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Abstract: In this paper, we provide R-estimators of the location of a rotationally
symmetric distribution on the unit sphere of Rk. In order to do so we first prove
the local asymptotic normality property of a sequence of rotationally symmetric
models; this is a non-standard result due to the curved nature of the unit sphere.
We then construct our estimators by adapting the Le Cam one-step methodology
to spherical statistics and ranks. We show that they are asymptotically normal
under any rotationally symmetric distribution and achieve the efficiency bound
under a specific density. Their small sample behavior is studied via a Monte Carlo
simulation and our methodology is illustrated on geological data.
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1. Introduction

Spherical data arise naturally in such natural sciences as geology and as-

trophysics (see, e.g., Watson (1983) or Mardia and Jupp (2000)), as well as in

studies of animal behavior (see Fisher, Lewis, and Embleton (1987)) and in neu-

roscience (see Leong and Carlile (1998)). It is common practice to view such

data as realizations of random vectors X taking values on the surface of the unit

sphere Sk−1 := {v ∈ Rk | ∥v∥ = 1}, the distribution of X depending only on its

distance – in a sense to be made precise – from a fixed point θ ∈ Sk−1. This

parameter θ, which can be viewed as a “north pole” (or “mean direction”) for

the problem under study, is then a location parameter for the distribution.

The first distribution tailored to the specificities of spherical data is the

Fisher-Von Mises-Langevin (FVML) distribution introduced in Fisher (1953).

To this date it remains the distribution which is the most widely used in prac-

tice; it plays, in the spherical context, the central role enjoyed by the Gaussian

distribution for linear data. The FVML is not the only “spherical distribution”,

and there exists a wide variety of families of such distributions possessing different

advantages and drawbacks (see Mardia and Jupp (2000) for an overview).

In this work we concentrate our attention on the family of rotationally sym-

metric distributions introduced by Saw (1978) (see Section 2 below for a def-

inition). Aside from the fact that it encompasses many well-known spherical
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distributions (including the FVML), this family satisfies a natural requirement :

it is invariant to the actual choice of “north pole”. This entails that the family

falls within the much more general class of statistical group models (see for in-

stance Chang (2004)) and thus enjoys all the advantages of this class. Moreover,

it satisfies a fundamental lemma, due to Watson (1983).

Lemma 1 (Watson (1983)). If the distribution of X is rotationally symmetric on

Sk−1 and if the true location is θ, then (i) X ′θ and Sθ(X) := (X − (X ′θ)θ)/∥X
−(X ′θ)θ∥ are stochastically independent and (ii) the multivariate sign vector

Sθ(X) is uniformly distributed on Sk−1(θ⊥) := {v ∈ Rk | ∥v∥ = 1,v′θ = 0}.

Estimation and testing procedures for the spherical location parameter θ

have been extensively studied in the literature, with much of the focus in the

past years being put on the class of M -estimators. An M -estimator θ̂ associated

with a given function ρ0(x;θ) is defined as the value of θ that minimizes the

objective function

θ 7→ ρ(θ) :=

n∑
i=1

ρ0(Xi;θ),

where X1, . . . ,Xn are spherical observations. These M -estimators are robust

to outliers (see Ko and Chang (1993)) and enjoy nice asymptotic properties

(see Chang and Rivest (2001), Chang and Tsai (2003), or Chang (2004)). In

particular, the choice ρ0(x;θ) = arccos(x′θ) yields the so-called spherical median

introduced by Fisher (1985); taking ρ0(x;θ) = ∥x− θ∥2 yields θ̂ = X̄/∥X̄∥, the
spherical mean.

The first to have studied ranks and rank-based methods within the spherical

framework were Neeman and Chang (2001), who constructed rank score statistics

of the form T
(n)
φ;θ :=

∑n
i=1 φ

(
R+

i /(n+ 1)
)
Sθ(Xi), where φ is a score generating

function and where R+
i (i = 1, . . . , n) stands for the rank of ∥Xi − (X ′

iθ)θ∥
among the scalars ∥X1 − (X ′

1θ)θ∥, . . . , ∥Xn − (X ′
nθ)θ∥. Some years later, Tsai

and Sen (2007) developed rank tests (using a similar definition for the ranks

R+
i ) for the location problem H0 : θ = θ0. Assuming that the observations

X1, . . . ,Xn are independent and identically distributed (i.i.d.) with a rotationally

symmetric distribution on the unit sphere, they considered statistics of the form

(T
(n)
φ;θ0

)′Γ−1
T T

(n)
φ;θ0

, where ΓT is the asymptotic variance of T
(n)
φ;θ0

under the null.

They obtained the asymptotic properties of their procedures via permutational

central limit theorems.

The purpose of the present work is to propose optimal rank-based estimators

(R-estimators) for the spherical location θ. The backbone of our approach is the

“Le Cam methodology” (see Le Cam (1986)), which has, to the best of our

knowledge, never been used in the framework of spherical statistics. This is
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perhaps explained by the curved nature of the parameter space: the unit sphere

Sk−1 being a non-linear manifold, it typically generates non-traditional Gaussian

shift experiments and, as a consequence, the usual arguments behind Le Cam’s

theory break down in this context.

The first step consists in establishing the uniform local asymptotic normality

(ULAN) of a sequence of rotationally symmetric models. This we achieve by

rewriting θ ∈ Sk−1 in terms of the usual spherical η-coordinates and showing

that ULAN holds for this more common re-parameterization. Although the latter

parameterization is not valid uniformly on the whole sphere (its Jacobian is not

full-rank everywhere), we then use a recent result of Hallin, Paindaveine, and

Verdebout (2010) to show how the ULAN result in the η-parameterization carries

through to the original θ-parameterization.

The second step consists in adapting to the spherical context the method of

one-step R-estimation “à la Le Cam”, introduced in Hallin, Oja and Paindaveine

(2006) in the context of the estimation of a shape matrix of a multivariate el-

liptical distribution. The ULAN property mentioned above guarantees that the

resulting rank-based estimators enjoy the desired optimality properties.

Our estimators constitute attractive alternatives to the traditional Hodges-

Lehmann rank-based estimators which have, in general, two major drawbacks.

First, they are defined through minimization of a rank-based function which is

therefore non-continuous; this complicates greatly the study of their asymptotic

properties. Secondly, as shown via a Monte Carlo study in Hallin, Swan, Verde-

bout, and Veredas (2011) in a regression context, the performances of Hodges-

Lehmann-type estimators tend to deteriorate as (the dimension) k increases. As

is shown in this paper, one-step R-estimators suffer from neither of these flaws

and are even good competitors against theM -estimators studied in the literature.

The outline of the paper is as follows. In Section 2 we recall the definition

of the family of rotationally symmetric distributions and prove uniform local

asymptotic normality of this family. We devote Section 3 to a description of

our rank-based estimators and to the study of their asymptotic properties. In

Section 4 we compare our R-estimators with theM -estimators from the literature

in terms of Asymptotic Relative Efficiency as well as by means of a Monte Carlo

study. In Section 5 we apply our R-estimators to geological data. Finally an

Appendix collects the technical proofs.

2. Spherical Model and ULAN

Throughout, the data points X1, . . . ,Xn are assumed to belong to the unit

sphere Sk−1 of Rk, and to satisfy the following.

Assumption A. X1, . . . ,Xn are i.i.d. with common distribution Pθ;f1 charac-

terized by a density function (with respect to the usual surface area measure on
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spheres)

x 7→ fθ(x) = ck,f1 f1(x
′θ), x ∈ Sk−1, (2.1)

where θ ∈ Sk−1 is a location parameter and f1 : [−1, 1] → R+
0 is absolutely

continuous and (strictly) monotone increasing.

A function f1 satisfying Assumption A is called an angular function, and we

denote by F the set of angular functions. This choice of terminology reflects the

fact that, under Assumption A, the distribution of X depends only on the angle

between it and some location θ ∈ Sk−1. If X1, . . . ,Xn are i.i.d. with density

(2.1), then X ′
1θ, . . . ,X

′
nθ are i.i.d. with density

t 7→ f̃1(t) :=
ωk ck,f1

B(1/2, (k − 1)/2)
f1(t)(1− t2)(k−3)/2, −1 ≤ t ≤ 1,

where ωk = 2πk/2/Γ(k/2) is the surface area of Sk−1 and B(·, ·) is the beta

function. The corresponding cdf is denoted by F̃1(t).

A special instance of (2.1) is the FVML distribution, obtained by taking

angular functions of the form f1(t) = exp(κt) =: f1;exp(κt) for some concentration

parameter κ > 0. Aside from the FVML distribution we also consider spherical

distributions with angular functions

f1;Lin(a)(t) := t+ a, f1;Log(a)(t) := log(t+ a), (2.2)

and

f1;Logis(a,b)(t) :=
a exp(−b arccos(t))

(1 + a exp(−b arccos(t)))2
; (2.3)

we refer to these as the linear, logarithmic and logistic spherical distributions,

respectively (a and b are constants chosen so that all the above angular functions

belong to F).

The rest of this section is devoted to the establishment of the ULAN property

of the family {P(n)
θ;f1

| θ ∈ Sk−1}, where P
(n)
θ;f1

stands for the joint distribution of

X1, . . . ,Xn; see the comment just below Proposition 1 for a definition of ULAN.

As mentioned in the Introduction, in order to obtain this ULAN property we first

need to circumvent a difficulty inherited from the curved nature of the experiment

we are considering.

Among the first to have considered such “curved experiments”, Chang and

Rivest (2001) and Chang (2004) suggest bypassing the problem by reformulating

the notion of Fisher information in terms of inner products on the tangent space

to Sk−1. In this paper, we rather adopt an approach based on recent results from

Hallin, Paindaveine, and Verdebout (2010) and, in particular, on the following

lemma.
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Lemma 2 (Hallin, Paindaveine, and Verdebout (2010)). Consider a family of

probability distributions P(n) = {P(n)
ω | ω ∈ ΩΩΩ} with Ω an open subset of Rk1

(k1 ∈ N0). Suppose that the parameterization ω 7→ P
(n)
ω is ULAN for P(n) at

some point ω0 ∈ Ω, with central sequence ∆
(n)
ω0 and Fisher information matrix

Γω0. Let d̄ : ω 7→ ϑ := d̄(ω) be a continuously differentiable mapping from Rk1

to Rk2 (k1 ≤ k2 ∈ N0) with full column rank Jacobian matrix Dd̄(ω) at every ω

in some neighborhood of ω0. Write Θ := d̄(Ω), and assume that ϑ 7→ P
(n);d̄
ϑ , ϑ ∈

Θ, provides another parameterization of P(n). Then ϑ 7→ P
(n);d̄
ϑ is also ULAN

for P(n) at ϑ0 = d̄(ω0), with central sequence ∆
(n);d̄
ϑ0

= (D− d̄(ω0))
′∆

(n)
ω0 and

Fisher information matrix Γd̄
ϑ0

= (D− d̄(ω0))
′Γω0D

− d̄(ω0), where D
− d̄(ω0) :=

((Dd̄(ω0))
′Dd̄(ω0))

−1(Dd̄(ω0))
′ is the Moore-Penrose inverse of Dd̄(ω0).

We start by establishing ULAN for a re-parameterization of the problem in
terms of spherical coordinates. Any vector θ on the unit sphere of Rk can be
represented via the chart

~ : η := (η1, . . . , ηk−1)
′ ∈ Rk−1 7→ ~(η) = θ = (cos η1, sin η1 cos η2, (2.4)

. . . , sin η1 · · · sin ηk−2 cos ηk−1, sin η1 · · · sin ηk−2 sin ηk−1)
′,

whose Jacobian matrix D~(η) is given by

− sin η1 0 . . . 0

cos η1 cos η2 − sin η1 sin η2 . . . 0
...

...
...

...

cos η1

k−3∏
j=2

sin ηj cos ηk−2 sin η1 cos η2

k−3∏
j=3

sin ηj cos ηk−2 . . . 0

cos η1

k−2∏
j=2

sin ηj cos ηk−1 sin η1 cos η2

k−2∏
j=3

sin ηj cos ηk−1 . . . −
k−1∏
j=1

sin ηj

cos η1

k−1∏
j=2

sin ηj sin η1 cos η2

k−1∏
j=3

sin ηj . . .

k−2∏
j=1

sin ηj cos ηk−1



.

The corresponding ηηη-parameterization {P(n);~
η;f1

| ηηη ∈ Rk−1} is simple to construct

and enjoys the advantage of a classical parameter space, namely Rk−1. This
is very convenient for asymptotic calculations; in particular, it is helpful when
quadratic mean differentiability and consequently ULAN have to be proved.

Before proceeding to the statement of our results we need the following
(essentially technical) assumption.

Assumption B. Letting φf1 := ḟ1/f1 (ḟ1 is the a.e.-derivative of f1), the quan-

tity Jk(f1) :=
∫ 1
−1 φ

2
f1
(t)(1− t2)f̃1(t)dt < +∞.
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Assumption B entails that the Fisher information matrix for spherical location

is finite (in both the η- and the original θ-parameterization). More precisely, we

show that the information matrix for the η-parameterization with chart ~ is of

the form
Jk(f1)

k − 1
D~(η)′(Ik − ~(η)~(η)′)D~(η)

with Ik standing for the k × k identity matrix. This matrix can be rewritten as

[Jk(f1)/(k − 1)]ΩΩΩ~
k,η, where

ΩΩΩ~
k,η := diag(1, sin2 η1, sin

2 η1 sin
2 η2, . . . , sin

2 η1 · · · sin2 ηk−2)

= D~(η)′D~(η)
= D~(η)′(Ik − ~(η)~(η)′)D~(η),

with diag(a1, . . . , al) denoting a diagonal matrix with diagonal elements a1, . . .,

al. Hence, if D~(η) is full column rank, then the information matrix ΩΩΩ~
k,η is also

full-rank.

With this in hand we are able to establish the ULAN property of the family

{P(n);~
ηηη;f1

| ηηη ∈ Rk−1} at any point η0 ∈ Rk−1 (note that, clearly, at some points

the information matrix is singular due to the rank deficiency of the Jacobian

matrix). In order to avoid heavy notation, we drop the index 0 in what follows

and write out the LAN property at η ∈ Rk−1 in the following proposition (see

the Appendix for a proof).

Proposition 1. Let Assumptions A and B hold. Then the family of probability

distributions
{
P
(n);~
ηηη;f1

| ηηη ∈ Rk−1
}

is LAN with central sequence

∆
(n);~
ηηη;f1

:= n−1/2
n∑

i=1

φf1(X
′
i~(η))(1− (X ′

i~(η))2)1/2D~(η)′S~(η)(Xi) (2.5)

and Fisher information matrix

Γ~
η;f1 :=

Jk(f1)

k − 1
ΩΩΩ~

k,η. (2.6)

More precisely, for any bounded sequence e(n) ∈ Rk−1,

log

dP(n);~
ηηη+n−1/2e(n);f1

dP
(n);~
ηηη;f1

 = (e(n))′∆
(n);~
ηηη;f1

− 1

2
(e(n))′Γ~

η;f1e
(n) + oP(1) (2.7)

and ∆
(n);~
ηηη;f1

L→ Nk−1(0,Γ
~
η;f1

), both under P
(n);~
ηηη;f1

, as n→ ∞.
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In the sequel, we make use of a slightly reinforced version of Proposition 1,

namely the ULAN property of our sequence of models. A sequence of rotationally

symmetric models is called ULAN if, for any η(n) such that η(n)−η = O(n−1/2)

and any bounded sequence e(n) ∈ Rk−1,

log

dP(n);~
ηηη(n)+n−1/2e(n);f1

dP
(n);~
ηηη(n);f1

 = (e(n))′∆
(n);~
ηηη(n);f1

− 1

2
(e(n))′Γ~

η;f1e
(n) + oP(1)

and ∆
(n);~
ηηη(n);f1

L→ Nk−1(0,Γ
~
η;f1

), both under P
(n);~
ηηη(n);f1

, as n → ∞. Note that

the information matrix Γ~
η;f1

is uniformly (in η) the same in the neighborhood{
η(n),η(n) − η = O(n−1/2)

}
of η. In the present setup, it can easily be verified

that ULAN holds by using the same arguments as in the proof of Proposition 1.

Note that the diagonality of the Fisher information (2.6) is convenient when

working in the η-parameterization. Indeed it is the structural reason why, when

performing asymptotic inference on η1 for example, the non-specification of the

parameters η2, . . . , ηk−1 will not be responsible for any loss of efficiency. Our

focus being on the θ-parameterization, we will not investigate this issue any

further.

The η-parameterization obtained via the chart ~ suffers from the draw-

back that the information matrix is singular at several points on the sphere.

More precisely, if sin ηl = 0 for some ηl ∈ {η1, . . . , ηk−2}, then ΩΩΩ~
k,η is singu-

lar. For example, in the 3-dimensional case, the parameter values θ = (1,0′)′

or θ = (−1,0′)′ are very particular; for those values, ΩΩΩ~
3,η = diag(1, 0). This

phenomenon is due to an identification problem: in the general k-dimensional

case, when η1 = 0 for example, then Pη1,η2,...,ηk−1;f1 = Pη1,η̃2,...,η̃k−1;f1 for any

(k − 2)-uples (η2, . . . , ηk−1) ̸= (η̃2, . . . , η̃k−1). In the same way, whenever ηj = 0

for some j ∈ {1, . . . , k− 2}, the Jacobian matrix D~(η) is not full-rank and as a

consequence Γ~
η;f1

is singular. This singularity – and the identification problem

from which it results – is however not structural and only originates in the choice

of the chart.

Since every point of a m-dimensional manifold has a neighborhood homeo-

morphic to an open subset of the m-dimensional space Rm, we see that, for all

θ ∈ Sk−1, one can find a chart l̄ : Rk−1 7→ Sk−1 : η 7→ θ = l̄(η) with a full

column rank Jacobian matrix Dl̄(η) in the vicinity of η. Making use of Propo-

sition 1, whose proof does not involve the particular form of ~, we obtain that

the family {P(n); l̄
ηηη;f1

| ηηη ∈ Rk−1} is ULAN with central sequence

∆
(n); l̄
ηηη;f1

:= n−1/2
n∑

i=1

φf1(X
′
i l̄(η))(1− (X ′

i l̄(η))
2)1/2Dl̄(η)′Sl̄(η)(Xi)
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and full-rank Fisher information matrix

Γl̄
η;f1 =

Jk(f1)

k − 1
ΩΩΩl̄

k,η =
Jk(f1)

k − 1
Dl̄(η)′Dl̄(η).

This shows that, for any θ ∈ Sk−1, it is possible to find a chart l̄ such that,

in a neighborhood of η = l̄−1(θ), the Jacobian matrix is non-singular and the

ULAN property for the related family
{
P
(n); l̄
ηηη;f1

| ηηη ∈ Rk−1
}

holds. This observa-

tion, combined with Lemma 2, finally yields the desired ULAN property for the

family
{
P
(n)
θ;f1

| θ ∈ Sk−1
}

(see the Appendix for a proof).

Let θ(n) ∈ Sk−1 be such that θ(n) − θ = O(n−1/2) and consider local alter-

natives on the sphere of the form θ(n)+n−1/2t(n). For θ(n)+n−1/2t(n) to remain

in Sk−1, it is necessary that the sequence t(n) satisfies

0 = (θ(n) + n−1/2t(n))′(θ(n) + n−1/2t(n))− 1

= 2n−1/2(θ(n))′t(n) + n−1(t(n))′t(n). (2.8)

Consequently, t(n) must be such that 2n−1/2 (θ(n))′t(n) + n−1(t(n))′t(n) = 0 or,

equivalently, such that 2n−1/2(θ(n))′t(n) + o(n−1/2) = 0. Therefore, for θ(n) +

n−1/2t(n) to remain in Sk−1, t(n) must belong, up to a o(n−1/2) quantity, to the

tangent space to Sk−1 at θ(n).

Now, Lemma 2 provides a link between the ULAN properties of two different

parameterizations of the same model. This link is directly related to the link

between the local alternatives η(n) + n−1/2e(n) in the full-rank parameterization

and the local alternatives θ(n) + n−1/2t(n) described above. As shown in (2.8),

in order for θ(n) + n−1/2t(n) to belong to Sk−1, it is necessary that t(n) be of the

form t
(n)
∗ +o(1), with t

(n)
∗ in the tangent space to Sk−1 at θ(n), hence of the form

t
(n)
∗∗ + o(1) with t

(n)
∗∗ in the tangent space to Sk−1 at θ that is, t

(n)
∗∗ = Dl̄(η)e(n)

for some bounded sequence e(n) ∈ Rk−1. It follows from differentiability that,

letting η(n) = l̄−1(θ(n)),

θ(n)+ n−1/2t(n) = θ(n) + n−1/2Dl̄(η)e(n) + o(n−1/2)

= l̄(η(n)) + n−1/2Dl̄(η)e(n) + o(n−1/2)

= l̄(η(n) + n−1/2e(n) + o(n−1/2)), (2.9)

hence there is a clear correspondence between linear perturbations in the η-

parameterization and perturbations on the sphere in the θ-parameterization

(through the chart l̄). As a direct consequence, the local alternatives θ(n) +

n−1/2t(n) are equivalent to those considered in Tsai (2009). Now, turning to
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local log-likelihood ratios, in view of ULAN for the η-parameterization,

log
(
dP

(n)

θ(n)+n−1/2t(n);f1
/dP

(n)

θ(n);f1

)
= log

(dP(n)

η(n)+n−1/2e(n)+o(n−1/2);f1

dP
(n)

η(n);f1

)
= e(n)′∆

(n); l̄

ηηη(n);f1
− 1

2
e(n)′Γl̄

η;f1e
(n) + oP(1)

under P
(n)

η(n);f1
= P

(n)

ϑ(n);f1
-probability, as n → ∞. Summing up, we have the

following result.

Proposition 2. Let Assumptions A and B hold. Then the family of probability

distributions
{
P
(n)
θ;f1

| θ ∈ Sk−1
}

is ULAN with central sequence

∆
(n)
θ;f1

:= n−1/2
n∑

i=1

φf1(X
′
iθ)(1− (X ′

iθ)
2)1/2Sθ(Xi)

and Fisher information matrix

Γθ;f1 :=
Jk(f1)

k − 1
(Ik − θθ′).

More precisely, for any θ(n) ∈ Sk−1 such that θ(n) − θ = O(n−1/2) and any

bounded sequence t(n) as in (2.8), we have

log

dP(n)

θ(n)+n−1/2t(n);f1

dP
(n)

θ(n);f1

 = (t(n))′∆
(n)

θ(n);f1
− 1

2
(t(n))′Γθ;f1t

(n) + oP(1)

and ∆
(n)

θ(n);f1

L→ Nk−1(0,Γθ;f1), both under P
(n)

θ(n);f1
, as n→ ∞.

See the proof in the appendix in which the expressions of ∆
(n)
θ;f1

and Γθ;f1 ,

are obtained.

3. Rank-based Estimation: Optimal R-estimators

In this section, we make use of the ULAN property of Proposition 2 to

construct semi-parametrically efficient R-estimators of θ. To this end, we adapt

the Le Cam technique of one-step R-estimation, introduced in Hallin, Oja and

Paindaveine (2006), to the present context.

Le Cam’s one-step R-estimation method assumes the existence of a prelim-

inary estimator θ̂ of θ satisfying some conditions summarized in the following

assumption.
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Assumption C. The preliminary estimator θ̂ ∈ Sk−1 is such that

(i) θ̂ − θ = Op(n
−1/2) under

∪
g1∈F P

(n)
θ;g1

.

(ii) θ̂ is locally and asymptotically discrete; that is, it only takes a bounded num-

ber of distinct values in θ-centered balls with O(n−1/2) radius.

Assumption C(i) requires that the preliminary estimator is root-n consistent

under the whole set F of angular functions. This condition is fulfilled by, e.g.,

the spherical mean or the spherical median. This uniformity in g1 ∈ F plays

an important role for our R-estimation procedures, as we shall see in the sequel.

Regarding Assumption C(ii), it should be noted that this discretization condi-

tion is a purely technical requirement (see for instance Hallin, Swan, Verdebout,

and Veredas (2011)), with little practical implications (in fixed-n practice, such

discretizations are irrelevant as the discretization radius can be taken arbitrarily

large). Therefore, for the sake of simplicity, we tacitly assume in the sequel that

θ̂ satisfies Assumption C(ii).

3.1. Rank-based central sequence and its asymptotic properties

The main idea behind one-step R-estimation consists in adding to the prelim-

inary estimator θ̂ a rank-based quantity which provides optimality under a fixed

density. This rank-based quantity appears through a rank-based version ∆∼
(n)
θ;K

(rigorously defined in (3.2) below) of the parametric central sequence obtained in

Proposition 2. A natural requirement for our rank-based central sequence ∆∼
(n)
θ;K

is its distribution-freeness under the broadest possible family of distributions,

say P
(n)
broad. A classical way to achieve this goal consists in having recourse to the

invariance principle which, when P
(n)
broad is invariant under a group of transfor-

mations, recommends expressing ∆∼
(n)
θ;K in terms of the corresponding maximal

invariant. This entails that if, furthermore, this group of transformations is a

generating group for P
(n)
broad, then ∆∼

(n)
θ;K is distribution-free under P

(n)
broad.

Clearly, in this rotationally symmetric context, invariance with respect to

rotations is crucial, and therefore it seems at first sight natural to study P
(n)
broad =∪

θ∈Sk−1 P
(n)
θ;g1

for fixed g1 ∈ F under the effect of the group of rotations. This

group is generating for
∪

θ∈Sk−1 P
(n)
θ;g1

, and the ranks R+
i defined in the Introduc-

tion are rotationally invariant because the scalar products X ′
iθ are invariant with

respect to rotations. This is not the case of the multivariate signs Sθ(Xi), which

are only rotationally equivariant in the sense that Sθ(OXi) = OSθ(Xi) for any

O ∈ SOk, the class of all k×k orthogonal matrices. However, since our aim con-

sists in estimating θ, we rather work under fixed-θ assumptions, hence the family

P
(n)
broad makes little sense in the present context. Furthermore, when inference on

θ is considered, the angular function g1 remains an infinite-dimensional nuisance,
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which indicates that statistics that are invariant, and therefore distribution-free

under
∪

g1∈F P
(n)
θ;g1

(θ fixed), should in fact be taken into account, if possible

without losing invariance properties with respect to the group of rotations.

Fix θ ∈ Sk−1 and consider P
(n)
broad =

∪
g1∈F P

(n)
θ;g1

. We obviously have that

Xi = (X ′
iθ)θ+

√
1− (X ′

iθ)
2Sθ(Xi) by definition of the multivariate signs. Now,

let G(n)
h be the group of transformations of the form g

(n)
h : (X1, . . . ,Xn) 7→

(gh(X1), . . . , gh(Xn)) with

gh(Xi) := h(X ′
iθ)θ +

√
1− h(X ′

iθ)
2Sθ(Xi), i = 1, . . . , n, (3.1)

where h : [−1, 1] → [−1, 1] is a monotone continuous nondecreasing function such

that h(1) = 1 and h(−1) = −1. For any g
(n)
h ∈ G(n)

h , it is easy to verify that

∥gh(Xi)∥ = 1; this means that g
(n)
h ∈ G(n)

h is a monotone transformation from(
Sk−1

)n
to
(
Sk−1

)n
. It is quite straightforward to see that the group G(n)

h is a

generating group of the family of distributions
∪

g1∈F P
(n)
θ;g1

.

These considerations naturally raise the question of finding the maximal

invariant associated with G(n)
h . Note that the definition of the mapping gh in

(3.1), together with the fact that θ′Sθ(Xi) = 0, entails that

gh(Xi)− (gh(Xi)
′θ)θ =

√
1− h(X ′

iθ)
2Sθ(Xi).

Then, we readily obtain that, for i = 1, . . . , n,

Sθ(gh(Xi)) =
gh(Xi)− (gh(Xi)

′θ)θ

∥gh(Xi)− (gh(Xi)′θ)θ∥

=
Sθ(Xi)

∥Sθ(Xi)∥
= Sθ(Xi).

This shows that the vector of signs Sθ(X1), . . . ,Sθ(Xn) is invariant under the

action of G(n)
h . However, it is not a maximal invariant; indeed, the latter is in

most semiparametric setups composed of signs and ranks (see for instance Hallin

and Paindaveine (2006)). Now, the ranks R+
i are not invariant under the action

of G(n)
h : one can easily find a monotone transformation gh̃ as in (3.1) such that the

vector of ranks R+
i computed fromX1, . . . ,Xn differs from the vector of ranks R+

i

computed from gh̃(X1), . . . , gh̃(Xn). Thus, we need a different concept of ranks

in order to build a rank-based version of our central sequence. For this purpose,

define, for all i = 1, . . . , n, Ri as the rank of X ′
iθ among X ′

1θ, . . . ,X
′
nθ. Since

in general, the ranks are invariant with respect to monotone transformations,

noting that gh(Xi)
′θ = h(X ′

iθ) directly entails the invariance of these new ranks

under the action of the group G(n)
h . The maximal invariant associated with G(n)

h

is, therefore, the vector of signs Sθ(X1), . . . ,Sθ(Xn) and ranks R1, . . . , Rn.
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While it is preferable to use the ranks Ri when invariance with respect to

G(n)
h is required, there exist situations in which the ranks R+

i are appealing, e.g.

when the angular functions are of the form f1(t) = exp(g(t)) with g(−t) = −g(t)
(since then the score function φf1(t) = ġ(t) in (2.5) is symmetric), see Tsai and

Sen (2007).

As explained above, it follows that any statistic measurable with respect

to the signs Sθ(Xi) and ranks Ri is distribution-free under
∪

g1∈F P
(n)
θ;g1

. In

accordance with these findings, we choose to base our inference procedures on

the following sign- and rank-based version of the parametric central sequence

obtained in Proposition 2:

∆∼
(n)
θ;K := n−1/2

n∑
i=1

K

(
Ri

n+ 1

)
Sθ(Xi), (3.2)

where K is a score function satisfying

Assumption D. The score function K is a continuous function from [0, 1] to R.

Note that all the score functions associated with the densities in (2.3) satisfy

this assumption.

In the following result (the proof is given in the Appendix), we derive the

asymptotic properties of ∆∼
(n)
θ;K under P

(n)
θ;g1

and under contiguous alternatives

P
(n)

θ+n−1/2t(n);g1
(where t(n) is a bounded sequence as described in (2.8)) for some

angular function g1 ∈ F .

Proposition 3. Let Assumptions A, B and D hold. Then the rank-based central

sequence ∆∼
(n)
θ;K

(i) is such that ∆∼
(n)
θ;K − ∆

(n)
θ;K,g1

= oP(1) under P
(n)
θ;g1

as n → ∞, where (G̃1

stands for the common cdf of the X ′
iθ’s under P

(n)
θ;g1

)

∆
(n)
θ;K,g1

:= n−1/2
n∑

i=1

K
(
G̃1(X

′
iθ)
)
Sθ(Xi).

Hence, for K(u) = Kf1(u) = φf1(F̃
−1
1 (u))(1−(F̃−1

1 (u))2)1/2, ∆∼
(n)
θ;K is asymp-

totically equivalent to the efficient central sequence ∆
(n)
θ;f1

for spherical loca-

tion under P
(n)
θ;f1

.

(ii) is asymptotically normal under P
(n)
θ;g1

with mean zero and covariance matrix

Γθ;K := [(Jk(K))/(k − 1)](Ik − θθ′) , where Jk(K) :=
∫ 1
0 K

2(u)du.
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(iii) is asymptotically normal under P
(n)

θ+n−1/2t(n);g1
with mean Γθ;K,g1t (where

t := limn→∞ t(n)) and covariance matrix Γθ;K , where, for Jk(K, g1) :=∫ 1
0 K(u)Kg1(u)du,

Γθ;K,g1 :=
Jk(K, g1)

k − 1
(Ik − θθ′).

(iv) satisfies, under P
(n)
θ;g1

as n→ ∞, the asymptotic linearity property

∆∼
(n)

θ+n−1/2t(n);K
−∆∼

(n)
θ;K = −Γθ;K,g1t

(n) + oP(1)

for any bounded sequence t(n) as described in (2.8).

The main point of this proposition is part (iv); the preceding three results
are necessary for proving that last part. However, they have an interest per se
as they give the asymptotic properties of the rank-based central sequence ∆∼

(n)
θ;K .

Moreover, these results happen to be important when the focus lies on testing
procedures for the location parameter θ. This is part of ongoing research. For
the present paper, we are mainly interested in the asymptotic linearity property
of ∆∼

(n)
θ;K , more precisely on the asymptotic linearity property of

∆∼
(n)

θ̂;K
:= n−1/2

n∑
i=1

K

(
R̂i

n+ 1

)
Sθ̂(Xi),

where R̂i, i = 1, . . . , n, stands for the rank of X ′
iθ̂ among X ′

1θ̂, . . . ,X
′
nθ̂. It is

precisely here that Assumption C comes into play: it ensures that the asymptotic
linearity property of Proposition 3(iv) holds after replacement of t(n) by the
random quantity n1/2(θ̂ − θ) (this can be seen via Lemma 4.4 of Kreiss (1987)),
which eventually entails that

∆∼
(n)

θ̂;K
−∆∼

(n)
θ;K = −Γθ;K,g1n

1/2(θ̂ − θ) + oP(1) (3.3)

as n → ∞ under P
(n)
θ;g1

for g1 ∈ F . We draw the reader’s attention to the fact

that (2.8) is satisfied when t(n) is replaced by n1/2(θ̂ − θ).

3.2. Properties of our R-estimators

Keeping the notation A− for the Moore-Penrose inverse of some matrix A,
let

θ̃K;Jk(K,g1) := θ̂ + n−1/2Γ−
θ̂;K,g1

∆∼
(n)

θ̂;K

= θ̂ + n−1/2 (k − 1)

Jk(K, g1)
(Ik − θ̂θ̂′)∆∼

(n)

θ̂;K

= θ̂ + n−1/2 (k − 1)

Jk(K, g1)
∆∼

(n)

θ̂;K
,
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where the last inequality holds since θ̂′Sθ̂(Xi) = 0 for all i = 1, . . . , n. The

expression of θ̃K;Jk(K,g1) is quite traditional when one-step estimation is consid-

ered. However, using θ̃K;Jk(K,g1) itself to estimate θ is clearly unnatural since

θ̃K;Jk(K,g1) does not belong to Sk−1 in general. This is why we propose the

one-step R-estimator

θ̂K;Jk(K,g1) := θ̃K;Jk(K,g1)/∥θ̃K;Jk(K,g1)∥ ∈ Sk−1,

which is a normalized version of θ̃K;Jk(K,g1). As is shown in the sequel, the

normalization has no asymptotic cost on the efficiency of the one-step method.

Nevertheless, θ̂K;Jk(K,g1) is not a genuine estimator because it is still a

function of the unknown scalar Jk(K, g1). This cross-information quantity re-

quires consistent estimation in order to ensure asymptotic normality of our R-

estimators. To tackle this problem, we adopt here the idea developed in Hallin,

Oja and Paindaveine (2006) based on the ULAN property of the model. Let

θ̃(β) := θ̂+n−1/2β(k−1)∆∼
(n)

θ̂;K
, θ̂(β) := θ̃(β)/∥θ̃(β)∥ and consider the quadratic

form

β 7→ h(n)(β) := (∆∼
(n)

θ̂;K
)′Γ−

θ̂;K
∆∼

(n)

θ̂(β);K

=
(k − 1)

Jk(K)
(∆∼

(n)

θ̂;K
)′∆∼

(n)

θ̂(β);K
. (3.4)

Then, part (iv) of Proposition 3 and the root-n consistency of θ̂(β) (which follows

from the root-n consistency of θ̃(β) and the Delta method applied to the mapping

x 7→ x/∥x∥) imply that, after some direct computations involving (3.3),

∆∼
(n)

θ̂(β);K
−∆∼

(n)

θ̂;K
= −Γθ;K,g1n

1/2(θ̂(β)− θ̂) + oP(1)

as n → ∞ under P
(n)
θ;g1

. Moreover, it is clear that Γθ;K,g1n
1/2(θ̂(β) − θ̂) =

Γθ̂;K,g1
n1/2(θ̂(β)− θ̂)+ oP(1) as n→ ∞ under P

(n)
θ;g1

. These facts combined with

the definition of θ̂(β) entail that, under P
(n)
θ;g1

and for n→ ∞,

h(n)(β) =
(k − 1)

Jk(K)
(∆∼

(n)

θ̂;K
)′
(
∆∼

(n)

θ̂;K
− Γθ̂;K,g1

n1/2(θ̂(β)− θ̂)
)
+ oP(1)

=
(k − 1)

Jk(K)
(∆∼

(n)

θ̂;K
)′
(
∆∼

(n)

θ̂;K
− Jk(K, g1)β∆∼

(n)

θ̂;K

)
+ oP(1)

=
(k − 1)(1− Jk(K, g1)β)

Jk(K)
(∆∼

(n)

θ̂;K
)′∆∼

(n)

θ̂;K
+ oP(1),

where the passage from the first to the second line requires some computations

involving the Delta method; for the sake of readability we dispense with these
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details here, as they follow along the same lines as those achieved below. In view

of (3.4), h(n)(β) can be rewritten as

h(n)(β) = (1− Jk(K, g1)β)h
(n)(0) + oP(1)

under P
(n)
θ;g1

as n → ∞. Since h(n)(0) > 0, one obtains (the proof is along the

same lines as in Hallin, Oja and Paindaveine (2006)) a consistent estimator of

(Jk(K, g1))
−1 given by β̂ := inf{β > 0 : h(n)(β) < 0}. Therefore, Ĵk(K, g1) :=

β̂−1 provides a consistent estimator of the cross-information quantity, and a

genuine estimator of θ is provided by θ̂K;Ĵk(K,g1)
. Now, the Delta method and

some easy computations show that under P
(n)
θ;g1

and for n→ ∞

n1/2(θ̂K;Ĵk(K,g1)
− θ) = n1/2

( θ̃K;Ĵk(K,g1)

∥θ̃K;Ĵk(K,g1)
∥
− θ

∥θ∥

)
= n1/2(Ik − θθ′)

(
θ̃K;Ĵk(K,g1)

− θ
)
+ oP(1), (3.5)

where Ik − θθ′ is the Jacobian matrix of the mapping x 7→ x/∥x∥evaluated
at θ. Then, (3.5), the definition of θ̃K;Ĵk(K,g1)

, part (iv) of Proposition 3, the

consistency of Ĵk(K, g1), and Assumption C entail that, under P
(n)
θ;g1

and as

n→ ∞,

n1/2(θ̂K;Ĵk(K,g1)
− θ)

= n1/2(Ik − θθ′)
(
θ̃K;Ĵk(K,g1)

− θ
)
+ oP(1)

= n1/2(Ik − θθ′)
(
θ̂ + n−1/2Γ−

θ̂;K,g1
∆∼

(n)

θ̂;K
− θ

)
+ oP(1)

= (Ik − θθ′)
(
n1/2(θ̂ − θ) + Γ−

θ;K,g1
∆∼

(n)
θ;K − n1/2(θ̂ − θ)

)
+ oP(1)

= (Ik − θθ′)Γ−
θ;K,g1

∆∼
(n)
θ;K + oP(1)

=
(k − 1)

Jk(K, g1)
∆∼

(n)
θ;K + oP(1), (3.6)

where the passage from the second to the third line draws upon (3.3). We obtain

the following result which summarizes the asymptotic properties of θ̂K;Ĵk(K,g1)
.

Proposition 4. Let Assumptions A, B, C and D hold. Then,

(i) under P
(n)
θ;g1

, n1/2(θ̂K;Ĵk(K,g1)
−θ) is asymptotically normal with mean 0 and

covariance matrix (k − 1)(Jk(K)/J 2
k (K, g1)) (Ik − θθ′);

(ii) for K(u)=Kf1(u)=φf1(F̃
−1
1 (u))(1−(F̃−1

1 (u))2)1/2, the estimator θ̂K;Ĵk(K,f1)

is semi-parametrically efficient under P
(n)
θ;f1

.
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While part (i) of Proposition 4 is a direct consequence of (3.6), part (ii)

requires explanation. From (3.6), we obviously have that under P
(n)
θ;f1

,

n1/2(θ̂Kf1
;Ĵk(Kf1

,f1)
− θ) =

(k − 1)

Jk(Kf1 , f1)
∆∼

(n)
θ;Kf1

+ oP(1) (3.7)

as n → ∞. Now, using the identities Jk(Kf1 , f1) = Jk(f1) and ∆
(n)
θ;Kf1

,f1
=

∆
(n)
θ;f1

, we obtain via part (i) of Proposition 3 that

(k − 1)

Jk(Kf1 , f1)
∆∼

(n)
θ;Kf1

=
(k − 1)

Jk(f1)
∆

(n)
θ;f1,

+ oP(1) (3.8)

under P
(n)
θ;f1

as n→ ∞. Combining (3.7) and (3.8) (and using again the fact that

θ′Sθ(X) = 0), it follows that

n1/2(θ̂Kf1
;Ĵk(Kf1

,f1)
− θ) =

(k − 1)

Jk(f1)
∆

(n)
θ;f1

+ oP(1) = Γ−
θ;f1

∆
(n)
θ;f1

+ oP(1)

still under P
(n)
θ;f1

as n → ∞. This entails that θ̂Kf1
;Ĵk(Kf1

,f1)
is asymptotically

efficient under P
(n)
θ;f1

, which then yields the desired optimality properties.

Finally note that if the preliminary estimator θ̂ is rotation-equivariant, mean-

ing that θ̂(OXi) = Oθ̂(Xi) for any matrix O ∈ SOk, then θ̂K;Ĵk(K,g1)
(OXi) =

Oθ̂K;Ĵk(K,g1)
(Xi). This implies that rotation-equivariance of our R-estimators is

inherited from the preliminary estimator.

4. Asymptotic Relative Efficiencies and Simulation Results

In this section, we compare the asymptotic and finite-sample performances

of the proposed R-estimators with those of the spherical mean and spherical

median. The asymptotic performances are analyzed in Section 4.1 on the ba-

sis of asymptotic relative efficiencies (ARE), while the finite-sample behavior is

investigated in Section 4.2 by means of a Monte Carlo study.

4.1. Asymptotic relative efficiencies

Traditional estimators of θ in the literature are the M -estimators defined,

for a given function ρ0(x;θ), as the value θ̂ of θ which minimizes the objective

function

θ 7→ ρ(θ) :=

n∑
i=1

ρ0(Xi;θ),

where X1, . . . ,Xn are spherical observations. Letting ρ0(x;θ) =: ρ̃(x′θ), special

instances are the spherical mean θ̂Mean (maximum likelihood estimator under
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FVML distributions, obtained by taking ψ(t) := − ˙̃ρ(t) = 2) and the spherical

median θ̂Median (Fisher (1985), obtained by taking ψ(t) = (1 − t2)−1/2). By

Theorem 3.2 in Chang (2004), an M -estimator θ̂M associated with the objective

function ρ̃(x′θ) is such that n1/2(θ̂M − θ) is asymptotically normal with mean

zero and covariance matrix

(k − 1)
E[ψ2(X ′θ)(1− (X ′θ)2)]

E2[ψ(X ′θ)φg1(X
′θ)(1− (X ′θ)2)]

(
Ik − θθ′)

under P
(n)
θ;g1

(expectations are taken under P
(n)
θ;g1

). Now, let θ̂1 and θ̂2 be two

estimators of the spherical location such that n1/2(θ̂1 − θ) and n1/2(θ̂2 − θ)

are asymptotically normal with mean zero and covariance matrices ρ1(I − θθ′)

and ρ2(I − θθ′), respectively, under P
(n)
θ;g1

. Then, a natural way to compare

the asymptotic efficiencies of θ̂1 and θ̂2 (still under P
(n)
θ;g1

) is through the ratio

AREθ;g1(θ̂1/θ̂2) = ρ1/ρ2 which we refer to as an ARE. The following result

provides a general formula for ARE between an R-estimator and anM -estimator.

Proposition 5. Let θ̂K;Ĵk(K,g1)
be the R-estimator associated with the score

function K and let θ̂M be the M -estimator associated with the objective function

ρ(x′θ). Then

AREθ;g1(
θ̂K;Ĵk(K,g1)

θ̂M
) =

E[ψ2(X ′θ)(1− (X ′θ)2)]J 2
k (K, g1)

E2[ψ(X ′θ)φg1(X
′θ)(1− (X ′θ)2)]Jk(K)

,

where AREθ;g1 denotes the asymptotic relative efficiency under P
(n)
θ;g1

.

In Tables 1 and 2, we collect numerical values of AREθ;g1 for k = 3 un-

der various underlying rotationally symmetric densities, namely those described

below Assumption A in Section 2. Several one-step R-estimators are compared

to both the spherical mean and the spherical median: θ̂FVML(2) and θ̂FVML(6),

based on FVML scores (with κ = 2 and κ = 6, respectively), θ̂Lin(2) and θ̂Lin(4)
based on linear scores (associated with linear angular densities with a = 2 and

a = 4, respectively, see (2.2)), θ̂Log(2.5) based on logarithmic scores (associated

with a logarithmic angular density with a = 2.5, see (2.2)) and finally θ̂Logis(1,1)
and θ̂Logis(2,1) based on logistic scores (associated with logistic angular densities

with respectively a = 1, b = 1 and a = 2, b = 1, see (2.3)).

Inspection of Tables 1 and 2 confirms the theoretical results obtained previ-

ously. When based on the score function associated with the underlying density,

R-estimators are optimal. For example, θ̂Lin(2) is the most precise estimator un-

der P
(n)
θ;f1;Lin(2)

. As expected the spherical mean dominates the R-estimators under
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FVML densities since it is the maximum likelihood estimator in this case. For
example, θ̂FVML(2) is only just less or equally (under the FVML(2) density) effi-
cient than the spherical mean under FVML densities but performs nicely under
other densities. In general, the proposed R-estimators outperform the spherical
median.

Table 1. Asymptotic relative efficiencies of R-estimators with respect to the
spherical mean under various 3-dimensional rotationally symmetric densities.

AREs with respect to the spherical mean (ARE(θ̂K/θ̂Mean))

Underlying density θ̂FVML(2) θ̂FVML(6) θ̂Lin(2) θ̂Lin(4) θ̂Log(2.5) θ̂Logis(1,1) θ̂Logis(2,1) θ̂Sq(1.1)

FVML(1) 0.9744 0.8787 0.9813 0.9979 0.9027 0.9321 0.7364 0.7804

FVML(2) 1 0.9556 0.9978 0.9586 0.9749 0.9823 0.8480 0.8932

FVML(6) 0.9555 1 0.9381 0.8517 0.9768 0.9911 0.9280 0.9771

Lin(2) 1.0539 0.9909 1.0562 1.0215 1.0212 1.0247 0.8796 0.9174

Lin(4) 0.9709 0.8627 0.9795 1.0128 0.8856 0.9231 0.7097 0.7083

Log(2.5) 1.1610 1.1633 1.1514 1.0413 1.1908 1.1625 1.0951 1.1376

Log(4) 1.0182 0.9216 1.0261 1.0347 0.9503 0.9741 0.7851 0.8226

Logis(1,1) 1.0768 1.0865 1.0635 0.9991 1.0701 1.0962 0.9778 1.0349

Logis(2,1) 1.3182 1.4426 1.2946 1.0893 1.4294 1.3865 1.5544 1.4680

Sq(1.1) 1.2303 1.3460 1.1964 1.0264 1.3158 1.3004 1.3009 1.3774

4.2. Monte Carlo study

We now discuss the finite-sample behavior of different R-estimators of the
spherical location. For this purpose, we generated M = 1, 000 samples from var-
ious 3-dimensional (k = 3) rotationally symmetric distributions: the FVML(2)
and FVML(4) distributions, the linear distribution with a = 2 and a = 4 (see
(2.2)) and the square root distribution Sq(1.1) associated with an angular density
of the form

f1(t) :=
√
t+ a, with a = 1.1.

The true location parameter is θ = (
√
2/2,

√
2/2, 0)′. For each replication, the

spherical median θ̂Median, the spherical mean θ̂Mean, the FVML-score based R-
estimators θ̂FVML(2) and θ̂FVML(4), the linear-score based R-estimators θ̂Lin(2)
and θ̂Lin(4), and the Sq(1.1)-score based R-estimator θ̂Sq(1.1) were computed. The
preliminary estimators used in the construction of all our one-step R-estimators
were θ̂Median and θ̂Mean.

In Table 3, we report the Euclidean norm of m = (m1,m2,m3)
′ where,

letting θ̂
(j)
i stand for the ith component of an estimator computed from the jth

replication and θi for the ith component of θ,

mi :=
1

M

M∑
j=1

(θ̂
(j)
i − θi)

2, i = 1, 2, 3,
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Table 2. Asymptotic relative efficiencies of R-estimators with respect to
the spherical median under various 3-dimensional rotationally symmetric
densities.

AREs with respect to the spherical median (ARE(θ̂K/θ̂Median))

Underlying density θ̂FVML(2) θ̂FVML(6) θ̂Lin(2) θ̂Lin(4) θ̂Log(2.5) θ̂Logis(1,1) θ̂Logis(2,1) θ̂Sq(1.1)

FVML(1) 1.0691 0.9641 1.0766 1.0949 0.9904 1.0226 0.8079 0.8562

FVML(2) 1.1321 1.0819 1.1297 1.0853 1.1038 1.1121 0.9601 1.0112

FVML(6) 1.1632 1.2174 1.1421 1.0369 1.1891 1.2065 1.1297 1.1895

Lin(2) 1.1391 1.0709 1.1415 1.1041 1.1037 1.1075 0.9507 0.9915

Lin(4) 1.0493 0.9324 1.0587 1.0946 0.9571 0.9977 0.7671 0.8157

Log(2.5) 1.2171 1.2195 1.2071 1.0917 1.2484 1.2188 1.1481 1.1926

Log(4) 1.0900 0.9865 1.0984 1.1076 1.0173 1.0427 0.8403 1.0228

Logis(1,1) 1.1264 1.1365 1.1125 1.0451 1.1194 1.1467 1.0228 1.0826

Logis(2,1) 1.4497 1.5868 1.4238 1.1980 1.5721 1.5249 1.7095 1.6145

Sq(1.1) 1.2282 1.3436 1.1943 1.0246 1.3135 1.2981 1.2986 1.3750

computed still for each of the aforementioned estimators and sample sizes n =

100, n = 500 and n = 1, 000. Simulation results mostly confirm the ARE rank-

ings. Under the distributions considered, the optimality of the R-estimators

based on correctly specified densities is verified. In the FVML case, the spherical

mean is efficient as expected, but the R-estimators based on FVML scores are

reasonable competitors. In general, the efficiency of our R-estimators is better

with respect to the spherical mean under departures from the FVML case, es-

pecially under the Sq(1.1) density. The spherical median is clearly dominated

by the other estimators. The results also show that, as n increases, the influ-

ence of the choice of the preliminary estimator wanes; this confirms the fact that

the asymptotic behavior of the R-estimators does not depend on this choice (see

Assumption C).

5. A Data Application

We have applied our R-estimators to a data example. The data consists of 26

measurements of magnetic remanence made on samples collected from Palaeozoic

red-beds in Argentina, and has already been used in Embleton (1970) and Fisher,

Lewis, and Embleton (1987). The purpose of the study was to determine the

origin of natural remanent magnetization in red-beds. While it is reasonable to

assume that the underlying distribution associated with this data is unimodal

(because a single component of magnetization is present, see Fisher, Lewis, and

Embleton (1987)), a complete specification of the underlying distribution can’t

be justified, and hence semi-parametric methods are required.

First, we computed the spherical mean θ̂Mean = (0.3187373, 0.4924234,

−0.8098924)′ and the spherical median θ̂Median = (0.3129147, 0.486036,
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Table 3. MSE of various R-estimators and of the spherical mean and spher-
ical median. For the sake of clarity, the results have been multiplied by 103.
R-estimators are computed by taking both the spherical median and the
spherical mean as preliminary estimators.

Sample size n = 100 n = 500 n = 1, 000

Preliminary estimator θ̂Mean θ̂Median θ̂Mean θ̂Median θ̂Mean θ̂Median

Actual density Estimators

θ̂FVML(2) 0.12846 0.12813 0.00528 0.00528 0.00135 0.00134

θ̂FVML(4) 0.13724 0.13779 0.00550 0.00551 0.00143 0.00142

θ̂Lin(2) 0.12818 0.12836 0.00531 0.00532 0.00135 0.00134

FVML (2) θ̂Lin(4) 0.13540 0.13568 0.00576 0.00577 0.00147 0.00146

θ̂Sq(1.1) 0.16916 0.17003 0.00647 0.00648 0.00170 0.00170

θ̂Mean 0.12686 —— 0.00528 —— 0.00135 ——

θ̂Median —— 0.16649 —— 0.00687 —— 0.00172

θ̂FVML(2) 0.01815 0.01810 0.00072 0.00072 0.00019 0.00018

θ̂FVML(4) 0.01756 0.01757 0.00069 0.00069 0.00018 0.00017

θ̂Lin(2) 0.01852 0.01849 0.00075 0.00074 0.00019 0.00019

FVML (4) θ̂Lin(4) 0.02158 0.02160 0.00087 0.00087 0.00022 0.00022

θ̂Sq(1.1) 0.01898 0.01909 0.00074 0.00074 0.00019 0.00018

θ̂Mean 0.01742 —— 0.00069 —— 0.00018 ——

θ̂Median —— 0.02481 —— 0.00098 —— 0.00023

θ̂FVML(2) 16.40147 15.88246 0.80516 0.80281 0.20099 0.20068

θ̂FVML(4) 17.61341 17.41290 0.85555 0.85874 0.21485 0.21566

θ̂Lin(2) 16.27424 16.73361 0.80201 0.80703 0.20081 0.20137

Lin (2) θ̂Lin(4) 16.13449 16.64150 0.85463 0.85917 0.21771 0.21827

θ̂Sq(1.1) 20.41046 20.14262 1.05501 1.06998 0.25629 0.25712

θ̂Mean 16.62219 —— 0.89528 —— 0.22810 ——

θ̂Median —— 19.16783 —— 1.06145 —— 0.26050

θ̂FVML(2) 201.7671 186.5235 16.30444 15.85266 3.75891 3.73754

θ̂FVML(4) 212.7127 212.5497 18.71233 18.35010 4.35718 4.46196

θ̂Lin(2) 199.7272 203.3786 15.94977 16.21466 3.68828 3.71774

Lin (4) θ̂Lin(4) 187.5686 195.9556 14.23143 14.57779 3.38679 3.42702

θ̂Sq(1.1) 231.3489 229.2380 22.61492 23.40273 5.64923 5.92582

θ̂Mean 186.9112 —— 14.26441 —— 3.43922 ——

θ̂Median —— 195.7693 —— 17.05978 —— 3.94507

θ̂FVML(2) 13.28350 13.13711 0.50958 0.50620 0.12659 0.12613

θ̂FVML(4) 13.05349 13.54705 0.44770 0.44563 0.10990 0.11025

θ̂Lin(2) 13.51480 13.93615 0.53481 0.53583 0.13304 0.13324

Sq (1.1) θ̂Lin(4) 15.82969 16.31837 0.71788 0.72184 0.18107 0.18156

θ̂Sq(1.1) 13.57166 14.35157 0.42719 0.42348 0.10430 0.10487

θ̂Mean 16.92412 —— 0.77354 —— 0.19337 ——

θ̂Median —— 18.55458 —— 0.78308 —— 0.19223
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Cosine of the angles with respect to the spherical mean

Figure 1. Histogram of the cosines X ′
1θ̂Mean, . . . ,X

′
26θ̂Mean of the Palaeozoic

data. The dashed line, the dotted line, the dotdashed line, and the solid line
are plots of the FVML densities with κ = 20, κ = 50, κ = 69.544, and
κ = 200, respectively. The longdashed line represents a Gaussian kernel
density estimator.

−0.8159984)′. On the basis of this, we provide a histogram of the cosines

X ′
1θ̂mean, . . . ,X

′
26θ̂mean; see Figure 1 (the histogram obtained from the cosines

X ′
1θ̂Median, . . . ,X

′
26θ̂Median has a very similar shape). A visual inspection of the

histogram pleads in favor of a FVML score-based R-estimation (the black line

represents a Gaussian kernel density estimator). Now, even if the FVML family

is the target family of densities, the concentration parameter has to be chosen to

perform our one-step R-estimation. The FVML maximum likelihood estimator

of κ is given by κ̂MLE = 69.544 (see, e.g., Ko (1992)).

We computed FVML-score based R-estimators with κ = 20, κ = 50, κ = 200,

and κ = 69.544 (we took θ̂Median as the preliminary estimator). We obtained

θ̂κ=20 = (0.3152545, 0.4947636,−0.8099027)′, θ̂κ=50 = (0.3156331, 0.4949186,

−0.8096652)′, θ̂κ=200 = (0.3156907, 0.4948861,−0.8096624)′ and θ̂κ=69.544 =

(0.3156517, 0.4949093,−0.8096636)′. The data are illustrated in Figure 2. Data
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Palaeozoic red-beds data

Figure 2. The Palaeozoic data (empty points) and θ̂κ=50 (full point). The
data consists of 26 measurements of magnetic remanence.

points are represented by empty points, the full point is θ̂κ=50.

Of course, one could argue that if the FVML specification is chosen, the

spherical mean θ̂Mean is the efficient estimator and, as a consequence, has to be

used for the estimation of θ. We insist here on the fact that we do not specify a

FMVL distribution but rather choose the FVML family as a target. As shown in

the ARE results (see Table 1), FVML-score based estimators are robust-efficient

in the sense that if the underlying distribution is not a FVML one, they can be

more efficient than the spherical mean.

The example provided in this section raises two questions that are beyond

the scope of the present paper. First, is θ̂κ̂ (the R-estimator based on a FVML

score with an estimated concentration parameter) as efficient as θ̂Mean under

any FVML distribution, irrespective of the underlying concentration? Secondly,

is it more efficient than the same spherical mean outside of the FVML case?

The answer to these questions could be obtained by considering a location/scale

model in which we quantify the substitution of the scale parameter by a root-n

consistent estimate. This problem is currently under investigation.
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Appendix: Proofs

Proof of Proposition 1. Since the LAN property is stated with respect to η,

the density function (2.1) is denoted by fη in this proof but remains the same

function. Our proof relies on Lemma 1 of Swensen (1985)–more precisely, on its

extension in Garel and Hallin (1995). The sufficient conditions for LAN in those

results readily follow from standard arguments, once it is shown that η 7→ f
1/2
η (x)

is differentiable in quadratic mean.

In what follows, all o(∥ · ∥) or O(∥ · ∥) quantities are taken as ∥ · ∥ → 0.

Denoting by

gradηf
1/2
η (x) :=

1

2
f
1/2
η (x)φf1(x

′~(η))D~(η)′x

the gradient of the square root of the density fη(x), quadratic mean differentia-

bility holds if ∫
Sk−1

{
f
1/2
η+e(x)− f

1/2
η (x)− e′gradηf

1/2
η (x)

}2
dσ(x) (A.1)

is o(∥e∥2) for e ∈ Rk−1. Obviously, since η 7→ ~(η) is differentiable, we have that
x′~(η+ e)−x′~(η) = x′D~(η)e+ o(∥e∥) for all x ∈ Sk−1. This implies that the

integral (A.1) takes the form

ck;f1

∫
Sk−1

{
f
1/2
1 (x′~(η) + x′D~(η)e+ o(∥e∥))− f

1/2
1 (x′~(η))

−1

2
f
1/2
1 (x′~(η))φf1(x

′~(η))x′D~(η)e
}2
dσ(x). (A.2)

Now, since f
1/2
1 inherits absolute continuity from f1, f

1/2
1 is differentiable almost

everywhere on [−1, 1]. Consequently, for almost all x and any perturbation s ∈ R,

f
1/2
1 (x′~(η) + s)− f

1/2
1 (x′~(η)) =

1

2
f
1/2
1 (x′~(η))φf1(x

′~(η))s+ o(s),
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so that, using the fact that supx∈Sk−1 |x′D~(η)e| ≤ C∥e∥ for some positive con-

stant C, we have that

sup
x∈Sk−1

∣∣∣f1/21 (x′~(η) + x′D~(η)e+ o(∥e∥))− f
1/2
1 (x′~(η))

−1

2
f
1/2
1 (x′~(η))φf1(x

′~(η))x′D~(η)e
∣∣∣

is o(∥e∥) uniformly in x. Consequently, the integrand in (A.2) is o(∥e∥2) uni-

formly in x. The result follows since
∫
Sk−1 dσ(x) = 2πk/2/Γ(k/2) <∞.

Proof of Proposition 2. In this proof, we only provide the expressions of ∆
(n)
θ;f1

and Γθ;f1 since ULAN directly follows from the combination of Lemma 2 and

Proposition 1.

From Lemma 2, we obtain that the family
{
P
(n)
θ;f1

| θ ∈ Sk−1
}
is also ULAN

with central sequence

∆
(n)
θ;f1

:= n−1/2Dl̄(η)((Dl̄(η))′Dl̄(η))−1(Dl̄(η))′

n∑
i=1

φf1(X
′
iθ)(1− (X ′

iθ)
2)1/2Sθ(Xi)

and Fisher information matrix

Γθ;f1 =
Jk(f1)

k − 1
Dl̄(η)((Dl̄(η))′Dl̄(η))−1(Dl̄(η))′.

Next, note that if θ = l̄(η) for some η ∈ Rk−1 such that Dl̄ is full-rank in

the vicinity of η, then, clearly, θ = l̄(η) = O~(η), with ~ defined as in (2.4), for

some rotation O ∈ SOk. After some easy computations, we obtain that (putting

θ̃ = O′θ = ~(η)),

Dl̄(η)((Dl̄(η))′Dl̄(η))−1(Dl̄(η))′ =OD~(η)((D~(η))′D~(η))−1(D~(η))′O′

=O(Ik − θ̃θ̃′)O′

= Ik − θθ′.

Then, combining Proposition 1 and Lemma 2, the family
{
P
(n)
θ;f1

| θ ∈ Sk−1
}

(in the θ-parameterization) is ULAN with central sequence

∆
(n)
θ;f1

= n−1/2(Ik − θθ′)
n∑

i=1

φf1(X
′
iθ)(1− (X ′

iθ)
2)1/2Sθ(Xi)

= n−1/2
n∑

i=1

φf1(X
′
iθ)(1− (X ′

iθ)
2)1/2Sθ(Xi)
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and Fisher information matrix

Γθ;f1 =
Jk(f1)

k − 1
(Ik − θθ′).

Proof of Proposition 3. Part (i) follows easily from Hájek’s classical result for

linear signed-rank statistics (see Hájek and Šidák (1967)). Parts (ii) and (iii) are

consequences of part (i), the Multivariate Central Limit theorem and Le Cam’s

third lemma. We therefore only prove in detail part (iv) of the Proposition.

For the sake of simplicity, we let θ(n) = θ + n−1/2t(n) be the perturbed

spherical location. In the sequel, we put U
(n)
i := Xi − (X ′

iθ
(n))θ(n), U0

i :=

Xi − (X ′
iθ)θ, Sθ(n)(Xi) := U

(n)
i /||U(n)

i ||, and Sθ(Xi) := U0
i /||U0

i ||. We then

have the following.

Lemma A.1. For all i ∈ {1, . . . , n}, we have that ||Sθ(n)(Xi)−Sθ(Xi)|| is oP(1)
under P

(n)
θ;f1

with f1 ∈ F as n→ ∞.

Proof of Lemma A.1. First note that

||U(n)
i −U0

i || = ∥(Xi − (X ′
iθ

(n))θ(n))− (Xi − (X ′
iθ)θ)∥

= ∥(X ′
iθ)θ − (X ′

iθ)θ
(n) + (X ′

iθ)θ
(n) − (X ′

iθ
(n))θ(n)∥

≤ ∥(X ′
iθ)(θ − θ(n))∥+ ∥X ′

i(θ − θ(n))θ(n)∥. (A.3)

Both terms in (A.3) are clearly oP(1) as n → ∞. Consequently, we have that

∥Sθ(n)(Xi)−Sθ(Xi)∥ ≤ 2 ∥U0
i ∥−1(∥U(n)

i −U0
i ∥) is oP(1) under P

(n)
θ;f1

as n→ ∞.

Proof of part (iv). From part (i) we know that ∆∼
(n)
θ;K −∆

(n)
θ;K,g1

= oP(1) under

P
(n)
θ;g1

as n→ ∞. Similarly, ∆∼
(n)

θ(n);K
−∆

(n)

θ(n);K,g1
= oP(1) under P

(n)

θ(n);g1
as n→ ∞.

Hence, from contiguity, ∆∼
(n)

θ(n);K
−∆

(n)

θ(n);K,g1
is also oP(1) under P

(n)
θ;g1

as n→ ∞.

This entails that the claim holds if

∆
(n)

θ(n);K,g1
−∆

(n)
θ;K,g1

+ Γθ;K,g1t
(n)

is oP(1) under P
(n)
θ;g1

as n → ∞. Consequently, the result follows if we can show

that

(a) ∆
(n)

θ(n);K,g1
−∆

(n)
θ;K,g1

−E[∆
(n)

θ(n);K,g1
] is oL2(1) under P

(n)
θ;g1

as n→ ∞, and that

(b) E
[
∆

(n)

θ(n);K,g1

]
+ Γθ;K,g1t

(n) is o(1) under P
(n)
θ;g1

as n→ ∞.

We first prove
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(a). Using the fact that X ′
iθ and Sθ(Xi) are independent (as mentioned in the

Introduction), we have (the expectation is taken under P
(n)
θ;g1

)

E
[
∆

(n)
θ;K,g1

]
= n−1/2

n∑
i=1

E
[
K(G̃1(X

′
iθ))

]
E [Sθ(Xi)] = 0,

since, under P
(n)
θ;g1

, the sign Sθ(Xi) is uniformly distributed on Sk−1(θ⊥). Now,

let D(n) := n−1/2
∑n

i=1(T
(n)
i −E[T

(n)
i ]), where T

(n)
i :=K(G̃1(X

′
iθ

(n)))Sθ(n)(Xi)
−K(G̃1(X

′
iθ))Sθ(Xi). Clearly, D

(n) corresponds exactly to the expression in (a),

since E[∆
(n)
θ;K,g1

] = 0 as explained above. Using i.i.d.-ness and standard algebra

arguments, we have that, under P
(n)
θ;g1

,

E[∥D(n)∥2] = n−1E
[∥∥∥ n∑

i=1

T
(n)
i − E[T

(n)
i ]
∥∥∥2]

= n−1tr
[
Var
[ n∑

i=1

T
(n)
i − E[T

(n)
i ]
]]

≤ E[∥T(n)
1 ∥2].

Therefore, it remains to show that E[∥T(n)
1 ∥2] is o(1) as n→ ∞. We have that

∥T(n)
1 ∥2 =

∥∥∥(K(G̃1(X
′
1θ

(n)))−K(G̃1(X
′
1θ))

)
Sθ(n)(X1)

+K(G̃1(X
′
1θ)) (Sθ(n)(X1)− Sθ(X1))

∥∥∥2
≤ 2

∣∣∣K(G̃1(X
′
1θ

(n)))−K(G̃1(X
′
1θ))

∣∣∣2 ∥Sθ(n)(X1)∥2

+2 K2(G̃1(X
′
1θ))∥Sθ(n)(X1)− Sθ(X1)∥2.

The continuity ofK◦G̃1 together with the fact that X ′
1θ−X ′

1θ
(n) is oP(1) (under

P
(n)
θ;g1

as n→ ∞) imply thatK(G̃1(X
′
1θ

(n)))−K(G̃1(X
′
1θ)) is oP(1) under P

(n)
θ;g1

as
n→ ∞. Since K is continuous on a compact support (and is therefore bounded,
see Assumption D), this convergence also holds in quadratic mean. Similarly,
the boundedness of Sθ(X1) and Sθ(n)(X1), together with Lemma A.1, yields the
result of (a).

We now turn to the proof of (b). Parts (i), (ii) and (iii) readily state that, under

P
(n)
θ;g1

and for n→ ∞,

∆
(n)
θ;K,g1

L→ Nk (0,Γθ;K) , (A.4)

and that under the sequence of local alternatives P
(n)

θ(n);g1
, as n→ ∞,

∆
(n)
θ;K,g1

− Γθ;K,g1t
(n) L→ Nk (0,Γθ;K) .
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Now, it follows from ULAN that the model is locally and asymptotically linear

(see, e.g., Bickel (1982)). Therefore, Assumption (D), the continuity of Γθ;K,g1

and contiguity entail that, under P
(n)
θ;g1

,

∆
(n)

θ(n);K,g1
+ Γθ;K,g1t

(n) L→ Nk (0,Γθ;K) (A.5)

as n → ∞. We have shown in (a) that ∆
(n)

θ(n);K,g1
− ∆

(n)
θ;K,g1

− E[∆
(n)

θ(n);K,g1
] is

oL2(1) under P
(n)
θ;g1

as n→ ∞. Therefore, in view of (A.4), we have that

∆
(n)

θ(n);K,g1
− E[∆

(n)

θ(n);K,g1
]

L→ Nk (0,Γθ;K) . (A.6)

Comparing (A.5) and (A.6), it follows that E[∆
(n)

θ(n);K,g1
] + Γθ;K,g1t

(n) is o(1) as

n→ ∞ under P
(n)
θ;g1

which is the desired result.

Since we have proved both (a) and (b), the claim of part (iv) of the propo-

sition holds, which concludes the proof.
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