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Abstract: We study the problem of incorporating covariates in a compound deci-

sion setup. It is desired to estimate the means of n response variables that are

independent and normally distributed, each accompanied by a vector of covariates.

We suggest a method that involves non-parametric empirical Bayes techniques and

may be viewed as a generalization of the celebrated Fay-Herriot (1979) method.

Some optimality properties of our method are proved. We also compare it numeri-

cally with Fay-Herriot and other methods, in a real data situation where the goal

is to estimate certain proportions in many small areas. We also demonstrate our

approach through the baseball data set originally analyzed by Brown (2008).
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1. Introduction

The main purpose of this paper is to study and demonstrate how to incorpo-

rate compound decision techniques (CD) or almost equivalently, empirical Bayes

(EB) methods, in the presence of explanatory variables. The ideas of CD/EB

were developed in the 1950’s by Robbins (1951, 1955, 1964), see the review papers

by Copas (1969) and Zhang (2003). Compound decision and Empirical Bayes

procedures were shown to produce very efficient estimators in the simple setup

where we have independent observations, Y1, . . . , Yn, Yi ∼ Fµi , and it is desired

to estimate µi, i = 1, . . . , n. A major case, on which we concentrate, is when

Fµi = N(µi, 1).

We focus on two types of EB procedures. One is Parametric Empirical Bayes

(PEB), where µi, i = 1, . . . , n, are assumed to be realizations of independent

random variables Mi, i = 1, . . . , n, Mi ∼ G, G = N(0, τ2), where τ2 is unknown

and should be estimated from the data. When n is large, the corresponding

estimator, the exact variant of which, depends on the method of estimating τ2,

resembles the James-Stein estimator, cf., Efron and Morris (1973). The other

type is Non-Parametric Empirical Bayes (NPEB), where the above distribution

G is a member of a large non-parametric family G of distributions. Two recent

NPEB methods and approaches are in Brown and Greenshtein (2009) and Jiang

and Zhang (2009).

http://dx.doi.org/10.5705/ss.2011.071
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The advantage of EB procedures, relative to more elementary procedures,
occurs as n grows, and may become very significant in high dimensional problems
when n is large. A special advantage of NPEB procedures is expected in situ-
ations where the vector µ = (µ1, . . . , µn)

′ is sparse, see e.g., Greenshtein, Park,
and Ritov (2008), Brown and Greenshtein (2009).

Since modern statistical problems often involve high dimensional and sparse
estimation problems, EB techniques should be embraced for such purposes, cf.
Efron (2003). However, apart from literature in small area estimation, e.g., Rao
(2003), which follows the seminal paper of Fay and Herriot (1979), EB is hardly
used in modern data analysis. A recent approach, which is very much related
to ours is Jiang and Zhang (2010). We became aware of it after completing
most of this paper, we will elaborate on it in the sequel. One reason that EB is
hardly used in practice is that in most applied problems, we have explanatory
variables Xi1, . . . , Xip for each observation Yi and in such cases EB has no appeal,
since standard EB procedures are permutation invariant, while Y1, . . . , Yn are not
permutation invariant in the presence of the explanatory variables.

In our motivating example observations are binomial, Yi ∼ B(mi, pi), and we
need to estimate p1, . . . , pn — certain proportions in n (small) areas. The values
of p1, . . . , pn are unknown constants to be estimated. In addition to the sample
Y1, . . . , Yn, we have a set of variables X1, . . . ,Xn (fixed or random, but inde-
pendent of Y1, . . . , Yn ) and hope that Xi can serve as proxy to pi, i = 1, . . . , n.
For example, consider one dimensional covariates Xi ∼ B(ki, p̃i) where the p̃i are
“typically” close to pi; alternatively Xi may be a vector of known parameters
of area i that might be “relevant” to the parameter of interest pi, for exam-
ple, the socio-economic level of the region, its size, or mean age. We emphasize
two elements. First, because of the proxies, Y1, . . . , Yn cannot be considered as
“permutation invariants” or “exchangeable”. Second, we do not believe that the
observations follow standard regression models. The covariates are considered
as proxies to the proportions, but they are statistically independent of the Y ’s
(whose only stochastic aspect comes from the binomial sampling), and may be
only a rough approximation to p1, . . . , pn.

Simple symmetric and permutation invariant procedures. In cases of total
ignorance regarding the parameters of the variables in relation to their identity,
e.g., a situation where Yi ∼ N(µi, 1) and there is an exchangeable multivariate
prior on (µ1, . . . , µn), procedures that are permutation invariant have a special
appeal. Permutation invariant procedures ∆ are such that for every permutation
π,

∆(Y1, . . . , Yn) = (a1, . . . , an) ⇐⇒ ∆(Yπ(1), . . . , Yπ(n)) = (aπ(1), . . . , aπ(n));

here ai ∈ A, where A is the action space. A simple class of exchangeable priors is
where µi are realizations of i.i.d Mi ∼ G, i = 1, . . . , n. The optimal procedures
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then belong to the class of ‘simple symmetric decision functions’, procedures ∆
which are of the form

∆(Y1, . . . , Yn) = (δ(Y1), . . . , δ(Yn)),

for a given δ. For natural losses, given G, the optimal δ corresponds to the
corresponding one dimensional Bayes procedure. On the relation and asymptotic
equivalence between the two classes, see Greenshtein and Ritov (2009). Given
a loss function, consider an ‘oracle’ that knows the values of µ1, . . . , µn, but is
required to use a permutation invariant procedure. EB and CD procedures may
be viewed as an attempt to imitate the procedure that an oracle would use. This
is a very natural goal under ‘total ignorance’ or ‘exchangeability’.

The appeal in using permutation invariant procedures and consequently EB
procedures, is lost when exchangeability is lost, as in cases where there are ex-
planatory variables. Assume n = n1 + n2 and it is known that the first n1

observations, were taken from men, while the last n2 were taken from women.
Applying a permutation invariant procedure is equivalent to ignoring this poten-
tially important information/explanatory-variable. However not all is lost, one
may still apply EB procedure separately on the first n1 observations and on the
last n2 observations. The idea is that after accounting for the explanatory vari-
able in this trivial manner, we arrive at (two groups of) exchangeable variables,
and applying EB procedures separately on each group becomes appealing. In a
similar manner, we account for the information in the explanatory variables and
then, after the information from the explanatory variables is accounted for and
the “accounted observations” are closer to being exchangeable, we apply an EB
procedure.

EB and CD are closely related notions and approaches. Under an EB for-
mulation the parameters µi, i = 1, . . . , n are independent realizations from an
unknown distribution G and the aim is to approximate the corresponding Bayes
rule; under a CD formulation the aim is to approximate the best decision rule
within a class of procedures (e.g., simple-symmetric, permutation invariant), for
the given µ = (µ1, . . . , µn)

′. In this paper we emphasize the CD approach. How-
ever, we often use the more familiar EB notion, motivation, and terminology.

Applying a variant of the PEB method after accounting for the covariates,
is in the spirit of the paper of Fay and Herriot, as shown in Sub-section 2.2; it
is currently the most common practice. Another approach for inference in the
presence of explanatory variables is that of Lindley and Smith (1972); this is
a parametric empirical Bayes approach, though different than that of Fay and
Herriot.

In Section 2, we suggest how EB could naturally be incorporated in problems
with explanatory variables. We extend the Fay-Herriot approach and present its
PEB and NPEB versions. We show the asymptotic optimality of NPEB.
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In Section 3, we demonstrate the application of our suggested methods. We

model sampling in the small statistical areas of the city of Tel Aviv-Yafo, Israel

as considered in the recent Israeli census, and evaluate the performance of the

different estimators. We also introduce results under some perturbations of the

model. The application involves estimation of certain population’s proportions in

small areas. The explanatory variables available when estimating the proportion

pi in statistical area i, are ‘Spatial’ and ‘Temporal’, based on historical data,

and data from neighboring statistical areas. We elaborate on comparing PEB

procedures, versus the more recent NPEB procedure, suggested by Brown and

Greenshtein (2009). In Section 4, we demonstrate the performance of our method

on the baseball data set, studied by Brown (2008) and by Jiang and Zhang (2010).

Our ideas and techniques are meaningful in a general setup where Yi ∼
Fµi , but will be presented for the case Fµi ≡ N(µi, 1), i = 1, . . . , n. In fact,

as mentioned we apply our method for estimating the proportions of B(mi, pi)

distributions, but we do that after applying an arcsin transformation which will

bring us to the normal setup.

2. Collections of Estimators Induced by Affine Transformations

Suppose the observations are vectors Vi = (Yi, Xi1, . . . , Xip), i = 1, . . . , n,

where Y1, . . . , Yn are independent, Yi ∼ N(µi, 1), i = 1, . . . , n, and Xij are ex-

planatory variables statistically independent of Yi, i = 1, . . . , n, j = 1, . . . , p, but

related to the µi’s. Denote by Xn×p the matrix of the explanatory variables and

take Y ′ = (Y1, . . . , Yn). The goal is to find a ‘good’ estimator µ̂ = µ̂(V1, . . . ,Vn)

under the risk

E||µ̂− µ||22.

The motivation and approach of the paper are as follows. Ideally it could be

desired to approximate the Bayes procedure, assuming (at least formally) that

(Vi, µi), i = 1, . . . , n, are independent random vectors sampled from an unknown

distribution Γ that belongs to a large non-parametric family of distributions G.
Then the goal is to approximate the Bayes decision δ∗ = argminδ EΓ||δ(Vi)−µi||2
by δ̂∗, and let µ̂ = (δ̂∗(V1), . . . , δ̂

∗(Vn)). However, this goal may be too ambitious

for (p+1) dimensional observations Vi when n is moderate, due to the “curse of

dimensionality”. A possible approach, in the spirit of Lindley and Smith (1972),

is then to assume that Γ belongs to a convenient parametric family, in order to

circumvent such difficulties. The approach of Fay and Herriot (1979) may also

be interpreted this way. We, on the other hand, aim for the best permutational

invariant estimator with respect to Z1, . . . , Zn, where Zi are one-dimensional

random variables obtained by a suitable transformation of (V1, . . . ,Vn). This

transformation is estimated from the data.
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2.1. Preliminaries and definitions

We start from a general point of view, where initially there are no covariates.

We observe independent Yi ∼ N(µi, 1), i = 1, . . . , n. Let {T} be a collection of

affine transformations T (Y ) = TA,b(Y ) = AY − b, where A is an orthonormal

matrix and b is a vector. Then Z = T (Y ) is distributed as a multivariate normal

with mean vector ν = Aµ−b, and covariance matrix the identity. Let ∆ = ∆(Y )

be a fixed estimator of the vector µ, that is not invariant under the group of affine

transformations, i.e., ∆(T (Y )) ̸= T (∆(Y )). Then, the pair ∆ and {T} defines a

class of decision functions {∆T }, T ∈ {T},

∆T (Y ) = T−1(∆(T (Y )).

Let

T opt = argmin
T∈{T}

Eµ||∆T (Y )− µ||22 ≡ argmin
T∈{T}

R(T,µ);

here

R(T,µ) = Eµ||∆T (Y )− µ||22.

Our goal is to approximate T opt, and then estimate µ by an approximation of

∆T opt(Y ).

For every T ∈ {T}, suppose we have a good estimator R̂(T,µ) for R(T,µ).

Let T̂ = argminT∈{T} R̂(T,µ). The usual approach, which we follow, is to use

the estimator µ̂ = ∆T̂ (Y ). When the class {T} is not too large, we expect only

a minor affect of overfitting, i.e., R(T̂ ,µ) ≈ R(T opt,µ).

Example 1 (Wavelet transform). Our formulation describes many standard

techniques, for example any harmonic analysis of the data that starts with trans-

forming the data (e.g., Fourier transform). A special case is T (Y ) = AY , where

A is the matrix that transforms Y to a certain wavelet representation; then,

typically, the mean of the transformed vector is estimated and transformed back,

see Donoho and Johnstone (1994). Suppose that, {T} = {A} is a collection of

matrices that correspond to a collection of wavelet bases/“dictionaries”. The

problem of finding the most appropriate basis/transformation, is related to that

of basis-pursuit, see e.g., Chen, Donoho, and Saunders (2001). The permuta-

tional invariant and non-linear decision functions ∆ in those studies is soft/hard-

thresholds, Lasso, etc. Procedures of a special interest for us are parametric and

non-parametric EB.

Example 2 (Regression). Suppose that in addition to Y there is a fixed (de-

terministic!) matrix X ∈ Rn×p. Consider the class of transformations T (Y ) =

Y − b, b ∈ {b}, where {b} is the collection of all vectors of the form b = Xβ,

β ∈ Rp. Note, in particular, that these transformations are non-random.
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Remark 1. The formulation for a random set {T}, that is independent of Y is

the same. In the example when Xn×p is random, we condition on the explanatory

variables and arrive at a conditional inference version of the development. From

a Bayesian perspective, assuming a joint distribution Γ as above, conditional

independence of the random set {T} and Y , conditional on the covariates, follows

when we assume that Y and Xn×p are independent conditional on µ. We remark

later on the case where the random set of transformations is ‘weakly dependent’

on Y .

The following fact is useful. Let Z = T (Y ). Then Zi ∼ N(νi, 1) where

ν = T (µ), and

R(T,µ) = Eµ||∆T (Y )− µ||22 = Eν ||∆(Z)− ν||22 = R(I,ν). (2.1)

In the last equality I represents the identity transformation. When there is no

real danger of confusion, the dependence on T is suppressed. We use (2.1) later

to establish an estimator R̂(T,µ) for R(T,µ).

A general three steps method for estimating µ suggests itself.

Step I: For every T , estimate R(T,µ) by R̂(T,µ).

Step II: Find T̂ = argminT R̂(T,µ).

Step III: Get the estimator: µ̂ = T̂−1(∆(T̂ (Y ))) ≡ ∆T̂ (Y ).

Note that T̂ depends on Y .

We summarize. The idea in this subsection is that by an appropriate affine

transformation, that may depend on the data, we arrive to a problem that is

‘easier’ for the procedure ∆ to handle. For example, by choosing an appropriate

wavelet basis we arrive at a sparse ν, which, typically, is easier to estimate than

the original vector. Moreover, by accounting for explanatory variables in a good

way through a suitable transformation, the transformed variables may become

(nearly) exchangeable; whence, applying a permutation invariant procedure ∆

on the transformed variables becomes natural and appealing.

2.2. The parametric empirical Bayes ∆ and the Fay-Herriot procedure

The purpose of this subsection is to motivate the nonparametric approach,

and to give a unified treatment and presentation to the more classical Fay-Herriot

approach and the nonparametric approach. We study the case where ∆ is a

parametric empirical Bayes that corresponds to the prior N(0, τ2), where τ2

is unknown. When τ2 is known, the corresponding Bayes estimator for µi is

µ̂i = [τ2/(τ2 + 1)]Yi, and its risk is τ2/(τ2 + 1). When τ2 is unknown, we replace

τ2 by its estimate. For our level of asymptotics all consistent estimators τ̂2 induce
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equivalent estimators µ̂i = [τ̂2/(τ̂2 + 1)]Yi, and the corresponding estimators are

asymptotically equivalent to the James-Stein estimator up to o(n), see Efron

and Morris (1973). By working at this level of asymptotics, our considerations

in this subsection are valid for a wide class of PEB procedures, corresponding

to various consistent methods of estimating τ2, including the J-S procedure. In

particular, the risk in estimating a (deterministic) vector µ by PEB (or James-

Stein’s) method is
n||µ||22

||µ||22 + n
+ o(n).

We now examine our three-step estimation scheme, adapted for parametric

Empirical Bayes (or, for a James-Stein estimator ∆). Note that, for every T

and the corresponding ν and Zi, we have R(I, ν) = [n||ν||22/(||ν||22 + n)] + o(n).

Hence a plausible estimator for R(T,µ) is

R̂(T,µ) = R̂(I,ν) = max
{
0,

n(
∑

Z2
i − n)

(
∑

Z2
i − n) + n

}
= max

{
0,

n(
∑

Z2
i − n)∑
Z2
i

}
(2.2)

Our three-step adaptation scheme is the following.

Step I: For every T estimate R(T,µ) by (2.2).

Step II: Find T̂ = argminT R̂(T,µ).

Step III: Get the estimator: µ̂ = T̂−1(∆(T̂ (Y ))) ≡ ∆T̂ (Y ).

Remark 2. When {T} corresponds to {b = Xβ : β ∈ Rp}, Step II is trivial.

Minimizing the residuals
∑

Z2
i is achieved for b̃ which is the projection of Y on

the span of the columns of X, and T̂ (Y ) = Y − Xβ̂ where β̂ is the ordinary

least squares estimator. It is then easy to see that our suggested method is that

of Fay and Herriot.

2.3. A nonparametric empirical Bayes ∆

The statements and development in this sub-section are for the nonparamet-

ric empirical Bayes procedure ∆, as in Brown and Greenshtein (2009), see the

appendix. A recent study in which the NPEB procedure of Jiang and Zhang

(2009) is extended to handle covariates is in Jiang and Zhang (2010).

Let Zi ∼ N(νi, 1) be independent. Denote by R(ν) the Bayes risk that

corresponds to the prior defined by the empirical distribution of ν. Let fν =

(1/n)
∑

ϕ(z − νi), where ϕ is the density of a standard normal distribution.

Then

R(ν) = 1−
∫

(f ′
ν(z))

2

fν(z)
dz = 1− Eν

(f ′
ν(Z))2

(fν(Z))2
, (2.3)
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see Bickel and Collins (1983).

The following theorem is from Brown and Greenshtein (2009). It is stated

for a triangular array set-up in order to cover situations of sparse ν ≡ νn. At

stage n, Yi ∼ N(µn
i , 1) are independent and, for any corresponding sequence Tn,

Tn ∈ {Tn}, Zi ∼ N(νni , 1) are independent, i = 1, . . . , n.

Assumption 1. For every α > 0 and every sequence Tn and the corresponding

νn we have maxi(|νni |) = o(nα).

Assumption 2. For some α0 > 0, n(1−α0)R(νn) → ∞ for every Tn and corre-

sponding νn.

Theorem 1. Under Assumptions 1 and 2, for every sequence Tn,

R(I,νn) = Eνn ||∆(Z)− νn||22 = (1 + o(1))nR(νn) (2.4)

As explained in the Appendix, the procedure ∆ in Brown and Greenshtein

requires a bandwidth h = hn, that approaches slowly to zero. A rate that implies

the result in Theorem 1 is hn = 1/ log(n).

Given Yi ∼ N(µi, 1), and a transformation T , T ∈ {T}, let Zi be the i′th

coordinate of Z = T (Y ). This theorem,(2.1) and (2.3), suggest an estimator for

R(T,µ),

R̂(T,µ) = n−
∑[(f̂ ′

ν(Zi))

f̂ν(Zi)

]2
, (2.5)

where the density fν and its derivative are estimated, for example, by appropriate

kernel estimates.

Only step I of our general three-step procedure need to be adapted, as follows.

Step I: For every T and corresponding ν = ν(T ), estimate R(T,µ) by (2.5).

Remark 3. Step II could be computationally complicated when the set {T}
is large. When {T} corresponds to {b = Xβ : β ∈ Rp}, a computationally

convenient choice, which is to use the least-squares residuals for T̂ (Y ), as in the

PEB case. However, this can be far from optimal, as noted in Examples 3 and

4, and in the simulations section.

Note that minimizing R(I,ν) with respect to ν = ν(T ) is equivalent to

finding the “most favorable” prior, rather than the more conventional task of

finding the least favorable prior.

Remark 4. Our method that combines the NPEB method of Brown and Green-

shtein (2009) with a transformation induced by covariates is termed ‘NPEB with

covariates’ but, for simplicity, we refer to it in the sequel as NPEB.
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Choosing the least squares residuals can be very inefficient, since it might
cause “over smoothing” of the empirical distribution and low values can happen
in (f ′

ν̃)
2 which, by (2.3), implies high risk. This can happen in transforming a

sparse structure into a non-sparse one, as in Example 3, or by transforming a
structure with well separated groups into a mixed structure, as in the Example
4.

Example 3. Yi ∼ N(1, 1), i = 1, . . . , 2m, 2m = n. Suppose we have only one
(useless) explanatory variable Xi = 1 if i ≤ m and 0 otherwise. Projecting Y
on X, we get that the least squares shift is b̃ ≈ (1, . . . , 1, 0, . . . , 0)′ and ν =
µ− b̃ ≈ (0, . . . , 0, 1, . . . , 1)′, which is much worse for empirical Bayes estimation
than the original µ; it is easy to see that nR(ν̃) = O(n), while nR(µ) = 0. From
Theorem 1 we conclude that, as n → ∞, the advantage of the latter (trivial)
transformation compared to the least squares residuals in terms of the risk is
o(n) compared to O(n).

Example 4. Let Yi ∼ N(µi, 1) be independent, where µi = µ1 for i = 1, . . . ,m,
and µi = −µ1 for i = m + 1, . . . , 2m = n. Suppose Xi = (µi +Wi) ∼ N(µi, 1),
independent of Yi, i = 1, . . . , n. Let ν̃ = µ − b̃ where b̃ is the projection
of Y on the (random) vector X = (X1, . . . , Xn)

′. It is easy to check that
ν̃i → µi/(µ

2
1 + 1) − µ2

1Wi/(µ
2
1 + 1) as n → ∞. When µ1 → ∞, the empirical

distribution of ν̃ ≡ νn converges to that of a standard normal. The correspond-
ing Bayes risk R(ν̃n) converges to 0.5. Obviously the Bayes risk that corresponds
to the trivial transformation, for which νn = µn, converges to zero.

2.4. Finding a good transformation

The above method is reasonable when the class {Tn} of candidate transfor-
mations is not too large, in terms of its cardinality or its VC dimension, and the
overfit effect is not significant. When R(Tn,µ) is of the order of n, an appealing
condition is of the type

P ( sup
Tn∈{Tn}

|R̂(Tn,µ)−R(Tn,µ)| > ϵn) → 0. (2.6)

We now demonstrate in the following Theorem 1 why such conditions are
plausible to expect even for reasonably large sets {Tn}.

Assumption 3. Let m = nγ for some γ < 1. Suppose that the cardinality of the
set {Tn} of candidate transformations at stage n, is of size exp(m), n = 1, 2, . . .

Proposition 1. Under Assumptions 1 and 3 there exists a sequence of estimators
R̂(Tn, µ) of the form (2.5) such that

P ( sup
Tn∈{Tn}

|R̂(Tn,µ)−R(Tn,µ)| > ϵn) → 0.
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If we specify the class of transformation, we can obtain more.

Theorem 2. Suppose the class of transformation is T (Y ) = Y −Xβ, β ∈ B =

Bn, where X ∈ Rn×p, β ∈ Rp, p = pn, the l2 norms of the rows of X and of β

are bounded by M = Mn; supβ∈Bn ||Xβ||∞ = o(nα),∀α > 0. If p log(M) < nγ,

for some γ < 1, then there is a version of R̂ such that (2.6) is satisfied.

The proofs are given in the Appendix.

2.5. Optimality of NPEB ∆.

Until this point the treatment has been for a concrete procedure ∆ and a

class {T} of transformations. The purpose of this section is to advocate the

choice of a non-parametric empirical Bayes ∆, denoted ∆NP .

As noted, Step II in the non-parametric approach can be computationally

intensive, so such a dominance result might not be enough to persuade one that

the non-parametric approach is a good alternative to the parametric approach

and to the Fay Herriot procedure. In Theorem 3 we show that for every two

sequences µn and Tn, the sequence of estimators, obtained by coupling Tn with

∆NP , asymptotically dominates the sequence obtained when coupling the same

Tn with any other sequence of permutation invariant procedures ∆n.

Given a procedure ∆, a transformation T , and a mean vector µ, the corre-

sponding risk is denoted as R∆(T,µ) ≡ R(T,µ) as before; for the case of the

nonparametric EB procedure ∆NP , the corresponding risk is denoted RNP (T,µ).

Our asymptotic analysis is again in a triangular array setup.

Theorem 3. Let µn, ∆n and Tn be arbitrary sequences. Assume that for each

n the procedure ∆n is simple symmetric. Under Assumptions 1 and 2,

lim sup
RNP (T

n,µn)

R∆n(Tn,µn)
≤ 1.

Proof. This Follows from Brown and Greenshtein (2009) and Theorem 1. Note

that the risk of the optimal simple symmetric procedure equals nR(νn).

Conjecture: In Theorem 3 the condition that ∆n be simple symmetric for

every n, might be replaced by the weaker condition, that ∆n is permutation

invariant for every n. This should follow by an equivalence result in the spirit

of Greenshtein and Ritov (2009), though stronger. Note, the equivalence re-

sult in Greenshtein and Ritov (2009) would suffice under the assumption that

maxi(|νni |) = O(1); however, Assumption 1 allows a higher order.
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2.6. Remark

Consider the case in which {T} corresponds to {b = Xβ}. Write b =

(B1, . . . , Bn)
′. In the application we have in mind the set {T} may be random

since Xij is random. When the random set of transformations is independent of

Y , our treatment applies by conditioning on the explanatory variables. We are

interested in situations where the random set {T} may depend on Y , however we

require that Yi be independent of Xi1, . . . , Xip for each i. Then the distribution

of Zi conditional on Xi1, . . . , Xip, is N(νi, 1), where (ν1, . . . , νn)
′ = ν = Aµ − b

as before. When the dependence of Yi on Xj1, . . . , Xjp, j ̸= i is not too heavy, a

natural goal is still to try to approximate the best decision function for estimating

νi among the decision functions which are simple symmetric with respect to

Z1, . . . , Zn. The conditional marginal distribution of Zi, i = 1, . . . , n, is still

N(νi, 1); however, we may not treat these as independent observations. Thus,

the rates of estimating fν and its derivative may become slower and, for heavy

dependence, Theorems 1 and 2 might not hold. Similarly rates of estimation of

τ2n, in order to apply the PEB procedure, could be slow. However, when the

dependence is not “too heavy” we may expect Theorems 1 and 3 to hold under

the assumption that Yi is independent of Xi1 , . . . , Xip for each i.

2.7. Discussion and summary

In this subsection we summarize and compare the approach of Fay and Her-

riot and Jiang and Zhang, in addition to our’s suggested approach. We take the

liberty to follow those approaches just in “spirit”. From a compound decision

(non-Bayesian) perspective, all the approaches assume that Y = µ+ϵ, where ϵ is

multivariate normal with mean zero. Given a matrix X of explanatory variables,

let ξ′ be the projection of µ on the linear space spanned by the columns of X.

Then we may write µ = ξ′+ ξ, where ξ′ is orthogonal to ξ. If X is non-singular,

there is a unique β such that

Y = Xβ + ξ + ϵ.

Under a Bayesian formulation the vector ξ is composed of i.i.d. sampled variables

ξi ∼ G, and G is often assumed normal. Under the Fay-Herriot approach, we

estimate β using least squares estimator β̂, then we estimate the mean E(Y −
Xβ̂) ≈ ξ of the ‘nearly’ multivariate normal vector (Y − Xβ̂) by a variant of

the James-Stein estimator, and finally we transform back to obtain an estimator

for µ. The approach of Jiang and Zhang (2010) is similar, only they prefer

to estimate the mean of Y − Xβ̂ by a non-parametric mle as in Jiang and

Zhang (2009). The latter method is appropriate for a general distribution G

under a Bayesian approach, or for a general vector ξ under a compound decision
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approach. Our approach differs from that of Jiang and Zhang in taking an

estimate of the mean of the transformed vector by the NPEB estimator that

was suggested by Brown and Greenshtein (2009), though the two procedures

have similar performance. An important additional difference is in the method

of choosing the appropriate transformation. As in Examples 3 and 4, if we use

NPEB or a non-parametric mle procedure ∆, it is not at all clear that it is useful

to transform the problem and estimate the mean of Y − Xβ̂; estimating the

mean of Y −Xβ̃, for some β̃ ̸= β̂ could be far better.

Finding the appropriate alternative β̃ could be complicated, especially com-

putationally. However, there are examples and applications where we could find

a better transformation by intelligent guessing. A general scenario is the follow-

ing. Suppose we have a plausible linear model with a certain β0, that works fine

for most cases, but does not work for a few outliers. Applying a transformation

with β̃ = β0 would bring us to a situation where the mean of Y − Xβ̃ is a

sparse vector with many ”nearly” zero components and a few components that

are very different than zero; such a sparse mean vector is often “easier to esti-

mate” compared to estimation of the mean vector of Y −Xβ̂, which could be far

from sparse due to “over smoothing”. In the example presented in Section 3, es-

timating the vector of current proportions of registered people in various areas, a

useful explanatory variable is the corresponding vector of estimated proportions

from the previous year. A linear relation with β0 = 1 is appropriate for most

areas, excluding areas that went through a rapid development in the last year.

Indeed in our study of the census example in Section 3, we tried in addition to β̂

a few more candidates that were chosen through an “intelligent guess” and not

through a numerical search. In the second part of Section 4.2 we demonstrate, in

the baseball example, how to select the more appropriate among a few candidate

transformations, using the estimator (2.5). Also, we present results of a ‘brute

force’ computation and search for argminT∈{T}R̂(T,µ) when ∆ is NPEB.

3. Census Example

3.1. Preliminaries

The city of Tel Aviv-Yafo, Israel, is divided into 161 small areas called “sta-

tistical areas”, each area belongs to a sub-quarter that includes about four ad-

ditional statistical areas. The recent Israeli census was based on administrative

records corrected by samples. Thus the proportion pi of people who are regis-

tered in area i among those who live in area i, , i = 1, . . . 161, was of interest.

The estimated pi, i = 1, . . . , n are used to adjust the administrative-registration

counts and get population estimates for each area. In our example we use the

parametric bootstrap concept to evaluate the performance of various estimators.

In the parametric bootstrap, we use for the parameters p1, . . . , pn their values as
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estimated in the recent census (where about 20% of the population was sampled).

The mean of pi, i = 1, . . . , 161, is 0.75 the standard deviation is 0.13, and the

histogram is roughly bell shaped.

We present a bootstrap study in which pi, i = 1, . . . , 161 are estimated

based on samples of size mi and the corresponding simulated independent Ỹi,

Ỹi ∼ B(mi, pi). Here Ỹi is the number of people in the sample from area i,

registered to area i.

In addition we simulated covariates in our parametric bootstrap. We sim-

ulated temporal variables that correspond to historical data from each area i,

and spatial covariates, that correspond to samples from the neighboring areas of

each area i. In the following we explore scenarios for the cases of only temporal

covariates, only spatial covariates, and both temporal and spatial covariates. We

compare the performance of PEB, NPEB and other methods. In all the analyzed

situations, we simulated binomial observations with sample size mi ≡ m, for

m = 25, 50, 100.

In order to reduce this setup to the normal case, we applied an arcsin trans-

formation on our binomial observations Ỹi, i = 1, . . . , n, as in Brown (2008).

Specifically,

Yi =
√
4m arcsin

(√ Ỹi + 0.25

m+ 0.5

)
. (3.1)

Then, Yi are distributed approximately as N(
√
4m arcsin(

√
pi), 1). We estimated

µi = E(Yi), by µ̂i, i = 1, . . . , n, as explained in Sub-sections 2.3 and 2.3, and

then let the estimate of pi, i = 1, . . . , 161 be,

p̂i = (sin(
µ̂i√
4m

))2. (3.2)

Similarly, we also considered the following regression estimator. We esti-

mated µ by µ̂Reg = Xβ̂, where β̂ is the least squares, and obtained the estimator:

p̂Reg
i =

(
sin(

µ̂Reg
i√
4m

)
)2

. (3.3)

Let p = (p1, . . . , pn) and p̂ = (p̂1, . . . , p̂n)). We evaluated the performance

of an estimator according to the risk Ep||p̂ − p||22. The risk was approximated

through 1,000 simulations for each entry in the tables in the sequel. A different

parametric EB approach for estimating proportions in small areas, that involves

a logistic regression model, may be found in Farrell, MacGibbon, and Tomberlin

(1997).
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3.2. Temporal covariates

We introduce now simulated scenarios with only temporal covariates. We

think of a process where each year a sample of size m is taken from each area.

Suppose we use the records of the previous three years as covariates. Let T̃i be the

number of people among the 3m that were sampled in the previous three years

from area i, which were registered to the area. Although T̃i might be better

modeled as a binomial mixture, we model T̃i as B(3m, pit) for simplicity. In

order to (hopefully) have a linear relation between the response and explanatory

variables, we take the temporal covariates

Ti =
√
4m arcsin

(√ T̃i + 0.25

3m+ 0.5

)
. (3.4)

Note, if there is little change from the previous three years to the current year

in area i, then pi ≈ pit and E(Ti) ≈ E(Yi).

We simulate two scenarios. One scenario is of no-change, where pit = pi
for i = 1, . . . , 161. The other scenario is of a few abrupt changes; specifically,

pi = pit, i = 17, . . . , 161, but pit = 0.3 < pi for i = 1, . . . , 16. Such abrupt

changes could occur in areas that went in previous years through a lot of building,

internal immigration and other changes.

Since the empirical distribution of E(Yi) is roughly bell-shaped, it is expected

that the PEB method will work well in the no-change scenario; while under a

few abrupt changes, an advantage of the NPEB procedure will be observed.

As mentioned in Section 2, the optimization step of the NPEB procedure is

difficult. We try two candidate transformations Y −bi, i = 1, 2, coupled with the

NPEB; the corresponding methods are denoted NPEB1 and NPEB2. NPEB1

corresponds to the least-squares/Fay-Herriot transformation, while NPEB2 cor-

responds to the transformation Zi = Yi−Ti. The latter transformation, although

still sub-optimal when coupled with a NPEB ∆, could occasionally perform bet-

ter than the former, as indicated by Examples 3 and 4. In addition to comparing

the risks of the PEB, NPEB1, and NPEB2 methods, we also compare the risk

of the naive estimator, and of the regression estimator. The regression estima-

tor estimates µ̂i through µ̂ = Xβ̂, does not apply an additional PEB or NPEB

stage. The Naive estimator simply estimates pi by the corresponding sample

proportion.

The no-change scenario is presented in Table 1. Each entry is based on 1,000

simulated realizations. Under no-change the temporal covariate is very helpful,

and even the least squares linear predictor is doing very well. Over all, the naive

estimator is the worst, NPEB1, NPEB2, and Regression are about the same,

while the PEB is moderately better than the other methods.
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Table 1.

Naive Reg NPEB1 NPEB2 PEB

m = 25 1.12 0.33 0.35 0.37 0.27
m = 50 0.56 0.17 0.18 0.18 0.14
m = 100 0.28 0.092 0.093 0.093 0.073

Table 2.

Naive Reg NPEB1 NPEB2 PEB

m = 25 1.12 1.66 0.75 0.49 0.68
m = 50 0.56 1.64 0.46 0.22 0.42
m = 100 0.28 1.62 0.26 0.11 0.24

In the scenario of a few abrupt changes, the regression by itself is performing

the worst, however an additional EB step is helpful. Here the NPEB2 procedure

is the best, see Table 2.

3.3. Spatial covariates

We simulate a scenario with spatial covariates as follows. Tel-Aviv is divided

into sub-quarters, each sub-quarter is defined by about 5 statistical areas. For

every i = 1, . . . , 161, we take the neighborhood of area i, to be the statistical

areas other than area i, in the same sub-quarter.

Based on the census we have good estimates for pis, the proportion of people

living in the neighborhood of area i, who are registered to their areas. Those

estimates are treated as the “real” values in our simulations. The correlation

between pi and pis, i = 1, . . . , 161 is 0.62.

For simplicity we assume that, for each i, the size of the sample from the

neighborhood of area i is 4m. Let S̃i be the number of people sampled from the

neighborhood of i who are registered to their area. Although S̃i might be better

modeled as a binomial mixture, we model S̃i as S̃i ∼ B(4m, pis) for simplicity.

As in the case of Temporal covariates we take the spatial covariate for area i as

Si =
√
4m arcsin

(√ T̃i + 0.25

4m+ 0.5

)
. (3.5)

We consider two NPEB estimates, corresponding to the projection/Fay-Herriot

and to the Zi = Yi − Si transformations. The results of our simulations are

summarized in Table 3. The advantage of the EB procedures is more noticeable

for m = 25. The explanation is the following. Since the temporal covariate is

not very strong, the mean vector of the transformed variables is not too sparse.
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Table 3.

Naive Reg NPEB1 NPEB2 PEB

m = 25 1.12 1.41 0.72 0.75 0.64
m = 50 0.56 1.34 0.44 0.44 0.40
m = 100 0.28 1.31 0.26 0.28 0.23

Table 4.

Naive Reg NPEB1 NPEB2 NPEB3 NPEB4 PEB

m = 25 1.12 1.13 0.65 0.49 0.54 0.55 0.58
m = 50 0.56 1.06 0.4 0.22 0.28 0.38 0.37
m = 100 0.28 1.03 0.24 0.11 0.15 0.22 0.22

When m is large, under the scale induced by the variance of Zi, the points

νi, i = 1, . . . , n, may be viewed as isolated and the smoothing of the EB is hardly

effective. Hence the EB methods behave roughly like the Naive estimator.

One could wonder whether the spatial covariates are helpful to the non para-

metric empirical Bayes, whether it is better not to transform the data at all and

to apply ∆NP on the original data taking T = I and ν = µ. However this option

is slightly worse than the above ones. The simulated risks that correspond to

m = 25, 50, 100 are 0.84 , 0.5, and 0.28.

3.4. Spatial and temporal covariates

In this sub-section we study the performances of our estimators when both

temporal and spatial variables are introduced. As before we apply the projection

transformation for the NPEB estimator. However, we also try the transforma-

tions Zi = Yi−(αSi+(1−α)Ti), for α = 0, 0.3, 0.6. The corresponding estimators

are NPEB1 (for the projection), NPEB2, NPEB3, and NPEB4, correspondingly.

For the temporal covariates we simulate the scenario of 16 abrupt changes, the

spatial covariates as before. As may be expected, since the spatial covariate is

weak relative to the temporal, accounting for it causes extra unnecessary smooth-

ing. For the non-parametric EB procedure, indeed NPEB2 that corresponds to

α = 0 has the best performance, and is also the optimal among all seven methods,

see Table 4.

4. Baseball Example

Following Efron and Morris (1975) and Brown (2008), one finds “The ul-

timate test of any empirical Bayes procedure is known to be: How well it pre-

dicts second-half-of-the-season baseball batting average”, see Koenker and Mizera
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(2012). In this section we analyze the Baseball data set, originally analyzed by

Brown (2008) and later by Jiang and Zhang (2010). Our analysis resembles that

of Jiang and Zhang. The data consists of batting records of each major league

player in 2005. For each player i, denote by N1i and H1i the number of at bats

and the number of hits he had in the first half of the season; similarly N2i and

H2i are the corresponding quantities for the second half. In addition, for every

player it is known whether he is a pitcher or a batter. For j = 1, 2 denote

Rji =
Hji

Nji
.

This notation stays close to that of Brown and of Jiang and Zhang.

Our purpose is to predict the value of R2i for player i, based on the data

from the first half.

A reasonable model for the data is that, conditional on Nji, i = 1, . . . , n, j =

1, 2, Hji ∼ Bin(Nji, pi), where pi is the (fixed in time) probability of a successful

hit by player i. Thus, a reasonable approach is to estimate pi by p̂i and let

our predictor for the value of R2i be R̂2i = p̂i, i = 1, . . . , n. So, as in previous

example, we should estimate the proportions pi.

Let Sj = {i|Nji ≥ 11}. The estimation of pi is done only for players i, such

that i ∈ S1. Validation of the prediction p̂i is made only for players i such that

i ∈ S2. The size of S1 is 567, while the size of S1 ∩ S2 is 499.

The criterion for the performance of a predictor R̂2i, i = 1, . . . , 499 , is based

on the estimator of E
∑

i∈S1∩S2
(R̂2i −R2i)

2,

ˆTSER =
∑

i∈S1∩S2

(
(R̂2i −R2i)

2 − R2i(1−R2i)

N2i

)
.

As a benchmark for the performance of R̂ we take the performance of the

naive estimator R̂2i = R1i, specifically the value ˆTSE0 =
∑

i∈S1∩S2
((R1i−R2i)

2−
R2i(1 − R2i)/N2i). We report the results of an estimator R̂2i, i = 1, . . . , 499,

through

ˆTSER∗ =
ˆTSER

ˆTSE0

.

4.1. Covariates and transformations

Consider a few ”linear models” with the following covariates. One covariate

for player i is the number of trials N1i. The additional covariate is an indicator

of the event that the player is not a pitcher. The value of N1i is potentially a
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Table 5.

WGMLEB NPEB Reg

Model i 0.291 0.353 0.526
Model ii 0.204 0.234 0.343
Model iii 0.175 0.186 0.214
Model iv 0.167 0.176 0.200

useful covariate, since that a high value of N1i indicates that the coach perceives

player i as a good batter. The response variable for player i is

Yi =
√

4 ∗N1iarcsin(

√
H1i + 0.25

N1i + 0.5
).

Note, in the above we transformed the variables and obtained a homoscedas-

tic model. Both Brown (2008) and Jiang and Zhang (2010) worked in a het-

eroscedastic setup with the variables Y ∗
i , where Y ∗

i = arcsin(
√

H1i+0.25
N1i+0.5 ).

Jiang and Zhang (2010) considered the following linear models to all include

intercept. Using their notation we denote the covariate N1i, the number of At

Bat of player i, by AB. The models they considered with respect to y∗i were i)

AB, ii) Pitcher, iii) Pitcher+AB, iv) Pitcher +AB + Pitcher*AB. In the above

we used the standard notation, where the last model includes interaction of the

variables AB and Pitcher. The corresponding models in terms of our response

variable Yi are: i) AB
0.5+AB1.5, ii) AB0.5+AB0.5∗Pitcher, iii) AB0.5+AB0.5∗

Pitcher +AB1.5, iv)AB0.5 +AB0.5 ∗ Pitcher +AB1.5 +AB1.5 ∗ Pitcher. Note,

the intercept variable is transformed to AB0.5 when modeling with respect to Yi.

4.2. Numerical study

We report the results of three methods applied to the baseball data. The esti-

mators are WGMLEB, Weighted General Maximum Likelihood Empirical Bayes

as studied by Jiang and Zhang; regression, where the mean µ of Y is estimated

based on the least squares β̂ and then transformed to obtain an estimator of p;

our NPEB method, with least squares β̂. The methods were applied in the four

models, the corresponding ˆTSE
∗
R are reported in Table 5.

The results of the NPEB are slightly inferior to those achieved by the method

WGMLEB of Jiang and Zhang, yet the computation of our estimator seemed

significantly easier.

In Brown (2008), the covariate AB was used implicitly, through the estima-

tion of the density f and its derivative (see Appendix) in his variant of NPEB.

The density at a point yi was estimated based on observations yk, with N1k
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“close” to N1i. This implicit use yielded ˆTSE
∗
R = 0.509 for the corresponding

NPEB. The more direct approach taken by Jiang and Zhang and by us seems

beneficial.

As explained, in each case we used the transformation induced by the least

squares β̂. In addition, for Model i we numerically searched for a transformation

that yielded a better corresponding ˆTSE
∗
R via our NPEB method. While the

least squares β̂ = (0.9564, 0.0006) gave ˆTSE
∗
R = 0.353, β̃ = (1.0864, 0.0003)

yielded ˆTSE
∗
R = 0.316. However, the corresponding linear predictors that used

only the regression coefficients had ˆTSE
∗
R = 0.526 and ˆTSE

∗
R = 1.565, corre-

spondingly to the least squares and to β̃ = (1.0864, 0.0003). This demonstrates

again that for the NPEB method, it is not necessarily better to have a transfor-

mation that works well on its own (e.g., least squares).

Obviously, in practice we do not have validation data to help us choosing

the appropriate transformation for our NPEB method through ˆTSE
∗
R. We can

use the risk estimator of Bickel and Collins (2.5), to compare various candidate

transformations. We implemented the last risk estimator by estimating the den-

sity fν and its derivative with a kernel density estimator, using a Normal kernel

with h = 0.4, as described in the Appendix. We compared the estimated risk

for the above β̃, β̂, and for the identity transformation β∗ = (0, 0). The NPEB

that corresponds to the identity transformation that ignores the covariates has

a poor performance, its ˆTSE
∗
R = 0.926. The estimates (2.5) that correspond

to β̂, β̃ and β∗ are: 567-361=206, 567-376=191, 567-76= 491. We see that the

distinction between β̂ and β̃ is hard to make, while β∗ is strongly indicated as

inferior.

Finally, we tried the Bickel and Collins estimator (2.5) in Model ii. The

least squares is β̂ = (0.793, 0.297), the corresponding ˆTSE
∗
R for the Reg and

NPEB methods are 0.343 and 0.234, as given in Table 5. We ran a brute force

optimization of the Bickel and Collins estimator with h = 0.4 on a grid of 10,000

points, equally spaced with a 0.01 distance between neighboring points, and

centered at β̂. The minimizer of the Bickel Collins estimator over the grid of

points is (1.103, 0.087), the ˆTSE
∗
R corresponding to Reg and NPEB are 2.57 and

0.253. The last transformation is worse than the one corresponding to β̂ in terms

of the ˆTSE
∗
R of both the associated NPEB and Reg. Note, that the Reg is much

worse while the NPEB is only slightly so, and we have another demonstration of

the limited relevance of the performance of the predictor Reg, that corresponds

to a given β, to the performance of the corresponding NPEB.

5. Summary
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In this paper we studied the problem of extending Empirical Bayes meth-

ods so they can be naturally applied in situations where there are explanatory

variables.

We suggested a general perspective in which the method of Fay and Herriot

and our newly proposed “NPEB with covariates” method are special cases. We

demonstrated through Examples 3,4, and more generally through Theorem 3

that asymptotically the NPEB method is advantageous over the method of Fay

and Herriot and over a larger class of other methods. We demonstrated it also in

a data example, and saw that our newly proposed method could occasionally be

a good alternative to the method of Fay and Herriot in practical situations. A

comparison with the recently proposed method of Jiang and Zhang (2010) was

also conducted.

Some computational aspects of our newly proposed method should be further

studied, but we have seen that even sub-optimal (simpler to compute) versions

of the method are advantageous.
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Appendix A: NPEB

NPEB procedure. We will the approach of Brown and Greenshtein (2009).

Assume Zi ∼ N(νi, σ
2), i = 1, . . . , n, where νi ∼ G. Let

f(z) =

∫
1

σ
φ
(z − ν

σ

)
dG(ν).

It can be shown that the normal Bayes procedure, δGN , satisfies

δGN (z) = z + σ2 f ′(z)

f(z)
. (A.1)

The procedure studied in Brown and Greenshtein (2009) involves an estimation

of δGN . By replacing f and f ′ in (A.1) with their kernel estimators,

f̂h(z) =
1

nh

∑
ϕ
(z − Zi

h

)
, (A.2)

and

f̂ ′
h(z) =

1

nh

∑ Zi − z

h2
× ϕ

(z − Zi

h

)
. (A.3)
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We obtain the decision function, (Z1, . . . , Zn)× z 7→ R,

δN,h(z) = z + σ2 f̂ ′
h(z)

f̂h(z)
. (A.4)

A suitable (straightforward) truncation is applied when estimating the corre-

sponding mean of points Zi for which f̂(Zi) is too close to zero and consequently

|δN,h(Zi) − Zi| > 2 log(n). We did not apply such truncation in our simula-

tions. The default choice for the bandwidth h ≡ hn, suggested by Brown and

Greenshtein is 1/
√

log(n). See also, a cross-validation method for choosing h,

suggested by Brown, Greenshtein, and Ritov (2010), together with some sug-

gested improvements of the procedure above. In our numerical studies, we chose

h = 0.4. The procedure is not too sensitive to the choice of h.

Appendix B: Proofs of Proposition 1 and Theorem 2

We give a proof of Proposition 1 under the assumption that, for every se-

quence Tn and the corresponding νn, we have maxi(|νni |) < (log(n))d for some

d > 0. It simplifies the arguments a little compared to the weaker Assumption

1, but the same ideas work also under the weaker assumption.

Our treatment is under a Compound Decision set-up, where Yi ∼ N(µi, 1),

i = 1, . . . , n, are not identically distributed, thus we need moderate/large devia-

tion results for sums of non-identically distributed random variables. Under an

Empirical Bayes setup Yi are i.i.d., and more familiar large deviation results for

sums of i.i.d random variables may be used.

Proof of Proposition 1. We show that the claim follows for R̂(Tn,µ) =

n−
∑

(f̂ ′
νh(Zi)/f̂νh(Zi))

2, where f̂νh and f̂ ′
νh are kernel estimators of fν and f ′

ν ,

ν = ν(Tn), with a normal kernel and bandwidth h = hn = 1/ log(n), see (A.2)

and (A.3). It may be verified, as in Brown and Greenshtein (2009), that Ef̂νh =

fνh and Ef̂ ′
νh = f ′

νh, where fνh and f ′
νh are the mixture density and its derivative

in an auxiliary problem, with independent observations Z∗
i ∼ N(νi, 1 + h2),

i = 1, . . . , n. Let Rh(T,µ) be the Bayes risk in the auxiliary problem. It follows

from Lemma 2 in BG(2009) and its proof, that (Rhn(Tn,µn)−R(Tn,µn))/n → 0,

also (E
∑

[f ′
νh(Z

∗
i )/fνh(Z

∗
i )]

2 − E
∑

[f ′
νh(Zi)/fνh(Zi)]

2)/n → 0; of course those

quantities would approach 0 also for sequences hn that approach 0 faster, but we

prefer to use sequences hn that approach 0 as slowly as possible, since that the

variances of f̂νh and f̂ ′
νh are smaller when hn is larger. In Brown and Greenshtein

(2009) it is shown that hn should approach 0 ”just faster” than 1/
√
log(n).

For simplicity we take g ≡ fνh, similarly we write g′, ĝ and ĝ′, the dependence

on νn ≡ ν(Tn) and hn is being suppressed.



354 NOAM COHEN, EITAN GREENSHTEIN AND YA’ACOV RITOV

It is enough to show that

P
(

sup
Tn∈{Tn}

∣∣∣∑[ ĝ′(Zi)

ĝ(Zi)

]2
− E

∑[g′(Zi)

g(Zi)

]2∣∣∣ > ϵn
)
→ 0. (B.1)

First observe that

P
(∣∣∣∑[g′(Zi)

g(Zi)

]2
− E

∑[g′(Zi)

g(Zi)

]2∣∣∣ > ϵn
)
= o(exp(−m)) (B.2)

for every m = nγ , γ < 1. This follows by moderate deviation considerations and

considerations similar (yet simpler), to those in the sequel.

We show that also

P
(∣∣∣∑[ ĝ′(Zi)

ĝ(Zi)

]2
−

∑[g′(Zi)

g(Zi)
]2
∣∣∣ > ϵn

)
= o(exp(−m)). (B.3)

Equation ( B.1) then follows by (B.2) and (B.3) coupled with Bonferonni.

By large deviation considerations, and since we assume that that max |νi| <
log(n)d, we may neglect the ‘far’ tail, and instead of showing (B.3), show that

P
(∣∣∣∑[ ĝ′(Zi)

ĝ(Zi)

]2
−

∑[g′(Zi)

g(Zi)

]2∣∣∣ > ϵn | |Zi| < log(n)κ, i = 1, . . . , n
)

= o(exp(−m)) (B.4)

for large enough κ. This may be seen since

E
∑[g′(Zi)

g(Zi)

]2
= E

(∑[g′(Zi)

g(Zi)

]2
| |Zi| < log(n)κ, i = 1, . . . , n

)
+ o(n),

for large enough κ, where o(n) is uniformally small. Hence, it is enough to

estimate the conditional expectations and conditional probabilities, both in what

follows and similarly in the above equations. This is our approach, but for

simplicity the conditioning is suppressed in the notation.

Observe that conditional on |Zi| < log(n)κ, i = 1, . . . , n for large enough

κ0, |g(z)|, |g′(z)|, |g′(z)/g(z)|, |ĝ(z)|, |ĝ′(z)|, and |ĝ′(z)/ĝ(z)|, are all bounded by

log(n)κ0 for |z| < log(n)κ; furthermore the conditional variances var(ĝ(z)) and

var(ĝ′(z)) are bounded by log(n)κ0/n for |z| < log(n)κ.

In order to obtain (B.4), we first argue that for every κ1

P
(

sup
{z | |z|<log(n)κ}

|ĝ(z)− g(z)| > ϵ

log(n)κ1

)
= o(exp(−m)), (B.5)

and

P
(

sup
{z | |z|<log(n)κ}

|ĝ′(z)− g′(z)| > ϵ

log(n)κ1

)
= o(exp(−m)). (B.6)
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The proof of (B.5) is as follows. For every fixed z, |z| < log(n)κ, by the
moderate deviations principle

P
(
|ĝ(z)− g(z)| > ϵ

log(n)κ1

)
= o(exp(−m)), (B.7)

see e.g., Bernstein’s Inequality, p-103 in Van Der Vaart and Wellner (1996); here
we use the fact that the conditional variance, var(ĝ(z)) is bounded by log(n)κ0/n
for large enough κ0 when |z| < log(n)κ.

For a grid G of a size which is a power of n, by Bonferroni, P (supz∈G |ĝ(z)−
g(z)| > ϵ/log(n)κ1 ) = o(exp(−m)). Now, since the derivative of g and ĝ is
bounded in the relevant domain, by log(n)κ0 , we may take a dense enough grid
of a size that is a suitable power of n, so that if (B.7) is satisfied for every fixed
z in the grid, (B.5) is also satisfied. The proof of (B.6) is the same.

In order to obtain (B.4) we further need the following. For an appropriate
κ2, let
A = {i | g(Zi) > log(n)−κ2 ∩ g′(Zi) > log(n)−κ2 ∩ ĝ(Zi) > log(n)−κ2 ∩ ĝ′(Zi) >
log(n)−κ2}. The complement of A is denoted Ac. Now∣∣∣∑[ ĝ′(Zi)

ĝ(Zi)

]2
−
∑[g′(Zi)

g(Zi)

]2∣∣∣
≤

∣∣∣∑
i∈A

[ ĝ′(Zi)

ĝ(Zi)

]2
−

[g′(Zi)

g(Zi)

]2∣∣∣+ ∣∣∣ ∑
i∈AC

[ ĝ′(Zi)

ĝ(Zi)

]2
−

[g′(Zi)

g(Zi)

]2∣∣∣. (B.8)

For a large enough κ2, the size of the random set Ac is small enough, so
that the second summand in (B.8) is smaller than nϵ/2, with probability 1 −
o(exp(−m)); the last probability is through large deviation considerations on the
size of Ac; elaborates on the fact that for a random variable Z with a density g
such that |Z| < log(n)k, P (g(Z) < δ) < 2δ log(n)k.

The first summand of (B.8) is smaller than nϵ/2 for large enough κ1, with
probability (1− o(exp(−m))), by (B.5) and (B.6) . Thus, we conclude (B.4) and
(B.3). The claim of the theorem now follows.

Proof of Theorem 2. We emphasize the dependence of ĝ on Z = (Z1, . . . , Zn),
by writing ĝZ(z). As in Proposition 1 we consider the conditional setup, con-
ditional upon |Zi| < log(n)κ, i = 1, . . . , n. It may be verified by bounding the
relevant derivatives that, for hn = 1/ log(n),∣∣∣ ĝ′Z1(z)

ĝ′
Z1(z)

−
ĝ′Z2(z)

ĝ′
Z2(z)

∣∣∣ < ||Z1 −Z2||2 log(n)κ3

for large enough κ3. Hence ||β1 − β2||2 < ϵ/(M log(n)κ3) implies, for Zi =
Y −Xβi, i = 1, 2, ∣∣∣ ĝ′Z1(z)

ĝ′
Z1(z)

−
ĝ′Z2(z)

ĝ′
Z2(z)

∣∣∣ < ϵ.
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Similarly, for hn = 1/ log(n), νi = µ−Xβi, i = 1, 2, ||β1−β2||2 < ϵ/(M log(n)κ3)

implies ∣∣∣g′ν1(z)

g′
ν1(z)

−
g′ν2(z)

g′
ν2(z)

∣∣∣ < ϵ;

here gν is identical to fνh, as defined in Proposition 1.

By covering B = {β | ||β||2 < M, ||Xβ||∞ = o(nα) ∀α > 0} ⊆ {β | ||β||2 <

M }, with m balls of radius ϵ/(M log(n)κ3), it is enough to consider the transfor-

mations that correspond to the centers of those m balls and apply Proposition 1.

Now, that covering number should be smaller than exp(nγ), for some γ < 1, by

Proposition 1. The latter is satisfied if log(Mp/[ϵ/M log(n)κ3 ]p) < nγ for some

γ < 1, or p log(M) < nγ for some γ < 1.
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