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S1 Regularity conditions

(C1) The parameter space B is compact and (3, belongs to its interior.
(C2) There exists § > 1 such that
|5

co=sup max Fg |hi(y;)|'™ <oo and ¢; = sup max Fp, |yi|° < oo,
m 1¢=1,....m

m>19=1, m>

where h;(y;) = supyeg |Vi(yi, b)|.

(C3) For any bounded sequence {y;} with y; € R™, the functions b — ¥, (y;,b) are equicon-
tinuous and uniformly bounded on B.

(C4) supi21 ‘Ebl{\Pz(yu b)} — Eb’l‘ {‘P,(y“ b*)}| S/ |b1 - b>1k| + |b — b*| for all bl, bT, b, b* € B,
where “<” means “smaller than up to a constant”.

(C5) Forall € > 0,1nf,,51,1p—go > | fm,0(B)] > 0 = | fm,0(Bo) |, where fr 0(b) = Eg,{m ™ s,,,(b)}.
(C6) wi(y,b) = VpW,(y,b) exists for all y € R™, b € B, and its jth row (denoted by ¢;;(y,b)
for later use) satisfies conditions (C1)—(C4) in place of ¥;(y, b), foreach j =1,... k.

(C7) There exists a neighborhood N of 5y such that sup;~q ;1 [Vij (b) = Vi;i(Bo)| < [b—Bol
for all b € N, where V;;(b) is the jth column of Var,(¥;(y;, 5o)).

(C8) The elements of - M,,,(8y) and - "7 | Varg, (V;(y;, Bo)) converge to finite limits, where
M (B) = —E,{Vpsm(B)}.

(C9) M (Bo) = limy, oo {m = M,,(Bo)} is non-singular.

S2 Detailed formulae under marginal models

To obtain 7y,,, it is straightforward that we only need to give a derivation of (3.4) and (3.5) from
(3.2) and (3.3), for which we need to calculate M,,(8o), Eg,,(sm(Bo)) and varg,, (sm(50)),
with each mean and covariance understood to be conditioned on the covariates (which are sup-
pressed in the notation) and cluster size. Under this setting, we have 3,, = (¢o, ol , k3, 1, )T
and By = (¢o,al, k', vE)T. As discussed at the end of Section 2.1, a combined estimating
equation can be used to estimate (3 (see Fitzmaurice et al., 2009, Chap 3):
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with U; and u; defined as follows:
Ui(0,¢) = 11 1 {W:(0) — 1,10}
and

ui(0, a, ¢) = Ef {Wi(0, ¢) — pi(a)},

where W; is the n;-dimensional vector with jth element W;; = (yi; — pij)?/v(wij), Bi =
dpi(a) /O, and p;(«) is the vector [of dimension n;(n;—1) /2] consisting of the upper-triangular
entries of R;(«) in lexicographic order and W; is defined in the same way as p;(«) except from
the matrix with jkth entry
(Yig — 1) (Vi — i)

Pl (pij)o(pae) /2

Thus, in the general setting described in Section 2.2, we have U;(y;) = (UlT , uiT, UiT , where
U; = DI'Vi(yi—wi(0)), D; = i /00, and 6 = (k7',47)T". It can now be shown that M,,, (5o)

has the form

Wik =

)T

au; 8Uu;  aU;

m gd; éaa 889 F G
Mu(Bo) = =) Esy | G Z2 Su | = (o H)
i=1 ou; U, 9U;
0 O o0

where, writing W; = DI Vi_1 and denoting the jth row of W; by W;;,

m

H = - B (3U;/00)
i=1

= = B [{Wily: — pa)}/06)
=1
m Eﬁo [8{Wi1(Y'i - Uz)}/ae]
= — Z :
=t Eg, [8{Wi,p+q(yi — i)}/ 00]
Eg, {(Yz - ui)Tang"'Tl} - Wil%

oWl opi
Eg, {(y@‘ - Hi)TagH} - Wi,p+qaia

= f:pfwlr)i.
=1
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The zero submatrix at the bottom left-hand corner of M., (5) is due to the fact that OU; /0¢ and
OU; /O« are linear functions of y; — p;(6o), which has zero expectation when § = f3y. Then

oy = (F0 AT

and substituting into (2), we obtain

Emp = B{Mu(B0)} "Es, {sm(Bo)}

B -1 -1 -1
= (Opx(k*Q*P) B) (FO FHE:F )Eﬁm{sm(ﬁ())}

m

= BH™! Z Eg, (U;)

i=1

BA,} {1711 > DIV (i (Om) — Mi(9(1))} ;

i=1

where A,, = L 3" DTV, "'D;, B = (0pxq, I,) and we used Eg, (U;) = DTV, (115(0n) —
1i(0o)) in the last step. Here A,,,, D; and V; are evaluated under Hy. Similarly, we have

_ 1 & B 7 L
Sy = BA;! {m;D;‘FVi Warg, (vilzi, %)V, 1DZ} A'BT
by noticing that varg, (U;) = D;‘FViflvargm (yi|zi7xl-)Vi*1Di. Again, A,,, D; and V; are
evaluated under Hy. Now we replace £ in the expressions of &,y and X, by /m(ta — o).
They become

bmy = BA;! {; ZDZTV;-_I(/M(HA) - Ni(eo))}

and

m

_ 1 _
Sy = BA;! {m > D'V WVarg, (vilzi, xi)VilDZ} A1BT.
i=1
Then (3.4) and (3.5) are obtained by replacing A, and the terms in curly brackets by their
expectations under the joint distribution of the covariates.

S3 Approach of Liu and Liang (1997)

LL’s approach involes a multivariate extension of results of Self and Mauritsen (1988), who de-
rived sample size and power formulae for generalized linear models based on the score statistic.
They developed their results in the marginal model setting (as in Section 2.2), assuming discrete
covariates distributed as

Px;=uw,zi=w;))=w, l=1,...,L, (S3.1)

S3
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where {(u;,w;), [ = 1,..., L} are the L different possible values of covariates. LL also as-
sumed that the structure of the true conditional correlation matrix of the outcome is known. The
quasi-score test statistic 75, is given by

T = %w(f%oalﬂo)i%lsmlﬁ(/%o,wo),

where Sy (o, o) = iy (B Vi (yi = i) lemronimvor Em = covig{Smy (Fo,¥0)}
and Ko is an estimator of x obtained by solving

m a ; T B
S (K, o) = ( l/i ) Vi Ny — pi) gy = 0. (83.2)
i=1

Under v = 14 and kK = Ko, note that kg is generally not a consistent estimator of x¢ and it
will converge to some value «§, namely the solution of

iy, 0om ™ "E{ Sy (K, ¥0); ko, Ya} = 0. (S3.3)

LL used standard Taylor series arguments to obtain an approximation to Sy, (Ro, %o). This
approximation is G(k§, ¥0) = Smey (K§, o) — IZK(KK)*SW{(HB, o), where

() (e o
and
* o \" o1 (O
=2 < 8m> v ( ar ) =i o=vo- (83.5)
Let
piy =g~ (ko + wija), (S3.6)
pi; = g~ (55 + witbo), (S3.7)
IUJ’Ll = (:uzllv ,u’1117 e 7#@1”),117 (538)
.U:Lk = (/u’fla :u‘?lv e 7.u“>ikn)T7 (839)
* a/’ct g *  pk— 8//’7 4
Pi = {(8’1[)) — IwHIAnl (8%} ‘m:ﬁs7¢:¢o’ (S310)

and V;* = Vilﬁ:na,wwo-
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Notice that G(k§,vo) = >, P7(Vi*) " (ys — pf). Under the allocation scheme specified
in (S3.1), and ¢ = 1) 4 and k = ko, LL claim that G (), 10 ) is approximately normal with mean
and variance given by mé and m, respectively, where

L
=Y wPr (Vi) — up) (S3.11)
=1
and
~ L
S =Y WP () eov(yis ko, ¥a) (Vi) ' P;T (S3.12)

=1
Here u}, pj, P and V;* are defined as in (S3.8), (S3.9), (S3.10) and V;* with (x;,z;) = (0;, wy),
and cov(yi; ko, a) equals cov(y;; ko, 1a) with (x;,2;) = (u;, w;). So the distribution of
S,y (R0, o) is approximated by N (mé,m3.), which implies that the distribution of T}, is ap-
proximated by a noncentral chi-square distribution with p degrees of freedom since T}, has p
dimensions. The non-centrality parameter is given by

Py = (m&)T (mS) " (mé). (83.13)

The sample size m for achieving nominal power 1 — 7 at significance level ( is obtained by
solving the equation 7,,, = v, which implies that

m=—m—. (S3.14)
rs-1E
Under the allocation scheme (S3.1), equation (S3.3) becomes
L o T
S (P) )k - i) =0, s3.19
1=1 K
where % = %h:%ﬂb:%, and y is defined to be the mean vector u; with (x;,2;) =

(u;, w;). This equation corresponds to equation (12) in LL, which needs to be solved to de-
rive explicit formulae for £ and 3.

Two potential problems of this method were pointed out by Self and Mauritsen (1988):

1. Since Ky is not a consistent estimator of x under the alternative hypothesis, S is not the
asymptotic variance of ﬁSmw (Ro, 10). Thus the condition needed for the distributional

result mentioned above does not hold, even asymptotically.

2. Even though the distribution of ﬁSmw(%O, 1) approaches multivariate normality, the
expected value of S,y (Ro, 1) is simultaneously going to infinity. Therefore, the result
relies on the quality of the chi-square approximation at a sequence of points that move
progressively farther out in the tail of the distribution as m becomes large.

The first problem is caused by inconsistency of the estimator under fixed alternatives. The sec-
ond problem is caused by the test statistic converging in probability to a degenerate distribution
(infinity) under fixed alternatives. Our approach using local asymptotic theory succeeds in over-
coming both of these problems.
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S4 Approach of Shih (1997)

Shih considered the case p = 1, with the working covariance identical to the true covariance,
and approximated the distribution of W,,, under the fixed alternative ¢» = 14 by a noncentral
X3 with non-centrality parameter 7, = m)% /v, where v is the asymptotic variance of 1/) (cf.
Remark 2 in Section A) when ¢ = 1 4. This is similar to the approach discussed in Remark
4 of Section 3.2, where the asymptotic power function is used, except that the variance now
depends on the value of parameter under a fixed alternative. In this approach, the sample size for
achieving nominal power 1 — 7 at significance level ¢ based on a two-sided test is simply given

by m = v(z1_¢/2 + 21-)? /(4 — tho)?.

S5 Two lemmas

The following lemmas are crucial for proving our main results.

Lemma 1 Let H,,(b) = m™'Y7" {U,(y;,b) — Egs,, (V;(yi,b))}. Under conditions (C1)-
(C3),

sup | Ho (b)] 23 0.
beB

This lemma is a routine extension of a uniform law of large numbers of Shao (Lemma 5.3)
to a triangular array. The result is similar to a Glivenko—Cantelli theorem in that the convergence
holds uniformly over a class of functions. The relative compactness condition (C3) plays a
crucial role in the proof. The proof is similar to that for Lemma 5.3 in Shao.

Proof. Since we only need to consider components of ¥,’s, without loss of generality we
can assume that W,;’s are functions from R™ x B to R. For any fixed € > 0 and any fixed subset
O CB,

P, (sup |H,, ()] > e) < P, (sup Hp,(b) > e) + P, (inf H,,(b) < e) (S5.1)
beO beO beo
We will show the first term on the right hand side converges to zero; the second term converges
to zero by a similar argument. Clearly,

P, (supHm<b>>e)sp m-li{iggwyi,) Es,, <mfw<yi,b>>}>e]

beO

=P, -1 Z\I/(m) +m- IZE&" {Sup\I/ (yi,b) — bigg \Ili(yi7b)} > e] ,

i=1 i=1

(S5.2)
where \I’Z(.m) = supyeo Vi(yi, b) — Eg,, (supyeo Pi(yi, b)). Since

hi()’z‘)|1+6 < Co,

sup max FEg, sup\I/ (yi, )% < sup max FEj,,

m>1l_1 1 m>11_1: UL
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where h;(y;) is defined in condition (C2), then m~' > | U™ = op (1) by Lemma 2. If we
show that

-1 . ~
m Eg, {sup ¥,(y:,b) — inf ¥,(y;,b } < €,
> 5 {sup witv1.0) - ot Wity

for all m > 1 where 0 < € < ¢, then (S5.2) converges to zero. Next we show that the above
equation holds when the subset O is sufficiently small.

Using the Holder and Markov inequalities, and condition (C2), for any ¢ > 0
Eg,, {ml > hi<yi)1<c,oo>(|yi|>}
i=1

.....

1/(149) §5/(146
amax (B, byl H T Pallyil > 0

1=

IN

‘5 }5/(1+6)

1/(1+9) [ Eg, |yi
_max {E;,, \hi(}’i)|1+§} {6(35

IN

1/(1+6)
hi(}’i)|1+6} {i_r{1§?<m Ej,,

< C(l)/(1+6)C<15/(1+6)0752/(1+5)

5/(14:5)
_ {‘_r?ax Egs, yi|5} 0%/ (1+9)

for all m > 1. Thus for any € > € > €/2, there exists ¢ > 0 such that

1 & 5
Eg,, {m > hi(Yi)I(c,oo)(|Yi|)} <é/2—€/4
i=1
for all m > 1. For this value of c,

Eg,

m~! {su V;(yi,b) — inf ¥, ivb}fcoo :
; sup Wiy, b) = inf i(yi, b) p Iie.00) ([¥il)

< Eg,,

m ; {igg U, (yi,b) élel]g \IJz(Yzyb)} Ieoo) (lyi)

< Eg,, {m‘l > sup Wiy, b) e (¥il) + m=t Y| jof Wilyi, b)lf<c,oo)(|yz')}
=1

i=1

< B, {ml D hilyi ooy (lyil) +m™ > hi(yi)I(c,oo)(|yi)}

i=1 i=1

= 2E,3m {m_l Z hz(Yl)I(coo)(|yl|)}

=1

<€—¢€/2 (S5.3)
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for all m > 1. By the equicontinuity of {¥;(y;, b)} in condition (C3), there exists a . > 0 such
that

-1 Z{Sup U, (y:, b) — 1nf v, (yl,b)}f[ovc]ﬂyi) < €/2

beO.

for all m > 1, where O, is any subset of B with diam(O,) < .. Here diam(O.) is defined as
the supremum of the distances between pairs of points in O.. The inequality (S5.3) holds with
O replaced by O, which together with the above inequality implies

1ZEﬂm {sup U, (y:, b) — 1nf v, (yl,b)}

i=1 €0,

= Eg,, |m™! Z {SUD U,(yi,b) — blgcf) U, (ys, b)} I(C,OQ)(yi|)‘|
=1

beO

+E,, |m 12 { up Wiy, b) — jnf 0, <yz,b>} I[o,c]<|yi|>]

beO,

<€76/2+6/2:6<6

for all m > 1. The right hand side of (S5.2) with O replaced by O, converges to zero since it is
bounded above by

m
P, <m—12\p;n > e—€> -0,
=1

and we conclude that P,,, (supyco. Him(b) > €) — 0. By a similar argument,
P, (infpeo, Him(b) < —€) — 0. Thus by (S5.1), we have

P, (sup |H, (b)] > e) 0. (S5.4)
bEOe

Due to the compactness of B, there exist finitely many open balls {O?};—_; _,,_withdiam(0O?) <
d. in R* to cover B. That implies

{sup ) >} €Uz, sup HA0)> e
beB beOINB

which together with (S5.4) indicates
P, (Sup |Hpm (D)| > e) ZP sup [Hpn()| >e| =0,
beB beOiNB

concluding the proof.

Lemma 2 Let {X,,;}i—1....m be independent random variables. If there is a constant r > 1

such that

.....

L=sup max FE|X;|" < oo,

m>1 i=1,....m



Power and Sample Size Calculations for GEE S9

then

1 m
E Z{Xmi - E(sz)} £> 0.
=1

This lemma is a version of the WLLN (see, e.g., Theorem 1.14 (ii) in Shao) in the setting of
a triangular array. The proof is straightforward by Lyapounov’s inequality, Jensen’s inequality
and Theorem 2 of von Bahr and Esseen (1965).

m

Z{Xmi - E(sz)}

m

Z{Xmi - E(sz)}

Proof. By Liapounov’s inequality, it suffices to consider € (1,2]. For any ¢ > 0, by
1
m” |4

Markov’s inequality
> eT]
1 E i{X , — E(X )}T
e,r.m,’. Pt me m .
(S5.5)

By the inequality |a + b|" < 2" 1(|a|” + |b|") (Jensen’s inequality) and Lyapounov’s inequality,
‘max E| X — B(Xp)” < max 27 HE| X" + [BE(Xm)|"}
=1,....,m

i=1,....m i=1

1
Pl=
m |2

>e]:P

IN

< max 2" HE| X"+ E| X"}
1=1,....m
= 2" max E|X;|"
i=1,...,m
< 2"L.

Then, according to Theorem 2 of von Bahr and Esseen (1965), we have

i=1 i=1
< 2"t

Combining the above inequality and (S5.5),

concluding the proof.

S6 Proof of Theorem 1

We first show that 1/3 By 1o under conditions (C1)—(C5) by adapting the proof of Theorem 5.7
of van der Vaart (1998). Let f,,.n(b) = Eg,, {m~'s,,(b)}. By Lemma 1,

M 5 (B) = fmm (B)| < sup [H, (b)] 2
beB

0.



S10 Zhigang Li and Ian W. McKeague

Since s,,, (3) = 0, it follows that f,,, (53 B 0, which together with condition (C4) shows that
there exists L > 0 such that

|fm,O(B)| < |fm,0(3) - fm,m(B)‘ + |fm,m(B)‘ < L‘ﬁm - 50| + OPm(l) = OP'm,(]‘)7 (S6.1)

where fp, o is defined in (C5). According to (C5), which indicates that the solution 3y of
fm(b) = 0 is well-separated from other points in B, for all ¢ > 0 there exists § > 0 such
that

{18 = Bol > €} C {|fmo(B)| > 6}
for all m > 1, which together with (S6.1) implies that | B— Bol Py, Therefore, 3 P 8o and
~ P
¥ = to.

Next, assuming conditions (C1)—(C9), we will show /m(1)—) converges to N, (h, BY 3, BT)
in distribution under P,,. It suffices to consider \/H(B — fo), since v is a subvector of 3. By

the fundamental theorem of calculus, the chain rule, and the fact that s,,(5) = 0, in terms of
g(t) = sm(Bo +t(B — Bo)), 0 <t <1, we have

1
—on(B0) = sm(B) = sm(Bo) = g(1) — 9(0) = / § () di

= {/01 Vsm(Bo + (B — o)) dt} (8 — Bo). (56.2)

We also have

Hm—l I Vs (B~ Fo))d B (Vo (0] H

1
</
0

where || - || denotes the Frobenius matrix norm, that is || A|| = /tr(AAT) for any matrix A. We
will show that (S6.3) has order op,, (1), for which it suffices to show that

m! [Vsm(ﬁo 48— Bo)) — E/gm{Vsm(ﬂo)}} dt,  (S6.3)

1 m m
/ m > i (yis Bo+ (B = o)) = > Bp, {eis (i, Bo)}| dt = op, (1),  (S6.4)
0 i=1 i=1
for j = 1,..., k. The integrand in the above expression is (uniformly) bounded by
iugm’l Z @i (yib) — Z Eg, {vij(yi, b)}| (56.5)
€ i=1 i=1

+ sup m~!
0<t<1

Z Eg, {0ij(yi, Bo + (B — Bo))} — Z Eg, {#ij(yi, 50)}| .(56.6)

i=1 i=1

Using an argument similar to the proof of Lemma 1, we can show that under conditions (C1)-
(C3) and (C6), (S6.5) = op,, (1). By conditions (C4) and (C6), there exists a L > 0 such that
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(86.6) < supg<;<; Lt|3 — Bo| = L|B — Bo| = op, (1) by the first part of the proof. Thus
(S6.3) = op,, (1), and since under conditions (C4) and (C6) we have m~||Eg, {Vs(Bo)} —
M., (Bo)|| = o(1), it follows that

m {/01 Vsm(Bo +t(B — ﬁo))dt} — M, (Bo)|| = op,, (1).

The above display together with (S6.2) and conditions (C8) and (C9) give
Vim{ My (80)} s (Bo) = (1 + o, (1)vVm(B — Bo). (S6.7)

The result then follows if the left hand side above converges in distribution under P, to N (h*, X3,),
where h* = (Oiw_p7 hT)T and 0y_,, is the (k — p)-dimensional zero vector. We will establish
this using the Lindeberg—Feller theorem and the Cramér—Wold device. Fix a nonzero k-vector [
and € > 0. The Lindeberg condition is checked using condition (C2) and the Holder and Markov
inequalities:

> Ep VmlT (Mo (50)} " Wiy, Bo) PL{VmIT { My (B0)} Wiy, Bo)| > €}

i=1

< 3 [Bo Wl (M (50)) Wiy, 5o)] D]

i=1
X [P |Vml" { My (80)} " Wi(ys, Bo)| > 6}]ﬁ
< m{ My (o)} 1 Z {Eﬁm‘qji(yijﬂo”(?-ﬂ;)}m
i=1

€2+3

X l(\/m|{Mm(60)}_ll|)2+gEﬁm \I’i(yz‘ﬁo)(gﬁ)] b

; C1yoad N B [ Wiy, o) [
= 2 (01, (3)y 2 Y (Eyg o
i=1
2+6/2‘{M ﬁ }—1”2-&-300 B |{m_1Mm(ﬁo)}_1l|2+gCo
) B mo/2¢d

— 0,

where 1{-} is an indicator function, & = § — 1 and the last step is from condition (C9). Also
under condition (C7),

Z Varg,, (vVml" {M,,(80)} " ¥i(yi. Bo))

i=1

Z ZT{MrrL 60 } Varﬁm( z(Yla/BO)){Mm(/BO)}ill

= T{m M (Bo)} ~H{m ™ Varg,, (sm (B0)) Hm ™ Min (B0)} 11— 17 85,1

Thus /mlT{M,,(80)} " {sm(Bo) — Es,, (sm(B0))} converges to N(0,I7'Sg,1) in distribution
under P,,. Now we show that /milT{M,,(B0)} 1Es, (sm(Bo)) — (Th*. From condition
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(C6),

sup max FEg {sup |g0ij(yi,b)} < 00, (S6.8)
beB

m>1%=1,....m

sup |m”~'Eg,, {Z ©ij(yi, Bo +th*/\/7%)} —m~Eg, {Z %‘j(}’z‘aﬂo)}

0=t=1 i—1 i=1

< sup (|8 — Bol + [th* /v/m]|) = 0 (56.9)
0<t<1

forj=1,...,k. Since m™* 37", ©i;(yi,b) is the jth row of V;s(b), by (S6.8) and (S6.9)

' Vm{ My (o)}~ g, (sm(Bo))
= ZT\/%{Mm(ﬂo)}ilEﬁm(Sm(ﬂO) - Sm(ﬁm))

= T (50} B { [ s on v aef

\/ﬁ
1

= zT{Mm(ﬁo)}—l/ Eg,, {=Vgsm(Bo + th*/v/m)} dth* (86.10)
0

1
T M (B0} [ B, (= Vasn (B + th i)} den
0
%ZT{M(BO)}l/lM(ﬂO)dth* =1Th, (S6.11)
0

where (S56.10) and (S6.11) use Fubini’s theorem and the dominated convergence theorem, re-
spectively, and V gs,,, (8o +th* /v/m) = 05 (b)/Obly— g, 141+ ) /m- Combining the above result
and that v/mlT { M, (B0)} = {sm(Bo)—Es,, (sm(B0))} converges in distribution to N (0,17X5,1)
under P,,, we have that /ml*{M,,(B0)} 'sm(B80) converges under P, in distribution to
N(Th*,1T%,1) for any non-zero k-vector I. Thus /m{M,,(30)} " sm(Bo) converges in dis-
tribution to N (h*, Y 4,) under P,,, and from (S6.7) and using Slutsky’s lemma, v/m(3 — o)
converges in distribution under P, to N(h*,Xg,). The proof is completed by noticing that

U = Bp.

S7 Proof of Theorem 2

Asymptotic distribution of W,

To prove W,, converges in distribution under Hy,, to Xf,(u), the key step is to show that )

converges in probability under Hy,, to 3 g,, which implies that BYBT converges in probability
under Hy,, to BXg B T Note that, under conditions (C7)—(C9),

Ypo = {M(Bo)} ! Jim m™"> " Varg, {W;(yi, Bo)} | {M(B0)} "
i=1
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Write
R N —1 m ) R =
S = {m M (B)} {m—lzw%,mwyi,ﬁf}{m-le@} g
i=1
We will show that
m~ M, (8) = M(Bo) + op, (1) (S7.1)

and

*Zw (vi, ) Wilyi, B —mlearﬁo i(yi, Bo)] = op,, (1). (S72)

The proof of (S7.1) is straightforward using conditions (C4), (C6) and (C9) and the consistency
of 3 shown in Section B:

o3y | = [0 - bt
+ Hmfle(ﬁo) — M(Bo)||
S 1B = Bol +o(1) = op,, (1).
Write the left hand side of (S7.2) as

m Z Ui(yi, B)(yi, )T —m™* Z W, (vi, 50) ¥, (v, Bo) " (57.3)
i=1 i=1
m Y [ (yi-B0) Wi (v, Bo)" — Ep, {‘I’z (yi: Bo) Vi (yzyﬁo)TH (87.4)
=1
Z — Eg,) {‘I’z (yis Bo) Vi (yi, 50)T} . (87.5)

Let ¥;;(yi, Bo) be the jth element of the vector ¥; (y;, Bo) for j = 1,..., k. The term (S7.4)
converges to zero in probability under H;,, by Lemma 2; the condition needed to apply that
lemma can be shown to hold using the Cauchy—Schwarz inequality and condition (C2). It can
be shown that (S7.5) = o(1) since under conditions (C2), (C4) and (C7)

|(EB,. — Ep,)AWij(yi, Bo)Var(yis Bo) }
< lecovg,, (Wi (yi, Bo)s Yir(yis Bo)) — cova, (Vij(yis Bo), Vit (yi, Bo))l
+Es,, (Vi (yis Bo) I{Es,, (Yar(yi, Bo)) — Esy (Vir(yi, Bo)) }]
+|Es, (Vi (yis Bo))I{Ep,. (Vi (¥i, Bo)) — Epo (Vi (¥is Bo)) H
S B — Bol = o(1).

Next consider the matrix (S7.3). If each component can be shown to converge in probability
under Hy,,, to zero, then we have completed the proof of (S7.2). Let

Vi (yi,b)Wir(yi, b)}/0b
= 0ij(yi,0)alyi, b) + @alyi b)¥i;(yi,b) = g5y b) + 975 (yi, ).

giji(yi, )
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Asin (S6.2), but with the role of g(¢) now played by m=* >""" | ¥, (s, Bo+t(B—B0))Wa(yi, Bo+
t(ﬁ — o)), 0 <t <1, for any fixed € > 0, the jith entry of (S7.3) is bounded above by

1 m R .
H/ m > giji(yi, Bo + (B — Bo)) dt} (B - Bo)
0 i=1
m "> ghi(yi,b) ng (yi,b
i=1

Next we show that the supremum terms above are of order Op,_ (1). The first of these terms

1 e ;
EZlgijl(Yiab)

< sup ) op,,(1).  (S7.6)

beB

o pm —|— sup

sup
beB
<suplm™' ) gin(yi,b) - Ep, {m—l Zgijxyi,b)H (S7.7)
€ i=1 i=1
+sup |Ep, {m‘l Zgiﬂ<yi,b)}‘. (S7.8)
€ i=1

For * = (6 — 1)/2 > 0, we have by the Cauchy—Schwarz inequality
145"
Eg,, {SUP |giljl(Yi7b)|}
beB

1+56*
< Eg,, {SUP l0ij (¥i, D) sup Wi (yi, b)] }
beB beB

146 2 1+6) 3
S{Ea,,L{SbIéIB?I%(ym)I} }{Eﬁm{§)2§|\1’il(3’i7b)|} }

so using conditions (C2) and (C6) we have (S7.8) = O(1). The term (S7.7) can be shown to be
of order op, (1) using Lemma 1 with giljl playing the role of ;. To that end we need to check
that condition (C3) holds for giljl, i.e., that for any ¢ > 0 and sequence {y;} satisfying |y;| < ¢,
the sequence of functions {g}jl(yi, b)}i=1,2,... is equicontinuous on B. This follows from (C3)
and (C6) using the inequality

|g7,1]l(y’ba t) - gzljl(yla S)l
< oij (i, ONYar(yir t) — War(yi, )| + |@ij (Yir t) — i (Yi, )| Wi (yi, 8)]-

We have now shown that (S7.3) = op, (1), so (S7.2) holds. Then using the second part of
condition (C8) combined with (S7.2) and (S7.1), we have )y converges in probability under
Hip, to Xg,. Thus BYLBT converges in probability under H;,, to BXg, BT . From Theorem 1,
V/m( — o) converges in distribution under Hy,, to N (h, BY3, BT). Therefore, by Slutsky’s
lemma and the continuous mapping theorem, W,,, converges in distribution under H;,,, to non-
central X;% with non-centrality parameter v = h” (BY 5, BT)~1h. Next we derive the asymptotic
distribution for 7,,.
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Asymptotic distribution of 7,

An estimate ) of the nuisance parameter vector A under Hy is needed to calculate the quasi-score
statistic. For this purpose it suffices to use the first k — p estimating equations, so A can be taken
as a solution of C's,,, (A, ¢g) = 0, where C' = (I(_p), 0(x—p)xp)- Write the quasi-score statistic
as

Ty = {m_l/QBSm(B)}T (m_lvT)il {m_l/QBSm(B)} )
where

Vr = {BM,(B)~'BT}!
BM,,(3)™* {Z %(yi,éwi(yi,éf} M,,(3)"'BT

x{BM,(8)"' BT},

and 3 = (S\T, »E)T. We first establish a connection between ¥ — 1o and sm(B):

V(¥ — o) = VmB{Mu(B0)} "' BT Bsi(B) + op,, (1) (S7.9)
According to (S6.7),

(14 op,, (1))Vm(B — Bo)

VM (50)} " s (50)
= Vm{My(B0)} " s (B) ]
VMo (B0)} ™ {5 (Bo) — 5 (B)).

Under conditions (C1)—(C9), it can be shown that /m(X — \o) = Op,, (1) using a similar proof

as Theorem 1. Following the steps between (S6.2) and (S6.7) with s,,(3) in place of s,,(5), we
have

VM (o)} Hsm(Bo) — sm(B)} = (1+o0p,(1)Vm(Bo — B) i
(1+op,, (1))vVmCT (Ao — N)
= Opm(l)c—i-OP (1)

m

Combining the results of the above two displays, we have

(1 + op,, (1)Vm(4) — o)
= VmB{Mu(60)} " sm(B) + B{CTOp, (1) + 0p, (1)}
= VmB{Mpu (o)} sm(B) +op,, (1)
= VmB{My,(B0)} "' BT Bsy(B) + op, (1)
= B{m ™ M (B0)} "' B"m ™2 Bs,u(B) + op,, (1).
The above display implies equation (S7.9), which together with Theorem 1 and Slutsky’s lemma

shows that m~'/2Bs,,(/3) converges under P,, in distribution to a normal distribution with
mean { BM (3y) ' B} ~'h and variance

{BM(By) ' BT}y "B, B"){BM(By) BT}

S15
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We have that (m_1 S Wy, B)Walyi, /S’)T) and m ' M,,(j3) converge in probability un-
der Py, to limy, o0 [m™t 301" Varg, {¥;(y;, Bo)}] and M (By) respectively using the same
argument for (S7.1) and (S7.2) in Theorem 2. Therefore, m ™1V converges in probability under
P,,, to the asymptotic variance of m~'/2Bs,,(3).

By Slutsky’s lemma and the continuous mapping theorem, it follows that 7},, converges in
distribution under P,, to noncentral chi-squared with non-centrality parameter

[{BM(ﬁo)’lBT}_l h] ' { {BM(BO)’IBT}_I (B, B7) {BM(/BO)’IBT}_I }
[{31\4(50)‘1B>T}_1 h]

— W7 (B4, B") 'h,

concluding the proof.

S8 Derivation of (4.1)

In Example 4.1, the matrix B becomes the vector (0,1) since k and ¢ are both univariate,
0a = (ko,va)T, b0 = (Ko, %0)T, Ba = (0,08, ko, ¥a)T and p; = 1, (k + ¢a;), where 1,,
is the n x 1 vector with all elements being 1. Following the sample size calculation procedure
given near the end of Section 3 in the manuscript, we first choose type I error rate (¢) and desired
power (1 — n) in step 1. The cluster sizes are the same (n) and the covariate z;’s could have any
arbitrary distribution in step 2. We give values of ¥, 14, K9, o and o and calculate D, and V;
in step 3. The n x 2 matrix D; = Jpu;/06 evaluated under Hy is D; = 1,(1,2;). The n x n
variance matrices evaluated under Hy are V; = o2R, where R is a n X n correlation matrix.
Then we calculate Varg, (y1|z1,%1,n1) in step 4. In this example, that conditional variance is
equal to V; obtained in the previous step. We calculate the following quantities in step 5:

1TR-11 1 E(zy)
Tt n n 1
E(DTv'D) = Uz(E(xl) E(fﬂ?))’

E(DlTVfl{Ml(eA) - Ml(eo)}) =

(1TR1,) (¥4 — o) (E(m)) ,

o2 E(x7)
and
E[DYV 'covg, (y1lz1)Vy 'D1] = E(D{V;'Dy)
1I'r=11, 1 E(x1)

B o2 (E(l’l) E(f?))'
In step 6, we calculate

& = B[E(D{Vy 'Dy)] T E{DTV; [ (64) — pa(60)]}
YA — Yo,
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Sy = BIEDIV{ ' D) E[DI Vi covg, (yila) Vi "Dy [E(DY Vit DY) BT

0.2

(1T R-11,)var(zq)’

and 7 = (21_¢ /2 + 21-y)*. Formula (4.1) is obtained by (3.7).

S9 Derivation of the sample size formula in Example 4.2

In this example, again the matrix B becomes the vector (0, 1) since » and 1) are both univariate,
04 = (ko,¥a)T, 0o = (ko,%0)T, Ba = (o, ko, 4)T and p; = 1,expit(k + vx;) where 1,,
is the n x 1 vector with all elements being 1. As in the previous derivation, we similarly follow
the steps in the sample size calculation procedure . The 2 x n matrix D; = Ou,; /00 evaluated
under Hy is D; = 1,,(1, 2;)vos, where vo,, = Pox,; (1 — Doz, ) and po., = expit(ko + ox;).
The n x n variance matrices evaluated under Hy are V; = vo,, R, where R is a n X n correlation
matrix. Therefore,

Ty —1 _ T p—1 E(voz,) E(x1V0z,)
BEDiVim Dy = (LR ) (E(fﬂlvo:z:l) E(23vos,) )’

BV, i (0) = a60)]) = LR, F00e) ~ i) ),

and

Ty, —1 -1 _ T p—1 E(lel) E($1V1m1)
E[Di Vi “covg, (yilz1)Vy D1l = (1,R1,) (E(Jﬁllel) E@%lel) )

where vi;, = p1a, (1 — p1a,) and p1,, = expit(ko + ¥ ax1). Then

§o = BIEMDTV D] E{DTV [11(04) — 11 (00)]}
_ E(Vorl)(E(xlplxl) — E(xlpoxl)) - E(‘rlvoxl)(E(plxl) — E(pom))
E(Vos, ) E(21Vos,) — [E(21V0s,)]?
and
Sy = BIE(D{V D] EIDT Vi covg, (yilo) Vi DiJIE(DL Vi D)) BT

E(Wiz,)[E(z1vor,)]* + E(@3v12,)[E(Vor,)]* = 2E(21V12,) E(21Vo0z, ) E(Vos,)
[E(Voz, ) E(27V0a, ) — (E(21V0s,))?? (1T R711,,) '

By (3.7), we can obtain the formula.
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S10 Derivation of the sample size formula in Example 4.3

In this example, again the matrix B = (0,1), 04 = (ko,%a)T, 0o = (ko,%0)T and B4 =
(p, ko, a)T, where the correlation p is a scalar since the cluster size is 2. There is only one type
of clusters with cluster sizes being 2. That is, x; = (;1, xig)T follows a degenerate distribution
P(x; = (0,1)T) = 1. The corresponding vector mean is y1; = (expit(x), expit(x + 1))L. As
in the derivation of 4.1, we also follow the steps in the sample size calculation procedure. The
matrix D; = du; /00 evaluated under Hy equals

D; = <Y0 9) :
Vo Vo

where \7’0 = ]30(1 — ]30), Vo = po(l 7[)0), ﬁo = expit(no + ’(/)0) and Po = expit(ng). Then the
variance matrix V; evaluated under Hg is

Vi — ( Vo P\/Vo{'o>
’ PV VoVo Vo '

Thus

[E(DT V' Dy~ = DYV Dy) ™! = Dy va(DY) ™

E{DTVi 1 (0a) — m1(00)]} = DIVi ' (6a) — pa(6o)]

1 /(0 -
DTV1 ! <1> (pl —Po)a

where p; = expit(kg + ¥4). Then
&y = BIEMDTV D) E{DIV i (04) — i (o))}
= BD;* ((1)> (p1 — Po)
1 ~ /v 0 0 .
- (W) ()

P1— Do
Vo

‘We have

) Vo P/ VoVl
COVg, (yZ‘XJ = (P\/‘W vy ) ’
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where vi = p1(1 — p1). Thus

Sy = B[E(DIVy D) E (DTVy Yeovg, (yilx1)Vy ' D1) [E(DT Vi 'Dy)] ' BT
= BDi'covg, (y1|x1)(Df) "' BT

_ 1 = \N/'o 0 Vo P/ VoVi 1 ‘70 —\70 =T
= —B - —_— B

VoVo —Vo Vo P/ VoV Vi vovo \ 0 Vo

=2 S <2

o 1 B VoVvp PVoVoy/ VoVl — VoVy BT
= =3 < <2 2 < =2

(Vovo)? PVOV04/VoVl — VoVG  ViV1 — 2pVoVos/VoVi + VoVi
v%v1 — 2pvoVo/VoVvi + V0‘7(2)

(Vo¥o)?

Then the formula is obtained by (3.7).
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SAS code of sample size calculation for the Arsenic study;

alpha: type | error rate;
eta: type Il error rate;
lambda: intercept in the logistic regression;
psi: coefficient of the Arsenic exposure in the logistic regression;
rho: correlation in exchangeable correlation structure or correlation
between adjacent measurements in ARl structure;
al: mean of the natural log transformed exposure;
bl: standard deviation of the natural log transformed exposure;
n: number of iterations of Monte Carlo integral;
cluster: cluster size;
Sielaiaiasiaiaiaiaiaiaiaiaiaiaiaiaiaiaiaiaialaiale falakeie iaiekaiaiaiatel f
%macro sample(alpha,eta, lambda,psi,rho,al,bl,n,cluster);
proc iml;
parameters from prespecification or pilot data;
lambda=&lambda;psi=&psi ;al=&al;bl=&b1;rho=&rho; n=&n;
Feokededekede ke kekedekk Feokedekkedekekedeok *xxxkx*create the correlation
structure;
R=J(&cluster,&cluster, .);
do t=1 to &cluster;
do s=1 to &cluster;
***AR1 structure;
*R[t,s]=rho**abs(t-s);
***Exchangeable structure;
R[t,s]=rho;
if t=s then R[t,s]=1;
end;
end;

FrFAXKFAIXRFF*Monte Carlo integration for the expectations in the
sample size formulae in Example 4.2;
seed=100;
numex=0;
denoxpx=0;

mx=al;***mean value of the log-arsenic;

do 1=1 to n;

x=al+bl*rannor(seed);
px=exp(lambda+psi*x)/(1l+exp(lambda+psi*x));
VX=px*(1-px);
numex=numexX+mx*mx*VxX+x*xX*vx-2*mx*x*vx;
denoxpx=denoxpx+(X-mx)*px;

end;

mnumex=numex/n;
mdenoxpx=denoxpx/n;

ok ek kekedekk *xxxx*fFinal steps for sample size calculation;
NUTILDE=(probit(1-&alphas2)+probit(1l-&eta))**2;
numer=NUTILDE*mnumex;
deno=J(1,&cluster,1)*inv(R)*J(&cluster, 1, 1)*mdenoxpx*mdenoxpx;
m=numer/deno;



print m;
quit;

%mend ;

%sample(alpha=0.05,eta=0.1, lambda=-
2.71662,psi=0.4055,rho=0.2,a1=0.653,b1=2_.00,n=10000000,cluster=4);
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