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Abstract: A formal test for weak stationarity of spatial and spatio-temporal ran-

dom fields is proposed. We consider the cases where the spatial domain is planar or

spherical, and we do not require distributional assumptions for the random fields.

The method can be applied to univariate or to multivariate random fields. Our test

is based on the asymptotic normality of certain statistics that are functions of esti-

mators of covariances at certain spatial and temporal lags under weak stationarity.

Simulation results for spatial as well as spatio-temporal cases on the two types of

spatial domains are reported. We describe the results of testing the stationarity of

Pacific wind data, and of testing the axial symmetry of climate model errors for

surface temperature using the NOAA GFDL model outputs and the observations

from the Climate Research Unit in East Anglia and the Hadley Centre.
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1. Introduction

When dealing with spatial or spatio-temporal data from environmental ap-

plications, one often makes simplifying assumptions on the covariance structure,

such as stationarity. For a spatial random field, Z(s), defined in D ⊂ Rd, we say

that it is (weakly) stationary if the mean is constant across the spatial domain,

D, and the covariance only depends on the lag between two spatial locations. In

our notation, E{Z(s)} = µ ∈ R for all s ∈ D, and Cov{Z(s1), Z(s2)} = C(s1−s2)

for an autocovariance function C and for all s1, s2 ∈ D. Therefore, if a spatial

random field is nonstationary, the nonstationarity may be present in the mean

and/or the covariance structure. In this paper, we focus on the nonstationarity

of the random field in the covariance structure, assuming the mean of the random

field is zero. If the random field does not have zero mean, we assume that we

can remove the mean structure by subtracting a proper estimate of it and get a

zero mean random field.

For a spatial random field defined in Rd or a spatio-temporal random field

defined in Rd ×Z (d ≥ 1), several authors have developed stationary or isotropic
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covariance models; see Gneiting, Genton, and Guttorp (2007) for a recent review.

There also have been a number of papers that discuss hypothesis tests on separa-

bility of spatio-temporal covariance structure (Mitchell, Genton, and Gumpertz

(2005, 2006); Fuentes (2006); Bevilacqua et al. (2010)). However, there are only

few papers that discuss hypothesis tests of stationarity. Fuentes (2005) presented

a test of stationarity for spatial random fields through a direct extension of the

test of stationarity for time series of Priestley and Subba Rao (1969). The idea

is based on spatial spectral analysis, but this approach requires that the spatial

random field is on a regular grid. Dwivedi and Subba Rao (2010) developed a

test of stationarity for time series based on the Discrete Fourier Transform but

the asymptotic distribution of the test statistic is derived under the assumption

that the process is either MA(∞) or is strongly stationary under some mixing

conditions.

If the data cover a large portion of the Earth, as is common for satellite data

or numerical model outputs, we need to consider a random field on the surface of

the sphere. In this case the stationarity of the random field requires a different

treatment. Here, even if the random field is isotropic, it may not be that it is

stationary in latitude, unless the longitudinal lag is zero.

Global data from environmental applications often exhibit strong dependence

of covariance on latitude (e.g. Stein (2007); Jun and Stein (2008)). Further, the

covariance structures in the Northern and Southern Hemispheres need not be

symmetric around the Equator. Thus, the left panel of Figure 1 shows the stan-

dard deviation of global surface temperature data (specifically, the difference

between the temperature observation and climate model output for the corre-

sponding quantity, see Section 5.2 for more details) with respect to latitude.

Here dependence of the standard deviation of the data on latitude is not sym-

metric around the Equator. It is sometimes assumed that the random field is not

isotropic, but stationary with respect to longitude (and time) and nonstationary

with respect to latitude. For a global random field Z(L, l) (L: latitude, l: lon-

gitude) on a sphere, we say that Z is axially symmetric if the covariance only

depends on longitude through the difference between the two longitude values

(Jones (1963)): Cov{Z(L1, l1), Z(L2, l2)} = C(L1, L2, l1 − l2) for all L1, L2, l1, l2
and an appropriate covariance function C. The covariance models used in Stein

(2007), and Jun and Stein (2007, 2008) are not isotropic but assume axial sym-

metry.

Our interest lies in the axial symmetry. Figure 1 makes the dependence of the

standard deviation of the data on latitude apparent; dependence on longitude is

much weaker. Stein (2007) and Jun and Stein (2008) showed similar features for

the total column ozone concentration data and concluded that axial symmetry

was reasonable. Similarly, Cressie and Huang (1999) concluded that there was
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Figure 1. Standard deviations for the global surface temperature data
(monthly average) in December, 1999, with respect to latitude (left panel)
and longitude (right panel).

no clear nonstationarity in the Pacific wind data (see Section 5.1). In these

examples, however, the judgment on whether or not the random field is stationary

(or axially symmetric for random fields on a sphere) is subjective and is mostly

based on empirical plots of covariances or variograms.

We present a formal hypothesis test for stationarity or axial symmetry of

spatial and spatio-temporal random fields on planar and spherical domains. Re-

cently, there has been a series of papers that have developed tests for various

properties of the covariance structure for spatial and spatio-temporal random

fields using empirical covariance estimators as test statistics. Guan, Sherman,

and Calvin (2004) developed a test for isotropy of a spatial random field in R2

using the asymptotic joint normality of empirical covariance estimators at sev-

eral spatial lags. Li, Genton, and Sherman (2007, 2008a,b) extended this idea

to test separability and full symmetry for spatio-temporal random fields in both

univariate and multivariate cases. Li et al. (2009) tested Taylor’s hypothesis

for the space-time covariance structure of rainfall data. However, the results in

Guan, Sherman, and Calvin (2004), Li, Genton, and Sherman (2007, 2008a,b),

and Li et al. (2009) are based on the assumption that the underlying spatial or

spatio-temporal random fields are strongly stationary, whereas we test weak sta-

tionarity. Moreover, we consider random fields not only on planar domains but

also on spherical domains. One of the main applications that we have in mind

is that of testing the covariance structure of global data. Although the present

work builds upon the results in Guan, Sherman, and Calvin (2004), Li, Genton,

and Sherman (2008a,b), there are some significant differences.
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The rest of the paper is organized as follows. Section 2 develops the asymp-

totic joint normality of our test statistics with some moment and mixing condi-

tions. We consider spatial and spatio-temporal random fields as well as planar

and spherical domain cases. The formal testing procedure is presented in Sec-

tion 3. We report simulation results in Section 4. The application results to the

Pacific Ocean wind data and global temperature data are given in Section 5. We

conclude the paper with some discussion; the proof of the theorem is given in the

Appendix.

2. Asymptotic Theory

We test weak stationarity of spatial and spatio-temporal random fields on

either planar or spherical domains. The basic idea is to divide the spatial domain

into two (or more) disjoint domains and to use the test statistic that is based on

the differences between empirical estimators of covariances at given lags from the

sub-domains. We establish the asymptotic normality of the empirical estimators

and use an asymptotic chi-squared test based on it.

We first separate the spatial and spatio-temporal random fields. For each,

we consider planar spatial domains and spherical spatial domains separately. For

planar spatial domains, the asymptotic results are based on increasing domain

asymptotics. For the spatio-temporal case, the spatial domain is fixed and the

asymptotics come from the increasing time domain. We then discuss how the

results can be extended to multivariate random fields.

We denote the random field as Z(x). For a spatial random field, x = s ∈ D,

where D is the spatial domain; for a spatio-temporal random field, x = (s, t) ∈
D × Z. In particular, if we consider a spatial random field on a sphere, we take

x = (L, l) ∈ D ⊂ S2, where L denotes the latitude, l the longitude, and S2 the

surface of a sphere with radius R in R3. The lag, k, may be spatial (k = h) or

spatio-temporal (k = (h, u)).

2.1. Spatial random fields

We first suppose that the observations are taken over D ⊂ Rd for some d ≥ 1.

Guan, Sherman, and Calvin (2004) dealt with the case d = 2 and, while we also

present results for d = 2, it is easy to show that our results hold for d ≥ 1.

We consider a regularly spaced domain; similar results may hold for irregularly

spaced domains along the lines of Guan, Sherman, and Calvin (2004). Our results

come from increasing domain asymptotics.

Consider a spatial random field {Z(s) : s ∈ D}. Suppose the observations are
taken over D ⊂ Z2, a 2-dimensional space of integer lattice points. We assume

Z has mean zero and denote the covariance function of Z as C(s, s + h) =

Cov{Z(s), Z(s + h)}, where s, s + h ∈ D. In the case that the random field Z
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is weakly stationary, C(s, s + h) = C(0,h) = C0(h) for all s ∈ D, h, and a

stationary covariance function C0. Now let S(h;D) = {s : s ∈ D, s + h ∈ D}
and let |S(h;D)| be the cardinality of S(h;D). We consider the statistic,

Â(h;D) =
1

|S(h;D)|
∑

s∈S(h;D)

Z(s)Z(s+ h). (2.1)

If Z is weakly stationary with the covariance function C0, then Â(h; ·) is an

estimator of the covariance C0(h) = C(0,h) for a spatial lag h.

Our test is based on the difference of estimators from two disjoint spatial

domains whose union is the entire domain D. Here, we let Dn be a domain

that increases with n and consider Dn,1 and Dn,2 such that Dn,1 ⊔ Dn,2 = Dn

(⊔ denotes a union of disjoint sets). We require |Dn,1|/|Dn,2| = O(1). An

example of a spatial domain when d = 2 is given in Guan, Sherman, and Calvin

(2004): let B ⊂ (0, 2] × (0, 1] be the interior of a simple closed curve such that

B ∩ (0, 1]× (0, 1] and B ∩ (1, 2]× (0, 1] have nonempty interiors. Multiply B by

n (call it Bn) and take Dn = {s : s ∈ Bn ∩ Z2}, Dn,1 = Dn ∩ (0, n]× (0, n], and

Dn,2 = Dn ∩ (n, 2n] × (0, n]. The shape of Dn may be more general than this,

but in general we require

|Dn| = O(n2) and |∂Dn| = O(n), (2.2)

where the boundary of a set D is ∂D ≡ {s ∈ D : ∃ s′ /∈ D s.t. d(s, s′) = 1},
where s = (sx, sy)

T , d[(sx, sy), (s
′
x, s

′
y)] ≡ max(|sx − s′x|, |sy − s′y|), and |∂D| is

the number of points in ∂D.

For a set of spatial lags Λ, let Ĝn,i = {Â(h;Dn,i) : h ∈ Λ} for i = 1, 2. If

Z is strongly stationary, the asymptotic normality of Ĝn,i is a result in Guan,

Sherman, and Calvin (2004). However, several assumptions required there may

not be relevant here. In the following, we discuss the assumptions that we require

for the test, and then we establish the asymptotic joint normality of Ĝn =

(Ĝn,1, Ĝn,2)
T .

Start with

α(p, k) ≡ sup{|P (A1 ∩A2)− P (A1)P (A2)| : Ai ∈ F(Ei), |Ei| ≤ p,

i = 1, 2, d(E1, E2) ≥ k},

where |E| is the cardinality of the index set E, F(E) is the σ-algebra generated

by the random variables {Z(s) : s ∈ E}, and d(E1, E2) is the minimal “city

block” distance between E1 and E2. We assume

sup
p

α(p, k)

p
= O(k−ϵ) for some ϵ > 2. (2.3)
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Thus, as distance k increases, dependence decreases at a polynomial rate in k.

Guan, Sherman, and Calvin (2004) and Li, Genton, and Sherman (2008a) assume

the same. Any m-dependent random field (observations separated by a distance

larger than m are independent) satisfies this condition.

Consider the moment condition for a general random field Z that may be

nonstationary:

sup
n

E{|
√

|Dn,i| × |Â(h;Dn,i)|2+δ} ≤ Cδ, (2.4)

for some δ > 0, Cδ < ∞, and i = 1, 2. Guan, Sherman, and Calvin (2004) re-

quire a similar moment condition for a strongly stationary random field. This

condition is only slightly stronger than the existence of the (standardized) asymp-

totic variance of Â(h;Dn,i). Another condition is that limn→∞
√

|Dn,i||Dn,j |
×Cov{Â(h1;Dn,i), Â(h2;Dn,j)} exists and is finite for i, j = 1, 2 and h1,h2 ∈ Λ.

This holds if we have∑
s1∈S(h1;Dn,i)

∑
s2∈S(h2;Dn,j)

Cov{Z(s1)Z(s1 + h1), Z(s2)Z(s2 + h2)} = O(n2) (2.5)

for i, j = 1, 2. This holds for any m-dependent process with finite fourth moment,

or if E{|Z(s)|4+δ} < Dδ for some δ > 0 and Dδ < ∞.

Theorem 1. Let {Z(s) : s ∈ Zd} be a random field that is observed in Dn

satisfying (2.2). If (2.5) holds, then the block matrix Σ = (Σij) with Σij ≡
limn→∞(1/4)|Dn|Cov(Ĝn,i, Ĝn,j), i, j = 1, 2, exists and is finite. If Σ, Σ11,

Σ22 are positive definite, (2.3) and (2.4) hold, and Z is weakly stationary with

autocovariance function C0, then the limiting distribution of (
√

|Dn,1|(Ĝn,1 −
G),

√
|Dn,2|(Ĝn,2 −G))T is multivariate normal with mean zero and covariance

matrix Σ, where G = {C0(h) : h ∈ Λ}.

Proof. See the Appendix.

For the spatial case with a spherical domain, a natural asymptotic framework

is the so called fixed domain or infill asymptotics (Stein (1995); Lahiri (1996);

Zhang and Zimmerman (2005)). To the best of our knowledge, there have been

no results on statistics as in (2.1) under an infill asymptotics framework on the

sphere.

2.2. Spatio-temporal random fields

The argument is similar to the one in Section 2.1, but here the asymp-

totics come from an increasing time domain. We take the space to be fixed and

bounded, and regularly and irregularly spaced spatial domains cases are covered.



TEST FOR STATIONARITY OF RANDOM FIELDS 1743

For x = (s, t)T , s ∈ D ⊂ Rd, t ∈ N, we assume that Z(x) is a random field

with mean zero. We take the spatial domain for observations in D to be fixed

and the observations taken regularly over time, Tn = {1, . . . , n}. We divide D

into two disjoint, nonempty subsets, D1 and D2 such that D1 ⊔ D2 = D. As

in Section 2.1, we require assumptions on the random field, although we do not

require (2.2) since the spatial locations are considered to be fixed. For the mixing

condition, let

α(u) = sup
v∈N

[
sup
A,B

{|P (A ∩B)− P (A)P (B)|, A ∈ Fv
−∞, B ∈ F∞

v+u}
]
, (2.6)

where Fv
−∞ is the σ-algebra generated by the random field until t = v and F∞

v+u

is the σ-algebra generated by the random field from time t = v + u. We use

a slightly different version of (2.6) than in Li, Genton, and Sherman (2008a,b),

since we do not assume strong stationarity in time. We require the strong mixing

condition

α(u) = O(u−ϵ) for some ϵ > 0. (2.7)

Bradley (2005) discussed several mixing conditions, including strong mixing, for

processes that are not necessarily stationary, provided examples of processes that

satisfy certain mixing conditions, and described relationships between mixing

conditions.

We consider the statistic (for k = (h, u)),

Â(k;D) =
1

|S(h;D)|(|Tn| − u)

∑
s∈S(h;D)

n−u∑
t=1

Z(x)Z(x+ k).

If Z is weakly stationary, this is an estimator of the covariance C0(k) = Cov{Z(x),

Z(x+ k)}. Let Λ be a set of space-time lags. We establish the asymptotic joint

normality of Ĝn = (Ĝn,1, Ĝn,2)
T for Ĝn,i = {Â(k;Di) : k ∈ Λ}. To do this we

consider additional assumptions. The moment condition is

sup
n

E{|
√

|Tn| |Â(k;D)|2+δ} ≤ Cδ for some δ > 0, Cδ < ∞. (2.8)

To guarantee the existence and finiteness of the covariance matrix of Ĝn, consider

that, for xi = (si, ti)
T ∈ D × Tn, i = 1, 2,

n−u1∑
t1=1

n−u2∑
t2=1

∑
s1∈S(h1;D1)

∑
s2∈S(h2;D2)

Cov{Z(x1)Z(x1 + k1), Z(x2)Z(x2 + k2)} = O(n2)

(2.9)

for all ki = (hi, ui)
T and hi, ui finite (i = 1, 2).
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Theorem 2. Let {Z(x) : x ∈ Rd×N} be a spatio-temporal random field observed

in D × Tn, where D ⊂ Rd and Tn = {1, . . . , n}. Let D1 and D2 be non-empty

subsets of D with D = D1 ⊔D2. If (2.9) holds, then Σ = limn→∞ |Tn|Var(Ĝn)

exists and is finite. If Σ is positive definite, (2.7) and (2.8) hold, and Z is

weakly stationary with autocovariance function C0, and if we let G = {C0(k),k ∈
Λ}, then

√
|Tn|(Ĝn − (G,G)T ) is asymptotically normal with mean zero and

covariance matrix Σ.

This result is similar to Proposition 1 in Li, Genton, and Sherman (2008b), except

that they required strong stationarity of the spatio-temporal random fields. The

proof of Theorem 2 is similar to the proof of Theorem 1, given in the Appendix.

When the spatial domain is spherical, unlike the case in Section 2.1, the

asymptotic results simply follow from Theorem 2.

2.3. Extension to multivariate random fields

There are several recent papers that develope cross-covariance models for

multivariate processes (e.g. Gneiting, Kleiber, and Schlather (2010); Apanaso-

vich and Genton (2010); Apanasovich, Genton, and Sun (2012)). The class of

models developed in Jun (2011) gives nonstationary (axially symmetric) cross-

covariances for multivariate processes on a sphere and the approach can easily

be extended to spatio-temporal processes.

For a bivariate random field, Z = (Z1, Z2)
T , our goal is to test whether

the cross-covariance Cov{Z1(x1), Z2(x2)} only depends on x1 and x2 through

x1 − x2. Marginal weak stationarity of Z1 and Z2 does not necessarily imply

weak stationarity of the cross-covariance structure of the two random fields. The

basic idea of the asymptotic theory for the cross-covariance case is the same as

in the univariate case and we simply need to modify the statistic Â, with the

spatio-temporal case as an example with x = (s, t),k = (h, u), to write

Â(k; ·) = 1

|S(h; ·)|(|Tn| − u)

∑
s∈S(h;·)

n−u∑
t=1

Z1(x)Z2(x+ k).

Here, we assume that the random fields Z1 and Z2 are observed over the same

spatial and temporal domains.

The asymptotic joint normality of Ĝn holds for the spatial case under in-

creasing domain asymptotics, as in Section 2.1, and for the spatio-temporal case

under increasing time domain asymptotics as in Sections 2.2. The proof is similar

to that of the previous theorems. Similar results are presented in Li, Genton, and

Sherman (2008b), although their results are for strongly stationary multivariate

processes.
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3. Testing Procedure

3.1. Hypothesis and contrasts

We test the null hypothesis of weak stationarity of the random field. We

write this as Â(k;D1) = Â(k;D2), where Â(·;D) is calculated from Z defined

on D or D × Tn, and k ∈ Λ. Therefore we have XĜn = 0 where X is a full

row rank matrix. In particular, for a spatial random field on R2, if we consider

Λ = {(1, 0), (0, 1)}, then we may let X = (I2,−I2), where In denotes the identity

matrix of dimension n× n. Here, X is of dimension 2× 4. Unlike the situations

in Guan, Sherman, and Calvin (2004), Li, Genton, and Sherman (2007, 2008a,b),

and Li et al. (2009), we do not have ambiguity in choosing the contrast matrix X.

Once we choose the lags to use through Λ, the contrast matrix X is automatically

decided since X should simply form the differences of Â values in two different

spatial regions.

We give an example of how to construct a test statistic when we have spatio-

temporal random fields; the test statistic for the spatial case works in the same

way. Suppose we consider a spatio-temporal random field and |Λ| = m. Let

G=
√

|Tn|(Ĝn − (G,G)T ), using the same notation as in Section 2.2. Define an

m× 2m matrix X such that X = (Im,−Im). Then our test statistic is

Tm = (XG)T (XΣXT )−1XG (3.1)

and, due to Theorem 2, Tm is asymptotically chi-square distributed with degrees

of freedom m.

We estimate the covariance matrix, Σ, using subsampling (Guan, Sherman,

and Calvin (2004); Li, Genton, and Sherman (2007, 2008a,b); Li et al. (2009)).

The L2-consistency of the subsampling estimator of the covariance matrix holds

in our case due to (2.3), (2.4), and Theorem 1 in Ekström (2008). The results

in Ekström (2008) do not require stationarity of the random field and assume a

mixing condition weaker than (2.3). Therefore, if we replace Σ in (3.1) with Σ̂,

the same asymptotic result holds by the multivariate Slutsky Theorem, without

additional conditions. As noted in Guan, Sherman, and Calvin (2004), for the

spatial case (in Section 2.1) in which the convergence of the asymptotic chi-

square test statistic is slow, we explored both the asymptotic chi-square test

and the calculation of p-values using subsampling. For the spatio-temporal case,

we found that the convergence of the asymptotic chi-square test statistic was

relatively fast.
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3.2. Splitting the spatial domain

Our test statistic is based on the difference between estimators in two disjoint

subsets of the spatial domain. In splitting the spatial domain, however, there is

no obvious way of doing it. Furthermore, different collections of the random

splitting sets may produce different p-values and, in some situations, the results

of hypothesis testing may be different. Therefore, instead of splitting the domain

into neighboring disjoint domains, it could be beneficial to randomly split the

domain with respect to one of the spatial coordinates and repeat this procedure

several times for both spatial coordinates. For example, Figure 2 gives an illus-

tration of how to randomly split domains with respect to longitude or latitude

for spherical data. This random splitting prevents us from getting spurious small

p-values if it happens to be the case that there is a specific local spot where the

values are either high or low (although the underlying random field is weakly

stationary and the random field has mean zero).

In Section 2.1, we imposed a condition on the boundary of the spatial domain

as in (2.2) for spatial processes. If we perform random splitting many times, there

may be a case where the condition on the boundary of the spatial domain is not

met. Thus, for this case, when we perform random splitting, we have to keep in

mind that we may need to avoid certain splits of the spatial domain, although

those that violate the condition in (2.2) are quite rare for a reasonably large n.

When we do not have many spatial points to begin with, we have to ensure that

there are enough pairs of spatial points in each splitted domain at the specified

spatial lag. If the spatial domain is not regularly spaced, we may overlay a regular

grid over the spatial domain and split the domain based on that grid.

It is not clear what the distribution of the collection of p-values from random

splitting should be since the test statistics from different random splitting are not

independent. Figure 3 displays the histograms and boxplots of the p-values from

130 random splits with respect to longitude and latitude for 1,000 simulations

from the weakly stationary random field in Section 4.2. Although the histograms

show that there are peaks near the boundaries in the distribution of p-values,

the distribution is close to be uniform away from the end points. We cannot

make a direct comparison between the boxplots in Figure 3 and those of p-

values in Section 5, since the underlying covariance structure may be different.

Nonetheless, we have a general idea of how the distribution of p-values should

look under weak stationarity, from Figure 3.

We may also consider splitting into more than two spatial domains but risk

having too little sample size in each sub-domain to get reliable Â values. Here,

we have fixed the number of subdomains at two.
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Figure 2. Two ways to split the spherical domain.

3.3. Choice of lags

Under our test setting, we may choose particular sets of spatial or temporal

lags depending on what we want to test. For example, if we consider a spatio-

temporal random field on a sphere, and if we want to test whether the random

field is axially symmetric and stationary in time, we may choose a set of lags

that only involve lags with respect to longitude and time. Similarly if we want

to test if the random field is nonstationary with respect to latitude or not, we

may choose a set of lags that only involves latitude. Although the distance on

the globe depends on the two latitude points, if the longitudinal lag is zero, then
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Figure 3. P-values from the test with the simulated data in Section 4.2.
Histograms are based on 1,000 simulations and 130 random splits for all the
subblock sizes together; boxplots are different for different subblock sizes.
For Λ1,Λ2, and l(n), see Section 4.2.

the distance only depends on the latitudinal lag. Therefore, we can test if the

random field is actually nonstationary in latitude or not by using only latitudinal

lags.

We acknowledge, however, that similarly to the tests proposed in Guan,

Sherman, and Calvin (2004), Li, Genton, and Sherman (2008a,b), the results of

our test of stationarity only hold for the particular lags that we consider.

4. Simulation Studies

4.1. Spatial random field on a regularly spaced planar domain

Consider a mean zero weakly stationary (isotropic) Gaussian random field
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Table 1. Empirical sizes (%) of the test of stationarity using subsampling
for the spatial case in Section 4.1.

20× 20 40× 40
m c Two lags Four lags Eight lags Two lags Four lags Eight lags

2
0.5 3.3 5.2 7.8 2.8 3.3 4.4
1.0 2.4 5.2 1.4 1.0 3.0 6.0
1.5 3.3 1.8 3.3 1.0 2.3 10.2

5
0.5 10.8 7.0 7.8 13.0 4.7 3.7
1.0 6.5 4.7 9.1 8.4 2.7 3.0
1.5 10.8 12.2 23.3 4.0 2.4 5.6

8
0.5 24.7 9.3 10.6 24.7 8.3 5.7
1.0 19.3 8.6 9.2 18.6 2.9 3.2
1.5 18.8 15.3 17.4 13.1 5.4 5.4

Note: Nominal level is 5%. Empirical sizes are calculated based on 1,000 simulations and

the largest standard error for sizes is 1.6%. Here m is the range of spatial dependence in

(4.1) and the c values of 0.5, 1, and 1.5 correspond to the subblock size 2× 2, 4× 4, and

7× 7 for 20× 20 grids, and 3× 3, 6× 6, and 9× 9 for 40× 40 grids.

Z(s), s ∈ D ⊂ Z2. We assess the size of our test, and calculate the power of the

test based on some nonstationary covariance models. The covariance/correlation

structure that we used to assess the size of the test was

C0(h;m) =

{
1− 3||h||

m + ||h||3
2m3 if 0 ≤ ||h|| ≤ m,

0 otherwise,
(4.1)

where m defines the range and strength of dependence. We tested the cases

m = 2, 5, 8. We generated 1,000 realizations for each m on 40 × 20 or 80 × 40

rectangular grids. For the test statistic, we split the domain into two 20 × 20

or 40 × 40 neighboring squares (thus we did not perform the random splitting

discussed in Section 3.2) and calculated Â on them. We used

Λ1 = {h : (1, 0), (0, 1)},
Λ2 = {h : (1, 0), (0, 1), (1, 1), (−1, 1)},
Λ3 = {h : (1, 0), (0, 1), (1, 1), (−1, 1), (2, 1), (1, 2), (−2, 1), (−1, 2)}.

We explored both the asymptotic chi-squared test and the subsampling approach

to compute the p-values, using subsampling to estimate Σ. We also applied the

finite-sample adjustments as in Guan, Sherman, and Calvin (2004). Table 1

gives the empirical sizes based on p-values using subsampling. We do not report

the outcomes from the asymptotic chi-squared test since the convergence of the

test statistic is rather slow due to the small sample size n, but the results are

qualitatively similar.
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For the empirical power, we used the nonstationary model in Paciorek and

Schervish (2006). If D is the regular grid of size 2n × n (n = 20 or 40) and if

s1, s2 ∈ D, we considered the nonstationary covariance function

C(s1, s2) = |Σ1|1/4|Σ2|1/4
∣∣∣Σ1 +Σ2

2

∣∣∣−1/2
exp (

√
Q12), (4.2)

with Q12 = 2(s1 − s2)
T (Σ1 +Σ2)

−1(s1 − s2). We decomposed Σi = ΓiΛiΓ
T
i for

i = 1, 2, where

Γi =
1

di

(
γ1(si) − γ2(si)

γ2(si) γ1(si)

)
, Λi =

(
d2i 0

0
d2i
2

)
,

di =
√

γ21(si) + γ22(si), γ1(s) = log{sx/(2n)}, γ2(s) = {sx/(2n)}2 + {sy/n}2, and
s = (sx, sy)

T . The forms of γ1 and γ2 were chosen arbitrarily to create a smooth

nonstationary covariance structure through (4.2) (see Figure 4). Porcu, Mateu,

and Christakos (2009) gave a more general framework for the nonstationary co-

variance models that includes the model in (4.2). In (4.2), we do not use the

covariance function in (4.1) since the scale of
√
Q12 is not comparable to the orig-

inal distances between s1 and s2. Although the exponential covariance function

does not have a compact support, we find that many of the covariance values

calculated from (4.2) are close to zero in our domain, and the effective length of

the support is small.

Table 1 gives the empirical size values of the test from subsampling when the

nominal value is 5%. There is no clear association between the size values and

the number of lags chosen. Overall the empirical sizes of the test are close to the

nominal value, although the empirical sizes are somewhat large for small numbers

of lags or when the dependence of the simulated process is strong (m = 8). The

empirical sizes are closer to the nominal value when the sample size n is larger.

The empirical powers using the nonstationary model in (4.2) from subsampling

are given in Table 2. The empirical power values are significantly larger for

n = 40, as expected. There is no clear association between the empirical power

and the number of lags chosen. For n = 40, it seems that the empirical powers

decreased as we used larger subblock lengths for each number of lags, although

it was not the case when n = 20.

4.2. Spatio-temporal random field on a spherical domain

Consider a regularly spaced grid on the surface of a sphere and regularly

spaced time points. This set-up is common for global spatio-temporal data (see

Section 5.2). We simulated a random field from a first-order vector autoregressive

model, VAR(1), Zt = R Zt−1 + ϵt, where Zt = {Z(s1, t), . . . , Z(sk, t)}T , si ∈ D,
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Figure 4. Image plots of the functions γ1 and γ2 over adjacent 20×20 spatial
grids used to generate Σ1 and Σ2 in (4.2) of Section 4.1.

Table 2. Empirical powers (%) of the test of stationarity using subsampling
for the spatial case in Section 4.1.

20× 20 40× 40
c Two lags Four lags Eight lags Two lags Four lags Eight lags
0.5 41.8 39.6 36.0 98.5 97.6 98.6
1.0 33.8 36.1 44.8 95.9 95.9 95.2
1.5 29.5 43.8 55.8 91.2 88.3 92.4

Note: Nominal level is 5%. Empirical powers are calculated based on 1,000 simulations

and the largest standard error for powers is 1.6%. The value of c is defined in Table 1.

i = 1, . . . , k, t = 1, . . . , T . Here k is the number of observed points in the spatial

domain D and T is the number of time points. We assumed that ϵt is a mean

zero Gaussian multivariate random field on a sphere with a spatially isotropic
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Figure 5. Locations on the sphere for the simulation in Section 4.2.

exponential correlation function and ϵt is independent across time. The matrix

R gives the autoregressive coefficients.

Figure 5 shows the spatial locations of points at which we simulated the

data. There were 11 regularly spaced latitude points from 50◦ S to 40◦ N, and

11 regularly spaced longitude points from 0◦ to 180◦. For the spatial covariance

function, we used an isotropic function, C0(h) = exp (−||h||/1, 000) and for the

temporal correlation, we usedR = 0.4×Ik. The spatial distance used was chordal

distance on the surface of a sphere, Ik is the identity matrix. Here k = 112 = 121

and T = 400. We estimated Σ using a subsampling technique. As described in

Section 3.2, we tried random splitting of the domain with respect to latitude as

well as with respect to longitude. We created 130 random splits for each splitting

with respect to latitude and longitude. There are at most
(
11
5

)
= 462 ways of

splitting the domain randomly into two disjoint domains and quite a few of them

only contain pairs of spatial points with spatial lag greater than 1.

The assessment of the power of the test was done using a random field

nonstationary with respect to latitude but stationary in longitude and time. We

simulated the random field (with time structure still AR(1)) using the covariance

function in Jun and Stein (2008). In particular, for a latitude point L and a

longitude point l, we took

Z(L, l, 0) =
{
A(L)

∂

∂L
+B(L)

∂

∂l

}
W (L, l) (4.3)

withA(L) = 1+0.5P1(sinL)+P2(sinL)−0.5P3(sinL) andB(L) = 1−2P1(sinL)−
P2(sinL)+ 0.05P3(sinL), where Pn is the Legendre polynomial of degree n. The

coefficients in the linear combinations for A and B were chosen arbitrarily. The
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Table 3. Empirical sizes (%) and powers (%) of the test of axial symmetry
and stationarity in time using subsampling for the spatial case in Section 4.2.

SIZE POWER
split l(n) Λ1 Λ2 Λ1 Λ2

longitude
5 6.2 2.0 6.3 1.9
10 6.5 5.2 6.5 5.2
20 7.9 11.2 8.0 11.0

latitude
5 6.4 6.6 90.5 66.3
10 6.6 11.7 90.5 69.6
20 8.1 19.2 90.5 72.7

Note: Nominal level is 5%. Empirical sizes and powers are calculated based on

1,000 simulations and 130 random splits are performed. The largest standard error

for sizes is 1.2% and that for powers is 1.5%. The size of subblock is l(n).

random field W is a mean zero Gaussian random field with the covariance struc-

ture given by a Matérn covariance function,

Cov{W (L1, l1),W (L2, l2)} =
( d

1, 000

)1.5
K1.5

( d

1, 000

)
,

where d is the chordal distance between the two points, (L1, l1) and (L2, l2), and

Kν denotes the modified Bessel function of order ν. As discussed in Jun and Stein

(2008), the model in (4.3) is axially symmetric but nonstationary with respect

to latitude.

We used the following sets of lags:

Λ1 = {(L, l, u) : (1, 0, 0), (2, 0, 0)},
Λ2 = {(L, l, u) : (0, 1, 1), (0, 2, 1), (0, 1, 2), (0, 2, 2)}.

Here, the unit of latitude is 10◦ and that of longitude is 18◦. The first set of

lags, Λ1, is to check the stationarity with respect to latitude, and Λ2 is to check

stationarity in longitude and time. The size of subblocks used was 5, 10, and 20.

Table 3 shows the empirical size and power for each split. It is interesting

to note that when we split the domain with respect to longitude, we could not

detect nonstationarity with respect to latitude. This is what we expect since if

the random field is nonstationary with respect to latitude but stationary with

respect to longitude, and if we split with respect to longitude, the expected

difference of the estimators between the two splitted spatial domains should be

zero. Therefore we should not see any difference in the empirical size and powers

(except random variation) and both quantities should be close to the nominal

level. However, when we split the domain with respect to latitude, we did detect

nonstationarity with respect to latitude, as expected.
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5. Applications

5.1. Pacific Ocean wind data

Consider the Pacific Ocean wind data that was studied by Wikle and Cressie

(1999), Cressie and Huang (1999), Guan, Sherman, and Calvin (2004), and Li,

Genton, and Sherman (2007). The data consist of the East-West component of

the wind velocity vector from a small region over the tropical western Pacific

Ocean for the period from November 1992 to February 1993. The time resolu-

tion is 6 hours and there are a total 480 time points. The spatial domain is a

regularly spaced 17×17 grid with 1.875◦ (lon) by 1.9047◦ (lat) resolution. Wikle

and Cressie (1999) considered spatial isotropic covariance models and Cressie

and Huang (1999) fitted space-time stationary covariance models to these data.

Guan, Sherman, and Calvin (2004) found some evidence against isotropy for

this data set. In particular, they found that the variogram for the North-South

direction is not bounded when the lag distance gets larger, which may suggest

nonstationarity with respect to latitude.

We tested the stationarity assumption in the space and time domains using

our procedure. The test is based on an asymptotic chi-squared distribution, and

the time length T = 480 is large enough. Before we performed the hypothesis

test, we needed to remove the fixed mean part of the data so that the residuals

would be close to be mean zero. Wikle and Cressie (1999) and Li, Genton, and

Sherman (2007) removed the temporal average of the data (average over time

at each grid pixel) while Guan, Sherman, and Calvin (2004) did not explain if

any procedure was done to make the process close to be mean zero before their

analysis; the results in Cressie and Huang (1999) indicate that they used the raw

data without removing the mean part. In our preliminary data analysis, however,

there seems to be a persistent spatial pattern in the data over time and certainly

removing temporal average should help to get rid of some of these patterns (see

Figure 6(a)). We also found that even after removing temporal average from the

data, there is still a non-negligible trend in the data (see Figure 6(b)). As with

the tests in Guan, Sherman, and Calvin (2004) and Li, Genton, and Sherman

(2007), our test assumes that the spatio-temporal field is mean zero. To see

the effect of the fixed mean part, we performed the test on the raw data (after

removing the grand mean), on the data with only temporal average removed, on

the data with only spatial average removed, and on the data with both spatial

and temporal averages removed.
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Figure 6. (a) Temporal average of the raw wind speed data. (b) Spatial
average of the wind speed after removing temporal average from the raw
data.

We considered several combinations of space-time lags for the test,

Λ1 ={(L, l, u) : (1, 0, 0), (2, 0, 0)},
Λ2 ={(L, l, u) : (0, 1, 0), (0, 2, 0)},
Λ3 ={(L, l, u) : (1, 0, 0), (0, 1, 0), (1, 1, 0)},
Λ4 ={(L, l, u) : (1, 0, 1), (0, 1, 1), (1, 1, 1)}.

Here, the unit for the lag with respect to longitude is 1.875◦ and the one with

respect to latitude is 1.9047◦. The set Λ1 is to test stationarity with respect to

latitude, Λ2 for longitude, Λ3 for space, and Λ4 for space and time together. We

tried various sizes of subblocks and random splittings of the domain, some with

respect to latitude and some with respect to longitude. For both cases of splitting

with respect to latitude and longitude, we performed 1,000 random splittings as

described in Section 3.2.

Figure 7 shows the p-values from the test. First notice that the test results

on raw data and the data with spatial and temporal averages removed give large

p-values for Λ1 when we split the domain with respect to longitude, while p-

values are small for the same lags when the split is with respect to latitude. This

is a clear sign that the nonstationarity with respect to latitude is significant. We

saw a similar phenomenon in the simulated data (Table 3). On the other hand,

the p-values for Λ2, Λ3, and Λ4 for the split with respect to longitude are quite

different for the two data sets, probably because the temporal average (shown in

Figure 6(a)) has a significant effect on the test statistics. We conclude that it



1756 MIKYOUNG JUN AND MARC G. GENTON

Figure 7. Boxplots of p-values for the tests with the wind data in Section 5.1,
based on 1,000 random splitting of the domains. (a) Results on the raw data
after removing the grand mean, with the split with respect to longitude. (b)
Same data as (a), with the split with respect to latitude. (c) Results on the
data after removing both spatial and temporal average, with the split with
respect to longitude. (d) Same data as (c), with the split with respect to
latitude. The subblock size is l(n).

is necessary to remove both spatial and temporal averages from these data. We

also checked that the p-values for the data with only temporal average removed

and those for the data with spatial and temporal averages removed are quite

similar (not shown). The p-values for Λ2 for the data with spatial and temporal

averages removed are quite large for both splitting schemes. This supports the

argument that the random field is indeed axially symmetric.

5.2. Global surface temperature data

We analyzed monthly global surface temperature data over 50 years. In

particular, we used observations of the combined data set of the land and the

ocean from the Climate Research Unit, East Anglia and the Hadley Centre.

The climate model outputs used in this paper are from the NOAA GFDL model

(GFDL-CM2.0). Jun, Knutti, and Nychka (2008) modeled the difference between

observations and climate model outputs as climate model errors (we call this
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Figure 8. Raw periodogram of “diff” time series at spatial location 47.5◦ S
and 47.5◦ E.

Figure 9. Boxplots of p-values for the tests with the “diff” process in Sec-
tion 5.2. The distributions of p-values are generated from 1,000 random
splitting of the longitude and latitude and l(n) indicates different sizes of
subblocks used in subsampling. Different scales of the y-axis are used in the
two figures.

“diff” from now on) and used a simple nonstationary covariance model. They

only considered a spatial component and their model is isotropic in space except

that the covariance is larger over the land than over the ocean. Here we test the

axial symmetry (and stationarity in time) as well as nonstationarity with respect

to latitude.

Even though we removed the fixed mean part using the observations as an

effective mean, we may still have some non-negligible mean part due to the com-

plex error structure of the climate models. In particular, it turns out that the

“diff” random field has non-negligible seasonality in many grid pixels. Figure 8

shows the periodogram of the “diff” time series at the grid pixel with latitude

47.5◦ S and longitude 47.5◦ E. The figure was generated using an R function,

spec.pgram. Notice the peaks at several frequencies which correspond to an an-

nual cycle and cycles of a few years length. Therefore, we used least squares with
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sine and cosine curves for the frequency of one year up to six years to remove

seasonality. After this step, we did not see any noticeable mean structure.

The lags used for the test were

Λ1 ={(L, l, u) : (1, 0, 0)},
Λ2 ={(L, l, u) : (1, 0, 0), (2, 0, 0)},
Λ3 ={(L, l, u) : (0, 1, 1), (0, 1, 2)},
Λ4 ={(L, l, u) : (0, 1, 1), (0, 1, 2), (0, 2, 1), (0, 2, 2)}.

Thus, Λ1 and Λ2 are to test for stationarity with respect to latitude, and Λ3 and

Λ4 are for stationarity with respect to longitude and time. We performed random

splitting 1,000 times with respect to longitude as well as an additional 1,000 times

with respect to latitude. Figure 9 gives the p-values for each split. First notice

that p-values for Λ3 and Λ4 are quite large when the split is with respect to

longitude while they are quite small when the split is with respect to latitude

(notice the scale difference of the y-axis for the two figures). In fact, the p-values

for Λ3 when the split is done with respect to longitude seem to have a similar

distribution as the one in Figure 3. This is a clear sign that the random field is

axially symmetric. The p-values for Λ1 and Λ2 for both ways to split are close to

zero, which is an indication that the random field is strongly nonstationary with

respect to latitude. We conclude that even if we model the difference between

the observations and the climate model outputs, nonstationarity is significant

with respect to latitude in the difference random field. Hence axially symmetric

models that are nonstationary with respect to latitude found in Jun and Stein

(2007, 2008) seem appropriate for modeling.

6. Discussion

In the proposed test, Theorems 1 and 2 require the covariance matrices

Σ̂, Σ̂11, and Σ̂22 to be positive definite. In our simulation studies and data

applications, we checked the eigenvalues of the estimates of these matrices for all

lags considered and all subblock sizes used, and we found all eigenvalues positive.

We do not make the assumption that the random field is Gaussian. If it is,

then weak stationary under the null hypothesis implies strong stationarity and

the asymptotic results in Guan, Sherman, and Calvin (2004) and Li, Genton,

and Sherman (2007, 2008a,b) apply. In particular, (2.5), (2.6), and (2.9) can be

simplified as in Guan, Sherman, and Calvin (2004) and Li, Genton, and Sherman

(2007, 2008a,b). However we still need to show the joint asymptotic normality

of Ĝn,1 and Ĝn,2, as in A.2 of the Appendix.

One issue in performing our test is how to determine the subblock size. For

a spatio-temporal random field, if the temporal structure of the random field is
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AR(1), we use the subblock of size l(n) = [2γ/(1− γ2)]2/3(3n/2)1/3, where n

is the number of time points and γ is the estimate of the AR(1) coefficient (as

noted in Li, Genton, and Sherman (2007)). For more general random fields, we

can resort to model-free approaches such as those in Lahiri (2003). Alternatively,

we may use ideas as in Shao and Li (2009) who used inconsistent estimators to

normalize out the asymptotic covariance matrix, so as to be free of the parameter

for the subblock size. This procedure may, however, suffer from a loss of power.

Many data sets do not come from a stationary process. However, common

practice is to fit stationary (in fact, isotropic) models to them without thor-

oughly checking the assumptions. In fact one finds only a limited number of

nonstationary covariance models. On the other hand, many global data sets

exhibit stationarity with respect to longitude and time in the covariance struc-

ture, although they have strong nonstationarity with respect to latitude. Our

motivation is to provide a formal statistical testing procedure of the stationarity

assumption, in particular, the axial symmetry assumption and the stationarity

assumption in time. If we fail to reject the latter, we would recommend using

the stationary models to fit the data. If we do reject the stationarity assump-

tion, we need to develop a nonstationary model that can properly describe the

nonstationarity in the data.

Even if we reject the null hypothesis in our test, it is possible that the process

is still weakly stationary but some of the moment or mixing conditions required

for the asymptotic normality do not hold. This type of problem is common

in the test based on asymptotic results and similar problems exist in the tests

proposed by Guan, Sherman, and Calvin (2004), Li, Genton, and Sherman (2007,

2008a,b). At least for the data sets considered here, we found the moment and

mixing conditions required for Theorem 2 to be reasonable.

There may be situations where our test has little power in detecting non-

stationarity in space, for example, if the nonstationarity varies slowly for short

distances in space. For testing stationarity in time of a spatio-temporal random

field, in some situations, especially for a random field that does not induce space-

time interactions in the covariance structure (i.e. spatio-temporal separable), the

proposed test may not detect nonstationarity in time. Then we may need to split

the temporal domain as we split the spatial domain to detect nonstationarity in

time and may need to adjust the theory accordingly.
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Appendix: Proof of Theorem 1

We first show that the asymptotic normality of
√

|Dn,i| (Ĝn,i − G)T , for

each i, holds under the conditions given in Section 2.1. Then we show the joint

asymptotic normality of (
√

|Dn,1|(Ĝn,1 −G),
√

|Dn,2|(Ĝn,2 −G))T .

A.1 Asymptotic normality of
√

|Dn,1|(Ĝn,1 −G)T : If (2.5) holds, then the ex-

istence of the limit of the covariance of Ĝn,1 is trivial. For a lag h ∈ Λ, we let

σ2
1 = limn→∞ |Dn,1|Cov{Ĝn,1(h)−G(h), Ĝn,1(h)−G(h)}.

Let Sn,1 ≡
√

|Dn,1|(Ĝn,1(h) − G(h)). We show Sn,1
d−→ N(0, σ2

1). Let

l(n) = nα, m(n) = nα − nη for some 4
2+ϵ < η < α < 1. Divide Dn,1 into

nonoverlapping l(n) × l(n) subsquares, Dj
l(n),1, j = 1, . . . , kn. Within each sub-

square, we further get Dj
m(n),1, which shares the same center as Dj

l(n),1. There-

fore we have d(Dj
m(n),1, D

j
′

m(n),1) ≥ nη, j ̸= j
′
. Now for a particular lag h, let

Ĝj
m(n),1(h) denote the statistic obtained from Dj

m(n),1. Let sn,1 =
∑kn

j=1 s
j
n,1/

√
kn

and s
′
n,1 =

∑kn
j=1(s

j
n,1)

′
/
√
kn, where s

j
n,1 = m(n){Ĝj

m(n),1(h)−G(h)} and (sjn,1)
′

have the same marginal distribution as sjn,1 but are independent.

Let ϕn,1(x) and ϕ
′
n,1(x) be the characteristic functions of sn,1 and s

′
n,1, re-

spectively. We use three steps to complete the proof:

S1. Sn,1 − sn,1
p−→ 0;

S2. ϕ
′
n,1(x)− ϕn,1(x) −→ 0;

S3. s
′
n,1

d−→ N(0, σ2
1).

Proof of S1. It suffices to show E(Sn,1 − sn,1)
2 → 0 as n → 0. Let D

m(n)
1

denote the union of all Dj
m(n),1. Simple algebra shows that sn,1 can be written as√

|Dm(n)
1 |{Ĝ

D
m(n)
1

(h)−G(h)}. Given (2.2), it can be shown that |Dm(n)
1 |/|Dn,1|
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→ 1. Then using the moment condition in (2.5), we get E(Sn,1 − sn,1)
2 → 0 as

n → 0.

Proof of S2. Let ι be the imaginary unit. We set Ui = exp
(
ιx(sin,1/

√
kn)
)
,

Xk =
∏k

i=1 Ui, and Yk = Uk+1. Due to Lemma A.2 (b) of Ekström (2008),

we have |Cov(Xk, Yk)| ≤ c · α(n2, nη) for some constant c > 0. We apply a

similar telescope argument as in p.338 of Ibragimov and Linnik (1971). Suppose

the characteristic function of sin,1/
√
kn is given by ϕ

(i)
n,1 (since we do not assume

strong stationarity, sin,1/
√
kn may not have the same distribution). Then

|ϕn,1(x)−
kn∏
i=1

ϕ
(i)
n,1(x)| = |E(Xkn)−

kn∏
i=1

ϕ
(i)
n,1(x)|

= |E(Xkn)− ϕ
(kn)
n,1 (x)E(Xkn−1) + ϕ

(kn)
n,1 (x)E(Xkn−1)−

kn∏
i=1

ϕ
(i)
n,1(x)|

≤ |E(Xkn)− ϕ
(kn)
n,1 (x)E(Xkn−1)|+ |E(Xkn−1)−

kn−1∏
i=1

ϕ
(i)
n,1(x)|

= |Cov(Xkn−1, Ykn−1)|+ |E(Xkn−1)−
kn−1∏
i=1

ϕ
(i)
n,1(x)|

≤ c · α(n2, nη) + |E(Xkn−1)−
kn−1∏
i=1

ϕ
(i)
n,1(x)|

≤ · · · ≤ kn · c · α(n2, nη) → 0 as n → 0. (6.1)

Note that (6.1) holds due to (2.3). Since (sin,1)
′
has the same marginal distri-

bution as sin,1 but is independent of it, (6.1) implies |ϕn,1(x) − ϕ
′
n,1(x)| → 0 as

n → 0.

Proof of S3. This follows from the Lyapounov Theorem.

Proof of the joint normality. The joint normality of the vector across several

spatial lags can be shown using the Cramér-Wold device.

A.2 Joint asymptotic normality of (
√

|Dn,1|(Ĝn,1 − G),
√

|Dn,2|(Ĝn,2 − G))T :

The basic idea of the proof is similar to the one in A.1. If (2.5) holds, then

the existence of the limit of the covariance between Ĝn,i and Ĝn,j (i, j = 1, 2)

is trivial. For a lag h ∈ Λ, we let σ2
i = limn→∞ |Dn,i|Var{Ĝn,i(h) − G(h)} for

i = 1, 2, and σij = limn→∞
√

|Dn,i||Dn,j |Cov{Ĝn,i(h) −G(h), Ĝn,j(h) −G(h)}
for i ̸= j.

Let a and b be two arbitrary real numbers such that |a| ≤ 1, |b| ≤ 1 and at
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least one of them is not zero. Set

Sn = a
√
|Dn,1|{Ĝn,1(h)−G(h)}+ b

√
|Dn,2|{Ĝn,2(h)−G(h)}

≡ aSn,1(h) + bSn,2(h).

Also let sn = asn,1(h) + bsn,2(h) and s
′
n = as

′
n,1(h) + bs

′
n,2(h). We further

assume that (sjn,1, s
j
n,2) and ((sjn,1)

′
, (sjn,2)

′
) have the same distribution for each

j and (sjn,1)
′
and (sjn,2)

′
are independent for each j. Moreover, we assume (sjn,1)

′

and (sj
′

n,2)
′
are independent for j ̸= j

′
.

Let ϕn(x) and ϕ
′
n(x) be the characteristic functions of sn and s

′
n, respectively.

We follow three steps to complete the proof:

S4. Sn − sn
p−→ 0;

S5. ϕ
′
n(x)− ϕn(x) −→ 0;

S6. s
′
n

d−→ N(0, σ2) with σ2 = a2σ2
1 + b2σ2

2 + 2abσ12.

Proof of S4. Due to the result in S1, it is trivial to show Sn − sn
p−→ 0.

Proof of S5. Due to the result in S2 and a similar telescope argument, we can

show that

|ϕ′
n(x)− ϕn(x)| → 0 as n → 0.

Proof of S6. This again follows from the Lyapounov Theorem.

Proof of the joint normality. This also follows from the Cramér-Wold device.
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