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Abstract: Generalized linear models with group effects are commonly used in scien-

tific studies. However, there appear to be no results for selecting optimal designs.

In this paper, we identify the structure of locally optimal designs, provide a general

strategy to determine the design points and the corresponding weights for optimal

designs, and present theoretical results for the special case of D-optimality. The

results can be applied to many commonly studied models, including the logistic,

probit, and loglinear models. The design region can be restricted or unrestricted,

and the results can also be applied for a multi-stage approach.

Key words and phrases: A-optimality, binary response, D-optimality, Loewner or-

dering, logistic model, loglinear model, probit model.

1. Introduction

Categorical response variables are common in such areas of research as public

health, medical sciences, social sciences, and marketing. While using generalized

linear models (GLMs) for analyzing such data has become common with ad-

vances in computational tools, the study of optimal design for experiments with

such data is in a very underdeveloped stage. Even though a number of notable

contributions have been made in the area (e.g., Ford, Torsney, and Wu (1992);

Biedermann, Dette, and Zhu (2006)), Khuri et al. (2006) surveyed design issues

for GLMs and noted that “The research on designs for generalized linear models

is still very much in its developmental stage. Not much work has been accom-

plished either in terms of theory or in terms of computational methods to evaluate

the optimal design when the dimension of the design space is high. The situa-

tions where one has several covariates (control variables) or multiple responses

corresponding to each subject demand extensive work to evaluate “optimal” or

at least efficient designs.” This is especially true for models with multiple param-

eters. In particular, there appear to be no optimal designs for generalized linear

models with group effects.

Yang and Stufken (2009) proposed a new algebraic approach to the study of

locally optimal designs for GLMs with two parameters. For a given model, their

approach identifies a class of relatively simple designs so that for any design d that
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does not belong to this class, there is a design in the class that has an information

matrix that dominates d in the Loewner ordering. The result can be used for

restricted or unrestricted design regions and can also be applied for a multi-stage

approach. It makes identifying locally optimal designs a straightforward task for

many important models and optimality criteria.

In this paper, we extend that approach to models that include group effects.

This is an important extension that allows for heterogeneity among subjects (see,

for example, Cook and Thibodeau (1980), and Tighiouart and Rogatko (2006)).

Focusing on A- or D-optimality for estimable functions, for various models we

provide a strategy to determine design points and corresponding weights for lo-

cally optimal designs. The result is significant since it provides a feasible strategy

for finding optimal designs under the A- or D-optimality criterion while allow-

ing arbitrary subsets of estimable parameter functions, restricted or unrestricted

design regions, and one-stage or multi-stage approaches. We refer to Yang and

Stufken (2009) for more detail on the importance of this flexibility.

This paper is organized as follows. In Section 2, we introduce the various

models. In Section 3, we identify the structure of optimal designs for GLMs

with group effects. This is used to derive explicit forms of D-optimal designs

for special cases in Section 4. A strategy for finding optimal weights for given

design points is presented in Section 5, followed in Section 6 by two examples

to illustrate the computations required for finding optimal designs. A closing

discussion is presented in Section 7, while the proof of a technical result can be

found in the Appendix.

2. Statistical Models and Information Matrices

We first present the GLMs that we study in later sections. We distinguish

between models for binary data and count data. Subsequently we present infor-

mation matrices for these models. The focus is on models that include parameters

for group effects, such as race, ethnicity, gender, or other categorical variables.

These models have been studied extensively for data analysis (see for example,

Agresti (2002)), but little is known about design selection.

2.1. Generalized linear regression models for binary data

The simplest models are of the form

Prob(Yi = 1) = P (α+ βxi). (2.1)

Here, Yi and xi are the response and covariate for subject i, i = 1, . . . , n, α and

β are the intercept and slope parameters, and P (x) is a cumulative distribution

function, such as ex/(1 + ex) for the logistic model or Φ(x), the cdf for the
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standard normal, for the probit model. Model (2.1) has been studied extensively

in the optimal design literature and we refer to Yang and Stufken (2009) for

selected references.

These models, however, do not include parameters that allow for subject

heterogeneity. In presenting models that do, we assume that there are L factors,

1, . . . , L, with numbers of levels s1, . . . , sL, that partition the subjects into k =

s1 . . . sL groups. We consider both a model with a common slope for all groups

and a model that allows for different slopes for different groups.

The simplest presentation for the model with a common slope for all subject

groups is

Prob(Yij = 1) = P (α0 + αi + βxij),

where Yij and xij are the response and covariate value for the jth subject in group

i, i = 1, . . . , k, j = 1, . . . , ni, β is the common slope effect, and αi is the effect for

the ith group. For example, with only main-effects, αi could be parametrized as

αi = α1(i)+ . . .+αL(i), where αl(i) is an effect due to the level of the lth factor

in the ith group but, more generally αi could contain interaction effects of two

or more factors.

We write the model as

Prob(Yij = 1) = P ((Xij)T θ), (2.2)

where θ=(α0, α
T , β)T , a (k+2)×1 vector; α=(α1, . . . , αk)

T ; Xij = (1, XT
i , xij)

T ;

and Xi is a k × 1 vector with a 1 in position i and zeros elsewhere. Note that

simplifying assumptions about the model (such as the absence of some or all

interactions) would allow a reparametrization with fewer parameters.

For the model that facilitates different slopes for the k different groups, using

notation as in (2.2), we write the model as

Prob(Yij = 1) = P (α0 + αi + βixij) = P (α0 +XT
i α+XT

i βxij)

= P ((Xij)T θ). (2.3)

Here β = (β1, . . . , βk)
T is a vector instead of a scalar. Now θ = (α0, α

T , βT )T

and Xij = (1, XT
i , xijX

T
i )

T are (2k + 1) × 1 vectors. It will be clear from the

context whether θ, β, and Xij are as in (2.2) or as in (2.3).

2.2. Loglinear regression models for count data

In the medical and social sciences one finds experiments with a response

variable based on counts, such as the number of times that a certain event occurs

during a given time period or within a territory. Such counts, or the rate of

occurrence, is usually modeled by a loglinear regression model (Agresti (2002,

Chap. 9)).
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In the presence of L factors forming k groups, as in Subsection 2.1, let Yij ,

the response of subject j in group i, i = 1, . . . , k, j = 1, . . . , ni, have a Poisson

distribution with parameter λij . Let xij be the covariate value (for example the

concentrate of a drug) for this subject. Using the notation from Model (2.2), a

common slope model can now be written as

log(λij) = α0 + αi + βxij

= (Xij)T θ. (2.4)

Using the notation from Model (2.3), the model with different slopes for different

groups can be written as

log(λij) = α0 + αi +XT
i βxij

= (Xij)T θ. (2.5)

2.3. Information matrices

For the problem considered, an exact design can be presented as {(xij , nij),

i = 1, . . . , k, j = 1, . . . ,mi}, where xij is the j-th distinct covariate value used in

group i, mi is the number of distinct predictor values used in group i, and nij is

the number of subjects assigned to covariate value xij . With n denoting the total

number of subjects, we have that
∑

i

∑
j nij = n. Since finding an optimal exact

design is a difficult and often intractable optimization problem, the corresponding

approximate design, in which nij/n is replaced by ωij , is considered. Thus a

design can be denoted by ξ = {(xij , ωij), i = 1, . . . , k, j = 1, . . . ,mi}, where

ωij > 0 and
∑

i

∑
j ωij = 1. For known parameters, in each group i, there is a

one to one mapping between xij and cij , where cij = (Xij)T θ. It turns out to be

convenient to denote design ξ as ξ = {(cij , ωij), i = 1, . . . , k, j = 1, . . . ,mi}.
By standard methods, the information matrix for θ under Models (2.2), (2.3),

(2.4), and (2.5), can be written as

Iξ(θ) = n
k∑

i=1

mi∑
j=1

ωijX
ijΨ(cij)(X

ij)T (2.6)

= nXV ΩV XT , (2.7)

where Ψ(x) = [P ′(x)]2/[P (x)(1− P (x))] (Models 2.2 and 2.3) or Ψ(x) = exp(x)

(Models 2.4 and 2.5), X = (X11, X12, . . . , Xk,mk), V is a diagonal matrix with di-

agonal elements (
√

Ψ(c11),
√

Ψ(c12), . . . ,
√

Ψ(ck,mk
)), and Ω is a diagonal matrix

with diagonal elements (ω11, ω12, . . . , ωk,mk
). While for simplification we use the

same notation for all models, note that the definitions of Xij and θ are different

under different models.
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We write

Xij = Ai(α, β)C
ij . (2.8)

Here, Cij = (1, XT
i , cij)

T (Models (2.2) and (2.4)) or Cij = (1, XT
i , cijX

T
i )

T

(Models (2.3) and (2.5)); and Ai(α, β) is of the form

(
Ik+1 0

Ai(1)(α, β) A(2)(β)

)
,

where 0 is the zero matrix of appropriate dimensions. Matrices Ai(1)(α, β) and

A(2)(β) depend on the model. Under Models (2.2) and (2.4) (where β is a scalar),

Ai(1)(α, β) = (−α0/β,−αT /β) and A(2)(β) = 1/β. Under Models (2.3) and (2.5)

(where β is a vector) Ai(1)(α, β) is a k × (k + 1) matrix with all elements zero

except the ith row; the ith row is (−α0/βi,−αT /βi). A(2)(β) is the k×k diagonal

matrix with elements (1/β1, · · · , 1/βk).
Using (2.8), the information matrix Iξ(θ) in (2.6) can be rewritten as

Iξ(θ) = n
k∑

i=1

mi∑
j=1

ωijAi(α, β)C
ijΨ(cij)(C

ij)TAT
i (α, β). (2.9)

Suppose we are interested in η = Bθ. Since the models provide information

for XT θ only, the rows of B must belong to the row space of XT , i.e., B = DXT

for some matrix D. With F (η) as a vector valued function of η, the covariance

matrix of F (η̂), where η̂ is the MLE of η, can be expressed as

Σξ(F (η̂)) =
∂F (η)

∂ηT
BI−ξ (θ)BT (

∂F (η)

∂ηT
)T . (2.10)

From (2.7), it follows that XT I−ξ (θ)X is invariant to the choice of the g-inverse

I−ξ (θ), which implies that the same is true for (2.10).

3. Structure of Optimal Designs

An optimal design for F (η) maximizes the corresponding information ma-

trix in some way, or equivalently minimizes the covariance matrix in (2.10) un-

der a selected optimality criterion. Notice that for any two designs ξ1 and ξ2, if

Iξ1(θ) ≤ Iξ2(θ) (here and elsewhere, matrix inequalities are under the Loewner or-

dering), then there exist g-inverses I−ξ1(θ) and I−ξ2(θ) such that I−ξ1(θ) ≥ I−ξ2(θ) (see

Theorem 5(i) of Wu (1980)). By (2.10), this implies that Σξ2(F (η̂)) ≤ Σξ1(F (η̂)).

Thus design ξ2 is at least as good as design ξ1 for F (η) under commonly used

optimality criteria. Hence we can focus our attention on the matrices Iξ(θ).

In this section, we show that for any given design ξ = {(cij , ωij), i = 1, . . . , k,

j = 1, . . . ,mi}, there exists a design ξ∗ with a simple form such that Iξ(θ) ≤
Iξ∗(θ). To identify optimal designs for F (η) under the common optimality criteria

based on information matrices, we can then restrict attention to designs with
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the simple form presented in this section. These optimality criteria include not

just A-, D-, E-, L-, and Φp-optimality etc., but also standardized versions of

optimality criteria proposed by Dette (1997).

Our results extend those of Yang and Stufken (2009), who considered models

without group effects. Since we need their results here, we summarize them in

two lemmas. Let cj = α + βxj and cj ∈ [D1, D2], a bounded or unbounded

design region. From Yang and Stufken (2009), the information matrix for (α, β)

in Model (2.1) under design ξ = {(cj , wj), j = 1, . . . ,m}, Iξ(α, β), can be written

as

Iξ(α, β) = ATCξ(α, β)A,

for a non-singular matrix A that does not depend on ξ, where

Cξ(α, β) =

m∑
j=1

ωj

(
Ψ(cj) cjΨ(cj)

cjΨ(cj) c2jΨ(cj)

)
and Ψ(x) = [P ′(x)]2/[P (x)[1 − P (x)]]. Therefore, studying dominance in the

Loewner ordering of one design over another can be done by studying Cξ(α, β)

rather than Iξ(α, β).

Lemma 1. For the logistic and probit models, as in Model (2.1), for any design

ξ = {(cj , ωj), j = 1, . . . ,m}, m ≥ 2, there exists a design ξ∗ such that

Cξ(α, β) ≤ Cξ∗(α, β), (3.1)

where ξ∗ has two support points. The two support points are (i) c and −c if

D1 = −D2; (ii) D1 and c if D1 > 0; (iii) D2 and c if D2 < 0; (iv) D1 and

c ∈ (|D1|, D2] or c and −c if D1 < 0 and |D1| < D2; or (v) D2 and c ∈ [D1,−D2)

or c and −c if D2 > 0 and |D1| > D2.

Yang and Stufken (2009) establish a similar result for the loglinear model

log(λj) = α+ βxj , using the same set up and notation as in Lemma 1, but now

with Ψ(x) = exp(x).

Lemma 2. With the loglinear model log(λj) = α + βxj = cj ∈ [D1, D2], with

D2 < ∞, for any design ξ, there exists a design ξ∗ such that

Cξ(α, β) ≤ Cξ∗(α, β), (3.2)

where ξ∗ has two support points and one of these is D2.

The next theorems show how these results can be applied to Models (2.2),

(2.3), (2.4), and (2.5). Due to possible constraints on the covariate value xij ,

we assume that cij ∈ [Di1, Di2] for each i = 1, . . . , k. For the loglinear model

(Theorem 2), the Di2’s are assumed to be finite.
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Theorem 1. In Models (2.2) and (2.3), for any design ξ = {(cij , ωij), i =
1, . . . , k, j = 1, . . . ,mi}, there exists a design ξ∗ with at most two support points
in each of the k groups such that Iξ(θ) ≤ Iξ∗(θ). For each group where ξ has
at least two support points, the two support points of ξ∗ may be (i) ci and −ci
if Di1 = −Di2; (ii) Di1 and ci if Di1 > 0; (iii) Di2 and ci if Di2 < 0; (iv) Di1

and ci ∈ (|Di1|, Di2] or ci and −ci if Di1 < 0 and |Di1| < Di2; or (v) Di2 and
ci ∈ [Di1,−Di2) or ci and −ci if Di2 > 0 and |Di1| > Di2. For groups where ξ
has less then two support points, ξ∗ can be taken to coincide with ξ.

Proof. Recall that Cij = (1, XT
i , cij)

T (Model (2.2)) or (1, XT
i , cijX

T
i )

T (Model

(2.3)). Thus Cij can be written as Cij = Bi

(
1

cij

)
, where

BT
i =

(
1 XT

i 0

0 01×k 1

)
for Model (2.2), and

BT
i =

(
1 XT

i 01×k

0 01×k XT
i

)
for Model (2.3). Using (2.9), Iξ(θ) can now be written as

Iξ(θ) = n

k∑
i=1

Ai(α, β)Bi

mi∑
j=1

ωij

(
Ψ(cij) cijΨ(cij)

cijΨ(cij) c
2
ijΨ(cij)

)
︸ ︷︷ ︸

=Ci
ξ, say

BT
i A

T
i (α, β).

(3.3)

By (3.1), there exists a design ξ∗ of the form mentioned in the statement of the
theorem, such that for each i where ξ has at least two support points, Ci

ξ ≤ Ci
ξ∗ .

If ξ has less than two support points for some i, then we take ξ∗ exactly the same
as ξ for that group. This implies that, for each i,

Ai(α, β)BiC
i
ξB

T
i A

T
i (α, β) ≤ Ai(α, β)BiC

i
ξ∗B

T
i A

T
i (α, β), (3.4)

allowing the conclusion that Iξ(θ) ≤ Iξ∗(θ).

Applying Lemma 2 and the same argument as in the proof of Theorem 1,
we have similar results for Models (2.4) and (2.5).

Theorem 2. In Models (2.4) and (2.5), for any design ξ = {(cij , ωij), i =
1, . . . , k, j = 1, . . . ,mi}, there exists a design ξ∗ with at most two support points
in each of the k groups such that Iξ(θ) ≤ Iξ∗(θ). For each group where ξ has at
least two support points, one of the two support points of ξ∗ may be taken as Di2;
for groups where ξ has less then two support points, ξ∗ can be taken to coincide
with ξ.
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Note that, unlike Cook and Thibodeau (1980) whose study was in the context

of linear models, we allow the weight for each group to be decided by optimality

considerations. It should however be pointed out that if we would fix the group

weights based on practical considerations, so that these are not subject to control

by design, then the conclusion of Theorem 2 still holds.

4. D-Optimal Designs

While the characterizations in Theorems 1 and 2 generally require some

computation for finding optimal designs, they can be used for deriving explicit

expressions for D-optimal designs for certain families. In this section we first

do this for Model (2.2) with a single factor at s levels and the design region

(−∞,∞). The results also apply with L factors provided that the model is the

full factorial model; in that case the problem can be reparametrized as a single

factor problem with s = s1 · · · sL levels. We consider two cases, one in which the

parameters of interest correspond to the group effects and the slope parameter,

α0 + α1, . . . , α0 + αs, β, and the other in which the interest is in s − 1 linearly

independent contrasts of the group effects as well as the slope parameter.

Due to invariance of the D-optimality criterion under reparametrization (see,

for example, Pukelsheim (2006)), we may take the parameter vectors for the two

cases as η1 = ((α0 + α1)/β, . . . , (α0 + αs)/β, β)
T and η2 = ((α1 − αs)/β, . . .,

(αs−1 − αs)/β, β)
T , respectively. While a similar approach as used here can

be used to derive explicit expressions for A-optimal designs for η1 and η2, we

focus on deriving D-optimal designs since A-optimality is not invariant under

reparametrizations (cf. Dette (1997)). With ξ as the design, let Iξ(η1) and Iξ(η2)

denote the information matrices for the two cases.

Theorem 3. Let design ξ∗ = {(ci1 = c∗, ωi1 = 1/(2s)), (ci2 = −c∗, ωi2 =

1/(2s)), i = 1, . . . , s} for some c∗. For Model (2.2) with one factor at s levels

and no constraint on the design space,

(i) ξ∗ is D-optimal for η1 if c∗ maximizes c2Ψs+1(c); and

(ii) ξ∗ is D-optimal for η2 if c∗ maximizes c2Ψs(c).

Proof. Based on Theorem 1, we can restrict attention to designs ξ = (cij , ωij)

with (at most) two design points in each group. Let ωi+ = ωi1 + ωi2 and ωi− =

ωi1 − ωi2. The information matrix Iξ(η1) can be written as
β2ω1+Ψ(c1) 0 . . . 0 ω1−c1Ψ(c1)

0 β2ω2+Ψ(c2) . . . 0 ω2−c2Ψ(c2)
...

...
. . .

...

0 0 . . . β2ωs+Ψ(cs) ωs−csΨ(cs)

ω1−c1Ψ(c1) ω2−c2Ψ(c2) . . . ωs−csΨ(cs)
1
β2

∑s
i=1 ωi+c

2
iΨ(ci)

 .
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Let Aξ(η1) = (1/s!)
∑

QQT Iξ(η1)Q, where the sum is over all permutation ma-

trices corresponding to permutations of (1, . . . , s). By Proposition A.2 in the

Appendix, we have

Det(Iξ(η1)) ≤ Det(Aξ(η1)). (4.1)

Since

Aξ(η1) =

(
aIs×s bJs×1

bJ1×s
1
β2

∑s
i=1 ωi+c

2
iΨ(ci)

)
,

where

a =
β2

s

s∑
i=1

ωi+Ψ(ci) and b =
1

s

s∑
i=1

ωi−ciΨ(ci), (4.2)

it can be shown that

Det(Aξ(η1)) ≤

(
s∑

i=1

ωi+Ψ(ci)

)s( s∑
i=1

ωi+c
2
iΨ(ci)

)
β2s−2

ss

≤ (Ψ(c))s
(
c2Ψ(c)

) β2s−2

ss
, (4.3)

for an appropriately chosen point c. The last inequality follows from Proposition

A.2 of Yang and Stufken (2009), which asserts the existence of a point c, such

that
s∑

i=1

ωi+Ψ(ci) = Ψ(c) and
s∑

i=1

ωi+c
2
iΨ(ci) ≤ c2Ψ(c).

Consider a design ξ̃ = {(ci1 = c, ωi1 = 1/(2s)), (ci2 = −c, ωi2 = 1/(2s)),

i = 1, . . . , s}. It is easy to see that

Det(Iξ̃(η1)) = (Ψ(c))s
(
c2Ψ(c)

) β2s−2

ss
. (4.4)

By (4.1), (4.3), and (4.4), the conclusion for case (i) follows.

For case (ii), write

Iξ(η2) = Iξ22 − Iξ21I
−1
ξ11

ITξ21 . (4.5)

Here, Iξ11 = β2
∑s

i=1 ωi+Ψ(ci), Iξ21 = (β2ω1+Ψ(c1), . . . , β
2ω(s−1)+Ψ(cs−1),∑s

i=1 ωi−ciΨ(ci))
T , and Iξ22 can be obtained from Iξ(η1) by deleting the s’th

row and column. Defining Bξ(η2) = (1/(s− 1)!)
∑

QQT Iξ(η2)Q, where the sum

is now over all permutation matrices corresponding to permutations of the first
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s − 1 rows and columns of Iξ(η2), and again applying Proposition A.2 in the

Appendix, we have

Det(Iξ(η2)) ≤ Det(Bξ(η2)). (4.6)

Writing a0 = (β2/(s− 1))
∑s−1

i=1 ωi+Ψ(ci) and letting a be as defined in the first

part of the proof, it can be shown that

Det(Bξ(η2)) ≤ as−1
0 (as− a0(s− 1))

1

asβ2

s∑
i=1

ωi+c
2
iΨ(ci)

≤ as
1

asβ2

s∑
i=1

ωi+c
2
iΨ(ci) ≤ (Ψ(c))s−1 (c2Ψ(c)

) β2s−4

ss
(4.7)

for an appropriately chosen point c. The next to last inequality in (4.7) uses that

the geometric mean is bounded by the arithmetic mean, while the last inequality

follows again from Proposition A.2 of Yang and Stufken (2009).

It can be shown that the design ξ̃ = {(ci1 = c, ωi1 = 1/(2s)), (ci2 = −c,

ωi2 = 1/(2s)), i = 1, . . . , s} satisfies

Det(Iξ̃(η2)) = (Ψ(c))s−1 (c2Ψ(c)
) β2s−4

ss
. (4.8)

The conclusion for case (ii) follows now from (4.6), (4.7), and (4.8).

The same arguments used in the proof of Theorem 3 can also be used to

derive D-optimal designs for the case of Model (2.2) and a main effects model for

multiple factors. Writing αi
ℓ for an effect corresponding to the ith level of factor

ℓ, the probability in Model (2.2) is then a function of α0+
∑L

ℓ=1 α
iℓ
ℓ +βxij if the

ith group corresponds to level combination (i1, . . . , iL). A maximal set of linearly

independent estimable functions is η3 = (α0+α1
1+α1

2+ · · ·+α1
L, α

2
1−α1

1, . . . α
s1
1 −

α1
1, . . . , α

2
L−α1

L, . . . , α
sL
L −α1

L, β)
T . If we are only interested in level comparisons,

we form η4 from η3 by deleting the first term. By the same arguments as in the

proof of Theorem 3 we can obtain the following result.

Theorem 4. Under Model (2.2) with L factors, sℓ levels for factor ℓ, and no

constraint on the design space, designs of the form ξ∗ = {(ci1 = c∗, ωi1 = 1/(2k)),

(ci2 = −c∗, ωi2 = 1/(2k)), i = 1, . . . , k} are D-optimal for both η3 and η4. The

point c∗ is chosen to maximize c2Ψk1+2(c) for η3 and c2Ψk1+1(c) for η4, with

k =
∏L

ℓ=1 sℓ and k1 =
∑L

ℓ=1(sℓ − 1) .

In the next sections we propose computational approaches for finding opti-

mal designs based on Theorems 1 and 2 when explicit optimal designs are not

available. Considerations in those sections are not restricted to Model (2.2) or

D-optimal designs.
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5. Determination of Optimal Weights for a Given Support

Based on Theorems 1 and 2, we can restrict the search for optimal designs

to designs of a simple form. However, for a given model, function F (η), and

optimality criterion, we need to determine the exact support points and the cor-

responding optimal weights. The number of support points is (at most) m = 2k,

which are completely determined by k variables. This implies that we also have

to determine m− 1 weights and, in total, m+k− 1 variables in our optimization

problem. When the value of k is small, this can be handled with a relatively

simple computer search. However, even for moderate k, this becomes challeng-

ing. For example, suppose we have two factors, each with two levels, so k = 4.

This already results in an optimization problem with 11 variables. Existing ap-

proaches for identifying optimal points and weights, such as Pukelsheim and

Torsney (1991), do not seem to work here, and relationships between optimal

design points and weights, such as in Pukelsheim (2006, p.199), do not provide

much help.

We propose a new approach for the determination of optimal weights for

given supports points (not necessarily the support points of an optimal design).

It can be applied to any parameter function of interest. In Section 6 we show

how this method, combined with the results in Section 3, can be used to identify

optimal designs. Optimal weights are the solution to m− 1 nonlinear equations

and can be found numerically, where a convexity property helps with the speed

of convergence. We focus on A-optimality and D-optimality but the conclusions

also hold under Φp-optimality, where p is any positive integer

As in Section 2, let F (η) be a vector of parameter functions of interest,

where η = Bθ and B = DXT for some matrix D. The covariance matrix of

F (η̂), Σξ(F (η̂)) (or Σξ for simplicity), is given by (2.10). Under the A-criterion

we want to minimize Tr(Σξ) for fixed design points. Let B̃ = ∂F (η)
∂ηT

B, so that

Σξ = B̃I−ξ (θ)B̃T . For given parameters, B̃ is a constant matrix. Also observe

that, from B = DXT and (2.7), we have

XT = XT I−ξ (θ)Iξ(θ), (5.1)

B̃ = B̃I−ξ (θ)Iξ(θ). (5.2)

Theorem 5. Let ω = (ω11, ω12, . . . , ωk,mk−1)
T , where ωij ≥ 0, i = 1, . . . , k

and j = 1, . . . ,mi,
∑k

i=1

∑mi
j=1 ωij = 1. For a given θ and design points xij,

i = 1, . . . , k, and j = 1, . . . ,mi, consider Σξ = B̃I−ξ (θ)B̃T as a function of ω.

The minimum value of Tr(Σξ) is achieved at any of its critical points or at a

point on the boundary.



1776 JOHN STUFKEN AND MIN YANG

Proof. For simplification, we rename the sequence (ω11, . . . , ωk,mk
) as (ω1, . . .,

ωm) and drop θ from our notation. Let Iiξ = nXV ΩiV XT , where Ωi is a diagonal

matrix with the last diagonal element equal to -1, the ith element 1, and all others

0. Other notation is as in (2.7). By Lemma 15.10.5 of Harville (1997) and (5.2),

for i = 1, . . . ,m− 1, we have

∂Σξ

∂ωi
= B̃

∂I−ξ
∂ωi

B̃T = −B̃I−ξ
∂Iξ
∂ωi

I−ξ B̃T = −B̃I−ξ IiξI
−
ξ B̃T . (5.3)

Similarly, using (5.1) and (5.3), for i, j = 1, . . . ,m− 1 we have

∂2Σξ

∂ωi∂ωj
= B̃I−ξ

(
Ijξ I

−
ξ Iiξ + IiξI

−
ξ Ijξ

)
I−ξ B̃T . (5.4)

Using that
∂Tr(Σξ)

∂ωi
= Tr

(
∂Σξ

∂ωi

)
, (5.5)

for i, j = 1, . . . ,m− 1, we have

∂2Tr(Σξ)

∂ωi∂ωj
= Tr

(
∂2Σξ

∂ωi∂ωj

)
. (5.6)

Let H(ω) be the Hessian matrix of Tr(Σξ). We show that H(ω) is a nonnegative

definite matrix. Since Iξ is nonnegative definite, there exists a g-inverse I−ξ ,

which is also nonnegative definite. This g-inverse I−ξ can be written as I−ξ =

(I−ξ )1/2(I−ξ )1/2, where (I−ξ )1/2 is also nonnegative definite.

By (5.4), the (i, j)th element of H(ω) is

H(ω)[i, j] = Tr
(
B̃I−ξ

(
Ijξ I

−
ξ Iiξ + IiξI

−
ξ Ijξ

)
I−ξ B̃T

)
= 2Tr

(
B̃I−ξ IiξI

−
ξ Ijξ I

−
ξ B̃T

)
= 2Tr

(
B̃I−ξ Iiξ(I

−
ξ )1/2(I−ξ )1/2Ijξ I

−
ξ B̃T

)
. (5.7)

By defining Ai = B̃I−ξ Iiξ(I
−
ξ )1/2 and applying Proposition A.1 in the Appendix,

it follows that H(ω) is nonnegative definite. From this it follows that Tr(Σξ)

attains its minimum at any of the critical points (cf. Kaplan (1999, Sec. 9)). It is

however possible that none of the critical points satisfy the restriction that each

of the ωij must be nonnegative. In this case, the minimum value is attained on

the boundary, i.e., at least one of ωij = 0.

Consideration of D-optimality only makes sense when Σξ is nonsingular, so

we assume that. A D-optimal design maximizes |Σ−1
ξ |. We have the following

counterpart of Theorem 5.
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Theorem 6. Let ω = (ω11, ω12, . . . , ωk,mk−1)
T , where ωij ≥ 0, i = 1, . . . , k and

j = 1, . . . ,mi,
∑k

i=1

∑mi
j=1 ωij = 1. For a given θ and design points xij , i =

1, . . . , k, and j = 1, . . . ,mi, consider Σξ = B̃I−ξ (θ)B̃T as a function of ω. The

maximum value of |Σ−1
ξ | is achieved at any of its critical points or at a point on

the boundary.

Proof. Maximizing |Σ−1
ξ | is equivalent to minimizing − log |Σ−1

ξ |. Using Harville

(1997, p.309), we have, for i, j = 1, . . . ,m− 1,

∂2
(
− log |Σ−1

ξ |
)

∂ωi∂ωj
=

∂2 (log |Σξ|)
∂ωi∂ωj

= Tr

(
Σ−1
ξ

∂2Σξ

∂ωi∂ωj
− Σ−1

ξ

∂Σξ

∂ωi
Σ−1
ξ

∂Σξ

∂ωj

)
.

(5.8)

With H(ω) denoting the Hessian matrix of − log |Σ−1
ξ |, the (i, j)th element of

H(ω) is given by (5.8). By the same argument as in the proof of Theorem 5,

it is sufficient to show that H(ω) is a nonnegative definite matrix. As there,

let I−ξ = (I−ξ )1/2(I−ξ )1/2, where (I−ξ )1/2 is nonnegative definite. By (5.4) and a

similar argument as for (5.7), we have

Tr

(
Σ−1
ξ

∂2Σξ

∂ωi∂ωj

)
= 2Tr

(
Σ
−1/2
ξ B̃I−ξ Iiξ(I

−
ξ )1/2(I−ξ )1/2Ijξ I

−
ξ B̃TΣ

−1/2
ξ

)
. (5.9)

Using (5.3), for the second term in (5.8) we also have

Tr

(
Σ−1
ξ

∂Σξ

∂ωi
Σ−1
ξ

∂Σξ

∂ωj

)
= Tr

(
Σ
−1/2
ξ B̃I−ξ IiξI

−
ξ B̃TΣ−1

ξ B̃I−ξ Ijξ I
−
ξ B̃TΣ

−1/2
ξ

)
.

(5.10)

Thus, from (5.8), (5.9), and (5.10), H(ω) can be written as

H(ω) = H0(ω) +H1(ω), (5.11)

where the (i, j)th element of H0(ω) is

H0(ω)[i, j] = Tr
(
Σ
−1/2
ξ B̃I−ξ Iiξ(I

−
ξ )1/2(I−ξ )1/2Ijξ I

−
ξ B̃TΣ

−1/2
ξ

)
(5.12)

and the (i, j) element of H1(ω) is

H1(ω)[i, j] = Tr
(
Σ
−1/2
ξ B̃I−ξ Iiξ(I

−
ξ )1/2P⊥

[
(I−ξ )1/2B̃T

]
(I−ξ )1/2Ijξ I

−
ξ B̃TΣ

−1/2
ξ

)
.

(5.13)

Here P⊥
[
(I−ξ )1/2B̃T

]
denotes the orthogonal projection matrix onto the or-

thogonal complement of the column space of (I−ξ )1/2B̃T . That H0(ω) is non-

negative definite follows now from Proposition A.1 in the Appendix by taking

Ai = Σ
−1/2
ξ B̃I−ξ Iiξ(I

−
ξ )1/2. That H1(ω) is nonnegative definite follows by taking



1778 JOHN STUFKEN AND MIN YANG

Ai = Σ
−1/2
ξ B̃I−ξ Iiξ(I

−
ξ )1/2P⊥

[
(I−ξ )1/2B̃T

]
in that same proposition. This implies

that H(ω) is also nonnegative definite.

By Theorems 5 and 6, the optimal weights can be derived by solving m− 1

equations to find the critical points. These m − 1 equations are nonlinear in ω.

Since there is in general no closed form solution, we have to rely on a numerical

approach such as Newton’s method. Since the Hessian matrices are nonnegative

definite, the convergence can be very fast (see Deuflhard (2004)). However, it can

also result in negative weights. If, during the implementation of the algorithm, a

step takes us into a region where some weights are negative, the algorithm tries

to reduce the size of this step to assure all weights are positive. If this makes the

step too small, then a weight of zero is assigned to the weight variable that first

attains the value of zero along the path selected by the algorithm. This reduces

the number of support points, and we can now apply Theorems 5 or 6 again for

this reduced set of support points and search for the optimal weights on that set.

This process is repeated until we find weights that satisfy the constraints. We

have developed an efficient algorithm that accomplishes this. While there is no

guarantee that this algorithm always finds the optimal weights, we illustrate in

the next section that, when searching for an optimal design, there is a numerical

check as to whether the answer obtained from the algorithm corresponds indeed

to an optimal design. In our experience, it almost always does.

6. Examples

Based on the structure for optimal designs in Theorems 1 and 2, and the

suggested approach for finding optimal weights based on Theorems 5 and 6, we

can contemplate a complete grid search to identify optimal designs. Conceptu-

ally, for a design of the form in Theorems 1 or 2, we can use a sufficiently fine

grid to consider possible values for the unknown design points and, for each of

these, find the optimal weights based on the results in Section 5. However, with

multiple groups, this is practically unfeasible except for the simplest problems.

For example, even with four groups, besides the optimal weights we would need

to determine four unknown design points. A complete grid search for this prob-

lem that aims to find optimal support points that are accurate to two decimal

places seems excessive.

Instead we use a multi-stage grid search that starts with a coarse grid that

is made increasingly finer in later stages. At each stage we identify the best

design based on the grid at that stage; for the next stage, a finer grid is, in

each group, restricted to neighborhoods of the best support points found at the

current stage, still using the structure of the optimal designs in Theorems 1 and 2.

The search continues until a specified accuracy for the design points is reached.
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While this strategy can greatly reduce computing time, there is no guarantee

that the resulting design is indeed optimal. Fortunately, there is a powerful tool

to verify whether a design is optimal or not, namely the General Equivalence

Theorem (Pukelsheim (2006)). To formulate this tool, we focus on the common

slope models, Models (2.2) and (2.4). Straightforward changes can be made for

Models (2.3) and (2.5). With Xi = (1, XT
i , x)

T , a design ξ is locally optimal for

θ = θ0 if there exists a generalized inverse of Iξ, say G, such that for each i and

all x,

(Xi)TGT B̃T (B̃I−ξ (θ0)B̃
T )−(p+1)B̃GX i ≤ Tr

(
(B̃I−ξ (θ0)B̃

T )−p
)
,

with equality when x is one of the support points of ξ. Here p = 0 corresponds

to D-optimality and p = −1 to A-optimality. Note that this property does not

need to hold for every generalized inverse of Iξ. However, in our experience the

Moore-Penrose inverse always works. In our numerical studies, we were able to

verify every optimality result in this way. The algorithm can be summarized as

follows:

(i) Start with a coarse grid within each of the groups.

(ii) Find optimal weights for each possible design of the form in Theorem 1 or 2

that chooses its support from the grid points, and identify the best design of

this type.

(iii)Build a finer grid around the support points of this best design, find optimal

weights for each possible design of the form in Theorem 1 or 2, now choosing

the support points from the finer grid, and identify the best design of this

type.

(iv)Repeat (iii) until no further improvement can be made (up to a specified

accuracy).

(v) Verify that the final design is optimal using the General Equivalence Theo-

rem.

Example 1. Consider the logistic model for two factors, each with two levels,

logit (Prob(Yij = 1)) = α0 + αi + βxij , i = 1, . . . , 4. (6.1)

Here, the αi’s, i = 1, . . . , 4, represent the group effects of the groups (1, 1), (1, 2),

(2, 1), and (2, 2), respectively. We assume that there is no restriction on the xij ’s,

and consider two cases: (1) The full model with no further assumptions about the

αi’s; and (2) the main-effects model with α1−α2−α3+α4 = 0. For the interaction

model we use the parameter vector η = ((α1 + α2 − α3 − α4)/2, (α1 − α2 + α3 −
α4)/2, (α1 − α2 − α3 + α4)/2, β)

T , while the main-effects model corresponds to



1780 JOHN STUFKEN AND MIN YANG

Table 1. Support Points and Weights for Locally Optimal Designs

Main-effects model Interaction model
A-optimal D-optimal∗ A-optimal D-optimal∗

group (1.8284, 0.1253) 2.2229 (1.7539, 0.1253) 2.0436
(1,1) (0.1716, 0.1253) -0.2229 (0.2461, 0.1253) -0.0436
group (1.5784, 0.1521) 1.9729 (1.5039, 0.1532) 1.7936
(1,2) (-0.0784, 0.0974) -0.4729 (-0.0039, 0.0963) -0.2936
group (2.0784, 0.0974) 2.4729 (2.0039, 0.0963) 2.2936
(2,1) (0.4216, 0.1521) 0.0271 (0.4961, 0.1532) 0.2064
group (1.8284, 0.1253) 2.2229 (1.7539, 0.1253) 2.0436
(2,2) (0.1716, 0.1253) -0.2229 (0.2461, 0.1253) -0.0436
∗ For the D-optimal designs, all support points have weight 1/8.

Table 2. The value of c∗ that maximizes c2Ψp(c).

c∗ c∗

p Logistic Probit p Logistic Probit
1 2.3994 1.5750 6 0.8399 0.6696
2 1.5434 1.1381 7 0.7744 0.6209
3 1.2229 0.9376 8 0.7222 0.5815
4 1.0436 0.8159 9 0.6793 0.5487
5 0.9254 0.7320 10 0.6432 0.5209

η = ((α1+α2−α3−α4)/2, (α1−α2+α3−α4)/2, β)
T . For both cases we run the

algorithm to search for locally A- and D-optimal designs with local conditions

given by α0 = −1, (α1, . . . , α4) = (0, 0.25,−0.25, 0), and β = 1. The A- and

D-optimal designs found by the algorithm are shown in Table 1. For A-optimal

designs the support points are followed by the corresponding weights, while only

the support points are presented for D-optimal designs since all the weights are

1/8. These designs are not unique, and optimal designs with fewer support points

may be found. The designs in the table do have a lot of structure. This is not

surprising in view of Theorem 1, but is easier seen in terms of the cij ’s than in

terms of the reported xij ’s. For example, the A-optimal design in Table 1 for the

main-effects model has support points (ci1, ci2) = (0.8284,−0.8284) for each of

the four groups.

Finding one of these optimal designs takes about 2 seconds of CPU time on

a desktop PC with a 3.2GHz Intel Pentium processor.

The D-optimal designs agree with those derived in Theorem 3 (for the inter-

action model) and Theorem 4 (for the main-effects model). To see this, in Table

2 we present the point c∗ that maximizes c2Ψp(c) for the logistic model (and also

for the probit model) and small values of p.
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For the main-effects model here, Theorem 4 gives c∗ = 1.2229 (corresponding

to p = 3). These cij values correspond, for the given θ = θ0, exactly to the xij
values for the D-optimal design for the main-effects model in Table 1. Similarly,

using the equivalence of the full interaction model with the model for a single

factor at 3 levels, Theorem 3 asserts that the optimal c∗ for the interaction model

corresponds to p = 4, c∗ = 1.0436. This also corresponds exactly to the xij ’s for

the D-optimal design presented in Table 1 for that case.

While the designs in Table 1 are locally optimal if our specification of θ0
is correct, it is useful to know how efficient they are if θ0 were misspecified.

Following Dror and Steinberg (2006) and Woods et al. (2006), we study the

robustness of the optimal designs by randomly drawing other possible true values

for θ. If our choice of θ0 was based on previous information, then it may not

be unreasonable to draw θ from a distribution with mean θ0. Here we took

θ ∼ N(θ0, σ
2I6×6). If θ1 is the value drawn from this distribution for a selected

value of σ2, then we first derived a locally optimal design for θ1. If ξ0 and ξ1
denote locally optimal designs for θ0 and θ1, respectively, then we computed the

efficiency of ξ0 for the case that θ1 is the true value, effξ0(θ1), as

|(B̃I−ξ0(θ1)B̃
T )−1|1/r

|(B̃I−ξ1(θ1)B̃
T )−1|1/r

under D-optimality, and

Tr(B̃I−ξ1(θ1)B̃
T )

Tr(B̃I−ξ0(θ1)B̃
T )

under A-optimality.

(6.2)

Here, r is the rank of B̃. The values that we took for σ were 0.4, 0.2, and 0.1. For

each scenario, we drew 1,000 random θ1 values, leading to 1,000 measurements of

the efficiency of ξ0. Summary statistics for the efficiencies are reported in Table

3. In this table, ξ0A1 and ξ0A2 denote the locally optimal designs for θ0 under

the A-optimality criterion for the main-effects model and the interaction model,

respectively. Similarly, ξ0D1 and ξ0D2 denote the D-optimal designs.

The results show how the performance of the locally optimal designs can

degrade with increased uncertainty about the value of θ0. It is also worth ob-

serving that the A-optimal designs are not D-optimal, and vice versa. More

precisely, with θ0 = (−1, 0, 0.25,−0.25, 0, 1)T , under the D-optimality criterion,

the efficiency of ξ0A1 for the main-effects model is 0.921 and that of ξ0A2 for the

interaction model is 0.954. Conversely, for the A-optimality criterion, ξ0D1 has

an efficiency of 0.902 for the main-effects model and ξ0D2 has an efficiency of

0.939 for the interaction model.

Example 2. The proposed method also works for a larger number of groups. To

demonstrate this, consider again an example with two factors, but this time both
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Table 3. Efficiencies of the locally optimal designs.

Design σ Mean Std Dev Minimum Maximum
ξ0A1 0.4 0.9196 0.0903 0.2703 0.9986

0.2 0.9765 0.0284 0.7559 0.9998
0.1 0.9942 0.0066 0.9436 0.9999

ξ0D1 0.4 0.8579 0.1459 0.0244 0.9988
0.2 0.9628 0.0413 0.6747 0.9995
0.1 0.9902 0.0116 0.8921 0.9999

ξ0A2 0.4 0.9240 0.0786 0.4672 0.9994
0.2 0.9783 0.0236 0.8268 0.9997
0.1 0.9945 0.0006 0.9505 0.9998

ξ0D2 0.4 0.8779 0.1291 0.0742 0.9975
0.2 0.9668 0.0344 0.7122 0.9988
0.1 0.9914 0.0088 0.9286 0.9999

with four levels. The form of the model is as in (6.1), but we assume that the two-

factor interaction is negligible. We took θ0 = (−1, 0.05, 0,−0.05, 0.1, 0.15, 0.1,

0.05, 0.2, 0.25, 0.2, 0.15, 0.3,−0.05,−0.1,−0.15, 0, 1)T , where the first entry is for

α0, the next four for the groups (1,1), (1,2), (1,3) and (1,4), and so on. There

was no restriction on the covariate value x. For η we used three main-effect

contrasts for the first factor and three for the second, and the slope parame-

ter β. For the contrasts in both cases we took the orthonormal contrasts with

coefficients (−3,−1, 1, 3)/
√
20, (1,−1,−1, 1)/2, and (−1, 3,−3, 1)/

√
20. The 32

support points and weights for A- and D-optimal designs are given in Table 4.

The D-optimal design corresponds exactly to the design given by Theorem 4

and Table 2 using p = k1 + 1 = 7.

Under the D-optimality criterion, the A-optimal design has an efficiency of

.988, while the D-optimal design has an efficiency of .982 under the A-optimality

criterion. To find these optimal designs took about 70 seconds of CPU time on

a desktop PC with a 3.2GHz Intel Pentium processor.

7. Discussion

This paper provides theoretical results for optimal designs under various

models that include group effects. Theorems 1 and 2 extend the results in Yang

and Stufken (2009).

The results also hold for multi-stage approaches, by which we mean that if

we add design points to an existing initial design, we can do so in an optimal

way by restricting attention to designs described in the two theorems, no matter
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Table 4. Support points and weights for locally optimal designs.

Group A-optimal D-optimal∗

(1,1) (1.5843, 0.0184); (0.3157, 0.0442) 1.7244; 0.1756
(1,2) (1.6343, 0.0191); (0.3657, 0.0434) 1.7744; 0.2256
(1,3) (1.6843, 0.0363); (0.4157, 0.0262) 1.8244; 0.2756
(1,4) (1.5343, 0.0453); (0.2657, 0.0173) 1.6744; 0.1256
(2,1) (1.4843, 0.0529); (0.2157, 0.0097) 1.6244; 0.0756
(2,2) (1.5343, 0.0263); (0.2657, 0.0363) 1.6744; 0.1256
(2,3) (1.5843, 0.0222); (0.3157, 0.0405) 1.7244; 0.1756
(2,4) (1.4343, 0.0298); (0.1657, 0.0327) 1.5744; 0.0256
(3,1) (1.3843, 0.0417); (0.1157, 0.0207) 1.5244; -0.0244
(3,2) (1.4343, 0.0472); (0.1657, 0.0153) 1.5744; 0.0256
(3,3) (1.4843, 0.0281); (0.2157, 0.0345) 1.6244; 0.0756
(3,4) (1.3343, 0.0259); (0.0657, 0.0363) 1.4744; -0.0744
(4,1) (1.6843, 0.0150); (0.4157, 0.0475) 1.8244; 0.2756
(4,2) (1.7343, 0.0294); (0.4657, 0.0329) 1.8744; 0.3256
(4,3) (1.7843, 0.0294); (0.5157, 0.0328) 1.9244; 0.3756
(4,4) (1.6343, 0.0329); (0.3657, 0.0297) 1.7744; 0.2256
∗ For the D-optimal design, all support points have weight 1/32.

what the initial design is. The reason that this holds is the one in Yang and

Stufken (2009). This is important, because in a multi-stage approach the first

stage may give us information about the unknown parameters that can then be

used in the local optimality approach for adding additional design points at the

second stage.

Whether in a multi-stage or single-stage approach, the designs that are ob-

tained are often large if there are many groups; with k groups, as many as 2k

support points. This may be unavoidable, especially in a single-stage approach.

For example, for Model (2.3) there are potentially 2k independent estimable

functions, so that 2k is the minimum number of support points needed to en-

able unbiased estimation of all of these functions. For the single-slope models or

for models with additional assumptions (for example, a main-effects model or a

model with main-effects and two-factor interactions) we may hope to get by with

fewer support points.

For the special case of Model (2.2) and D-optimality, we used Theorems 1

and 2 to derive explicit solutions for optimal designs in Section 4. For other

cases, while Theorems 1 and 2 make finding optimal designs much easier, this

can be a formidable problem for larger k. While there is no theoretical guarantee

that our algorithm works, empirical evidence for it is very good. Moreover, as

described in Section 6, the General Equivalence Theorem allows one to check

whether a design found by the algorithm is optimal. Generally, optimal designs

of the forms described in Theorems 1 and 2 are not unique. Depending on the
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model and on the vector η of interest, our algorithm may find optimal designs
that are supported on less than 2k points, but in general does not find designs
with the smallest possible support size. While the algorithm can handle fairly
large cases, there is a need for an algorithms that handles even larger cases.

Another feature that we observed is that, in terms of the cij ’s, the design
points for an optimal design are often (but not always) the same in each of the
groups. It is an interesting open question to identify conditions that allow an
optimal design of the forms described in Theorems 1 and 2 but with the same
cij ’s in each of the groups.
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Appendix

Proposition A.1. Let Ai, i = 1, . . . , n, be p× q matrices. The n×n matrix M ,
with element M [i, j] = Tr(AiA

T
j ) in position (i, j), is nonnegative definite.

Proof. Consider the matrix A = (AT
1 , A

T
2 , . . . , A

T
n )

T . It is clear that the np×np
matrix AAT is nonnegative definite. AAT can be written as

AAT =


A1A

T
1 A1A

T
2 . . . A1A

T
n

A2A
T
1 A2A

T
2 . . . A2A

T
n

...
...

. . .
...

AnA
T
1 AnA

T
2 . . . AnA

T
n

 . (A.1)

Let Ji, i = 1, . . . , p, be a 1 × p vector with the the ith element 1 and all others
0. Define the n× np matrix Bi as

Bi =


Ji 01×p . . . 01×p

01×p Ji . . . 01×p
...

...
. . .

...

01×p 01×p . . . Ji

 . (A.2)

It is obvious that the n×n matrix BiAATBT
i is nonnegative definite. Its (k, l)th

element is given by JiAkA
T
l J

T
i , which is the ith diagonal element of AkA

T
l . Thus,

we have

M =

p∑
i=1

BiAA
TBT

i . (A.3)

By the fact that BiAA
TBT

i , i = 1, . . . , p, is nonnegative definite, the conclusion
follows.
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Proposition A.2. For t× t positive definite matrices Qi and positive numbers

λi, i = 1, . . . , n, with
∑n

i=1 λi = 1, we have

logDet

(
n∑

i=1

λiQi

)
≥

n∑
i=1

λi logDet(Qi). (A.4)

Equality holds only when all Qi’s are the same.

Proof. It suffices to prove (A.4) for n = 2. Since Q1 is positive definite, it is

enough to prove that, for 0 < λ < 1,

logDet
(
λI + (1− λ)Q

−1/2
1 Q2Q

−1/2
1

)
≥ λ logDet(I) + (1− λ) logDet(Q

−1/2
1 Q2Q

−1/2
1 ). (A.5)

Since Q
−1/2
1 Q2Q

−1/2
1 is a positive definite matrix, there exists an orthonormal

matrix P , such that

PQ
−1/2
1 Q2Q

−1/2
1 P T = diag(µ1, . . . , µt), (A.6)

where µi > 0, i = 1, . . . , t are the eigenvalues of Q
−1/2
1 Q2Q

−1/2
1 . By (A.6), a basic

property of orthonormal matrices, and the fact that − log(x) is strictly convex,

we have

logDet
(
λI + (1− λ)Q

−1/2
1 Q2Q

−1/2
1

)
=

t∑
i=1

log (λ+ (1− λ)µi)

≥ (1− λ)

t∑
i=1

logµi = (1− λ) logDet(Q
−1/2
1 Q2Q

−1/2
1 ). (A.7)

Moreover, equality in (A.7) holds only when µi = 1, i = 1, . . . , t, which implies

that Q1 = Q2 by (A.6). This completes the proof.
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