−m22(ζ0)[h

∗
2,Λ2 − Λ20]}

+Op(
2∑

j=1

∥Λj − Λj0∥2j ).

Using the facts that P0m
∗(ζ0) = 0, P (m0(ζ)mj(ζ)[hj ]) = −P (m0j(ζ)[hj ]) for

j = 1, 2, P (mi(ζ)[h̃i]mj(ζ)[hj ]) = −P (mij(ζ)[h̃i, hj ]) for i, j = 1, 2, (A.3), and

the rate of convergence of Λ̂j , we have P0m
∗(θ0, Λ̂1, Λ̂2) = OP (n

−2/3), which

implies (A.4).

It is known from Example 19.11 of van der Vaart (1998) that the class of

uniformly bounded functions of bounded variations is a Donsker class. Applying

Theorem 2.10.6 of van der Vaart and Wellner (1996), it can be verified that

{m∗(ζ)|ζ ∈ N0 × Ω0 × Ω0} is a uniformly bounded Donsker class; the proof is

technical and hence omitted here. Combining this with the consistency of ζ̂ leads
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to
√
n(Pn−P0)(m

∗(ζ̂)−m∗(ζ0)) = oP (1). Adding (A.4) to this display and using

the fact that P0m
∗(ζ0) = Pnm

∗(ζ̂) = 0, it is seen that

−
√
nP0(m

∗(ζ̂)−m∗(θ0, Λ̂1, Λ̂2)) =
√
nPnm

∗(ζ0) + oP (1).

By the Mean Value Theorem, there exists θ̃ lying between θ̂ and θ0 such that

−
√
nP0(

∂

∂θ
m∗(θ̃, Λ̂1, Λ̂2))(θ̂ − θ0) =

√
nPnm

∗(ζ0) + oP (1).

By the consistency of ζ̂ and the fact that P0[− ∂
∂θm

∗(ζ0)] = P0[m
∗(ζ0)m

∗(ζ0)
′] =

I0, we have

√
n(θ̂ − θ0) = I−1

0

√
nPnm

∗(ζ0) + oP (1)
d→ N(0, I−1

0 ).
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