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Abstract: Existing sufficient dimension reduction methods often resort to the complete-

case analysis when the predictors are subject to missingness. The complete-case

analysis is inefficient even with the missing completely at random mechanism be-

cause all incomplete cases are discarded. In this paper, we introduce a nonparamet-

ric imputation procedure for semiparametric regressions with missing predictors.

We establish the consistency of the nonparametric imputation under the missing

at random mechanism that allows the missingness to depend exclusively upon the

completely observed response. When the missingness depends on both the com-

pletely observed predictors and the response, we propose a parametric method to

impute the missing predictors. We demonstrate the estimation consistency of the

parametric imputation method through several synthetic examples. Our proposals

are illustrated through comprehensive simulations and a data application.
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nonparametric imputation, sliced inverse regression, sufficient dimension reduction.

1. Introduction

The rapid advance of technology has allowed scientists to collect data of

unprecedented dimensionality and complexity. The large dimensionality of these

data poses many challenges for statisticians in the study of the relationship among

various types of variables. In this paper we study the regression of a univariate

response variable Y onto the predictor vector x = (X1, . . . , Xp)
T. When the

dimension p is large, the conventional methods of parametric modeling usually

break down due to the curse of dimensionality. As a result, sufficient dimension

reduction (SDR, Cook (1998)) has attracted considerable attention in the last

two decades. It reduces the dimension effectively without loss of regression in-

formation, and it imposes no parametric structures on the regression functions.

In general, SDR seeks a subspace S of minimal dimension such that Y⊥⊥x | PSx,

where ⊥⊥ stands for statistical independence and PS denotes the orthogonal pro-

jection onto S with respect to the usual inner product. If such a subspace exists,

we call it the central subspace (CS), denoted by SY |x, and call its dimension
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K = dim(SY |x) the structural dimension. The CS, which can be viewed as a

parsimonious population parameter that captures all the regression information,

is thus the main object of interest in the SDR inquiry. Since the seminal work of

sliced inverse regression (SIR, Li (1991)), numerous methods in the SDR context

have been proposed to recover SY |x. See, for example, sliced average variance esti-

mation (SAVE, Cook and Weisberg (1991)), principal Hessian directions (PHD,

Li (1992)), minimum average variance estimation and its variants (Xia et al.

(2002), and Xia (2007)), contour regression (Li, Zha, and Chiaromonte (2005)),

and directional regression (Li and Wang (2007)). Among these, SIR is perhaps

the most commonly used in the literature, and there have been many elaborations

on the original methodology of SIR.

When the dimension p is large, it is common that some predictors are subject

to missingness. Missingness complicates the interpretation of high-dimensional

data, or even results in spurious or weakened results obtained from usual sta-

tistical analysis. To address this issue, many efforts have been devoted within

the framework of parametric regressions. For example, with the missing at ran-

dom (MAR) assumption under the forward regression setup, Robins, Rotnitzky,

and Zhao (1994) introduced an augmented inverse probability weighted estima-

tion; Yates (1933) considered an imputation procedure for linear models; Rubin

(1987) proposed a multiple imputation procedure for parametric regressions. The

efficacy of imputation with parametric model assumptions usually relies on cor-

rectness of the specification of the underlying model; if the underlying model is

misspecified, the resulting estimation could be biased. To get around this issue,

Cheng (1994) and Wang and Rao (2002) suggested imputing the missing values

with nonparametric estimates of the conditional mean values through multivari-

ate kernel regressions. Owing to the curse of dimensionality, their procedures are

not applicable to semiparametric regressions with high-dimensional predictors.

Existing SDR methods often resort to complete-case analysis when the pre-

dictors are subject to missingness. This is undesirable since the resulting estima-

tors are inconsistent unless the missing completely at random (MCAR) assump-

tion holds true (Wang and Chen (2009)). Besides, inference built on the complete

measurements is generally inefficient. To retrieve information contained in the

missing predictors, Li and Lu (2008) proposed an augmented inverse probability

weighted SIR estimator. However, they imposed several parametric model as-

sumptions on the missingness indicator δ given Y and the completely observed

predictors xobs, thus the validity of the inverse probability weighted estimator

relies on the correct specification of the parametric model of δ | (Y ,xobs); if the

underlying model is misspecified, the estimator may be biased (Li and Lu (2008,

p.824)). It is desirable to develop some alternatives for estimation and statistical

inference in the SDR context.
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In this paper we consider missingness in semiparametric regressions under

the MAR mechanism that allows the missingness to depend on the completely

observed variables. To avoid the curse of dimensionality and to simultaneously

retain the regression information, we focus on the widely used SIR method pro-

posed by Li (1991), but emphasize that the general idea of this paper can be

readily applied to other SDR methods, such as SAVE, PHD and DR.

Estimating the SIR matrix amounts to estimating the conditional expec-

tations E(Xk | Y ) and E(XkXl | Y ), for 1 ≤ k, l ≤ p. The unconditional

expectations can be estimated through E(Xk) = E {E(Xk | Y )} and E(XkXl) =

E {E(XkXl | Y )}. When the missingness depends exclusively on the response,

we propose a nonparametric imputation procedure for the missing predictors

(Little and Rubin (2002)). To be precise, let δ = (δ1, . . . , δp)
T denote a vec-

tor of missing indicators. The k-th component δk takes value 1 if there is no

missingness in Xk, and is 0 otherwise. To estimate E(Xk | Y ) when Xk has

missing values, we impute the missing values with E(δkXk | Y )/E(δk | Y ). Sim-

ilarly, to estimate E(XkXl | Y ) when either Xk or Xl is missing, we impute the

missing values with E(δkδlXkXl | Y )/E(δkδl | Y ). The quantities E(δk | Y ),

E(δkδl | Y ), E(δkXk | Y ) and E(δkδlXkXl | Y ) can be estimated using standard

nonparametric regressions because δk, δkδl, δkXk, δkδlXkXl and Y are observed.

This nonparametric imputation method is justified under the missing at random

assumption δ⊥⊥x | Y . It has at least three merits.

1. The nonparametric imputation method is more efficient than the complete-

case analysis. Our empirical studies also find that it is more efficient than the

augmented inverse probability weighted SIR method proposed by Li and Lu

(2008), which echoes the theoretical investigation of Rubin (1987).

2. The nonparametric imputation procedure imputes the missing predictors in a

model-free fashion. Unlike the augmented inverse probability weighted SIR es-

timation proposed by Li and Lu (2008), our nonparametric imputation method

retains the flavor of SIR (Li (1991)) in the sense that it avoids the parametric

model assumptions imposed by Li and Lu (2008).

3. Owing to the merit of SIR, the nonparametric imputation method works for

a wide range of semi-parametric regressions satisfying Y⊥⊥x | PSY |x
x. In this

sense, we extend the application of nonparametric imputation (Little (1992))

to a very general family of semiparametric regressions.

When the missingness depends on both the completely observed predictors

xobs and the response Y , we propose a parametric imputation procedure to esti-

mate the SIR matrix. To be specific, we take x = (xT

mis,x
T

obs)
T, where xmis ∈ Rp1

has missingness in a subset of subjects, xobs ∈ Rp2 has complete observations for
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all subjects, and p = p1 + p2. With slight abuse of notation, we define a vec-

tor of missingness indicators δ = (δ1, . . . , δp1)
T ∈ Rp1 , whose k-th coordinate δk

takes value 1 if the k-th coordinate of xmis is observed and 0 otherwise. In this

situation, estimating the SIR matrix amounts to estimating E(Xmis,k | xobs, Y )

and E(Xmis,kXmis,l | xobs, Y ) because E(xobs | Y ) and E(xobsx
T

obs | Y ) can be

directly estimated. In order to estimate E(Xmis,k | xobs, Y ), we impute the

missing values with E(Xmis,kδk | xobs, Y )/E(δk | xobs, Y ). Similarly, in or-

der to estimate E(Xmis,kXmis,l | xobs, Y ), we impute the missing values with

E(Xmis,kXmis,lδkδl | xobs, Y )/E(δkδl | xobs, Y ). Next we estimate E(δk | xobs, Y ),

E(δkδl | xobs, Y ), E(Xmis,kδk | xobs, Y ), and E(Xmis,kXmis,lδkδl | xobs, Y ) after

imposing several parametric modeling assumptions, justified under the missing at

random assumption that δ⊥⊥xmis | (xobs, Y ). The consistency of the parametric

imputation procedure can be established if those parametric models are cor-

rectly specified. Our limited experience, gained from simulations, suggests that

this parametric imputation procedure performs well in a wide range of semipara-

metric models.

The rest of this paper is organized as follows. We illustrate in detail the

rationale of nonparametric imputation in Section 2 when the missingness is only

relevant to the response. When the missingness is related to both the completely

observed predictors and the response variable, we suggest imputing the missing

values through a parametric imputation scheme in Section 3. Comprehensive

simulation results are reported in Section 4 to augment the theoretical results

and to compare with some existing methods. A horse colic dataset is analyzed

in Section 5. There are concluding remarks in Section 6. The technical details

are in the Appendix.

2. SIR with Nonparametric Imputation

In this section we first review SIR with full observation, then describe a

nonparametric imputation procedure in the presence of missing predictors. The

asymptotic properties of nonparametric imputation are established.

2.1. A brief review

SIR (Li (1991)) is a promising way to estimate SY |x. By assuming that

E(x | ΓTx) is linear in ΓTx, with Γ denoting a basis of SY |x, SIR connects

SY |x with the inverse mean E(x | Y ) via the relationship span
(
Σ−1M

)
⊆ SY |x,

where Σ = cov (x) = E (xxT) − E (x)E (xT), and M = cov {E(x | Y )} =

E {E(x | Y )E(xT | Y )} − E (x)E (xT). The linearity condition holds to a rea-

sonable approximation when the dimension p is fairly large (Hall and Li (1993)).

To facilitate matters, we write

Φ0 = E(x), Φ1 = E(xxT), and Φ2 = E {E(x | Y )E(xT | Y )} . (2.1)
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Clearly Σ = Φ1 − Φ0Φ
T

0 , and M = Φ2 − Φ0Φ
T

0 .

Implementing SIR with n i.i.d. observations {(xT

i , Y i)
T, i = 1, . . . , n} amounts

to offering consistent estimators of the Φis. Because Φ0 and Φ1 can be estimated

by their sample averages, estimating Φ2 is the key to estimating the SIR matrix.

Li (1991) proposed slicing estimation to estimate Φ2; it is easy to implement.

Zhu and Ng (1995) showed that the performance of SIR is robust to the number

of slices, which echoes the empirical studies of Li (1991). In this paper, we follow

Zhu and Fang (1996) and use kernel regression to estimate Φ2. To be precise, let

R(Y ) = {R1(Y ), . . . , Rp(Y )}T = E(x | Y ) = {E(X1 | Y ), . . . , E(Xp | Y )}T. The

kernel estimator of R(Y ) is R̂f (Yi) =
∑

j ̸=iKh(Yi − Yj)xj/
∑

j ̸=iKh(Yi − Yj),

where Kh(·) = K(·/h)/h, K(·) is a symmetric kernel function and h is a user-

specified bandwidth. One can estimate Φ2 with

Φ̂2,f = n−1
n∑

i=1

R̂f (Yi)R̂
T

f (Yi).

Zhu and Fang (1996) showed that Φ̂2 is a root-n consistent estimator of Φ2 when

the predictors have no missing values.

2.2. Nonparametric imputation

When some predictors are subject to missingness, the procedure for estimat-

ing the SIR matrix Σ−1M cannot be applied directly. In this section we consider

the missing at random (MAR) assumption that

δ⊥⊥x | Y , (2.2)

where δ = (δ1, . . . , δp)
T is a vector of missingness indicators. The k-th component

δk takes value 1 if there is no missingness for the k-th predictor coordinateXk, and

0 otherwise. This MAR assumption provides in general a better approximation

to reality and is less restrictive than the MCAR assumption. A more general

MAR assumption will be discussed in the next section.

To implement SIR with missing predictors, we estimate Φis as follows. Let

{(xT

j , Yj)
T, j = 1, . . . , n} be a set of i.i.d. random vectors, where the response Yj is

always observable, and the p-dimensional predictor vector xj = (X1j , . . . , Xpj)
T

is subject to missingness. In practice, the missing components may vary among

the incomplete predictors, thus we define the binary indicator δkj = 1 if Xkj is

observed, and δkj = 0 if Xkj is missing, for k = 1, . . . , p, and j = 1, . . . , n.

Estimation of Φ0 and Φ2: We first discuss how to estimate Φ0 and Φ2 at the

population level. Recall that Φ0 = E {E(x | Y )} and Φ2 = E {E(x | Y )E(xT | Y )};
this motivates us to estimate both Φ0 and Φ2 via the inverse mean E(x | Y ).
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To be precise, if the predictor value Xk is missing, we follow the idea of Cheng

(1994) and impute the value of inverse mean Rk(Y ) = E(Xk | Y ). We resort to

the MAR assumption (2.2) to estimate Rk(Y ); it implies that cov(Xk, δk | Y ) =

E(Xkδk | Y )− E(Xk | Y )E(δk | Y ) = 0. That is,

Rk (Y ) =
E (Xkδk | Y )

E(δk | Y )
, (2.3)

providing that δk does not degenerate. The RHS of (2.3) can be easily es-

timated even when Xk has missing values: if Xk is missing, we can impute

E (Xkδk | Y ) /E(δk | Y ) because it is equal to E(Xk | Y ). An important obser-

vation is thatXkδk, δk, and Y are observable, although a subset ofXk has missing

values, which allows us to estimate E (Xkδk | Y ) and E(δk | Y ) consistently using

all observations to improve the efficiency.

The above imputation procedure is easy to implement at the sample level.

To be precise, when Xkj is missing for some 1 ≤ j ≤ n, we impute X̂k,j =

Ĝk(Yj)/ĝk(Yj), where Ĝk(Yj) =
∑

i ̸=j Kh(Yi − Yj)Xkiδki/(n − 1), and ĝk(Yj) =∑
i̸=j Kh(Yi − Yj)δki/(n− 1). Following arguments of Zhu and Fang (1996) and

Zhu and Zhu (2007)), we can see without much difficulty that X̂k,j is a consistent

estimator of E (Xkδk | Y ) /E(δk | Y ) = E(Xkj | Y j) in view of (2.2). Therefore,

we can estimate E(Xk), the k-th element of Φ0, by

Φ̂0,k = n−1
n∑

j=1

{
δkjXkj + (1− δkj)X̂k,j

}
. (2.4)

Next we deal with Φ2. Consider the kernel estimator

R̂k(Yi) = (n− 1)−1
∑
j ̸=i

Kh(Yj − Yi)
{
δkjXkj + (1− δkj)X̂k,j

}
f̂(Yi)

, (2.5)

where f̂(Yi) =
∑

j ̸=iKh(Yj − Yi)/(n − 1) is the kernel estimator of the density

function of Y . The (k, l)-th element of Φ2 can be estimated, accordingly, by

Φ̂2,kl = n−1
n∑

i=1

{
R̂k(Yi)R̂l(Yi)

}
, (2.6)

Remark 1. When Y is categorical or discrete, the nonparametric imputation

method is still readily applicable. In such situations, we can still impute the

missing value Xkj with the inverse mean Rk(Yj), while estimator of Rk(Yj) is

simplified to X̂d
k,j =

∑
i ̸=j 1(Yi = Yj)Xkiδki/

∑
i̸=j 1(Yi = Yj)δki. Then Φ̂0,k
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takes a similar form to (2.4) in which X̂k,j is replaced with X̂d
k,j . To estimate Φ2,

we take, in parallel to the continuous case,

R̂d
k(Yj) =

∑
i ̸=j

1{Yi = Yj}
{
δkiXki + (1− δki)X̂

d
k,i

}/∑
i̸=j

1{Yi = Yj},

The (k, l)-th element of Φ2 can be estimated in a similar fashion.

Estimation of Φ1: Note that E(xxT) = E {E(xxT | Y )}. Accordingly, esti-

mating Φ1 is in the spirit of estimating Φ0. Note that when either Xk or Xl is

missing, XkXl is then missing, which implies, δkδl = 0. Similarly, δkδl = 1 if

and only if both Xk and Xl are observed. Thus we propose to impute a missing

value XkXl with an estimator of the inverse mean Rkl(Y ) = E(XkXl | Y ). The

MAR assumption (2.2) implies that XkXl⊥⊥δkδl | Y . Consequently, Rkl(Y ) =

E(XkXlδkδl | Y )/E(δkδl | Y ) for 1 ≤ k, l ≤ p.

IfXkjXlj is missing for some 1 ≤ j ≤ n, a reasonable imputation value can be

X̂kl,j = Ĝkl(Yj)/ĝkl(Yj), where Ĝkl(Yj) = (n−1)−1
∑

i̸=j Kh(Yi−Yj)XkiXliδkiδli
and ĝkl(Yj) = (n− 1)−1

∑
i̸=j Kh(Yi−Yj)δkiδli. Then we can estimate E(XkXl),

the (k, l)-th element of Φ1, by

Φ̂1,kl = n−1
n∑

j=1

{
δkjδljXkjXlj + (1− δkjδlj)X̂kl,j

}
. (2.7)

Remark 2. When the response is categorical or discrete, we take X̂d
kl,j =∑

i̸=j 1(Yi = Yj)XkiXliδkiδli/
∑

i̸=j 1(Yi = Yj)δkiδki. Then Φ̂1,kl takes a simi-

lar form to (2.7) through replacing X̂kl,j with X̂d
kl,j .

Estimation of Σ−1M: Through using the proposed nonparametric imputation

procedures in (2.4), (2.6), and (2.7), we can estimate Σ with Σn = Φ̂1 − Φ̂0Φ̂
T

0 ,

and M with Mn = Φ̂2 − Φ̂0Φ̂
T

0 . A natural estimate of Σ−1M is thus Σ−1
n Mn.

2.3. Asymptotic properties

In this section we study the asymptotic behavior of the nonparametric im-

putation method. For ease of exposition, let f(y) be the density function of Y ,

assumed to be bounded away from zero and above. Let πk(Y ) = E(δk | Y ),

rk(Y ) = E(Xkδk | Y ), Rk(Y ) = E(Xk | Y ), gk(Y ) = πk(Y )f(Y ) and Gk(Y ) =

rk(Y )f(Y ), for k = 1, . . . , p. We set regularity conditions to ensure the desired

asymptotic properties. These technical conditions are not the weakest possible,

but they are imposed to facilitate the proofs.

(1) The d-th order kernel function K(·) is symmetric for some d ≥ 2. It has

support on the interval (-1,1). In addition,
∫ 1
−1K

2(u)du <∞.
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(2) The (d − 1)-th derivatives of functions f(y), f(y)Rk(y), Rk(y), gk(y), and

Gk(y) are locally Lipschitz.

(3) The bandwidth h = O(n−c), where 1/(2d) < c < 1/2.

(4) E (xTx)2 <∞.

Theorem 1. Under the MAR assumption (2.2) and Conditions (1)−(4), as n→
∞,

√
n{vec(Σ−1

n Mn)− vec(Σ−1M)} is asymptotically normal, (2.8)

where vec denotes the operator that stacks all columns of a matrix to a vector.

Theorem 1 states the convergence rate of Σ−1
n Mn when Y is continuous.

We establish the asymptotic normality for a general class of kernel functions; in

implementations we choose the second-order Epanechnikov kernel function. The

asymptotic normality can be derived similarly when Y is discrete or categorical;

details of the proof are omitted from the present context.

3. SIR with Parametric Imputation

In this section we consider a more general missing-data mechanism than

(2.2), allowing the missingness to depend on both the completely observed pre-

dictors and the response variable Y . Take x = (xT

mis,x
T

obs)
T, where xmis ∈ Rp1

has missingness in a subset of subjects, xobs ∈ Rp2 has complete observations for

all subjects, p = p1 + p2, and the vector of missingness indicators δ as before.

Here we make the MAR assumption that

δ⊥⊥xmis | (xobs, Y ) . (3.1)

Note that (2.2) implies (3.1). The MAR assumption (3.1) in the inverse regression

setup was introduced in Li and Lu (2008), and has its roots in Rubin (1976). In

this section, we introduce a parametric imputation procedure for SIR under (3.1).

Similar to (2.1), we consider the partitions:

Φ0 = (E(xT

mis), E(xT

obs))
T ,

Φ1 =

(
E(xmisx

T

mis) E(xmisx
T

obs)

E(xobsx
T

mis) E(xobsx
T

obs)

)
, and

Φ2 =

(
E {E(xmis|Y )E(xT

mis|Y )} E {E(xmis|Y )E(xT

obs|Y )}
E {E(xobs|Y )E(xT

mis|Y )} E {E(xobs|Y )E(xT

obs|Y )}

)
.

To implement SIR, one must estimate eight quantities: E(xobs), E(xobsx
T

obs),

E {E(xobs | Y )E(xT

obs | Y )}, E(xmis), E(xmisx
T

mis), E(xmisx
T

obs), E{E(xmis | Y )

E(xT

mis | Y )}, and E {E(xmis | Y )E(xT

obs | Y )}. Note that the first three can
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be estimated as usual, because they involve no missing observations. Refer to

Section 2.1 or to Zhu and Fang (1996) for more details about SIR estimation

with no missing values. New consistent estimators are desired for the last five

quantities; we discuss how to estimate them in the sequel.

To facilitate matters, we denote by Xmis,k and δk the k-th coordinates of

xmis and δ, respectively, for k = 1, . . . , p1.

Estimation of E(xmis), E(xmisx
T

obs), E {E(xmis|Y )E(xT

mis|Y )}, and
E {E(xmis|Y )E(xT

obs|Y )}:
We discuss how to estimate E(Xmis,k) in detail; the rationale for estimating

the other quantities is similar. We first note that

E(Xmis,k) = E {E(Xmis,k|xobs, Y )} = E

{
E(Xmis,kδk|xobs, Y )

E(δk|xobs, Y )

}
. (3.2)

The first equality follows from the law of iterative expectations. In view of (3.1),

one can easily have cov(Xmis,k, δk | xobs, Y ) = 0. Thus, E(Xmis,k | xobs, Y ) =

E(Xmis,kδk | xobs, Y )/E(δk | xobs, Y ), which entails the second equality of (3.2).

As Xmis,kδk, δk, xobs and Y are observable, we can estimate the RHS of (3.2) via

standard procedures, to be described below.

When the dimension p2 of xobs is small compared with the sample size n,

we can follow the ideas in Section 2.2 to estimate E(Xmis,kδk | xobs, Y ) and

E(δk | xobs, Y ) directly through local smoothing techniques, such as the ker-

nel regression. An anonymous referee cautioned that the kernel-based imputa-

tion method may run into the curse of dimensionality when p2 of xobs is fairly

large. To address this issue, we posit several parameter models for estimating

E(Xmis,kδk|xobs, Y ) and E(δk|xobs, Y ). Let

E(δk | xobs, Y ) = πk(xobs, Y ;α1,k), and (3.3)

E(Xmis,kδk | xobs, Y ) = ψk(xobs, Y ;γ1,k), for k = 1, . . . , p1. (3.4)

These functions are indexed by the parameters α1,k and γ1,k; to estimate them,

it suffices to estimate the involved parameters. Because δk is binary, a natural

choice for πk(xobs, Y ;α1,k) is logistic regression, but other parametric models

can be easily accommodated as well. With the logistic regression, we can use

maximum likelihood to estimate the parameters α1,k’s for k = 1, . . . , p1. Sim-

ilarly for ψk(xobs, Y ;γ1,k), a convenient option is the linear regression model,

but other parameter models can be accommodated as well. Given the data

{(x1, Y 1, δ1) , . . . , (xn, Y n, δn)}, where xi = (xT

mis,i,x
T

obs,i)
T, γ1,k can be esti-

mated by least squares. Denote by α̂1,k and γ̂1,k the respective estimators of

α1,k and γ1,k. These estimates are root-n consistent provided the parametric
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models πk(xobs, Y ;α1,k) and ψk(xobs, Y ;γ1,k) are correctly specified. Thus, one

can estimate E(Xmis,k | xobs, Y ) by

Ê(Xmis,k | xobs, Y ) =
Ê(Xmis,kδk | xobs, Y )

Ê(δk | xobs, Y )
=
ψk(xobs, Y ; γ̂1,k)

πk(xobs, Y ; α̂1,k)
. (3.5)

With (3.5), a natural option for estimating E(Xmis,k) is

Ê(Xmis,k) = n−1
n∑

i=1

{
δkiXki + (1− δki) Ê(Xmis,k | xobs,i, Yi)

}
.

Note that E(xmisx
T

obs) = E {E(xmis | xobs, Y )xT

obs}. Similarly, we can estimate

the k-th row of E(xmisx
T

obs), E(Xmis,kx
T

obs), by

Ê(Xmis,kx
T

obs) = n−1
n∑

i=1

{
δkiXmis,k,i + (1− δki) Ê(Xmis,k | xobs,i, Yi)

}
xT

obs,i.

Note that E(xmis | Y ) = E {E(xmis | xobs, Y ) | Y }. To estimate the k-th com-

ponent E(Xmis,k | Y ), we can use

Ê(Xmis,k | Y ) = n−1
n∑

i=1

Kh(Yi − Y )
{
δkiXki + (1− δki)Ê(Xmis,k | xobs,i, Yi)

}
f̂(Y )

.

Recall that E(xobs | Y ) can be estimated with the usual kernel smoother R̂f (Y )

defined in Section 2.1. With consistent estimates Ê(Xmis,k | Y ) and R̂f (Y ),

one can follow similar procedures as proposed in this section to construct consis-

tent estimators for E {E(xmis | Y )E(xT

mis | Y )} and E {E(xmis | Y )E(xT

obs | Y )}.
Details are omitted for the sake of brevity.

Estimation of E(xmisx
T

mis): Here, estimation is similar to that of E(xmis). We

only sketch the outline below. Note that

E(Xmis,kXmis,l) = E {E(Xmis,kXmis,l | xobs, Y )}

= E

{
E(Xmis,kXmis,lδkδl | xobs, Y )

E(δkδl | xobs, Y )

}
.

This follows from (3.1), since cov(Xmis,kXmis,l, δkδl | xobs, Y ) = 0.

When the dimension p1 of xobs is large, we posit several parameter models

for estimating E(Xmis,kXmis,lδkδl | xobs, Y ) and E(δkδl | xobs, Y ). Let

E(δkδl | xobs, Y ) = πk,l(xobs, Y ;α2,kl), and (3.6)

E(Xmis,kXmis,lδkδl | xobs, Y ) = ψk,l(xobs, Y ;γ2,kl), for k, l = 1, . . . , p1. (3.7)
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Because δkδl is also binary, we take logistic regression model for πk,l(xobs, Y ;α2,kl),

and use the maximum likelihood to estimate the parameters α2,kl. Similarly, we

take the linear regression model for ψk,l(xobs, Y ;γ2,kl) and estimate γ2,kl with

least squares. Denote by α̂2,kl and γ̂2,kl the estimators of α2,kl and γ2,kl. These

estimators are root-n consistent if the parametric models πk,l(xobs, Y ;α2,kl) and

ψk,l(xobs, Y ;γ2,kl) are correctly specified. Thus,

Ê(Xmis,kXmis,l | xobs, Y ) =
Ê(Xmis,kXmis,lδkδl | xobs, Y )

Ê(δkδl | xobs, Y )

=
ψk,l(xobs, Y ; γ̂2,kl)

πk,l(xobs, Y ; α̂2,kl)
. (3.8)

With (3.8), one can easily estimate E(Xmis,kXmis,l) by

Ê(Xmis,kXmis,l)

= n−1
n∑

i=1

{
δkiδliXmis,k,iXmis,l,i + (1− δkiδli) Ê(Xmis,kXmis,l | xobs,i, Yi)

}
.

Estimation of Σ−1M: Through replacing the unknowns in Φ0, Φ1, and Φ2 with

their corresponding estimates, we estimate Σ with Σ′
n = Φ̂1 − Φ̂0Φ̂

T

0 , and M by

M′
n = Φ̂2 − Φ̂0Φ̂

T

0 . A natural estimate of Σ−1M is Σ′−1
n M′

n.

The consistency of the parametric imputation of SIR is stated in a theorem.

Theorem 2. Under Conditions (1)−(4), the MAR assumption (3.1), and that

the parametric models (3.3)−(3.4), (3.6)−(3.7) are correctly specified, α̂1,k, γ̂1,k,

α̂2,kl, and γ̂2,kl are root-n consistent, for k, l = 1, . . . , p1, as n→ ∞,

√
n{vec(Σ′−1

n M′
n)− vec(Σ−1M)} is asymptotically normal.

4. Simulations

In this section we examine the finite-sample performance of the proposed

nonparametric and parametric imputation procedures through synthetic studies.

We compared the performance of seven proposals in our simulations.

(1) NP-KIR: Nonparametric imputation with kernel estimation of the SIR ma-

trix. Refer to Section 2 for details.

(2) NP-SIR: Nonparametric imputation with the slicing estimation of the SIR

matrix. This differs from NP-KIR in that NP-SIR uses the slicing estima-

tion to impute missing observations and to estimate the SIR matrix.

(3) P-KIR: Parametric imputation with kernel estimation of the SIR matrix.

Refer to Section 3 for details.
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(4) P-SIR: Parametric imputation with the slicing estimation of the SIR matrix.

This differs from P-KIR in that P-SIR uses the slicing estimation to impute

missing observations and to estimate the SIR matrix.

(5) CC-KIR: The naive complete-case analysis that uses only the complete

observations in estimating SY |x. We use the kernel estimation to estimate

the SIR matrix.

(6) CC-SIR: The naive complete-case analysis that uses only the complete ob-

servations in estimating SY |x. We use the slicing estimation to estimate the

SIR matrix.

(7) FC-KIR: The full-case analysis that uses all n observations that have no

missing predictors. We use the kernel estimation to estimate the SIR ma-

trix.

(8) FC-SIR: The full-case analysis that uses all n observations that have no

missing predictors. This differs from FC-KIR in that we use the slicing

estimation to estimate the SIR matrix.

(9) AIPW: The augmented inverse probability weighted SIR introduced by Li

and Lu (2008).

(10) AIPWM: The marginal augmented inverse probability weighted SIR intro-

duced by Li and Lu (2008).

Because the slicing estimation is insensitive to the number of slices H (Li

(1991), Zhu and Ng (1995)), we only report the results with H = 5 and H = 10.

For procedures (1), (3), (5) and (7) that use kernel smoothing, we used cross-

validation to obtain an optimal bandwidth hopt, then used h = n−2/15hopt as the

resulting bandwidth.

We adopted two models for the purposes of comparison:

Y = (γT

1x)(γ
T

1x+ γT

2x+ 3) + 0.5ε, (4.1)

Y =
γT

1x

(γT

2x+ 1.5)2 + 0.5
+ 0.5ε. (4.2)

These models were used in Li (1991) and Li and Lu (2008). We followed their

settings and drew x = (X1, . . . , Xp)
T from a multivariate normal distribution

with mean zero and covariance 0.3|k−l| between Xk and Xl, for 1 ≤ k, l ≤ p. The

error term ε was independent standard normal. We set γ1 = (1, 0, 0, 0, 0)T and

γ2 = (0, 1, 0, 0, 0)T. When p > 5, the rest of the components of γ1 and γ2 were

set to zero. Simulations were repeated 500 times, each of sample size n = 200.

We chose p = 5 and p = 10 to compare different methods.
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Example 1. In this example, we took a subset of predictors to have missing

observations, with the probability π given the response Y as

πk(Y ) = prob(δk = 1 | Y ) =
exp (c0 − 0.25Y )

1 + exp (c0 − 0.25Y )
, (4.3)

c0 is a scalar constant that controls the missingness proportion. We chose c0 =

−1, 0 and 1 to evaluate the effect of the missing proportion on the efficacy of the

various methods. The empirical missingness proportion, indicated by “mp” in

Tables 1−2 and determined by c0, is also reported in Tables 1−2. We can see

that the larger c0 values indicate fewer missing values.

We considered two cases: (i) only X1 has missing values, and (ii) both X1

and X2 have missing values. To measure the estimation accuracy, we adopted

the trace correlation coefficient proposed by Ferré (1998). To be precise, let

ŜY |x be an estimator of SY |x, and let P and P̂ be the respective projection

operators in the standard inner product of SY |x and its estimator ŜY |x. The trace

correlation is R2(K) = tr(PP̂ )/K; K = dim(SY |x) = 2 was assumed to be known

in advance. This measure describes the “closeness” between the estimated and

the true subspaces; it ranges from 0 and 1, with larger values indicating better

estimation. We report the median and the median absolute deviation of R2(K)

values over 500 repetitions in Table 1, for p = 5 and in Table 2 for p = 10.

For the full-case analyses such as FC-KIR and FC-SIR, the data contain no

missing values, and we only report one result for each model. When only X1 has

missing values, AIPWM is equivalent to AIPW, hence we only report results for

AIPW in Tables 1−2.

It can be seen from Tables 1−2 that, in most scenarios, the proposals using

the kernel smoothing and their counterparts using the slicing estimation have

comparable performance. Yet, kernel smoothing slightly outperforms the slicing

estimation when both X1 and X2 have a large proportion of missing values. We

use Table 1 as an example because Table 2 conveys a similar message. In model

(4.1) with c = −1, the median trace correlation is 0.915 for P-KIR, and 0.594 for

P-SIR with H = 5, 0.564 for P-SIR with H = 10. In model (4.2) with c = −1,

the median trace correlation is 0.923 for NP-KIR, 0.772 for NP-SIR with H = 5

and 0.813 for NP-SIR with H = 10.

Full-case analysis serves naturally as a benchmark. The results of both FC-

KIR and FC-SIR are reported in Tables 1−12. They perform the best across all

scenarios because all data can be used precisely when there is no missingness.

Complete-case analysis performs the worst in most scenarios. In Table 1 as

an example when both X1 and X2 have missing values with c = −1, the median

trace correlation for CC-KIR is as small as 0.520 in model (4.1) and 0.537 in
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Table 1. The median and the median absolute deviation of the trace corre-
lation coefficients for models (4.1) and (4.2) with p = 5. The missingness
follows (4.3).

n = 200, p = 5 only X1 has missing values both X1 and X2 have missing values
model (4.1)

c0=−1 c0=0 c0=1 c0=−1 c0=0 c0=1
NP-KIR 0.934±0.049 0.934±0.055 0.945±0.048 0.917±0.065 0.921±0.069 0.929±0.064
NP-SIR (H=5 ) 0.930±0.044 0.940±0.039 0.942±0.040 0.858±0.102 0.903±0.071 0.924±0.054
NP-SIR (H=10) 0.931±0.041 0.942±0.037 0.946±0.034 0.880±0.089 0.918±0.061 0.932±0.047
P-KIR 0.928±0.072 0.922±0.074 0.938±0.065 0.915±0.064 0.899±0.092 0.923±0.070
P-SIR (H=5 ) 0.856±0.107 0.860±0.109 0.888±0.090 0.594±0.134 0.734±0.171 0.863±0.095
P-SIR (H=10) 0.832±0.137 0.838±0.124 0.887±0.100 0.564±0.099 0.663±0.186 0.848±0.121
CC-KIR 0.793±0.212 0.909±0.085 0.952±0.045 0.520±0.125 0.751±0.256 0.900±0.102
CC-SIR (H=5 ) 0.787±0.175 0.883±0.091 0.928±0.055 0.518±0.099 0.744±0.190 0.883±0.092
CC-SIR (H=10) 0.759±0.190 0.879±0.105 0.926±0.059 0.499±0.114 0.739±0.194 0.877±0.102
FC-KIR 0.973±0.023 - - - - -
FC-SIR (H=5 ) 0.949±0.042 - - - - -
FC-SIR (H=10) 0.954±0.036 - - - - -
AIPW (H=5 ) 0.934±0.052 0.937±0.048 0.937±0.049 0.538±0.070 0.604±0.148 0.834±0.156
AIPW (H=10) 0.937±0.050 0.939±0.045 0.941±0.042 0.599±0.151 0.716±0.262 0.851±0.157
AIPWM (H=5 ) - - - 0.670±0.215 0.847±0.134 0.912±0.069
AIPWM (H=10) - - - 0.701±0.244 0.848±0.137 0.915±0.072
mp 0.755±0.029 0.560±0.037 0.345±0.037 0.930±0.014 0.775±0.029 0.540±0.029

model (4.2)
c0=−1 c0=0 c0=1 c0=−1 c0=0 c0=1

NP-KIR 0.947±0.038 0.954±0.039 0.952±0.039 0.923±0.062 0.944±0.045 0.950±0.038
NP-SIR (H=5 ) 0.840±0.111 0.873±0.088 0.885±0.077 0.772±0.154 0.844±0.111 0.886±0.082
NP-SIR (H=10) 0.859±0.098 0.905±0.072 0.910±0.064 0.813±0.131 0.878±0.086 0.910±0.062
P-KIR 0.957±0.030 0.961±0.031 0.957±0.034 0.611±0.167 0.763±0.253 0.904±0.097
P-SIR (H=5 ) 0.906±0.063 0.899±0.068 0.893±0.072 0.543±0.071 0.662±0.162 0.813±0.126
P-SIR (H=10) 0.926±0.047 0.926±0.051 0.915±0.057 0.519±0.041 0.613±0.138 0.822±0.127
CC-KIR 0.804±0.203 0.905±0.085 0.936±0.051 0.537±0.161 0.753±0.244 0.907±0.085
CC-SIR (H=5 ) 0.700±0.207 0.835±0.122 0.884±0.092 0.501±0.117 0.702±0.195 0.842±0.119
CC-SIR (H=10) 0.690±0.197 0.831±0.130 0.895±0.081 0.468±0.128 0.645±0.209 0.844±0.130
FC-KIR 0.957±0.032 - - - - -
FC-SIR (H=5 ) 0.905±0.065 - - - - -
FC-SIR (H=10) 0.927±0.054 - - - - -
AIPW (H=5 ) 0.871±0.095 0.883±0.079 0.891±0.074 0.512±0.074 0.700±0.238 0.844±0.123
AIPW (H=10) 0.901±0.072 0.917±0.061 0.912±0.062 0.546±0.124 0.748±0.220 0.878±0.092
AIPWM (H=5 ) - - - 0.722±0.241 0.835±0.136 0.881±0.086
AIPWM (H=10) - - - 0.762±0.201 0.871±0.102 0.906±0.066
mp 0.720±0.037 0.495±0.037 0.265±0.029 0.920±0.014 0.735±0.029 0.455±0.037

model (4.2). These naive procedures are typically regarded as not very efficient

in practice.

When only X1 has missing values, NP-KIR, NP-SIR, P-KIR, P-SIR, and

AIPW (equivalently, AIPWM) have comparable performance in both models

(4.1) and (4.2). By contrast, when both X1 and X2 have missing values, NP-

KIR and P-KIR perform much better than AIPW and AIPWM. For example, in

Table 1 when both X1 and X2 have missing values with c = 0, the median trace

correlation is 0.921 for NP-KIR and 0.8999 for P-KIR in model (4.1), compared

with 0.716 for AIPW with H = 10 and 0.848 for AIPWM with H = 10.
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Table 2. The median and the median absolute deviation of the trace corre-
lation coefficients for models (4.1) and (4.2) with p = 10. The missingness
follows (4.3).

n = 200, p = 10 only X1 has missing values both X1 and X2 have missing values
model (4.1)

c0=−1 c0=0 c0=1 c0=−1 c0=0 c0=1
NP-KIR 0.841±0.079 0.842±0.077 0.850±0.085 0.824±0.082 0.826±0.088 0.837±0.089
NP-SIR (H=5 ) 0.841±0.055 0.855±0.053 0.864±0.053 0.721±0.125 0.791±0.088 0.833±0.065
NP-SIR (H=10) 0.844±0.059 0.866±0.055 0.875±0.050 0.751±0.115 0.822±0.073 0.842±0.064
P-KIR 0.834±0.118 0.844±0.117 0.859±0.097 0.877±0.105 0.849±0.129 0.867±0.123
P-SIR (H=5 ) 0.730±0.101 0.734±0.102 0.771±0.106 0.513±0.056 0.597±0.131 0.712±0.127
P-SIR (H=10) 0.732±0.114 0.738±0.119 0.772±0.117 0.543±0.086 0.575±0.117 0.698±0.155
CC-KIR 0.570±0.162 0.746±0.179 0.850±0.112 0.414±0.126 0.542±0.147 0.755±0.176
CC-SIR (H=5 ) 0.595±0.157 0.727±0.109 0.798±0.092 0.385±0.169 0.559±0.129 0.737±0.132
CC-SIR (H=10) 0.549±0.122 0.708±0.129 0.796±0.099 0.286±0.212 0.521±0.112 0.706±0.160
FC-KIR 0.928±0.050 - - - - -
FC-SIR (H=5 ) 0.867±0.059 - - - - -
FC-SIR (H=10) 0.874±0.057 - - - - -
AIPW (H=5 ) 0.846±0.067 0.854±0.064 0.859±0.059 0.507±0.081 0.559±0.118 0.745±0.141
AIPW (H=10) 0.851±0.068 0.862±0.069 0.868±0.063 0.522±0.099 0.666±0.199 0.774±0.154
AIPWM (H=5 ) - - - 0.598±0.156 0.728±0.148 0.823±0.085
AIPWM (H=10) - - - 0.620±0.181 0.736±0.164 0.823±0.095
mp 0.760±0.029 0.560±0.037 0.345±0.037 0.930±0.014 0.780±0.029 0.540±0.037

model (4.2)
c0=−1 c0=0 c0=1 c0=−1 c0=0 c0=1

NP-KIR 0.865±0.076 0.878±0.074 0.881±0.071 0.834±0.100 0.849±0.099 0.870±0.080
NP-SIR (H=5 ) 0.681±0.144 0.743±0.123 0.768±0.111 0.592±0.156 0.702±0.148 0.755±0.127
NP-SIR (H=10) 0.706±0.142 0.774±0.111 0.794±0.107 0.638±0.162 0.735±0.131 0.792±0.108
P-KIR 0.890±0.058 0.899±0.057 0.894±0.060 0.524±0.089 0.597±0.164 0.765±0.178
P-SIR (H=5 ) 0.804±0.090 0.795±0.099 0.781±0.102 0.494±0.046 0.542±0.086 0.653±0.147
P-SIR (H=10) 0.831±0.080 0.822±0.089 0.805±0.095 0.489±0.040 0.522±0.065 0.647±0.152
CC-KIR 0.527±0.164 0.738±0.201 0.825±0.118 0.365±0.144 0.506±0.138 0.755±0.153
CC-SIR (H=5 ) 0.484±0.128 0.623±0.156 0.726±0.128 0.278±0.155 0.470±0.127 0.645±0.149
CC-SIR (H=10) 0.459±0.115 0.613±0.155 0.727±0.151 0.204±0.149 0.441±0.113 0.631±0.164
FC-KIR 0.889±0.063 - - - - -
FC-SIR (H=5 ) 0.779±0.105 - - - - -
FC-SIR (H=10) 0.810±0.096 - - - - -
AIPW (H=5 ) 0.749±0.117 0.771±0.110 0.774±0.105 0.472±0.101 0.597±0.163 0.720±0.133
AIPW (H=10) 0.775±0.116 0.797±0.104 0.802±0.104 0.497±0.131 0.647±0.162 0.745±0.135
AIPWM (H=5 ) - - - 0.598±0.160 0.710±0.156 0.750±0.138
AIPWM (H=10) - - - 0.621±0.171 0.738±0.141 0.784±0.115
mp 0.725±0.029 0.490±0.037 0.265±0.029 0.920±0.022 0.740±0.029 0.460±0.029

When both X1 and X2 have missing values, we can also see that the me-

dian absolute deviation of trace correlations of imputation procedures such as

NP-KIR, NP-SIR, P-KIR, and P-SIR are significantly smaller than those of the

inverse probability weighted methods such as AIPW and AIPWM, in both mod-

els, and that NP-KIR performs the best in most scenarios in terms of median

absolute deviation values.

Example 2. In this example, we examined the performance of the different pro-

posals under the MAR assumption (3.1). To be precise, we took the probability
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Table 3. The median and the median absolute deviation of the trace corre-
lation coefficients for models (4.1) and (4.2) with p = 5. The missingness
follows (4.4).

n = 200, p = 5 only X1 has missing values both X1 and X2 have missing values
model (4.1)

c0 = −1 c0 = 0 c0 = 1 c0 = −1 c0 = 0 c0 = 1
NP-KIR 0.963±0.032 0.967±0.030 0.971±0.026 0.906±0.100 0.937±0.069 0.960±0.037
NP-SIR (H=5 ) 0.925±0.051 0.932±0.045 0.937±0.040 0.811±0.143 0.887±0.080 0.917±0.061
NP-SIR (H=10) 0.930±0.048 0.943±0.042 0.944±0.042 0.843±0.134 0.898±0.078 0.930±0.054
P-KIR 0.954±0.035 0.961±0.036 0.971±0.025 0.637±0.199 0.738±0.245 0.901±0.113
P-SIR (H=5 ) 0.928±0.044 0.933±0.042 0.940±0.041 0.553±0.085 0.662±0.154 0.829±0.117
P-SIR (H=10) 0.926±0.047 0.943±0.040 0.948±0.040 0.545±0.078 0.630±0.167 0.811±0.139
CC-KIR 0.826±0.191 0.907±0.095 0.951±0.043 0.589±0.171 0.775±0.229 0.905±0.091
CC-SIR (H=5 ) 0.737±0.188 0.846±0.136 0.906±0.075 0.598±0.137 0.709±0.194 0.833±0.139
CC-SIR (H=10) 0.745±0.193 0.836±0.149 0.907±0.077 0.597±0.140 0.707±0.194 0.848±0.128
FC-KIR 0.971±0.026 - - - - -
FC-SIR (H=5 ) 0.947±0.039 - - - - -
FC-SIR (H=10) 0.955±0.037 - - - - -
AIPW (H=5 ) 0.931±0.047 0.938±0.039 0.938±0.040 0.574±0.112 0.738±0.247 0.881±0.101
AIPW (H=10) 0.937±0.046 0.947±0.038 0.946±0.040 0.598±0.149 0.766±0.224 0.911±0.078
AIPWM (H=5 ) - - - 0.786±0.195 0.888±0.093 0.918±0.061
AIPWM (H=10) - - - 0.824±0.162 0.898±0.089 0.930±0.053
mp 0.632±0.020 0.454±0.016 0.283±0.014 0.631±0.016 0.456±0.017 0.282±0.014

model (4.2)
c0=−1 c0=0 c0=1 c0=−1 c0=0 c0=1

NP-KIR 0.940±0.045 0.946±0.043 0.948±0.044 0.923±0.063 0.938±0.051 0.940±0.049
NP-SIR (H=5 ) 0.870±0.084 0.888±0.071 0.896±0.072 0.773±0.153 0.831±0.119 0.877±0.086
NP-SIR (H=10) 0.889±0.068 0.905±0.059 0.914±0.059 0.822±0.115 0.864±0.089 0.896±0.075
P-KIR 0.930±0.061 0.946±0.043 0.953±0.040 0.673±0.261 0.722±0.301 0.887±0.115
P-SIR (H=5 ) 0.809±0.134 0.856±0.116 0.881±0.092 0.651±0.201 0.683±0.207 0.811±0.137
P-SIR (H=10) 0.832±0.143 0.879±0.097 0.900±0.076 0.682±0.247 0.680±0.207 0.806±0.154
CC-KIR 0.696±0.226 0.840±0.140 0.900±0.082 0.509±0.161 0.667±0.217 0.807±0.167
CC-SIR (H=5 ) 0.641±0.192 0.768±0.166 0.844±0.104 0.495±0.155 0.611±0.178 0.775±0.161
CC-SIR (H=10) 0.636±0.191 0.799±0.147 0.862±0.100 0.475±0.137 0.604±0.184 0.778±0.161
FC-KIR 0.959±0.029 - - - - -
FC-SIR (H=5 ) 0.904±0.065 - - - - -
FC-SIR (H=10) 0.934±0.045 - - - - -
AIPW (H=5 ) 0.863±0.106 0.880±0.086 0.893±0.078 0.519±0.084 0.601±0.161 0.783±0.179
AIPW (H=10) 0.891±0.081 0.902±0.072 0.913±0.062 0.564±0.125 0.649±0.217 0.806±0.157
AIPWM (H=5 ) - - - 0.598±0.150 0.749±0.204 0.852±0.112
AIPWM (H=10) - - - 0.689±0.227 0.802±0.162 0.881±0.099
mp 0.693±0.014 0.505±0.015 0.316±0.014 0.694±0.014 0.505±0.016 0.315±0.015

π of the missingness given both Y and (X2, . . . , Xp) to be

π1(Y,X2, . . . , Xp) = prob(δ1 = 1 | Y,X2, · · · , Xp)

=
exp (c0 + 0.25Y + 0.5X2 −Xp)

1 + exp (c0 + 0.25Y + 0.5X2 −Xp)
. (4.4)

Other settings remain the same as before. The results are summarized in Table 3
for p = 5, and Table 4 for p = 10.

Similar conclusions can be drawn as in Example 1 for both the full-case and
complete-case analyses. The AIPW, NP-KIR, NP-SIR, PKIR, and P-SIR have
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Table 4. The median and the median absolute deviation of the trace corre-
lation coefficients for models (4.1) and (4.2) with p = 10. The missingness
follows (4.4).

n = 200, p = 10 only X1 has missing values both X1 and X2 have missing values
model (4.1)

c0 = −1 c0 = 0 c0 = 1 c0 = −1 c0 = 0 c0 = 1
NP-KIR 0.907±0.064 0.916±0.061 0.918±0.062 0.796±0.199 0.872±0.118 0.894±0.085
NP-SIR (H=5 ) 0.830±0.069 0.849±0.062 0.856±0.058 0.664±0.137 0.778±0.096 0.823±0.081
NP-SIR (H=10) 0.842±0.070 0.856±0.064 0.864±0.059 0.695±0.150 0.779±0.107 0.829±0.079
P-KIR 0.903±0.063 0.905±0.063 0.920±0.060 0.518±0.086 0.565±0.123 0.748±0.223
P-SIR (H=5 ) 0.857±0.058 0.858±0.060 0.863±0.054 0.522±0.079 0.573±0.117 0.703±0.138
P-SIR (H=10) 0.862±0.058 0.863±0.061 0.872±0.056 0.543±0.111 0.552±0.101 0.663±0.152
CC-KIR 0.601±0.176 0.780±0.182 0.872±0.103 0.481±0.067 0.570±0.148 0.768±0.180
CC-SIR (H=5 ) 0.553±0.094 0.682±0.139 0.772±0.114 0.498±0.054 0.550±0.096 0.666±0.154
CC-SIR (H=10) 0.562±0.104 0.674±0.157 0.773±0.109 0.503±0.063 0.547±0.089 0.669±0.152
FC-KIR 0.923±0.058 - - - - -
FC-SIR (H=5 ) 0.866±0.059 - - - - -
FC-SIR (H=10) 0.875±0.057 - - - - -
AIPW (H=5 ) 0.848±0.060 0.857±0.057 0.861±0.054 0.524±0.079 0.641±0.173 0.779±0.129
AIPW (H=10) 0.851±0.067 0.864±0.058 0.871±0.056 0.551±0.107 0.670±0.182 0.805±0.107
AIPWM (H=5 ) - - - 0.690±0.167 0.784±0.113 0.830±0.078
AIPWM (H=10) - - - 0.726±0.163 0.800±0.112 0.841±0.080
mp 0.630±0.033 0.455±0.037 0.285±0.033 0.795±0.029 0.635±0.037 0.440±0.037

model (4.2)
c0=−1 c0=0 c0=1 c0=−1 c0=0 c0=1

NP-KIR 0.855±0.080 0.866±0.073 0.879±0.070 0.838±0.099 0.841±0.099 0.859±0.078
NP-SIR (H=5 ) 0.703±0.124 0.748±0.102 0.763±0.098 0.595±0.145 0.674±0.151 0.731±0.123
NP-SIR (H=10) 0.741±0.108 0.784±0.091 0.799±0.092 0.630±0.155 0.706±0.139 0.767±0.111
P-KIR 0.841±0.111 0.865±0.085 0.892±0.067 0.651±0.255 0.616±0.199 0.756±0.210
P-SIR (H=5 ) 0.646±0.147 0.697±0.154 0.752±0.122 0.595±0.163 0.551±0.117 0.649±0.153
P-SIR (H=10) 0.653±0.167 0.732±0.155 0.779±0.125 0.663±0.214 0.575±0.143 0.645±0.173
CC-KIR 0.489±0.154 0.669±0.181 0.795±0.122 0.344±0.146 0.460±0.127 0.666±0.173
CC-SIR (H=5 ) 0.428±0.140 0.559±0.152 0.677±0.143 0.273±0.141 0.414±0.129 0.561±0.147
CC-SIR (H=10) 0.408±0.125 0.575±0.166 0.700±0.145 0.232±0.140 0.383±0.120 0.565±0.171
FC-KIR 0.892±0.055 - - - - -
FC-SIR (H=5 ) 0.771±0.106 - - - - -
FC-SIR (H=10) 0.807±0.097 - - - - -
AIPW (H=5 ) 0.727±0.126 0.750±0.112 0.765±0.108 0.475±0.104 0.529±0.117 0.652±0.165
AIPW (H=10) 0.762±0.125 0.789±0.105 0.802±0.095 0.495±0.111 0.563±0.141 0.682±0.161
AIPWM (H=5 ) - - - 0.540±0.133 0.645±0.161 0.726±0.128
AIPWM (H=10) - - - 0.565±0.157 0.675±0.172 0.735±0.143
mp 0.695±0.029 0.505±0.037 0.320±0.029 0.865±0.022 0.705±0.029 0.490±0.037

comparable performance even with the full-case procedures FC-KIR and FC-SIR

in model (4.1) when only X1 has missing values. When both X1 and X2 have

missing values, the performance of AIPW, P-KIR, and P-SIR deteriorate. The

complete-case procedure performs the worst, particularly when both X1 and X2

have a large number of missing values. NP-KIR is the winner in most scenarios.

We remark here that the nonparametric imputation procedures such as NP-KIR

and NP-SIR perform quite well even when the missing probability is misspecified,

suggesting that these procedures are robust to the misspecification of missingness
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Table 5. The estimated coefficients of the predictors obtained with six pro-
posals.

X1 X2 X3 X4 X5 X6

NP-KIR -0.4565 -0.5894 -0.4976 -0.4013 0.1812 -0.0494
NP-SIR 0.0353 -0.6348 -0.5072 -0.4707 0.2132 -0.2671
P-KIR -0.4565 -0.5894 -0.4976 -0.4013 0.1812 -0.0494
P-SIR -0.4565 -0.5894 -0.4976 -0.4013 0.1812 -0.0494
AIPW 0.3667 -0.7289 -0.4594 0.3218 0.0680 -0.1218
AIPWM -0.3785 -0.4652 -0.7781 -0.1222 0.1335 0.0439

mechanism. Conclusions for model (4.2) are similar.

5. An Application

In this section we illustrate our proposals through the horse colic data set

available from the Machine Learning Repository at the University of California-

Irvine. The objective is to understand whether the lesion of a horse is surgical.

Several attributes were collected, but we focus on six factors with continuous

measurements as predictors: rectal temperature in degrees Celsius (X1), the heart

rate in beats per minute (X2), respiratory rate (X3), the number of red cells by

volume in the blood (X4), total protein (X5) and the abdomcentesis total protein

(X6) in gms/dL. The response Y is binary, taking value 1 if the lesion of the horse

is surgical, and 2 otherwise. Because the response is retrospective, and all cases

are either operated upon or autopsied, the response is always known. There

are 368 sample points in total, and all six predictors are subject to missingness.

Among them, 69 instances in X1, 26 in X2, 71 in X3, 37 in X4, 43 in X5, and

235 in X6 had missing values. The complete data contains only 105 instances.

Because the response is binary, the SIR method can identify at most one direction

(Cook and Lee (1999)), we take dim(SY |x) = 1.

Six proposals, NP-KIR and NP-SIR, P-KIR and P-SIR, AIPW and AIPWM,

were applied to estimate SY |x. Because the performance of the slicing estimation

is robust to the number of slices, we chose H = 10. Our simulations indicate that

complete-case analysis, such as CC-KIR or CC-KIR, do not perform well, thus

we did not include then in our comparison. The estimated directions of these

six proposals are summarized in Table 5. The results obtained with NP-KIR,

P-KIR and P-SIR are similar, and slightly different from NP-SIR. However, they

are quite different from those obtained with AIPW and AIPWM.

To evaluate the estimation accuracy of these six proposals, we adopted the

bootstrap procedure proposed by Ye and Weiss (2003), with ŜY |x the estimated

SY |x using the original data. Then bootstrapped the original data set 1,000 times.

For each bootstrap, we applied the six proposals to estimate SY |x. With Ŝb
Y |x the
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Figure 1. The boxplots of the bootstrap trace correlations for six proposals
used in the horse colic data. The vertical axis denotes the trace correlation
coefficients.

estimated SY |x using bootstrap data, for b = 1, . . . , 1, 000, we calculated the

trace correlation coefficient {R2(K)}b between ŜY |x and Ŝb
Y |x (Ferré (1998)). We

took {R2(K)}b as a measure of variability of the estimator ŜY |x, and preferred

proposals with smaller variability, assuming no or minimal bias. The boxplot of

the bootstrap trace correlations between ŜY |x and the bootstrap estimator Ŝb
Y |x

from these six proposals are presented in Figure 1. It can be seen that NP-KIR,

P-KIR, and P-SIR behave comparably, and slightly better than NP-SIR. All our

proposals outperformed AIPW and AIPWM significantly.

In terms of predictor contribution, the ratios of these coefficients can be

judged as the ratios of standard coefficients from a linear model. In particular,

rectal temperature in degrees Celsius (X1), the heart rate in beats per minute

(X2), respiratory rate (X3), and the number of red cells by volumes in blood (X4)

play dominant roles in determining whether the lesion of the horse is surgical.

Next we evaluated the predictive power of all six proposals with leave-one-
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Table 6. The prediction power obtained with leave-one-out cross-validation.

AIPW AIPWM NP-KIR NP-SIR P-KIR P-SIR Logistic
0.617 0.630 0.685 0.668 0.685 0.685 0.681

out cross-validation. Predictive power is assessed through the proportion of n

response variables that are correctly predicted from logistic regression. Because

the estimated SY |x is assumed to have one dimension, we fit logistic regression us-

ing a single linear combination of the predictors for each proposal. The predictive

power using leave-one-out cross-validation is reported in Table 6. It can be seen

clearly that NP-KIR, P-KIR and P-SIR perform the best, followed by NP-SIR.

AIPW performs the worst, which complies with the bootstrap results reported

in Figure 1. In addition, we fit a logistic regression with all six predictors Xis. It

yielded the predictive power of 0.681. This indicates that our proposals reduce

the dimension effectively, while retaining the regression information of Y | x.

6. A Brief Discussion

In this paper we introduce nonparametric and parametric imputation pro-

cedures to tackle some general SDR problems when a subset of predictors has

missing observations. The nonparametric imputation method inherits the merit

of SDR in that it imposes no parametric assumptions on modeling. The associate

editor pointed out the MAR assumption (2.2) is stringent. Thus we also consider

(3.1). To address the issue of curse of dimensionality under (3.1), we introduce

a parametric imputation procedure. As such, some of the nonparametric flavor

is lost in our SDR estimation with missing predictors. This is the price we pay

for a complicated missing mechanism. Our limited simulation studies suggest

that the proposed parametric imputation method works well even when simple

models, such as linear and logistic regressions, were used.

An anonymous referee pointed out that to check the appropriateness of the

two missingness schemes (2.2) and (3.1) is of both practical and theoretical inter-

est. For example, how can one check whether the missingness depends exclusively

on the response? This can be formulated as a problem of testing the conditional

independence between δ and x when Y is given. This is an open and important

question even when all observations are complete. Bergsm (2011) proposed to

test the conditional independence through partial copulas given complete ob-

servations. How to adapt the existing methodologies designed for testing the

conditional independence in the complete-data case to the missing-data prob-

lems deserves further investigation.
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Appendix

We first present some useful lemmas, followed by the proofs of the theorems.

Lemma A.1. Let H0(Y ) = E {H(Xl, δl, Y ) | Y }. If condition (1) holds and the

(d− 1)-st derivative of H0(y)f(y) satisfies the local Lipschitz condition,

1

n

n∑
i=1

{ 1

n− 1

∑
j ̸=i

Kh(Yj − Yi)H(Xlj , δlj , Yj)−H0(Yi)f(Yi)
}2

= OP (h
d). (A.1)

Proof of Lemma A.1 The result is a slightly modified version of Lemma A.1

of Zhu and Zhu (2007) and Zhu and Fang (1996). The proof is omitted.

Lemma A.2. Suppose conditions (1)−(3) are satisfied. Then

1

n

n∑
i=1

R̂k(Yi)Rl(Yi)−E {Rk(Y )Rl(Y )} =
1

n

n∑
i=1

ℓ1(Xki, Yi, δki) + oP

(
1√
n

)
,

(A.2)

where ℓ1(Xki, Yi, δki) = {Rk(Yi) + {Xki −Rk(Yi)} δki {3π(Yi)− 2} /π(Yi)}Rl(Yi).

Proof of Lemma A.2. We split the proof into two steps.

Step 1 : In this step, we show that, through replacing X̂kj with Rk(Yj) in (2.5),

1

n

n∑
i=1

R̂′
k(Yi)Rl(Yi)− E {Rk(Y )Rl(Y )} =

1

n

n∑
i=1

ℓ11(Xki, Yi, δki) + oP

(
1√
n

)
,

(A.3)

where R̂′
k(Yi) = Ĝ′

k(Yi)/f̂(Yi), Ĝ
′
k(Yi) = (n − 1)−1

∑n
j=1,j ̸=iKh(Yj − Yi){δkjXkj

+(1 − δkj)Rk(Yj)}, and ℓ11(Xki, Yi, δki) = {δkiXki + (1− δki)Rk(Yi)}Rl(Yi) −
E {Rk(Y )Rl(Y )}.

Step 1.1 : Using (2.2), (2), Lemma A.1, and the Cauchy-Schwarz Inequality, we

can show without much difficulty that

n−1
n∑

i=1

{
Ĝ′

k(Yi)−Rk(Yi)f(Yi)
}{

f̂(Yi)− f(Yi)
}
= OP (h

d),
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It follows that

n−1
n∑

i=1

R̂′
k(Yi)Rl(Yi) = n−1

n∑
i=1

{
Ĝ′

k(Yi)−Rk(Yi)f(Yi)
} Rl(Yi)

f(Yi)

−n−1
n∑

i=1

{
f̂(Yi)− f(Yi)

}
Rk(Yi)

Rl(Yi)

f(Yi)

+n−1
n∑

i=1

Rk(Yi)Rl(Yi) + oP

(
1√
n

)
.

Step 1.2 : Following similar arguments used for proving Lemma A.3 of Zhu and

Zhu (2007), we can show under (2.2), the Local Lipschitz condition of Rk(y)f(y)

and Rk(y) in condition (2), and Lemma A.1, that

n−1
n∑

i=1

{
Ĝ′

k(Yi)−Rk(Yi)f(Yi)
} Rl(Yi)

f(Yi)

= n−1
n∑

i=1

{δkiXki + (1− δki)Rk(Yi)}Rl(Yi)− E {Rk(Y )Rl(Y )}+ oP

(
1√
n

)
.

Step 1.3 : Lemma A.2 of Zhu and Zhu (2007) has

n−1
n∑

i=1

{
f̂(Yi)− f(Yi)

} Rk(Yi)Rl(Yi)

f(Yi)

= n−1
n∑

i=1

Rk(Yi)Rl(Yi)− E {Rk(Y )Rl(Y )}+ oP

(
1√
n

)
.

Thus, by combining the results in Steps 1.1−1.3, (A.3) is proved. To show (A.2),

it suffices to show that the difference between the LHS of (A.2) and that of (A.3)

admits another asymptotically linear representation.

Step 2 : In this step, we show that

n−1
n∑

i=1

{
R̂′

k(Yi)− R̂k(Yi)
}
Rl(Yi) = n−1

n∑
i=1

ℓ12(Xki, δki, Yi) +OP (h
d), (A.4)

where ℓ12(Xki, δki, Yi) = 2δkiRl(Yi) {Rk(Yi)−Xki} {1− πk(Yi)} /πk(Yi).
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Step 2.1 : Following similar arguments used for proving Lemma A.3 of Zhu and

Zhu (2007), we can show that

1

n(n− 1)

∑
i̸=j

Kh(Yj − Yi)(1− δkj)Rl(Yi)Gk(Yj)ĝk(Yj){
f(Yi)g2k(Yj)

}
=

2

n

n∑
i=1

[
{1− πk(Yi)}+ (1− δki) +

δki {1− πk(Yi)}
πk(Yi)

]
Rl(Yi)Rk(Yi)

−5E [{1− πk(Yi)}Rl(Yi)Rk(Yi)] +OP (h
d), and,

1

n(n− 1)

∑
i̸=j

Kh(Yj − Yi)(1− δkj)Rl(Yi)Ĝk(Yj)

{f(Yi)gk(Yj)}

=
2

n

n∑
i=1

Rl(Yi)

{
Rk(Yi) {1− πk(Yi)}+Xkiδki

1− πk(Yi)

πk(Yi)
+Rk(Yi) (1− δki)

}
−5E [Rl(Y )Rk(Y ) {1− πk(Yi)}] +OP (h

d).

Therefore, after some straightforward algebraic calculations, we obtain that

1

n(n− 1)

∑
i ̸=j

Kh(Yj − Yi)(1− δkj)
{
Rk(Yj)− X̂k,j

} Rl(Yi)

f(Yi)

=
2

n

n∑
i=1

δkiRl(Yi) {Rk(Yi)−Xki} {1− πk(Yi)}
πk(Yi)

+OP (h
d).

Step 2.2 : The LHS of (A.4) can be expanded as

1

n

n∑
i=1

{
R̂′

k(Yi)− R̂k(Yi)
}
Rl(Yi)

=
∑
i̸=j

Kh(Yj − Yi)(1− δkj)
{
Rk(Yj)− X̂kj

}
Rl(Yi)

n(n− 1)f(Yi)

{
1 +

f(Yi)− f̂(Yi)

f̂(Yi)

}
.

The strong consistency of f̂(y), together with the results in Step 2.1, leads to

(A.4). Then (A.2) follows by combining the results from these two steps.

Lemma A.3. Suppose (1)−(3) are satisfied. Then

1

n

n∑
i=1

{
δkiXki + (1− δki)X̂ki

}
−E(Xk) =

1

n

n∑
i=1

ℓ2k(Xki, Yi, δki) + oP

(
1√
n

)
,

(A.5)

where ℓ2k(Xki, Yi, δki) = Rk(Yi) + δki {Xki −Rk(Yi)} /π(Yi)− E(Xk).
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Proof of Lemma A.3. Without loss of generality, we assume that E(Xk) = 0.

Following similar arguments used for proving Lemma A.3 of Zhu and Zhu (2007),

we can show that

1

n

n∑
i=1

(1− δki)
{
Ĝk(Yi)−Gk(Yi)

}
gk(Yi)

=
1

n

n∑
i=1

Xkiδki {1− πk(Yi)}
πk(Yi)

− E {Rk(Y )− rk(Y )}+OP

(
1√
n

)
, and

1

n

n∑
i=1

(1− δki)Gk(Yi) {ĝk(Yi)− gk(Yi)}
g2k(Yi)

=
1

n

n∑
i=1

δkiRk(Yi) {1− πk(Yi)}
πk(Yi)

− E {Rk(Y )− rk(Y )}+OP

(
1√
n

)
.

Accordingly, the LHS of (A.5) can be expanded as

1

n

n∑
i=1

{
δkiXki + (1− δki)X̂ki

}
=

1

n

n∑
i=1

[
Rk(Yi) +

δki {Xki −Rk(Yi)}
π(Yi)

]
+OP

(
1√
n

)
,

which completes the proof.

The following lemma is a parallel to Lemma A.3; its proof is skipped.

Lemma A.4. Suppose (1)−(3) are satisfied. Then

1

n

n∑
i=1

{
δkiδliXkiXlj + (1− δkiδli)X̂kl,i

}
− E(XkXl)

=
1

n

n∑
i=1

ℓ3(Xki, Xli, δki, δli, Yi) + oP

(
1√
n

)
,

where ℓ3(Xki, Xli, δki, δli, Yi)=Rkl(Yi)+δkiδli{XkiXli−Rkl(Yi)}/πkl(Yi)−E(XkXl),

and πkl(Y ) = E (δkδl | Y ).

Proof of Theorem 1. It suffices to show that Mn − M and Σn − Σ admit

asymptotically linear representations, respectively, by noting that

Σ−1
n Mn −Σ−1M

=Σ−1(Σ−Σn)Σ
−1
n (Mn −M) +Σ−1(Σ−Σn)Σ

−1
n M+Σ−1(Mn −M).
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By invoking Lemmas A.3 and A.4,

Σn −Σ =
1

n

n∑
i=1

{ℓ3(xi, δi, Yi)− ℓ2(xi, δi, Yi)E(xT)− E(x)ℓT2(xi, δi, Yi)}

+oP

(
1√
n

)
.

Moreover, by invoking Lemmas A.2 and A.3, we have

Mn −M =
1

n

n∑
i=1

{ℓ1(xi, δi, Yi)− ℓ2(xi, δi, Yi)E(x)T − E(x)ℓT2(xi, δi, Yi)}

+oP

(
1√
n

)
.

The subsequent development can proceed, after simple algebraic calculations, to

see that Σ−1
n Mn −Σ−1M can be expanded as

n−1
n∑

i=1

[
Σ−1 {ℓ1(xi, δi, Yi)− ℓ2(xi, δi, Yi)E(xT)− E(x)ℓT2(xi, δi, Yi)}

−Σ−1 {ℓ3(xi, δi, Yi)− ℓ2(xi, δi, Yi)E(xT)− E(x)ℓT2(xi, δi, Yi)}Σ−1M
]

+oP

(
1√
n

)
.

The proof is completed by the Lindeberg-Levy Central Limit Theorem.

Proof of Theorem 2. The proof of Theorem 2 is easier than that of Theorem 1

in that we replace the missing measurements with parametric imputation which

has a faster convergence rate than the nonparametric imputation in Theorem 1.

Thus, following parallel arguments to those for proving Theorem 1, we can prove

Theorem 2 without much difficulty. We omit details here.

References

Bergsm, W. P. (2011). Nonparametric testing of conditional independence by means of the

partial copula. Available at http://arxiv.org/PS_cache/arxiv/pdf/1101/1101.4607v1.

pdf

Cheng, P. (1994). Nonparametric estimation of mean functionals with data missing at random.

J. Amer. Statist. Assoc. 89, 81-87.

Cook, R. D. (1998). Regression Graphics: Ideas for Studying Regressions through Graphics.

Wiley, New York.

Cook, R. D. and Lee, H. (1999). Dimension reduction in binary response regression. J. Amer.

Statist. Assoc. 94, 1187-1200.

http://arxiv.org/PS_cache/arxiv/pdf/1101/1101.4607v1.pdf
http://arxiv.org/PS_cache/arxiv/pdf/1101/1101.4607v1.pdf


1636 LIPING ZHU, TAO WANG AND LIXING ZHU

Cook, R. D. and Weisberg, S. (1991). Discussion of “Sliced inverse regression for dimension
reduction”. J. Amer. Statist. Assoc. 86, 316-342.

Ferr e, L. (1998). Determingng the dimension in sliced inverse regression and related methods.
J. Amer. Statist. Assoc. 93, 132-140.

Hall, P. and Li, K. C. (1993). On almost linearity of low dimensional projection from high
dimensional data. Ann. Statist. 21, 867-889.

Li, K. C. (1991). Sliced inverse regression for dimension reduction (with discussion). J. Amer.
Statist. Assoc. 86, 316-342.

Li, K. C. (1992). On principal Hessian directions for data visualization and dimension reduction:
another application of Stein’s lemma. J. Amer. Statist. Assoc. 87, 1025-1039.

Li, L. X. and Lu, W. B. (2008). Sufficient dimension reduction with missing predictors. J. Amer.
Statist. Assoc. 103, 822-831.

Li, B. and Wang, S. L. (2007). On directional regression for dimension reduction. J. Amer.
Statist. Assoc. 102, 997-1008.

Li, B., Zha, H. and Chiaromonte, F. (2005). Contour regression: a general approach to dimension
reduction. Ann. Statist. 33, 1580-1616.

Little, R. J. A. (1992), Regression with missing X’s: a review. J. Amer. Statist. Assoc. 87,
1227-1237.

Little, R. J. A. and Rubin, D. B. (2002). Statistical Analysis with Missing Data. 2nd edition.
Wiley, New Jersey.

Robins, J. M., Rotnitzky, A. and Zhao, L. (1994). Estimation of regression coefficients when
some regressors are not always observed. J. Amer. Statist. Assoc. 89, 846-866.

Rubin, D. B. (1976). Inference and missing data. Biometrika 63, 581-592.

Rubin, D. B. (1987). Multiple Imputation for Nonresponse in Surveys. Wiley, New York.

Wang, D. and Chen, S. X. (2009). Empirical likelihood for estimating equation with missing
values. Ann. Statist. 37, 490-517.

Wang, Q. and Rao, J. N. K. (2002). Empirical likelihood-based inference under imputation for
missing response data. Ann. Statist. 30, 896-924.

Xia, Y. C. (2007). A constructive approach to the estimation of dimension reduction directions.
Ann. Statist. 35, 2654-2690

Xia, Y. C., Tong, H., Li, W. K. and Zhu, L. X. (2002). An adaptive estimation of optimal
regression subspace. J. Roy. Statist. Soc. Ser. B 64, 363-410.

Ye, Z. and Weiss, R. E. (2003). Using the bootstrap to select one of a new class of dimension
reduction methods. J. Amer. Statist. Assoc. 98, 968-979.

Yates, F. (1933). The analysis of replicated experiments when the field results are incomplete.
Emporium J. Experimental Agriculture 1, 129-142.

Zhu, L. X. and Fang, K. T. (1996). Asymptotics for the kernel estimators of sliced inverse
regression. Ann. Statist. 24, 1053-1067.

Zhu, L. X. and Ng, K. W. (1995). Asymptotics of sliced inverse regression. Statist. Sinica 5,
727-736.

Zhu, L. P. and Zhu, L. X. (2007). On kernel method for sliced average variance estimation. J.
Multivariate Anal. 98, 970-991.

School of Statistics and Management and the Key Laboratory of Mathematical Economics,
Ministry of Education, Shanghai University of Finance and Economics, Shanghai 200433, P. R.
China.

E-mail: zhu.liping@mail.shufe.edu.cn

zhu.liping@mail.shufe.edu.cn


SUFFICIENT DIMENSION REDUCTION IN REGRESSION 1637

Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong, P. R.

China.

E-mail: 10466029@hkbu.edu.hk

Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong, P. R.

China.

E-mail: lzhu@hkbu.edu.hk

(Received July 2009; accepted November 2011)

10466029@hkbu.edu.hk
lzhu@hkbu.edu.hk

	1. Introduction
	2. SIR with Nonparametric Imputation
	2.1. A brief review
	2.2. Nonparametric imputation
	2.3. Asymptotic properties

	3. SIR with Parametric Imputation
	4. Simulations
	5. An Application
	6. A Brief Discussion
	Appendix

