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Abstract: The partially linear additive model arises in many scientific endeavors. In
this paper, we look at inference given panel data and a serially correlated error com-
ponent structure. By combining polynomial spline series approximation with least
squares and the estimation of correlation, we propose a weighted semiparametric
least squares estimator (WSLSE) for the parametric components, and a weighted
polynomial spline series estimator (WPSSE) for the nonparametric components.
The WSLSE is shown to be asymptotically normal and more efficient than the un-
weighted one. In addition, based on the WSLSE and WPSSE, a two-stage local
polynomial estimator (TSLLE) of the nonparametric components is proposed that
takes both contemporaneous correlation and additive structure into account. The
TSLLE has several advantages, including higher asymptotic efficiency and an oracle
property that achieves the same asymptotic distribution of each additive compo-
nent as if the parametric and other nonparametric components were known with
certainty. Some simulation studies were conducted to illustrate the finite sample
performance of the proposed procedure. An example of application to a set of panel
data from a wage study is illustrated.

Key words and phrases: Additive model, efficient estimation, error component,
panel data, semiparametric, serial correlation.

1. Introduction

Panel data arise frequently in biological and economic applications in such as
surveys of workers, households, countries, firms, patients, etc., over several time
periods. Two well-known examples of panel data in the United States are the
Panel Study of Income Dynamics (PSID), collected by the Institute for Social
Research at the University of Michigan (http://psidonline.isr.umich.edu),
and the National Longitudinal Surveys (NLS) sponsored by the Bureau of La-
bor Statistics (http://www.bls.gov/nld/home.htm). See Baltagi (2008) for the
details. Various parametric models and statistical tools have been developed for
panel data analysis; see, for instance, Ahn and Schmidfl (2000), Verbeke and
Molenberghs (2000), Hsiad (2003), Baltagi (2008) and the references therein.
While parametric models are very useful for analyzing panel data and providing
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parsimonious descriptions of the relationships between the response variables and
their covariates, they are often subject to the risk of modeling biases. To relax
the assumptions of parametric forms, Ruckstuhl, Welsh, and Carroll (2000) and
Wang (2003) proposed nonparametric panel data regression models that allow one
to explore possible hidden structures in the data and to reduce modeling biases of
the traditional parametric methods. Such nonparametric models, however, have
several shortcomings including the curse of dimensionality, difficulty of inter-
pretation, lack of extrapolation capability, and so on. To overcome these short-
comings, semiparametric panel data regression models, especially the partially
linear panel data regression models, have been considered recently that embody
a compromise between a general nonparametric approach and a fully parametric
specification; see Horowifz and Markafou (T996), Li-and Ullah (T99R), UlTah and
Mundra (2002), You and Zhou (2006, 2009) You, Zhou. and Zhou (P010), to
mention only a few. However, when the number of the nonparametric covariates
is large, the curse of dimensionality is still a problem. In order to ease it further,
we propose the semiparametric panel data partially linear additive model

Yt :X;t,@—l-al(Uiﬂ)—i—--'—i-qu(Uitq)—i-Eit, i=1,....,n, t=1,...,T, (1.1)

where Yj;’s are responses, (X7, U7)" = (Xit1, ..., Xitp, Uit1, ..., Uirg)™ are ex-
planatory variables, 8 is an unknown p-dimensional parametric vector, a(:) =
(a1(-),...,4(+))7 is an unknown g-dimensional function vector, €; are random
errors, and the superscript (7) denotes the transpose of a vector or matrix. Here
(X7,07)7,..., (X7, Ul,)7) are iid. random vectors over i. We further as-
sume that the random errors ¢;; in () follow a serially correlated error compo-
nent structure:

Eit = Wi + Vit, Vit:PVz‘,tfl‘i‘@ita ’p|<17 izlv"'ana tzl?"'aTa (12)

2
m

and o2, respectively, and p is an unknown autoregressive coefficient. Obviously,
error structure (I2) is more general than the classical one-way error component

where p; and e; are i.i.d. random variables with mean zero and variances o

structure that assumes the same correlation between e;; and e;» no matter how
far ¢’ is from t (cf., Baltag] (200R)). Under (I22), the observations Yji, ..., Yr
from the same individual i are allowed to be dependent. Typically, we choose
Eas(Uys) = 0 as our identification condition.

We use a data example to demonstrate the need for model (ICT)—(I=2). The
National Longitudinal Surveys (NLS) conducted by the US Department of Labor
have a database on women aged between 14 and 24 in 1968. This example is
based on a subset of the survey data conducted in 1983, 1985 and 1987; Section
15.4.3 of Carter Hill, Griffiths and Lim (2008). In this dataset, observations on
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five variables were collected from 716 women. They include the year interviewed,
log(wage/GNP deflator), total work experience, job tenure and whether getting
a college degree. It is well known that total work experience and job tenure affect
the log(wage/GNP deflator) nonlinearly. Carter Hill, Griffiths and Lim (200R)
used quadratic forms to model the nonlinearity of both factors. By applying
model () —(2), we can avoid this kind of parametric assumption and let the
data speak for themselves.

It is easy to see that model (I)—(I2) includes many usual parametric,
nonparametric and semiparametric models as special cases. For example, when
g = 1, model (IT)—(I2) reduces to the panel data partially linear regression
model. Many researchers have explored the panel data partially linear regression
model (cf., Zeger and Diggled (1994), Roy ([997), Mundra ([997), Honord (1997),
Kniesner and Ti (1994)). When a;(-) = 0,...,04(-) = 0, the model becomes
the well-known panel data linear regression model (cf., Ahn and Schmidfl (2000),
Baltagi (2008)). When 3 = 0, the model reduces to the panel data nonparametric
additive regression model (cf., Yo and Zhou (2007)). When 7" = 1, it is the non-
panel structure partially linear additive model that has been studied by [Fan!
Hardle, and Mammen (1998), i (2000), and Fan_and Ti (2003), among others.

For model (IC0)—(I3A), our goal is to develop a satisfactory procedure for
estimating the unknown parametric and nonparametric components that meets
four criteria: (i) it takes both of the error components and additive structures
into account; (ii) it is computationally efficient, (iii) theoretically reliable, and
(iv) intuitively appealing. The last three criteria have been used by Wang and
Yang (2007) and Liu and Yang (2009) for non-cluster additive models. To meet
the criteria we take the following approach. By applying a polynomial spline
approximation to the nonparametric components and estimating the error struc-
ture, we construct a weighted semiparametric least squares estimator (WSLSE)
for the parametric components 3 that achieves /n-consistency without under-
smoothing and is asymptotically efficient. Then by applying the under-smoothing
technique, and taking both the contemporaneous correlation and additive struc-
tures into account, we propose a two-stage local linear estimator (TSLLE) for the
unknown nonparametric functions a(-). This TSLLE has several advantages, in-
cluding higher asymptotic efficiency than the one neglecting the contemporaneous
correlation and an oracle property that achieves the same asymptotic distribu-
tion of each additive component as if the parametric and other nonparametric
components were known with certainty.

The rest of this paper is organized as follows. Section 2 introduces several
initial estimators. In Section 3, we develop a class of weighted semiparametric
least squares estimators for the parametric and nonparametric components. A
two-stage local polynomial estimator of the nonparametric components is pro-
posed in Section 4. Section 5 reports on some simulation studies. An application
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of the model and estimation procedure to a set of economic data is illustrated in
Section 6. Concluding remarks are given in Section 7. Proofs of the main results
are relegated to Appendix.

Throughout this paper we assume large n and small 7. This is typical
in labor or consumer panel data situation (cf., Baltagi (2008)). In addition, it
should be noted that our results can be extended to a higher order autoregressive
structure on the v;; although we focus on AR(1) in this paper.

2. Several Initial Estimators

Polynomial splines are piecewise polynomials joined together smoothly at a
set of interior points (knots). A polynomial spline of degree ds > 0 on Us with
knot sequence 159 < Ns1 < -+ < Ns,M,+1, Where 1y and 0, a7, 41 are the two
end points of the interval U, is a function that is a polynomial of degree ds on
each of the intervals [Nsm,Nsm+1), 0 < m < My — 1, and [nspm,, s, m,+1]), and
globally has continuous ds — 1 continuous derivatives for ds > 1. A piecewise
constant function, linear spline, quadratic spline and cubic spline corresponds
to ds = 0,1, 2,3, respectively. The collection of spline functions of a particular
degree and knot sequence form a linear space; books by de Boor (T978) and
Schumaker ([9R1) are good references. Without loss of generality, we take all
intervals Us = [0,1], s =1,...,q

We approximate each ag(u) by some spline function:

Ks
u) ~ nglgsl(u)v s=1,...,q,
=1

where {(y(-)};2, is a basis for a linear space G, of spline function on [0, 1] with
a fixed degree, and knot sequence, 05 = (651, ...,0s:,)" is an unknown ks vec-
tor; the k4 play the role of smoothing parameters. Thus, model () can be
approximated by

q Ks
XiB+ > > 0aCa(Uus) + e, i=1,...,n andt=1,...,T. (2.1)

s=1 =1

If we denote

( ) (Cll( )7'”7<1:‘€1(U1t1)7"’7<q1( th) "7qu'€q( th))T7

(CT< .),. . .,CT(UZ'T.))T, D= (Dl, .. .,Dn)T,

Y= (Y, YY), Y =(Y],...YI), 0=(6],... .00
=

’L

Eily---,&r) and €= (el,...,e)",
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(270) can be written as
Y ~ XB+D6 +e. (2.2)

Let Mp =1,7 — D(DTD)*lDT. Then MpD6 = DO — DO = 0, and (22) leads
to
MpY =~ MpXB3 + Mpe. (23)

If we write Mpe for the residuals, then model (EZ3) is a version of the usual
linear regression. An estimator of 3 is

Bn = (X™MpX) 'X"MpY.

Substitute B, into (22) we get an estimator of 6 as 6, = (DTD)_IDT(Y—XBH).

This implies that the polynomial spline series estimator of a(-) = (ai(:),...,
0" is

an(u) = (Qip(u),. .., 0 )" = ¢(u)b,
a nonparametric projection estimator, where ¢(-) = (¢11(), .-+, Cir, (+), - -+, Cq1 (),

-+, Qgrg (+))7. In addition, it is not difficult to calculate that
Y =FE(ee") = ai(In @ ety + o2(I, @ A),

where ¢ is a vector of ones of dimension 7' and

p 1 p o pl?
A=| » p 1 - s
| Tl T2 T3
Based on 3, and (@1n(+),- ., 0gn(-))7, we obtain the estimated residuals
Ezt = ztﬁn Oéln( ztl) _aqn(Uitq)a 1= 1,...,71, t= ]-7‘~-7T~

As in Baltagi and Li (I991), we can consistently estimate p, o2 and aﬁ by

~ :@0—@2_1 Q11— Qs

Qo — Qs Qo— Q1

7= ey 1 © €L 0 ER)(L, @ O)e

1 1 ~ . N
/\2 _ o~ T Pn =~ 2
n= = —< - (L,eC)(I,®J In®C€—Uen},
Tu {pn(2—T)+T}(1—pn){n ( A T )
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where
[V/1—=p2 0 0 0 0 ]
—Dn 1 0 0 0
T—2  ~ ~
& Eztsz t+j 6 _ 0 —Pn 1 e 0 0 (2 4)
n : : : : : o ’
=1 = : o : :
0 0 0 —pn 1
L 0 0 0 0 —pn 1]
Pn 1 B BT
Jr = —— 1Py with

(T - 1) + (1 + ﬁn)/(l - pn)
n = (T pn) /(L= pu)t5_,)" and EQF =TIy — 3¢

In order to present the asymptotic properties of Bn, (@1n(+), - Qgn ()7, Pn,
2

Elm and 52,, and other estimators proposed in the following sections, we first

introduce some notation and technical assumptions.

Definition 1. A function {(uz,...,u,) belongs to an additive class of functions G
(€€ @) if (i) E(ut,...,ug) = D0 &s(us), Es(us) is continuous in its support Us,
where U is a compact subset of R for s = 1,...,¢, (ii) Zt 1 Z L B{&(Uis) 2 <
0o, and (iii) E{&(Ujs)} =0for s=1,...,qand t =1,.

Take wtj(ul, e ,uq):E(Xitj]Uiﬂ:ul, ey Uitq = uq) and let htj(ul, e ,uq)
be the projection of ¢y (u1, . .., uq) onto G. According to Li (2000), hy;(uq,. .., ug)
=37, htjs(us) € G is the solution of the minimization problem

{WJU( it1s - Uitg) — haj(Uigs - - U’itq)]z}

_ inf { |:th( it1y - - - Uitq) Z&gs its } }

gtj 223:1 gtas

Assumption 1. For fixed ¢t and s, the Ugs’s have a distribution which has
bounded support U;s and a Lipschitz continuous density function pys(-) such that

0< glfpts(-) < sup pgs(-) < oo.
ts

Z/{ts

Assumption 2. For fixed ¢ and j, X;;; satisfies that E|X;,|*® < oo for some
s > 2. In addition, E|u;|* < oo and E|ui|® < oo.

Assumption 3. For fixed ¢, j, and s, as(-) and hy;s(-) have continuous second
derivatives on Us.

max(ki,...,HKq)

Assumption 4. (i) limsup
n Min(ki,...,kKq)

(ii) max(k1, ..., k) = o(n'/?) and  n'/2[min(k1,..., k)]~ = o(1).

< 0Q;
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Assumption 5. There exist positive constants c¢; and co such that ciIry <
E {H,HZ—} < eI, where IT;. = (Hila .. 7HiT) with IT;; = Xit_zgzl Hts(Uits)a
and Hts = (htls(Uits)u cee 7htps(Uits))T-

Let |las||r, denote the Lo norm of a square integrable function as(u) on
Uz:1 Uys, and @4 be the Lo, distance between aj(-) and G,

ps = dist(as,G) = inf  sup  |as(u) — a(u)].
a€g welJ{Z, Uss

Theorem 1. Suppose that Assumptions 1 to 5 hold. Then

(i) VnT(B,—B) —p N0, Q") as n — oo, where @ = T~ E {11,117 },
I, = (T, ..., M), Qo = T E{I1. 3010} } and 3o = E(ei.€]) = onurt]
+02A.

) o~ 0l = 0 (g o™ + 7).

Theorem 2. Under Assumptions 1 to 5, as n — oo,

(i) VnT(pn — p) —p N(0,w,), where

2T (o2 \ TP (L—pP)ojol + ot
ST —-2\1+p '

Wp
(i) vVnT (5%, — 02?) —p N(0,w.), where

T
We = T-12 1)2Var {(\/ 1 — p?vi1, €in, ..., eir)ES (V1 — pPrin, en, . . - eiT)T}
and Ef. has the form of Eg" except that p, is replaced by p.
(iii) v nT(?f\fm - ai) —p N(0,w,), where
T
wy = 5
{p2-T)+T(1-p)}

‘Var{ (\/ L—p2(pi +vin), (1 = p)pi + ey .., (1= p)pi + eiT)

= 1
(95 7ym)

' (ﬂ(m + i), (L= plpi + e, (L= p)pi + eiT)T }

and J% has the form of J g” except that p, is replaced by p.

Remark 1. Baltagi and Li (T991) established the consistency of py,2,, and

Ein under the setting of panel data linear regression. We here show that they

are root-n consistent and asymptotically normal under a more general setting.
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In order to obtain B, (@10 (+)s -y gn(-))7, Py T2y, and G2, we need to

nI en’

select the degrees of splines and the numbers and loc;tions of knots. Due to
computational complexity, it is often impractical to automatically select all three
components. Similar to Rice-and Wi (2001), we use splines with equally spaced
knots and fixed degrees and select ks, the numbers of knots, by a data-driven
cross-validation method. Here ks = My + 1+ ds for 1 < s <gq.

B, and (@1n(+), ..., 0gn(-))" do not take contemporaneous correlation into
account, hence may not be asymptotically efficient. We construct more efficient
estimators by implementing the estimated error variances and contemporaneous

correlation in the following sections.

3. Weighted Semiparametric Least Squares Estimation

Let

S—1 1 ~_1 a2n =1 A1
X = ITL & =5 A7 — — K’ = A~ LTLE"A_ s
Oen (O'gn + L%A_lL%)

where A~! = CC7 and C is given by (Z4). Pre-multiplying (222) by $-1/2 Jeads
to
Sy & 312X B 4+ £12DG + 1%, (3.1)

Based on (B) we can obtain the weighted semiparametric least squares estimator
of B and @ as

BY = (X'MP ' X)"'X"MEY and 6Y = (D"E7'D)"'D"E (Y - XBY),

respectively, where M%i1 =3 -3 'D(D S 'D)"!D"%"L. This gives the

weighted polynomial spline series estimator of a(-) = (a1(+), ..., aq(-))" as
ay (u) = (@i (w), - - -, Qg (w)" = C(w)8y,.
For ,(/3\}{’ and (@1p(+),...,0gn(-))" we have an asymptotic result.

Theorem 3. Under Assumptions 1 to 5,

(i) VaT(BY — B) —p N(0,9Q3%) as n — oo, where Q3 = T-1E {IL, X7 '117}
with Hz = (Hily ey HiT);

s w2 -1 2

() g %~ ol = O, (s wan ™+ 2.

Remark 2. Let O = Q7'TI78Y? — ;'17 8, /2. Then

007 = Q' =011, Q; ' - Q3 'TII I Q' - Q) ' T I Q5 1+ ' ) T, 05
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Since OO7 is nonnegative definite, we have

0<T'BE(007) =000 - 0010 — 0701051 + Q10305
=070 -l

Thus Q5 1< 91_19291_1. This implies that B\}f has smaller asymptotic covariance
matrix, hence is asymptotically more efficient, than 3,.

In order to apply Theorem 3, a consistent estimator of €23 is needed. This
is given by Q3 = (nT)_lXTM]%rlX via the following theorem.

Theorem 4. Suppose that Assumptions 1 to 5 hold. Then we have that ﬁg —p
Q3 as n — oo.

Combining Theorems 3 and 4, we can construct the asymptotic confidence
intervals for 3 or check whether C3 = 0, where C is a known d X p constant
matrix with d < p.

4. Two-Stage Estimation of Nonparametric Components

Our weighted polynomial spline estimator (a¥),(-), ..., ag,

poraneous correlation into account, is fast to compute, and is intuitive. However,
its distribution theory is not available. In this section, we propose a two-stage
local linear estimator of (as(u), al(u))™, with o/ (u) = das(u)/du, and establish
its asymptotic distribution. The estimator of o/ (u) is of interest in some situ-

ations; see, for example, Mundra (2005). The two-stage local linear estimation

(1))" takes contem-

extends that of Yon and Zhou (2007), who assumed the contemporaneous corre-
lation totally known, did not involve any parametric component, and established
only the asymptotic distribution of the estimator of as(u). As in [Fan and Zhang
(2000), the established asymptotic distribution is useful for constructing the si-
multaneous confidence bands for the underlying additive functions, which can
then be used to check if an estimated additive function is significantly different
from zero, or if the estimated additive function is really varying.

Let Y, = (}/;17 .. .,Y:L'T)T, g = (Eﬂ, .. .,EiT)T, o = E(EIEZ) = O'I%LTL} +

o2A = (0}, 1,—1, and Bg" = (c12)] | . The t-th element of 35Y;. is

T T
Yie = Z oYy, = oYy + Z oYy,
t1=1 t1#t
Write a;; = X7,8 + a1(Uipr) + -+ + aq(Uitq) and

a;” = X8 + a1 (Uin1) + - -+ + as—1(Uit,s—1) + @s1 (Uit s1) + - - + aq(Uig)-
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Then we have

(O_tt)fl( — otta; th 1%1) = ay(Uyss) Z oMeg, .

t#£t t1=1

Let Y = (o)1 (Yt —oa;, Zh#a am) Since

T
E(Vi|Uits) = as(Uss) and Var{(s")' 3" o"ey, } = (") < o2,

t1=1

applying the local polynomial estimation to 17[; results in a more efficient esti-
mator of the unknown function ay(-) in model (ICT)—(I=2).
For Ujs in a small neighborhood of u, as(u) can be approximated by

as(Uits) = as(u) + ag(uw) (Uits — u) = as + bs(Uits — u).
This leads to the local least squares problem: find {(as, bs)} to minimize
n T _ .
Z Z[Y; —{as + bs(Uis — U)}] K, (Uits — u), (4.1)
i=1 t=1

where K (-) is a kernel function, hs is a bandwidth, and Kj,_(-) = hy K (-/hs).
Simple algebra leads to the solution to (ET):

(as 5 ES)T = (D;—uwsuDsu)ileuwsu?* ;

where Y* = (Y,..., Y5, ..., Y)7, and

Wsu = diag(Khs(Ulls - u)7 .- -aKhS(UITs - U), yee. 7KhS(UnTs - u))a

1 1 1 '
D, = <(U118_u)...(UlTs—u)"'(UnTs_u)) '

In applications, ait, B, a1(-),...,as-1(-), @s1(*),...,q(-), and ¢* are un-
known. For Y}, we replace them by

@it = X7, 8n + Q1n(Uit1) + - - + Qgn(Uirg),

B, @1n(), As—1m (), - Bss1n(*)s - - Agn(-), and G11t2. Then
- 1/~ Orn ~_ ~_ T
20 = = (A_ - A~ LTLTA_ ) = (8 ! 2) —1-
Tin (62, + A1) ’ ot
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Thus, a feasible two-stage estimator of (as(u), o (u)) is
(@gs (u), a5 (v)" = (DZquuDsu)_leuwsu?*v
where Y* = (Y{§,..., Y, ..., Y5)T with
T
Vi = (37 (Y — 5"a;" - -y s, ). V= 5"V
t1#t t1=1

and a;,” = X708, + a1n(Uit1) + -+ 4+ Qs—1,0(Uit,s—1) + Qsp1n(Uits41) + -+ +
aqn(Uitq)-

To achieve the asymptotic properties of (aZ$ (u), ag,f (u))”, assumptions are
needed.

Assumption 6. k; = csn_1/5 logn for some constants ¢, satisfying 0 < ¢s < 00
and s=1,...,q.

Assumption 7. The function K(-) is a density function with a compact support.

Assumption 8. The bandwidth hy = cshn_l/ % for some constant cg, satisfying
O<csp<oocand s=1,...,q

Under the above assumptions and those in Section 2, we can state the asymp-

totic properties of (aZs(u), 62?5( ))7. Let

CSIE o
0; :/ WK (u)du, g :/ u]K2(u)du, j=1,2,3.

—00 —00

Theorem 5. Under Assumptions 1 to 3, 5, 6 to 8, asn — oo,

. aLE(u)\  fasw)\| 1 (02 — 0103) 0 (u)
V/nThs HS{(@%(@) <a;(u)>} 2 02— 0} <(Q3—Q1Q2)a (W)]

25 N(0,Qrs),

where H's = diag(l’hs)} Oé;l(u) — aQOés(u)/aQ,LQ} and
Qrs = ZtT=1(Utt);1pts(u)
<Z?:1 Pts(u)) (02 — 03)?

_ ( 0350 — 2010261 + 0fs2  (0F + 02)s1 — 010260 — Q1<2>
(01 + 02)s1 — 010250 — 0152 S2 — 01(261 + 01%0)
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Corollary 1. Under Assumptions 1 to 3, 5, 6 to 8,

- h? 03 — "
vnThs {agﬁ(u) —as(u) — —Swas (u)} N N(0,0%5) asn — oo,

2 02— 0}
where
T 2 o
ok = (0350 — 2010261 + 0752) (pr(@) (2= )¢ D (0") pus(w).
=1 t=1

Remark 3. If the correlation within the response is ignored, we can apply the
same method to construct a two-stage estimator for (a,(-), ()" as (&Z3(u),

a5 (1)) = (DT, WsuDsu) 'DeuWe Y, where ¥ = (Vit,..., Vi1, ..., Vor)”

with Yi; = Y; — @;,°. For this (aZs (u), a%5 (u))7,

- dg,f(u) C(asw)\ | R 1 (02 — e103)cx, (u)
V/nThs HS{(@%@)) <a;(u)>} 2 02— 0} <(Q3—9102)ag(u)>]

25 N(0,979)

as n — oo, where
T
Qrs — Zt=1 U?tpts(u)
2
T
(thl pts(u)) (Qz - Q%)Q

, ( 0350 — 2010261 + 0f2  (0f + 02)51 — 010250 — Q1§2>
(03 + 02)s1 — 010250 — 0152 s — 01(2¢1 + 01%)

Since (o)™! > o2, the estimator (@Z5(-),a%s(-))” in Theorem 5 is asymptoti-
cally more efficient than (&Z$(-), @%5(+))", which ignores the correlation within
the response.

Remark 4. In order to apply Theorem 5 or Corollary 1 to make statistical

/

©(-))7, a consistent estimator of o, rs or QI is
S

inference for a(-) or (as(-),«
needed. As ¢p,<1,%2, 01, 02, and p3 are known constants, we just need to estimate
o' and pys(-) for s =1,...,qand t = 1,...,T. According to Theorem 2, 5 is
a consistent estimator of o where f]al = (8t1t2)tT17t2:1 and B! = (Ut1t2)tT1,t2:1-

As for pis(-), we can use the usual kernel density method to estimate it:

~ 1 <
pis(-) = e ZKhS(Uits —).
8 =1
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Remark 5. It should be noted that aZ$(-) involves the smoothing parameters
hs and K1, ..., Ke. The asymptotic result of Theorem 5 shows that the smoothing
parameter hg should be of standard order. However, the smoothing parameters
K1,...,kKq at the initial estimators @iy, (:),...,Qqn(-) should be of bigger order
than the standard one, O(h;1). That is, undersmoothing is needed, which means
that more knots are used than needed to achieve the optimal rate of convergence.
This requirement controls the bias in the preliminary step of the estimation.
In practice, standard smoothing parameter selection in the second step can be
utilized. Simulation experiments show that the final results are not very sensitive
to the choice of the smoothing parameters k1,...,Kkg. In practice, the usual
optimal smoothing parameters multiplied by a constant, say 1.5 or 2, can be
used. Undersmoothing is widely used in two-stage estimation. See, for example,
Horowitz and Mammen (2004), Wang and Yang (2007), Liu, Cheng, and Yao
(2009) and so on.

Remark 6. This paper has assumed an AR(1) model for the noise. Our results
can be extended to higher order autoregressive structure of v;;. For example, if

Eit = Wi + Vit, Vit = P1Vit—1 + P2Vit—2 + €it, i=1,...,n,t=1,...,T,

where p; and py satisfy the stationary condition: 1 — p1z — paz? # 0 for |z| < 1,
we can estimate (p1,02)” by (Pin, P2n)” = (Qo — Q1)1 (Q2 — Q3), where

1 n T-3
Qo= n(T —3) Z (&it+1,Eit)" (Eit1, Eit ),
i=1 t=1
1 n T-3
Q1 = 73y 2 DG B (e Eiara),
i=1 t=1
1 n T-3
i=1 t=1
1 n T-3

=1 1

-+
I

and &;; are the estimated residuals.

5. Simulation Studies

In this section, we report on simulation studies of the finite sample perfor-
mance of the proposed procedures.
The data were generated from the partially linear panel data additive model
Yit = X1 1 + X2 B2 + Xir3fB3 + a1 (Uier) + a2 (Uirz) + €it,

€it = Wi + Vit, Vit = pVig—1 + €4,
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where : = 1,...,n, t =1,...,T, X1 = &1 + &1 ~ N(l,g) —i—N(O,l), Xito =
ita + &2 ~ N(0,6.25) + N(0,1), X3 = &z + &3 ~ N(0,2.25) + N(0,1), Uy ~
U(O,Q), UitQ ~ U(O,2), 51 = 0, 62 = 1.5, 52 = 2, Oél(Uitl) = 2COS(27TU¢t1) —
2F [cos(2nUs11)] , aa(Us2) = 2U3, + cos(2aUi2) — E [2U3, + cos(2mUs2)] , pi ~
N(0,1), and v; ~ N(0,1). Moreover, we took n = 50,100,200, T" = 3,4, 5, 10,
and p =0.1,0.3,0.6.

In each case the number of simulated realizations was 1,000. We used the
univariate cubic B-spline basis and uniform knots. The number of knots was
selected by cross validation. For the WSLSE (Ei”n, Eg"n, E},)”n)T of the parametric
components (f1, B2, 53)7, given a sample size, the sample mean (sm), standard
error (se), which is the sample standard deviation from the simulated estimates
of the parametric components, mean of the estimate of the standard deviation
(mstd) based on the asymptotic covariance matrix, and coverage percentage of
the 95% confidence intervals (cp) are summarized in Tables 1—3. In Tables 1—3,
we also present the sm, se, mstd, and cp of the unweighted SLSE (Bln, Bgn, Bgn)T
that neglects the serially correlated error component structure, as well the ratio
of the se of the weighted estimator over the se of the unweighted estimator.

From Tables 1—3 we make the following observations:

1. Under the model studied, both WSLSE and SLSE of the parametric compo-
nents are unbiased.

2. The WSLSE has smaller se than the SLSE.

3. The WSLSE can substantially improve the estimation of the parametric com-
ponents over the SLSE, especially when the contemporaneous correlation is
strong.

4. The mstd approximates the se very well.

5. The coverage of the confidence interval is very close to the 95% nominal level.

For the estimators of the nonparametric components, we computed a measure
of estimation accuracy referred to as the root average squared error (RASE):

1 n T 1/2

— ~ ) ) 2 —
RASE, = | — D {0:(Uiss) — aa(Uins) } , s=1,2,

n
=1 t=1

where a;(u) is either @, (u), or a¥,(u), or aZ$(u). The results are summarized
in Table 4, which shows that the two-stage local linear estimator aZ¢(u) or the
weighted polynomial spline estimator a¥, (u) of the nonparametric components
as(u) outperforms the @, (u) that ignores the contemporaneous correlation and
is constructed by the polynomial spline approximation. Furthermore, aZ$(u)
outperforms the a¥ (u) that uses the contemporaneous correlation but has larger
mean in terms of RASE.
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Table 1. The finite sample performance of the parametric component esti-
mators with p = 0.1.

n = 50 n = 100 n = 200

T=3 T=4 T=5T=10 T=3 T=4 T=5T=10 T=3 T=4 T=5T=10

Bin  sm 0.0030 0.0019 0.0027 0.0044 0.0058 0.0047 0.0041 0.0043 0.0044 0.0048 0.0040 0.0029
se 0.0413 0.0358 0.0319 0.0250 0.0280 0.0258 0.0231 0.0179 0.0192 0.0177 0.0158 0.0118

mstd 0.0403 0.0350 0.0317 0.0241 0.0277 0.0244 0.0222 0.0170 0.0194 0.0171 0.0156 0.0120

cp 0.9430 0.9390 0.9440 0.9320 0.9410 0.9280 0.9380 0.9310 0.9450 0.9310 0.9390 0.9560

Ban  sm 1.5021 1.5005 1.4999 1.5005 1.4978 1.4990 1.4996 1.4995 1.4999 1.4996 1.4989 1.5001
se 0.0527 0.0451 0.0395 0.0304 0.0336 0.0298 0.0273 0.0215 0.0241 0.0205 0.0200 0.0150

mstd 0.0482 0.0422 0.0385 0.0299 0.0333 0.0294 0.0268 0.0212 0.0231 0.0206 0.0189 0.0150

cp 0.9240 0.9290 0.9470 0.9470 0.9470 0.9410 0.9430 0.9430 0.9370 0.9510 0.9340 0.9400

Ban  sm 2.0011 2.0048 1.9999 2.0011 1.9980 2.0009 1.9976 2.0001 2.0006 1.9991 2.0016 1.9989
se 0.0776 0.0732 0.0674 0.0555 0.0551 0.0506 0.0455 0.0401 0.0386 0.0359 0.0315 0.0275

mstd 0.0767 0.0690 0.0641 0.0543 0.0529 0.0482 0.0450 0.0383 0.0370 0.0338 0.0316 0.0271

cp 0.9490 0.9380 0.9540 0.9390 0.9400 0.9300 0.9460 0.9350 0.9380 0.9420 0.9470 0.9570

E}"n sm 0.0042 0.0022 0.0024 0.0045 0.0053 0.0044 0.0042 0.0043 0.0044 0.0047 0.0041 0.0032
se 0.0344 0.0297 0.0253 0.0167 0.0229 0.0202 0.0173 0.0120 0.0164 0.0140 0.0122 0.0079

mstd 0.0331 0.0273 0.0238 0.0158 0.0225 0.0188 0.0165 0.0111 0.0157 0.0131 0.0115 0.0078

cp 0.9390 0.9350 0.9320 0.9270 0.9390 0.9210 0.9260 0.9130 0.9210 0.9130 0.9240 0.9310

ratio 0.8329 0.8296 0.7931 0.6680 0.8179 0.7829 0.7489 0.6704 0.8542 0.7910 0.7722 0.6695

Aé"ﬂ sm 1.5012 1.4994 1.4992 1.5008 1.4976 1.4980 1.4995 1.4998 1.4997 1.4996 1.4993 1.5002
se 0.0438 0.0360 0.0301 0.0203 0.0290 0.0235 0.0208 0.0142 0.0200 0.0163 0.0148 0.0093

mstd 0.0395 0.0327 0.0284 0.0189 0.0270 0.0225 0.0197 0.0133 0.0187 0.0157 0.0138 0.0093

cp 0.9190 0.9240 0.9410 0.9290 0.9250 0.9310 0.9210 0.9310 0.9350 0.9560 0.9330 0.9550

ratio 0.8311 0.7982 0.7620 0.6678 0.8631 0.7886 0.7619 0.6605 0.8299 0.7951 0.7400 0.6200

E%”w sm 2.0020 2.0008 1.9999 2.0017 1.9974 2.0015 1.9994 2.0002 1.9991 1.9992 2.0008 1.9992
se 0.0652 0.0590 0.0481 0.0331 0.0444 0.0397 0.0345 0.0236 0.0325 0.0277 0.0242 0.0162

mstd 0.0627 0.0525 0.0459 0.0312 0.0428 0.0363 0.0319 0.0218 0.0298 0.0253 0.0223 0.0154

cp 0.9410 0.9270 0.9330 0.9430 0.9380 0.9280 0.9430 0.9280 0.9230 0.9230 0.9260 0.9420

ratio 0.8402 0.8060 0.7136 0.5964 0.8058 0.7846 0.7582 0.5885 0.8420 0.7716 0.7683 0.5891

6. An Application

We now demonstrate the application of the proposed procedures to a data
example from The National Longitudinal Surveys (NLS), as described in Sec-
tion 1.

It is well known that total work experience and job tenure affect the log(wage/
GNP deflator) nonlinearly (see Carter Hill, Griffiths and Lim (2008)). Therefore,
we consider a panel data partially linear additive model. For ¢ = 1,...,716,
t=1,2 and 3,

Yie = B1Xit + a1(Uinn) + a2(Ui2) + €it, €t = pi + Vie, Vit = pViz—1 + €4,

where Y}, is the log(wage/GNP deflator), X;; is an indicator of college degree, Ujy1
is total work experience and Uy is the job tenure. The estimates of (p, 0, 0¢)”
are found to be (0.4279,0.0864,0.0483)7. The SLSE of 3 is 0.3828 with std 0.0300
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Table 2. The finite sample performance of the parametric component esti-
mators with p = 0.3.

n = 50 n = 100 n = 200

T=3 T=4 T=5T=10 T=3 T=4 T=5T=10 T=3 T=4 T=5T=10

Bin  sm -0.0007 0.0050 0.0049 0.0033 0.0037 0.0042 0.0038 0.0042 0.0045 0.0037 0.0037 0.0044
se 0.0431 0.0380 0.0352 0.0246 0.0294 0.0257 0.0231 0.0175 0.0207 0.0178 0.0172 0.0128

mstd 0.0415 0.0364 0.0328 0.0249 0.0286 0.0251 0.0229 0.0176 0.0200 0.0177 0.0161 0.0124

cp 0.9340 0.9450 0.9220 0.9590 0.9540 0.9480 0.9430 0.9460 0.9410 0.9350 0.9280 0.9240

Ban  sm 1.5010 1.5027 1.4970 1.4986 1.4990 1.4995 1.5007 1.4999 1.5002 1.5008 1.4999 1.4992
se 0.0503 0.0470 0.0412 0.0318 0.0358 0.0310 0.0282 0.0227 0.0247 0.0221 0.0197 0.0161

mstd 0.0498 0.0438 0.0397 0.0309 0.0342 0.0303 0.0278 0.0218 0.0240 0.0213 0.0195 0.0154

cp 0.9530 0.9310 0.9450 0.9460 0.9400 0.9410 0.9400 0.9340 0.9420 0.9410 0.9480 0.9370

Bzn  sm 2.0032 2.0001 2.0013 2.0031 1.9977 1.9983 1.9990 2.0005 2.0015 1.9999 1.9998 2.0013
se 0.0782 0.0787 0.0681 0.0561 0.0595 0.0511 0.0504 0.0406 0.0397 0.0361 0.0327 0.0289

mstd 0.0799 0.0724 0.0671 0.0561 0.0554 0.0504 0.0470 0.0396 0.0387 0.0354 0.0331 0.0281

cp 0.9570 0.9200 0.9460 0.9470 0.9300 0.9540 0.9340 0.9450 0.9360 0.9450 0.9550 0.9490

Ai”n sm 0.0022 0.0037 0.0065 0.0028 0.0050 0.0042 0.0038 0.0041 0.0046 0.0035 0.0035 0.0041
se 0.0332 0.0284 0.0245 0.0164 0.0214 0.0189 0.0164 0.0111 0.0162 0.0127 0.0118 0.0079

mstd 0.0307 0.0256 0.0222 0.0150 0.0209 0.0175 0.0153 0.0105 0.0145 0.0122 0.0108 0.0074

cp 0.9340 0.9220 0.9140 0.9180 0.9430 0.9220 0.9210 0.9160 0.9060 0.9370 0.9130 0.8970

ratio 0.7703 0.7474 0.6960 0.6667 0.7279 0.7354 0.7100 0.6343 0.7826 0.7135 0.6860 0.6172

A;“n sm 1.5010 1.5013 1.4982 1.4984 1.4998 1.5001 1.4997 1.4998 1.5003 1.5005 1.5002 1.4998
se 0.0388 0.0348 0.0283 0.0195 0.0276 0.0225 0.0193 0.0136 0.0186 0.0156 0.0141 0.0095

mstd 0.0367 0.0305 0.0265 0.0179  0.0249 0.0209 0.0184 0.0125 0.0173 0.0146 0.0128 0.0088

cp 0.9350 0.9240 0.9270 0.9280 0.9190 0.9340 0.9330 0.9370 0.9270 0.9270 0.9300 0.9300

ratio 0.7714 0.7404 0.6869 0.6132 0.7709 0.7258 0.6844 0.5991 0.7530 0.7059 0.7157 0.5901

Eg’n sm 2.0011 1.9998 2.0010 2.0015 1.9985 1.9989 1.9993 1.9995 2.0000 1.9991 1.9992 2.0003
se 0.0599 0.0536 0.0494 0.0304 0.0437 0.0365 0.0328 0.0219 0.0295 0.0258 0.0223 0.0155

mstd 0.0588 0.0495 0.0432 0.0295 0.0401 0.0340 0.0299 0.0206 0.0279 0.0237 0.0210 0.0145

cp 0.9570 0.9270 0.9080 0.9440 0.9310 0.9300 0.9300 0.9330 0.9230 0.9280 0.9360 0.9360

ratio 0.7660 0.6811 0.7254 0.5419 0.7345 0.7143 0.6508 0.5394 0.7431 0.7147 0.6820 0.5363

and the WSLSE of g is 0.3875 with std 0.0299, where the std is the standard
deviation from the estimated asymptotic covariance matrix. This implies that
the education has a positive effect on wage in the sense that a college degree is
associated with higher wage. In addition, the estimates of aq(-), aa(-), and the
corresponding pointwise 95% confidence bands are shown in Figure 1.

From Figure 1 we can see that the relationship between the response log(wage/
GNP deflator) and total work experience is concave. This has the accumulation
of work experience with a greater potential to increase the wage in earlier career
than in later working years, and the wage tends to be static or even decreasing
a bit approaching retirement. In addition, log(wage/GNP deflator) always in-
creases with the accumulation of job tenure. More importantly, log(wage/GNP
deflator) does not change much when the job tenure is below 10 years. Beyond
10 years, however, log(wage/GNP deflator) accelerates with longer tenure. These
observations are consistent with classic labor economics.
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Table 3. The finite sample performance of the parametric component esti-
mators with p = 0.6.

n = 50 n = 100 n = 200

T=3 T=4 T=5T=10 T=3 T=4 T=5T=10 T=3 T=4 T=5T=10

Bin  sm 0.0046 0.0025 0.0046 0.0048 0.0029 0.0035 0.0050 0.0043 0.0038 0.0037 0.0035 0.0042
se 0.0492 0.0410 0.0375 0.0276 0.0339 0.0288 0.0269 0.0195 0.0233 0.0204 0.0188 0.0139

mstd 0.0463 0.0403 0.0366 0.0277 0.0319 0.0281 0.0256 0.0196 0.0223 0.0197 0.0180 0.0138

cp 0.9360 0.9400 0.9450 0.9490 0.9230 0.9450 0.9400 0.9480 0.9370 0.9400 0.9360 0.9330

Ban  sm 1.5015 1.5006 1.4996 1.4999 1.5001 1.5010 1.4998 1.4997 1.4999 1.5007 1.4993 1.5002
se 0.0568 0.0517 0.0452 0.0368 0.0398 0.0340 0.0313 0.0252 0.0282 0.0246 0.0224 0.0171

mstd 0.0555 0.0489 0.0445 0.0344 0.0383 0.0340 0.0311 0.0243 0.0268 0.0239 0.0220 0.0172

cp 0.9460 0.9390 0.9420 0.9330 0.9330 0.9480 0.9460 0.9390 0.9360 0.9480 0.9450 0.9510

Ban  sm 2.0004 2.0043 2.0010 1.9995 2.0021 2.0017 2.0027 2.0003 1.9997 1.9993 1.9994 1.9991
se 0.0949 0.0847 0.0791 0.0661 0.0641 0.0557 0.0517 0.0453 0.0454 0.0405 0.0377 0.0318

mstd 0.0905 0.0817 0.0762 0.0629 0.0626 0.0572 0.0535 0.0444 0.0439 0.0401 0.0375 0.0314

cp 0.9360 0.9480 0.9410 0.9320 0.9440 0.9550 0.9590 0.9510 0.9420 0.9460 0.9450 0.9490

Ai”n sm 0.0041 0.0029 0.0052 0.0041 0.0030 0.0031 0.0036 0.0040 0.0038 0.0033 0.0035 0.0035
se 0.0321 0.0265 0.0228 0.0145 0.0213 0.0174 0.0164 0.0102 0.0141 0.0119 0.0111 0.0071

mstd 0.0286 0.0234 0.0203 0.0135 0.0194 0.0160 0.0140 0.0094 0.0134 0.0112 0.0098 0.0066

cp 0.9170 0.9140 0.9090 0.9160 0.9240 0.9170 0.9020 0.9070 0.9320 0.9270 0.8960 0.8990

ratio 0.6524 0.6463 0.6080 0.5254 0.6283 0.6042 0.6097 0.5231 0.6052 0.5833 0.5904 0.5108

A;”n sm 1.5013 1.4988 1.5009 1.5004 1.4987 1.5009 1.5000 1.4999 1.4999 1.5004 1.4994 1.4996
se 0.0384 0.0317 0.0272 0.0180 0.0256 0.0205 0.0182 0.0126 0.0171 0.0145 0.0124 0.0088

mstd 0.0342 0.0281 0.0243 0.0162 0.0231 0.0191 0.0167 0.0113 0.0160 0.0133 0.0117 0.0080

cp 0.9250 0.9210 0.9100 0.9200 0.9300 0.9310 0.9370 0.9250 0.9340 0.9280 0.9380 0.9250

ratio 0.6761 0.6132 0.6018 0.4891 0.6432 0.6029 0.5815 0.5000 0.6064 0.5894 0.5536 0.5146

Eg’n sm 1.9999 1.9991 2.0001 1.9988 2.0009 1.9998 2.0005 1.9996 1.9994 1.9989 1.9998 1.9995
se 0.0618 0.0515 0.0431 0.0291 0.0420 0.0330 0.0303 0.0205 0.0275 0.0244 0.0207 0.0142

mstd 0.0556 0.0458 0.0399 0.0268 0.0377 0.0314 0.0276 0.0187 0.0261 0.0219 0.0192 0.0131

cp 0.9190 0.9110 0.9290 0.9260 0.9280 0.9330 0.9300 0.9230 0.9330 0.9190 0.9300 0.9360

ratio 0.6512 0.6080 0.5449 0.4402 0.6552 0.5925 0.5861 0.4525 0.6057 0.6025 0.5491 0.4465

In addition, we also use the quadratic model in Carter Hill, Griffiths and
Liml (200R) to fit this data set and the corresponding fitting error is 0.4427. In
comparison, our model has a smaller fitting error 0.4374, suggesting it may be
more suitable.

7. Concluding Remarks

In this paper, we have investigated the statistical inference of the panel data
partially linear additive regression with serially correlated error component struc-
ture. We have proposed a weighted semiparametric least squares estimator for
the parametric components and a weighted polynomial spline series estimator
for the nonparametric components. The weighted semiparametric least squares
estimator is shown to be asymptotically normal and more efficient than the un-
weighted one. Based on these estimators a two-stage local polynomial estimator
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Table 4. The finite sample performance of the nonparametric component
estimators.
n =50 n = 100 n = 300
T=2 T=3 T=5T=10 T=2 T=3 T=5T=10 T=2 T=3 T=5T=10
p=0.1

RASE(d1y,) sm 0.4552
RASE(@2,) sm 0.4800
RASE(ay),) sm 0.3681

0.3555
0.4377
0.3037
0.8543
0.3935
0.8990
0.2719
0.7648
0.3069
0.7012

0.3084 0.3818
0.3927 0.3191
0.2550 0.3293
0.8268 0.8625
0.3494 0.2656
0.8897 0.8323
0.2397 0.1438
0.77720.3766
0.2534 0.1789
0.6453 0.5606

0.3258 0.3886 0.3824 0.3111
0.4219 0.3443 0.3186 0.3379
0.3065 0.3574 0.3501 0.2707
0.9408 0.9197 0.9155 0.8701
0.3728 0.3103 0.2838 0.2869
0.8836 0.9012 0.8908 0.8491
0.2777 0.2430 0.2059 0.1720
0.8524 0.6253 0.5384 0.5529
0.3039 0.2906 0.2567 0.1779
0.7203 0.8440 0.8057 0.5265

0.3618 0.3335 0.3120 0.2992
0.3287 0.3367 0.3383 0.3185
0.3385 0.3150 0.2881 0.2568
0.9356 0.9445 0.9234 0.8583
0.3055 0.3088 0.3063 0.2800
0.9294 0.9171 0.9054 0.8791
0.2774 0.2664 0.1867 0.1351
0.7667 0.7988 0.5984 0.4515
0.2902 0.2452 0.2040 0.1320
0.88290.7282 0.60300.4144

ratio 0.8087
RASE(ay,) sm 0.4664
ratio 0.9717
RASE(a@L5) sm 0.3357
ratio 0.7375
RASE(&%%)sm 0.3017
ratio 0.6285
p=0.3

RASE(&1y,) sm 0.3775
RASE(a2,) sm 0.4412
RASE(aj,) sm 0.3065

0.4468

0.3967
0.3896

0.8720

0.3362
0.8475
0.2382
0.5331
0.2313
0.5831

0.4169 0.3587
0.4122 0.3042
0.3407 0.2894
0.8172 0.8068
0.3517 0.2448
0.8532 0.8047
0.1716 0.1294
0.4116 0.3607
0.1775 0.1366
0.4306 0.4490

0.3950 0.3451 0.3595 0.3143
0.3425 0.3498 0.3024 0.3169
0.3568 0.3007 0.3115 0.2687
0.9033 0.8713 0.8665 0.8549
0.2941 0.3134 0.2595 0.2631
0.8587 0.8959 0.8581 0.8302
0.2094 0.1549 0.1221 0.1059
0.5301 0.4489 0.3396 0.3369
0.2162 0.1565 0.1213 0.1142
0.63120.4474 0.4011 0.3604

0.3411 0.2657 0.3154 0.2988
0.3448 0.3361 0.3149 0.2994
0.2962 0.2383 0.2856 0.2582
0.8684 0.8969 0.9055 0.8641
0.3274 0.3057 0.2822 0.2534
0.9495 0.9096 0.8962 0.8464
0.1724 0.1058 0.0931 0.0835
0.5054 0.3982 0.2952 0.2795
0.1659 0.1124 0.0933 0.0934
0.48110.3344 0.2963 0.3120

ratio 0.8119
RASE(aY,) sm 0.3866
ratio 0.8762
RASE(aT?) sm 0.2637
ratio 0.6985
RASE(&LS) sm 0.2802
ratio 0.6351
p=0.6

RASE(&1n) sm 0.5095
RASE(a2,) sm 0.4834
RASE(a}’,) sm 0.3956
ratio 0.7764
RASE(ay,) sm 0.3494
ratio 0.7228
RASE(GL’)sm 0.3495
ratio 0.6860
RASE(aL%) sm 0.3357

ratio 0.6945

0.4084
0.4306
0.3030
0.7419
0.3326
0.7724
0.1907
0.4669
0.3119
0.7243

0.3800 0.3583
0.4110 0.3705
0.2897 0.2771
0.76240.7734
0.3230 0.2888
0.7859 0.7795
0.2185 0.1751
0.5750 0.4887
0.2262 0.1722
0.5504 0.4648

0.3491 0.3989 0.2981 0.3271
0.3465 0.3595 0.3560 0.2970
0.2844 0.2833 0.2463 0.2758
0.81470.7102 0.8262 0.8432
0.2605 0.3018 0.2949 0.2340
0.7518 0.8395 0.8284 0.7879
0.2546 0.2459 0.2176 0.1460
0.7293 0.6164 0.7300 0.4463
0.2482 0.2912 0.2044 0.1672
0.7163 0.8100 0.5742 0.5630

0.3234 0.3254 0.3277 0.3088
0.3428 0.3373 0.2999 0.3122
0.2647 0.2644 0.2886 0.2511
0.81850.8125 0.8807 0.8131
0.3000 0.2912 0.2451 0.2575
0.87510.8633 0.8173 0.8248
0.2523 0.2622 0.2067 0.1818
0.7801 0.8058 0.6308 0.5887
0.2327 0.2782 0.2160 0.1783
0.6788 0.8248 0.72020.5711

ratio = (the sm of weighted nonparametric component estimator’s RASE) divided by (the sm
of unweighted nonparametric component estimator’s RASE).

of the nonparametric components was proposed that has the advantages of higher

asymptotic efficiency and an oracle property.

Parametric regression models, if specified correctly, can provide a more par-
simonious description of the relationship between the response variable and its
covariates than semiparametric or nonparametric regression models. Therefore,

it is of interest to check whether the nonlinear function a,(-) can be described by

a parametric structure. This amounts to testing if as(+) is of a certain parametric
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Figure 1. Plots for the estimators of the nonparametric components. (a)
Relation between log(wage/GNP deflator) and total work experience. (b)
Relation between log(wage/GNP deflator) and job tenure. In (a) and (b),
the solid line is the proposed two-stage estimate and the dash-dotted line is
the weighted polynomial spline approximation estimate. (c) Pointwise 95%
confidence band of the relation between log(wage/GNP deflator) and total
work experience. (d) Pointwise 95% confidence band of the relation between
log(wage/GNP deflator) and job tenure. The relations in (c¢) and (d) are
estimated by the proposed two-stage estimation.

form. Fan, Zhang, and Zhang (2001) proposed a generalized likelihood-ratio test
statistic to check whether an unknown function has a certain parametric form
in classic nonparametric regression models. Extending this kind of method to
model (T)—(2) calls for further research efforts.

Throughout, we did not include the lag response Y;; 4 on the right side of
model (). If this lag response is incorporated into the model, it becomes the
indigenous covariate and a new estimation method (for example, the instrumental
variable method) is needed to deal with it. We will investigate this problem in
future research work.

In addition, we have focused on large n and fixed T'. In some situations, the
observed time points may increase with the increase in the number of individuals.
In other cases, the observed time points may be greater than the number of
individuals. How to extend our methods to these cases is still an open problem.
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Appendix: Proofs of Main Results
We first prove several lemmas.

Lemma A.1. Suppose that Assumptions 1, 7 and 8 hold. Then, as n — oo,

up |- h ZZ ( its — )(Uns—u) _72%

weUL | Uss i=1 t=1

o, fne i (loem)”
- P s nhs ’

its — Uis_ F 1 1/2
sup -~ ZZK< L u)( th u> €it:0p{<0in> :
welUL u; M1 53 = s nhs

wheres:l,...,q and £k =0,1,2,4.

Proof. Lemma A.1 follows immediately from Mack and Silverman (I982).
Lemma A.2. Let B¢ = (X'Mj ' X)"'X"MJ 'Y, % = (D"S~'D)~'D"2~!
(Y — XBY), and a¥(u) = (af),(u),...,am (u)” = {(u )8, where ME™ b=

qn
>~ -2 'D(D"E!'D)"'D"X!. Then under Assumptions 1 to 5,

(i) VaT(BY —B) —p N(0,93") as n — oo, where Q3 = T~ E {IL, =711, },

.. ~ 2
(i) max [lag, — sz, = Op <1rggg<q ren” !+ max. %) :

Proof. It is easy to see that the j-th element of XTM%_le can be decomposed

as
X Mp e=II"S"le - IS7'D(D"S"'D)"'D'S e + HI'E e
=J1 — Ja+ J3, say,
where X;‘ = (Xllj, ceay XlTj, ceay XnTj)T, g = (511, ey E1Ty e ,EnT)T, H;( =
(i1, .., )™, and HE = 00 hajs(Unis)s ooy 2oty hrjs(Uirs), -,

>0 hrjs(Unrs))”. We have E(J) = 0 and
Var(Js) = E {H*Tzle(DTzle)*1D72*1D(D72*1D “ID™E 11'[*}
=0(1)-tr{x"'D(MD’="'D)"'D’E'DD’E'D)"'D'E"!}
= O(k) = o(n),
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so that Jy = op(nl/ 2). Moreover, there exits a real vector 4 of dimension x; +
-+ + kg such that

q
1<ignaSt<T Sz:; hijs(Uits) =" C(Uir.)| = O(llgsagq ©s)-
Hence
Var(J3) <O(1) - E {(H} — D)TE_l(H;. —4"D)}
n T (4 2
;; {Z:: htjs(Uits) ’)’TC(Uit-)} =0 (n max %> '

Thus J3 = 0,(n'/?) and n_IX*TM%_ls = n‘ll'I*TE_ls + op(n~1/2). The same

argument leads to the same results for other elements of XMD s, giving
nIXME e = n MIX e 4 0,(n"/2). Now let

a= (ZQS(UHS),...,Zas(UlTs),...,ZaS(UnTS)> :
s=1

s=1 s=1
There exists a real vector 8 = (67,...,6;)" such that max |as(Uits) —
1<i<n,1<t<T
07 Cs(Uits)| = O(ps). Thus the j-th element of XM%_la can be written as
* - * -1 * -1
X:Mp 'a=IIM} a+HMJ «
_ _ 1/2
< {H;TME '(o — DO)(c — DO)"ME 1H;fT}

1 * T T -1 * T T -1
+§{(Hj—7 D)"ME " (H;~+"D) + (a~D6)"MF '(a—D6)}

1/2
=0, <1r£1§1%<q Hs> + O, <n [ax. (p8> = 0,(n*/?).

Following the same line, we can show the same results for other elements of
XM%_la. Thus nilXTM]ED_loz = 0,(n"'/?) and, similarly, n*IXTME_IX =
n IS I + 0,(1). It follows that

VT (B} - B)
-1 -1 —1 —1 -1 —1
= /nT (XTM% X) X™ME e + VT (XTM]ED X) XTME
= VnT(II"E M) 'S e + 0,(1).

Therefore, to complete the proof of part (i) it suffices to show

M"Y 'e —-p N(0,9Q3) as n — oc.
vnT
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For any nonzero p-vector A we have

1 1 < 1 <
— A’ le= — N A’ e, = —— ;)
vnT vnT ; w0 vnT ;%

where the v; are independent random variables with mean zero; it is easy to check
that {1;} satisfy the Lindeberg condition. Moreover, as Var ((nT )~/ ZIAIITY e)

= A"Qs3, part (i) is proved. Part (ii) follows from the root-n consistency of 3
and the standard method.

Proof of Theorem 1. The proof of Theorem 1 is the same as that of Lemma
A.2. We omit the details.

Proof of Theorem 2. (i) Let Q; = [n(T —2)]7 3, ZtT;IQ Eit€it+; and

Aip = X348 — Bn) — (1(Ui) — @10 (Uin1)) — -+ — (q(Uitg) — Ggn(Uirg)).
Since
EZt - ZtI@n aln( lt].) '_aqn(Uth), /L: 1,--.,”, t: ].,...,7"7 (A.]_)
we have
1 n T-2 n T-2
Qi=Q;+ w(T=2) DO Ailigyy t T oy Z EitDittj
" i=1 t=1 =1 t=1
1 n T-2
+ Attt
OESPIPRE

=Qj + J1+ Jo+ J3, say.

According to Theorem 1, A = O, <n71/2> +0, ( max ksn~! + max (2 ),
1<s<q 1<s<q

so that
J1 =0, (n_l) + 0, ( max kKsn ' 4+ max oL ) =o0p <n—1/2> )

{1<s<q} {1<s<q}

In addition,

n T-2
2 _2 Zzeltxzt—&-] /6 1677/)

zltl
n T-2

q
Eit 045 i,t+7, s asn(Ui,t—i—j,s))
T PIPIEDI

i=1 t=1 s=1
= Jo1 + Jo2, say.
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According to the proof of Theorem 1, [n(T —2)]' S0 S22 ey X7 =

O,(n~1/2). Therefore Theorem 1 (i) leads to Jo; = O,(n~') = 0,(n~'/?). Based
on the definition of Qg (Ui 145,s),

q q
Z(QS(ULHJ}S) — Aon(Uitj,5)) = ZQS(Ui,tﬂ}S) — (C(Uit45,))0n
s=1

s=1
= {Zas(UMﬂ-’s) - (C(Ui,tﬂ,.))T(DTD)—lDTa}
s=1

~(¢(Uiz4,))"(D"D) ' D7e — (((Uiy,,)) (D™D) " 'D"X(B — Bn).
Hence, Js5 can be decomposed as
n T-2

Ja9o Z Z Eit {Z as(U; 447, s) — (((Umﬂ.’_))T(DTD)—lDTa}
1= 1
1 1nt T—2
T —2) Z Z £it(¢(Uipy;.))"(D'D)'D7e
=1 t=1
1 n T-2 R
(T —2) Z £it(¢(Uiy;.))"(D'D)'D™X(B - By)
i=1 t=1
= Joo1 + Jogo + Jo23, say.

By the properties of polynomial splines we can show that

Jog1 = Op(n_l/Q) - Op <\/{ max Ksn~! 4+ max gp?) = 0,(n"1/?).

1<s<q} {1<s<q}

Further,

Joga = Op(n™1) + lETD(DTD)_IDTE = 0,(n~! max k) = 0,(n"1/?).
n 1<s<q
The /n consistency of B\n, and the same argument for Jaoo, lead to Jogs =
O(n~!maxj<s<q ks) as well. Together we have Jyy = op(nfl/z). As a result,
Jo = op(n *1/2) Following the same line, we can show that J3 = O,(n~'/2). This
implies that Q] Q; + 0p(n1/2) and, for p,,

W(ﬁn—p)=F<g;_g?—p)
Q2
VT (223 ) o)
n T-2 n T-2

= \/ﬁ{{ Z Z(s?t—eitewﬂ)}il{ Z(€it€i,t+1 —€it€i,t+2)}—P] + 0p(1).

=1 t=1 =1 t=1
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According to (I2) we have ; 411 = pi+Vi 41 = pit+pvic+ei 1 = pei+(1—p)pi+
€it+1 and €440 = i + Vigt2 = i + pVit1 + €itro = peir1 + (1 — p)pi + €5 142.

Therefore,

\/ﬁ(ﬁn —p)

n T-2
Z git { P + € t+1} cit {(1 — p)pi + 62’,t+2}]
i=1 t=1
=VnT= — + 0p(1).
Z Eit — Eit€it+1)
i=1 t=1
Write
n T-2

M

leat {(1 — p)pi + €ipv1} — it {(1 — p)pi + €12}
=1t
T—2

{(pi + vig)eigrr — (i + vie)eigr2}
1

_xf

M:ﬂ

1
n T-2

1
IZ 75 2 Wi+ vid)eisrr— (i + vit)eiera}| = IZXM say,

t=1

)
~~

where {x;}!"; is an i.i.d. random variable sequence with mean 0 and variance

Var(y;) = 202/(T — 2) (O’N +02/(1 - p?)). It is easy to see that, as n — oo,

1 —_
n(T —2) Z Z(e?t — cit€ipr1) —p Bley — encizr) = oc(1+p) 7L
Therefore the result of p, holds. Based on the definition of 52,, we have

1 " 1 n ~
~2 or Yo aT pn P CVE:
Oen = (T —1) izgl ;. C"E}.Cg;. + n D ;21 €. (C"Ef'C - C"Ef.C)e;.

=Ji+ J5a say
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where €;. = (€;1,...,&;7)". Combining this with (A=) we get

n

1
= —— 11 G 7—CT:EpC z]- i
J4 n(T_l)Zzl(:u’ T+V) T (M T+V)+

1

n(Ti Z g, CTEP CEZ

=1

n q T
+n(T1—1) 2 {Xi~(ﬂ —Bn) + Y _(@(Usy) — as(Ui.s))}

i=1 s=1

-CTE%C {XZ(,B - Bn) + Z(as(Ui-s) — aS(U,S))}
s=1

n

P . a !
_ X;. (B — B, «(Ujs) — as(Uj, C"Ef.Ce;.
+n(T_1);{ (B ﬂ>+821<a< ) — G >>} 7Ce
=Ju + Juo + Juz, say,

Where g;. = (Eila--- T) Xz = (X“,...,XiT)T, Oés(Ui.s) = (Oés(Uils)a---a
as(UiTs))Ta and as( ) (a ( Z].S) AS(UZ'TS))T' By Theorem 1,

_ -1 n-1/2
Jiz = Op(n )+Op({1rg§§q}ﬁs +{llgs§q}sos> op(n= /7).

Same as for Js, we can show that Jy3 = op(n_1/2). In addition,

1 n
Jyn=——— Z(NZCIT + CI/’L)TE%(#%CIT + CI/,L)
n(T —1) pt
1 n
_ P .
=TT ;CVZETCI/Z.
1 n
Tl -1) Z( V1= pPv,ein, . e BT = p2ui,ein, . eir)T
i=1
1
= ﬁ Zwl say, where v;. = (vi1,...,v7)".
=1

It is easy to see that the w;’s are i.i.d. random variables with mean

E(wz) =tr {E%E((\/ 1-— p2l/i1, €i2y .- - ,eiT)T(\/ 1-— pQVﬂ, €i2, - . . ,eiT))}
— o2t(BL) = (T — 1)o7
and variance Var((y/1 — p?vi1, €io, . .., eir)E.(\/1 — p?vi1, €2, . .., e;p)7). This

proves (ii).
Part (iii) follows from the same arguments as for 52,. We omit the details.
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Proof of Theorem 3. According to the definitions of ,@ﬁ and Bﬁ and the
equality a1by — asbe = (a1 — by)(az — b2) + (a1 — b1)ba + bi(ag — ba), we have

By-B=By - p+{xXMZ'X) " - (XM X))}
AXTMB (a1 ) - XTME (o ) |
+ {(XTMﬁ‘Ixr1 —(XTMEX) P XTME ()
FXTME X)) {)UM2 (a1t +ag)—XME (o +- -+aq)}

{(XTM X)) - (XTME X)) } (XfMg_le - XTM§_15>

+H{XMEX) T - (XTMEB T X) T XTME e
HXTME X)) (XTM?)”@ - XTME”S) :

where e = (¢11,...,€17,...,,7)". Consequently, by combining Lemma A.2 with

the fact that (A +aB)™! = A~ —aA"IBA~! + O(a?) as a — 0, it suffices to
show

UXTME X - XTME ' X) = 0,(n"2), (A.2)

nTHXTME (e + o) = XTMB (a4 @) = 0, (n7Y2), (A3)

n T (XTME 1s—XTMD €) = op(n~1/?), (A.4)

nTIXTME X =0,(1),  (A5)

n_lXTM]E{l(al +- 4 ay) =o0,(n"?) and n 1XTMD e=0,(n"?). (A.6)
According to the proof of Lemma A.2 and the /n consistency of 3o we have
T (XTME X - XTME X)) = o {7 - IS I) + 0, (n1/2),

where IT = (IIyq,...,IIyp, ..., II,7)". Further, "S- can be written as
> I E 1, ;)7 Correspondmgly, 'S~ = Y7 T, 3,'TI7. By the /n
con51stency of 20 L

n UL S — 07 ML S5 = 0, (nY?).
This implies (A=4). Since the left side of (A=) is
nTUXTME (a1 + -+ ag—DO) — X"ME (ay + -+ g —DO)} = 0,(n"1/2)

we can prove (AZ3) by the same argument. Moreover, (A7) and (A=6) follow
from the proof of Lemma A.2. It remains to prove (A=2). By the proof of Lemma
A.2 and the y/n consistency of Z L

UXTME e - XTME e) = n (IS e — IITEe) + 0, (n~ /).



PANEL DATA PARTIALLY LINEAR ADDITIVE MODELING 297

Further, II"S"e = 327 I 5 ' and 'S le = 327 1.2 'TI7. Hence

the /n consistency of 201 gives H 2 1(521, coer) =Xy (511,.. ver)T =
Op(n~1/2). This implies (E4) and completes the proof.

Proof of Theorem 4. The proof of Theorem 4 is straightforward. We omit the
details.

Proof of Theorem 5. Let

Uk ( _tty—1 tt~—s 231
Vit = (") (Vi - o S i )

t1#t
T
—1 § tt tt —s E tt
( g 1Yit1 - g 1alt1)
t1=1 t1#t

and (G775 (u), a5 (u)” = (DT, WyuDyu) ' Dy W Y, where Y5 = (Y77, ..
Y, .., Y 5)7. Then we have

*9

(@7 (u), 855" ()™~ (o (1), 0y ()T =Sy +Ta s —Ju,

where
n T

7= L WD) D257 (1) o ()t (ot

1 > w\
its — 1 _tt
( ) 9 1511517
1 (Uzt ( hs >t
i its — U tty—1
t ( zts) hs < hs )(U )

q q

n

Jo = (DL, WD) ')
=1

ts
s

M’ﬂ

t

’Vl

Mﬂ

J3 = (D, Wgs,Dg,)™

1

{0 " 06, (Uitsy) =B (Uiss,) B sy (Uityo1) = Bsn(Uinss,)]
S17#£8 t1#t s1=1
"/ 1\ 1 (Ups—u
Ji = (DI, We,Dy,) ™! —K (-5
2= D ) ;;(rﬂ) he < hs )

T q
Z o' Z [as, (Uirs,) = @syn(Uirs, )]
t1=1 s1=1

We first show that J, = op(n_2/5), s = 3,4. To do so it suffices to prove

n T
Uits — u ~
H(D;uwsuDsu TS () i (P51 ) = B

=1 t=1
= 0,(n" ). (A7)
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Write (s(u) = (Cs1(u), -, Cony (W)™ 05 = (j(X115)s -+ i (Xary), - -,
aj(XnTj))T, V= (V117 e V1T, ey VTLT)T, and V = (0531X(51+---+551,1)5 I"ileNslﬂ
))(DTD)leT. Then

0551 X ("@sl +1++Kq

Qg (Uitsl) - asln(Uitsl) == asl( zts1) Csl its1

A%
p
:{0451 ztsl) CSl ztsl 51} CSl ztsl (Z ) CSI( ztsl) g,

where n7t (30_, as —DO)" (30, a5 — = Op (maxi<s<q k5 ?) . It is easy
to see that
n T
1 1 Uis —u

T -1 its T

H (DsuWSUDSU) ; ; (Uits) }TSK ( hs > {as1 (Uitsl ) _Csl (Uitsl )031 }
n I 1 U, U
D7, W,,D,,)"" Sy g >
( s i—1 ; < 'Lts> hs ( hs H

: 1§l§127a1)ét§T ‘asl (Uitsl - C;l (Uitsl )981 |

= Op(’%?) =0p {n72/5(log ”)72} = Op(n72/5)7

and

— éi( ) (P g (S|

i=1 t=

n

1
T
U‘t —Uu
oo S (L) ()
( ltz zts hs

1= 1
max

'1§i§n,1§t§T €5, (Uitsy) <Za5 D0>
<Op(1)'1<i<r2%§t<TJ(zas D0> V7 ¢y (Uits, )CZ, (Uitsy ) (ZO‘S DB)

= 0,(max r;%) =0, {n_2/5(10g n)_2} = 0,(n"%/%).

1<s<q

Following the same line as at Lemma 5.1 in Wang and Yang (2007), we can show
that

H(D;—uwsuDsu 122( zts) <Uit25_ >C31( Uits,) Ve

i=1 t=1

=0, { max ks (logn)n 1} = op(n_2/5).

1<s5<q
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Together, we have established (A7) and hence J; = o,(n"2/%), s = 3,4. In
addition, note that

Dz;—quuDsu
n T n T U —
S Kn (Uirs — ) 3 < = ) K, (Uits — u)
" TZ 1 t=1 z;l t;l
Z( s ) ZtS_u ZZ( zts_u) Kh (Uzts_u)
=1 t=1 =1 t=1

Each element of the above matrix is in the form of kernel regression. By Lemma

Al,
T 1/2
1 1¢ logn
-D? W, Dy, = s H, H,- 1 i
n Y ;pt (u) @ <§1 §2> O ( + { nhg

Therefore, by the usual nonparametric regression result, we have

it [ L= ()L (3950 o] <o)

as(u) 2\ Soag (u)

Next we show that
VnThH; T 25 N(0,975) as n — oco. (A.8)
Let

Qs TZZ{dH—dz( Zt;_ >}Khs(Uits—U)ZT:( N7 loMeq,,

i=1 t=1 t1=1

where d; and dy are any non-zero constants. It is easy to see that F(Qs) = 0
and

Var(y/nThsQs)
= eSS S (Y Wy (D))
T 1 2 he 1 2 he

i=1t1=1t2=1

T T
K (Us,s — ) K, (Ustys — u){ Z (Utltl)—lgtltgeits}{ Z (O_tztz)—lo_tzmgits}

t3=1 ts=1

Sl () )
nl ti=1 to—1 hs hs
K, (Uitys — w)Kn, (Uitys — u)]

E{ ( zT: (Utltl)—lo_tlt;,»sits) ( ZT: (O_tgtg)—lo_tgtgsits) }

tz=1 tz=1
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Note that for t; # ts,
EA{Kp,(Uits — w)Kp, (Uit,s —u)} = O(1),

B { (P21 Ko Ure — 00 U — 0) | =000,

hs
U’itls —Uu
E T Khs (Uitls - U)Khs (UitQS - u) = 0(1)’
Ui s — U Ui s — U
E < “h > ( '*2h ) Kn, (Uitys — 0K, (Uigys — u) = O(1).
In addition,
T 2
E{ Z (Utltl)_lUtthEitQ} — (O_tltl)—QetszaletlT — (O-tltl)_:l’
to=1

where e;, 7 is a T-vector with 1 in the ¢;-th position and zeros elsewhere. It
follows that

Var( \/nTths

n

d Uitys —u\ ) >
53> | {aean (B kv
—1t=1 S
T 2

to=1

n T 2
hs _ Uz s— U
—o+ 5 33 | o () K’iw“s_”)]
=1 t=1 S
hd n T
- }ZZZ ") LEK}E (Ugs — u))
n =1 t=1
L hsdidy Uits —u\? 5
K2 (Ugys —
s Sonrn{ (24 s
| 2hdid T Usrs —
1 QZZ tt 1E{< zt; >Khs(Uit5_u)}
i=1 t=1

= 0(1) + Js + Jg + J7, say.

Direct computations show that Js —, dldg Zt (o o)y (u) 0o, Jo —p
dyds Zthl(Utt)_lpts( o2 and J7 —, 2d1ds Zt 1 prs(uw)o1 as n — oo. Therefore,

Var(y/nThsQs) = dyda Z(Utt)flpts(u)(go + 201 + 02) +o(1).

t=1
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Let
T U T
\/hsz {d1 +dy < ”2 ) }Khs(Uits - u){ > (™) 10“1%}
t1=1
and B2, =>"" | E(b%,). Then
T
B2, =ndidy Y (™) prs(u) (0o + 201 + 02) + o(n).
t=1
Simple calculation shows that
3 - 3/2 Uits — u ’ 3
ZE\bzs] <o(1 ZZh E S |dy| + |da] - —h K} (Ugs — u)
i=1 i=1 t=1
=O(h;'?).
It follows that the Lindeberg condition hm B350 Eb2| = 0 is satisfied.

Hence (A=) follows from the Central lelt Theorem. Together with the \/n
consistency of o't the proof of Theorem 5 is complete.
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