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Abstract: In a study with longitudinal outcomes, the outcome nonresponse mech-

anism often depends on the observed or unobserved value of the outcome. When

nonresponse is monotone in the sense that a subject having a missing outcome at

time t is not observed after time t, Tang, Little, and Raghunathan (2003) devel-

oped a semiparametric pseudo-likelihood method for the estimation of parameters

of interest. In practice, however, nonresponse is often not monotone and a direct

application of their method discards observed data from subjects having nonmono-

tone nonresponse, which may result in inefficient estimators. We extend the idea in

Tang, Little, and Raghunathan (2003) to nonmonotone nonresponse and construct

a semiparametric pseudo-likelihood that utilizes all observed data. Asymptotic

normality of the maximum pseudo-likelihood estimators is established. An applica-

tion is made to the household income data from the Health and Retirement Study.

Simulation results are also presented to examine finite sample properties of the

proposed estimators.

Key words and phrases: Efficiency, nonignorable missing, semiparametric likeli-

hood, sequential estimation.

1. Introduction

Longitudinal data at multiple time points are often collected from a sam-

pled subject in medical, health, economical, and social studies. Let Yt denote

the outcome at time point t, Y = (Y1, . . . , YT ), and X be a time-independent

covariate vector or a time-dependent covariate X = (X1, . . . , XT ) with each Xt

being a covariate vector. In the Health and Retirement Study (HRS) discussed

in Section 4, households of seniors in the United States are surveyed biannually

with Yt being the household income and X being household characteristics such

as the years of education, years of working experience, and health status. The

statistical analysis typically aims to estimate or make inference on some unknown

parameters in p(Y |X) or p(Y ), where p(A|B) or p(A) is a generic notation for

the probability density of A conditional on B or the marginal probability density

of A.

http://dx.doi.org/10.5705/ss.2010.029
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In many studies Y has nonresponse although values of X are all observed.

Nonresponse is monotone if Yt+1 is missing whenever Yt is missing, t = 1, . . . , T ,

which is also referred to as dropout. Nonresponse is often nonmonotone. In the

HRS, for example, a household not responding in a particular year may respond

to the next biannual survey.

Let Rt = 1 if Yt is observed and Rt = 0 if Yt is missing, t = 1, . . . , T , and

let R = (R1, . . . , RT ). In the presence of nonresponse, our analysis has to fo-

cus on p(Y,R|X) = p(R|Y,X)p(Y |X). If nonresponse is ignorable in the sense

that p(R|Y,X) = p(R|Yo, X), where Yo is the observed part of Y , then param-

eters in p(Y |X) can be estimated without requiring any further assumption on

p(R|Yo, X) (see, e.g., Little and Rubin (2002)). For longitudinal Y , the ignor-

able nonresponse assumption may be reasonable when nonresponse is monotone,

but it is not natural when nonresponse is nonmonotone. In the HRS, for exam-

ple, it is hard to imagine how a household’s response status on the income in a

particular year is related to its past observed incomes but not past unobserved

incomes, and is related to its future “observed” income when we do not know

whether that future income is missing or not. When nonresponse is nonignor-

able, i.e., p(R|Y,X) depends on observed and unobserved components of Y , we

must impose a parametric model on either p(R|Y,X) or p(Y |X). Otherwise some

parameters in p(Y |X) are not identifiable. One approach is to impose a para-

metric model on p(R|Y,X) while p(Y |X) is either parametric or nonparametric;

see, e.g., Greenless, Reece, and Zieschang (1982) Robins, Rotnitzky, and Zhao

(1994, 1995), Troxel, Lipsitz and Brennam (1997), Troxel, Lipsitz and Harring-

ton (1998), and Qin, Leung, and Shao (2002). We focus on the semiparametric

approach in Tang, Little, and Raghunathan (2003) that imposes a parametric

model on p(Y |X), assumes that p(R|Y,X) = p(R|Y ), but does not require any

model on p(R|Y ).

As Tang, Little, and Raghunathan (2003) pointed out, their method has a

limitation in discarding observed data from sampled subjects with incomplete Y -

vectors, which may not be practically desired, and “in some circumstances this

information can be incorporated to improve the efficiency of the estimates”. One

such circumstances is when Y has monotone nonresponse and the nonresponse

mechanism is outcome-dependent, i.e.,

P (Rt = 1|X,Y,R1 = · · · = Rt−1 = 1) = wt(Yt), t = 1, . . . , T (1.1)

(see (17) in Tang, Little, and Raghunathan (2003)), where each wt is unknown

and no model on wt is required. Under these assumptions, Tang, Little, and

Raghunathan (2003) derived estimators based on complete and incomplete data

from all sampled subjects.
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The purpose of this paper is to derive a method that utilizes all observed data

to handle nonmonotone nonresponse under the following counterpart of (1.1) for

the nonmonotone nonresponse:

P (Rt = 1|X,Y,R1, . . . , Rt−1) = wt(Yt), t = 1, . . . , T, (1.2)

where each wt is unknown and no model on wt is required. The method is de-

scribed in Section 2. It is a semiparametric pseudo-likelihood approach in which

p(Y |X) is assumed to be parametric but wt(Yt) and p(X) are nonparametric.

Properties of the proposed estimators are discussed in Section 3. In Section 4

we apply the proposed method to analyze the HRS data. In Section 5, the fi-

nite sample performance of the proposed method is studied by simulation. Some

discussion is given in Section 6.

2. Semiparametric Pseudo Likelihoods

For each t, let

p(Yt|X,Y1, . . . , Yt−1) = ft(Yt|X,Y1, . . . , Yt−1, θt), t = 1, . . . , T, (2.1)

where ft’s are known functions and θt’s are distinct unknown parameter vectors.

By factorization,

p(Y |X) =

T∏
t=1

ft(Yt|X,Y1, . . . , Yt−1, θt).

Under monotone nonresponse and assumption (1.1),

p(X,Y1, . . . , Yt−1|Yt, Rt = 1) = p(X,Y1, . . . , Yt−1|Yt).

Hence, we may use the observed (X,Y1, . . . , Yt) to estimate parameters in p(X,Y1,

. . . , Yt−1|Yt). Then, parameters in p(Y |X) can be estimated using

p(X,Y1, . . . , Yt−1|Yt) =
p(Yt|X,Y1, . . . , Yt−1)p(X,Y1, . . . , Yt−1)∫

p(Yt|x, y1, . . . , yt−1)p(x, y1, . . . , yt−1)dxdy1 · · · dyt−1
.

Under (2.1), Tang, Little, and Raghunathan (2003) proposed to estimate θt by

maximizing the pseudo-likelihood∏
i:Ri1=···=Rit=1

ft(Yit|Xi, Yi1, . . . , Yi(t−1), θt)∫
ft(Yit|x, y1, . . . , yt−1, θt)dĜ(x, y1, . . . , yt−1)

, (2.2)

t = 1, . . . , T , where (Yi1, . . . , YiT , Ri1, . . . , RiT , Xi), i = 1, . . . , n, are independent

and identically distributed samples from p(Y,R,X), and Ĝ(x, y1, . . . , yt−1) is the
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empirical distribution based on (Xi, Yi1, . . . , Yi(t−1)) with Ri1 = · · · = Ri(t−1) = 1.

In particular, Ĝ(x) is the empirical distribution based on X1, . . . , Xn, a nonpara-

metric estimator of the distribution function corresponding to p(X). The likeli-

hood in (2.2) is a pseudo-likelihood because Ĝ is an estimator. There is a rich

literature on the pseudo-likelihood and other related approaches. See, for exam-

ple, Andersen (1970), Besag (1974), Godambe (1976), and Gong and Samaniego

(1981).

Consider nonmonotone nonresponse under assumptions (1.2) and (2.1). Note

that maximizing the likelihood given by (2.2) still produces a consistent estimator

of θt. This can be seen from the fact that, after discarding any observed Yit
as long as there is a u such that u < t and Yiu is missing, the nonresponse

becomes monotone and (1.1) holds. However, discarding observed data may

result in inefficient parameter estimators when the size of the discarded data is

appreciable.

We propose a method that utilizes all observed data and estimates θt’s se-

quentially. The first step is to obtain an estimate θ̂1 of θ1 by maximizing the

likelihood in (2.2) with t = 1:∏
i:Ri1=1

g1(Xi|Yi1, θ1), g1(Xi|Yi1, θ1) =
f1(Yi1|Xi, θ1)∫
f1(Yi1|x, θ1)dĜ(x)

. (2.3)

The second step is to estimate θ2. The likelihood in (2.2) with t = 2 is∏
i:Ri1=Ri2=1

g2(Xi, Yi1|Yi2, Ri1 = 1, θ2), (2.4)

where

g2(Xi, Yi1|Yi2, Ri1 = 1, θ2) =
f2(Yi2|Xi, Yi1, θ2)∫

f2(Yi2|x, y1, θ2)dĜ(x, y1)

is an estimated p(Xi, Yi1|Yi2, Ri1 = Ri2 = 1) = p(Xi, Yi1|Yi2, Ri1 = 1) with

θ2 being fixed. The likelihood in (2.4) does not include any observed Yi2 with

missing Yi1. To utilize these data, we consider the fact that

p(X|Y2, R2 = 1)=p(X|Y2)

=
p(Y2|X)p(X)∫
p(Y2|x)p(x)dx

=

[∫
p(Y2|X,Y1)p(Y1|X)dY1

]
p(X)∫ [∫

p(Y2|x, y1)p(y1|x)dy1
]
p(x)dx

=

[∫
f2(Y2|X,Y1, θ2)f1(Y1|X, θ1)dY1

]
p(X)∫ [∫

f2(Y2|x, y1, θ2)f1(y1|x, θ1)dy1
]
p(x)dx

,
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where the first equality follows from (1.2) and the last equality follows from (2.1).

With p(x) estimated by Ĝ(x) and θ1 estimated by θ̂1 in the first step, we estimate

p(Xi|Yi2, Ri2 = 1) = p(Xi|Yi2) (with θ2 being fixed) by

g2(Xi|Yi2, θ2) =
∫
f2(Yi2|Xi, y1, θ2)f1(y1|Xi, θ̂1)dy1∫ [∫
f2(Yi2|x, y1, θ2)f1(y1|x, θ̂1)dy1

]
dĜ(x)

and obtain θ̂2 by maximizing the pseudo-likelihood∏
i:Ri1=Ri2=1

g2(Xi, Yi1|Yi2, Ri1 = 1, θ2)
∏

i:Ri2=1

g2(Xi|Yi2, θ2). (2.5)

Note that the second product in (2.5) includes subjects with observed Yi2 and

missing Yi1. It also includes subjects with observed Yi1 and Yi2 that have already

been included in the first product in (2.5), since the likelihood based on a subject

with Ri1 = 0 and Ri2 = 1, p(Xi|Yi2, Ri1 = 0, Ri2 = 1), may be different from

p(Xi|Yi2, Ri2 = 1) under (1.2). Although we can estimate p(Xi|Yi2, Ri2 = 1) by

g2(Xi|Yi2, θ2) as discussed, we are not able to estimate p(Xi|Yi2, Ri1 = 0, Ri2 = 1)

under (1.2) and (2.1).

Having θ̂1, . . . , θ̂t−1, at step t ≤ T we consider the estimation of θt. Let

St be the collection of all subsets of {1, . . . , t}, including the empty set ∅. The

estimator θ̂t of θt is then obtained by maximizing the likelihood∏
A∈St−1

[ ∏
i:Rit=1,Rij=1,j∈A

gt(Xi, Yij , j ∈ A|Yit, Rij = 1, j ∈ A, θt)

]
, (2.6)

where, for any subset A ∈ St−1, gt(Xi, Yij , j ∈ A|Yit, Rij = 1, j ∈ A, θt) is an

estimate of p(X,Yj , j ∈ A|Yt, Rj = 1, j ∈ A,Rt = 1) = p(X,Yj , j ∈ A|Yt, Rj =

1, j ∈ A) with θt being fixed. The likelihoods in (2.3) and (2.5) are special cases

of (2.6) with t = 1 and 2. The function gt(Xi, Yij , j ∈ A|Yit, Rij = 1, j ∈ A, θt) is

obtained as follows. Under assumption (1.2), p(X,Yj , j ∈ A|Yt, Rj = 1, j ∈ A) is

equal to

p(Yt|X,Yj , j ∈ A)p(X,Yj , j ∈ A|Rj = 1, j ∈ A)∫
p(Yt|x, yj , j ∈ A)p(x, yj , j ∈ A|Rj = 1, j ∈ A)dx

∏
j∈A dyj

,

which can be replaced by

p(Yt|X,Yj , j ∈ A)∫
p(Yt|x, yj , j ∈ A)dĜ(x, yj , j ∈ A)

,

where Ĝ(X,Yj , j ∈ A) is the empirical distribution based on (Xi, Yij , j ∈ A) with

Rij = 1, j ∈ A. Using the notation YA = (Yj , j ∈ A), yAc = (yk, k ̸∈ A), and
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dyAc =
∏

k ̸∈A dyk, we obtain that

p(Yt|X,Yj , j ∈ A)=

∫
p(Yt|X,YA, yAc)p(yAc |X,YA)dyAc

=

∫
p(Yt|X,YA, yAc)

p(YA, yAc |X)

p(YA|X)
dyAc

=

∫
p(Yt|X,YA, yAc)p(YA, yAc |X)dyAc∫

p(YA, yAc |X)dyAc

=

∫
ft(Yt|X,YA, yAc , θt)ft−1(YA, yAc |X, θ1, . . . , θt−1)dyAc∫

ft−1(YA, yAc |X, θ1, . . . , θt−1)dyAc
,

where, by factorization and (2.1), ft−1(YA, yAc |X, θ1, . . . , θt−1) can be obtained

through

ft−1(Y1, . . . , Yt−1|X, θ1, . . . , θt−1) =

t−1∏
u=1

fu(Yu|X,Y1, . . . , Yu−1, θu), t = 1, . . . , T.

After replacing θu by the estimate θ̂u obtained from the previous steps, u =

1, . . . , t−1, we obtain that gt(Xi, Yij , j ∈ A|Yit, Rij = 1, j ∈ A, θt) is proportional

to (after ignoring a factor that does not depend on θt)∫
ft(Yit|Xi, YiA, yAc , θt)ft−1(YiA, yAc |Xi, θ̂1, . . . , θ̂t−1)dyAc∫ [∫

ft(Yit|x, yA, yAc , θt)ft−1(yA, yAc |x, θ̂1, . . . , θ̂t−1)dyAc

]
dĜ(x, yA)

. (2.7)

For some parametric functions ft in (2.1), (e.g., p(Y |X) is multivariate normal),

some integrals in (2.7) can be explicitly worked out. Otherwise, numerical inte-

gration is needed.

The likelihood in (2.6) is semiparametric because no model is imposed on

wt in (1.2) and p(X,Yj , j ∈ A|Rj = 1, j ∈ A) is estimated by the nonparametric

empirical distribution Ĝ(X,Yj , j ∈ A). It is a pseudo-likelihood since estimators

Ĝ(X,Yj , j ∈ A) and θ̂1, . . . , θ̂t−1 are used.

Finally, we explain why we estimate θt’s sequentially. Note that θ1, . . . , θt−1

are involved in p(Yt|X,Yj , j ∈ A), which is part of the likelihood using all observed

data at time point t. If we do not substitute θ1, . . . , θt−1 by their estimators

from the previous steps, then we have to solve a high-dimensional maximization

problem over the parameter ϑt = (θ1, . . . , θt) when t is not small. For example, if

p(Y |X) is multivariate normal, then θt has dimension t+2 and ϑt has dimension

2t+t(t+1)/2. The sequential procedure does not have this computational burden

since maximizing (2.6) is over θt with a much smaller dimension than ϑt.
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3. Properties of Estimators

Asymptotic properties (as n → ∞) of the proposed estimators θ̂t, t =

1, . . . , T , are studied in this section. The following lemma gives a condition

under which the parameter θt can be identified.

Lemma 1. Assume (1.2) and (2.1). Let θ01, . . . , θ
0
T be the true parameter values

of θ1, . . . , θT in (2.1). For any fixed t ≤ T , θt, and an arbitrary function c(Yt),

let

Dt,θt =

{
Yt :

ft(Yt|X,Y1, . . . , Yt−1, θt)

ft(Yt|X,Y1, . . . , Yt−1, θ0t )
= c(Yt) for any X,Y1, . . . , Yt−1

}
.

If

P (Rt = 1|Yt) > 0 and P (Dt,θt) < 1 for any θt ̸= θ0t , (3.1)

then, for any θt ̸= θ0t ,

E0[h(θt,ϑ
0
t−1, F

0)]− E0[h(θ
0
t ,ϑ

0
t−1, F

0)] < 0, (3.2)

where ϑt−1 = (θ1, . . . , θt−1), E0 is the expectation with respect to the true p(Y,X),

h(θt,ϑt−1, F )

=
∑

A∈St−1

I(Rt = 1, Rj = 1, j ∈ A) log p(X,Yj , j ∈ A|Yt, Rj = 1, j ∈ A),

I(·) is the indicator function, and F 0 is the true distribution of X.

The proof of Lemma 1 and the following theorem are given in the Appendix.

Theorem 1. Assume the conditions in Lemma 1 and that E0(∂h(θ
0
t ,ϑ

0
t−1, F

0)/

∂θt∂θ
′
t) is positive definite. Assume also that ft in (2.1) is continuously twice

differentiable with respect to θt in a neighborhood of θ0t and that there exists a

function M(Y ) such that E0[M(Y )] <∞ and∥∥∥∥ ∂

∂ϑt−1

∫
p(Y,X)dX

∥∥∥∥ ≤M(Y )

for ϑt−1 in an open neighborhood of ϑ0
t−1, t = 1, . . . , T . Then, as n→ ∞,

√
n(θ̂t − θ0t ) → N(0,Σt) in distribution (3.3)

for some covariance matrix Σt, t = 1, . . . , T .

Although we use all observed data, maximizing (2.6) may not always pro-

duce a more efficient estimator than maximizing (2.2), because we may pay a
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price in estimating the unknown quantities in (2.6) but not (2.2). It is reason-

able to expect that our proposed method is more efficient when the size of the

subjects with nonmonotone nonresponse is appreciable. This is supported by our

simulation result in Section 5.

For the purpose of inference, a consistent estimator of Σt is required. The

matrix Σt in (3.3) is rather complicated (see the Appendix), because estimators

in the previous steps are used in the likelihood for time point t. Thus, a direct

substitution estimator is not easy to obtain. We suggest a bootstrap variance

estimator Σ̂t obtained by (i) taking B independent bootstrap samples, each of

which is a simple random sample with replacement from the n subjects, (ii) com-

puting θ̂∗bt based on the bth bootstrap sample using the same procedure as that

for θ̂t, b = 1, . . . , B, and (iii) calculating Σ̂t as the sample covariance matrix of

θ̂∗1t , . . . , θ̂
∗B
t . Since θ̂t is obtained by solving likelihood equations from the likeli-

hood in (2.6), the bootstrap analog θ̂∗bt is obtained by solving the same likelihood

equations with (Yi, Xi, Ri) replaced by the bootstrap sample (Y ∗
i , X

∗
i , R

∗
i ). Thus,

Σ̂t is a consistent estimator of the asymptotic covariance matrix of θ̂t.

4. An Example

The Health and Retirement Study (HRS) of about 22,000 Americans over

the age of 50 and their spouses is conducted by the University of Michigan (see

more details at the website http://hrsonline.isr.umich.edu/). The study

is a biannual longitudinal household survey conducted from 1992 to 2006. It

paints an emerging portrait of an aging America’s physical and mental health,

insurance coverage, financial status, family support systems, labor market status,

and retirement planning.

The dataset we considered is a cleaned, easy-to-use streamlined public ver-

sion of the HRS data produced by the Research and Development Corpora-

tion (RAND). It is available at http://hrsonline.isr.umich.edu/meta/rand/

index.html. We used a subset from the original dataset that contains 19,043

households and each household’s income at five different years. Missing values

exist and nonresponse is nonmonotone. Percentages of data in various nonre-

sponse patterns are shown in Table 1. The percentages of missing data are quite

large in this example, partly due to the fact that the household income is the

total of several components (e.g., stocks, pensions, and annuities) and the total

income is treated as a missing value if any one of these components is missing.

Since this is a longitudinal survey, the percentage of households with no missing

value (the second last column of Table 1) is small and decreases as t increases.

To illustrate how to apply the procedure in Section 2 we assume a parametric

model on p(Z1, . . . , Z5|X), where Zt is the total household income in year t andX

is the number of years of education treated as a covariate that ranges from 0 to 17

http://hrsonline.isr.umich.edu/
http://hrsonline.isr.umich.edu/meta/rand/index.html
http://hrsonline.isr.umich.edu/meta/rand/index.html
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Table 1. Percentage of HRS Household Income Data in Different Patterns.

% of data used % of data used
t = 1 t = 2 t = 3 t = 4 t = 5 % of data in likelihood (2.2) in likelihood (2.6)

t = 1
1 32.85

32.85 32.85
0 67.15

t = 2
0 1 10.96

18.03 28.991 1 18.03
x 0 71.01

t = 3

0 0 1 4.96

10.42 24.69
0 1 1 4.85
1 0 1 4.46
1 1 1 10.42
x x 0 75.31

t = 4

0 0 0 1 9.90

6.99 31.12

0 0 1 1 2.24
0 1 0 1 1.81
0 1 1 1 2.82
1 0 0 1 2.03
1 0 1 1 2.56
1 1 0 1 2.78
1 1 1 1 6.99
x x x 0 68.88

t = 5

0 0 0 0 1 4.17

4.87 27.94

0 0 0 1 1 5.28
0 0 1 0 1 0.74
0 0 1 1 1 1.14
0 1 0 0 1 0.70
0 1 0 1 1 0.82
0 1 1 0 1 0.65
0 1 1 1 1 1.69
1 0 0 0 1 0.98
1 0 0 1 1 1.00
1 0 1 0 1 0.63
1 0 1 1 1 1.50
1 1 0 0 1 0.89
1 1 0 1 1 1.63
1 1 1 0 1 1.26
1 1 1 1 1 4.87
x x x x 0 72.06

0: the outcome is missing.
1: the outcome is observed.
x: 0 or 1.

with mean 12.74. Since Zt has a skewed distribution in this example, we applied

the inverse hyperbolic sine transformation that was used by the RAND to impute
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the missing household income, Yt = log(Zt +
√

1 + Z2
t ). The transformation is

close to log transformation when Zt is large. We assume that p(Y1, . . . , Y5|X) is

multivariate normal:

Yt = βt0 + βt1X + βt2Y1 + · · ·+ βt(t−1)Yt−1 + εt, t = 1, . . . , 5, (4.1)

where εt ∼ N (0, σ2t ) and εt’s are independent.

For comparison, we applied three approaches for parameter estimation: (i)

the method of using data from subjects without any missing value, i.e., ignoring

subjects with incomplete data, (ii) the approach of maximizing likelihood (2.2),

and (iii) the proposed approach of maximizing likelihood (2.6). Method (i) is jus-

tified when nonresponse is covariate-dependent, i.e., p(R|Y,X) = p(R|X). For

each approach, we applied the bootstrap method with B = 200 for estimating

the standard deviations of the estimates. In this example, it is of interest to

estimate the mean household income at each year, in addition to the β- and σ-

parameters. We obtained estimates of the mean household income E(Zt) based

on the estimated parameters in p(Y1, . . . , Y5|X) and the inverse of the transfor-

mation Yt = log(Zt +
√

1 + Z2
t ). All parameter estimates and their estimated

standard deviations are given in Table 2.

It can be seen from Table 2 that the estimates obtained by ignoring subjects

with incomplete data are very different from those obtained by handling missing

data. In terms of the mean household income, ignoring subjects with incom-

plete data results in negatively biased estimates, which indicates that household

income of a nonrespondent is typically higher than the household income of a

respondent. An interesting observation is that the household income estimate

based on methods of handling missing data has two significant decreases, one

at 1999 and the other at 2003, probably because this is the household income

of retired seniors that depends on the fluctuation of the stock market. On the

other hand, the household income estimate obtained by ignoring subjects with

incomplete data does not follow this pattern.

Comparing the two methods of handling nonrespondents, we find that they

provide comparable mean estimates (they are the same at t=1, year 1997), but

the proposed method of maximizing (2.6) has much smaller bootstrap estimated

standard deviation than the method of maximizing (2.2) when t > 1. Although

we do not know the truth, the simulation results in Section 5 suggest that our

proposed method is better. In this example, discarding nonmonotone missing

values has a large effect: the percentage of data used in likelihood (2.2) decreases

to 11% when t ≥ 3 and becomes as small as 4.87% when t = 5, whereas the

percentage of data used in likelihood (2.6) is between 24.69% and 32.85% for

all t.
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Table 2. Empirical Results For HRS Example Parameter estimate (Standard
error based on 200 bootstrap samples).

method
ignoring maximizing maximizing

parameter incomplete likelihood (2.2) likelihood (2.6)
β10 8.845 (0.202) 9.568 (0.154) 9.568 (0.154)

β11 0.176 (0.016) 0.136 (0.015) 0.136 (0.015)

σ1 1.579 (0.146) 1.370 (0.116) 1.370 (0.116)

β20 5.161 (0.709) 6.199 (0.826) 6.724 (0.638)

β21 0.104 (0.015) 0.199 (0.023) 0.177 (0.017)

β22 0.394 (0.074) 0.219 (0.058) 0.201 (0.047)

σ2 1.530 (0.140) 1.780 (0.211) 1.748 (0.171)

β30 3.088 (0.775) 3.140 (1.952) 5.428 (1.114)

β31 0.064 (0.015) 0.214 (0.029) 0.156 (0.020)

β32 0.264 (0.078) 0.222 (0.091) 0.143 (0.045)

β33 0.371 (0.090) 0.279 (0.081) 0.201 (0.049)

σ3 1.382 (0.133) 2.047 (0.341) 1.802 (0.233)

β40 2.662 (0.617) 3.194 (1.859) 3.157 (1.182)

β41 0.045 (0.011) 0.106 (0.027) 0.105 (0.022)

β42 0.186 (0.062) 0.155 (0.078) 0.186 (0.061)

β43 0.173 (0.064) 0.155 (0.063) 0.132 (0.038)

β44 0.350 (0.091) 0.285 (0.081) 0.271 (0.067)

σ4 0.909 (0.089) 1.187 (0.252) 1.571 (0.226)

β50 3.133 (0.815) 4.057 (2.556) 4.280 (1.101)

β51 0.052 (0.013) 0.108 (0.031) 0.108 (0.025)

β52 0.098 (0.054) 0.067 (0.065) 0.065 (0.046)

β53 0.040 (0.039) 0.051 (0.043) 0.071 (0.034)

β54 0.130 (0.056) 0.122 (0.055) 0.138 (0.045)

β55 0.385 (0.100) 0.268 (0.187) 0.214 (0.072)

σ5 0.922 (0.110) 1.041 (0.263) 1.259 (0.193)

mean household income
1997 (t = 1) 19218 (1012) 35338 (2361) 35338 (2361)

1999 (t = 2) 19021 (915) 29516 (2278) 31702 (2053)

2001 (t = 3) 19115 (926) 36956 (4626) 32548 (2825)

2003 (t = 4) 21556 (893) 32134 (3515) 28047 (1675)

2005 (t = 5) 21608 (739) 28737 (2244) 27871 (1155)
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5. Simulation Results

A simulation study was conducted with T = 5, n = 700, and model (4.1).

The covariate X was generated from the Poisson distribution with mean 12, but

this information was not used in the estimation procedure. The true parameter

values in the simulation were similar to estimated values in the HRS example

presented in Section 4:

θ1=(β10, β11, σ1) = (9.57, 0.14, 1.34),

θ2=(β20, β21, β22, σ2) = (6.72, 0.18, 0.20, 1.73),

θ3=(β30, β31, β32, β33, σ3) = (5.43, 0.16, 0.14, 0.20, 1.73),

θ4=(β40, β41, β42, β43, β44, σ4) = (3.16, 0.10, 0.19, 0.13, 0.27, 1.41),

θ5=(β50, β51, β52, β53, β54, β55, σ5) = (4.28, 0.11, 0.06, 0.07, 0.14, 0.21, 1.26).

The nonresponse indicators were generated from a logistic model with

P (Rt = 1|X,Y,Rj , j ̸= t) =
exp(40− 3.59Yt)

1 + exp(40− 3.59Yt)

for t = 1, . . . , 5. The expected rate of missing data for each t is about 50%. Since

components of Y are missing independently, the ratio of the number of subjects

included in likelihood (2.2) over the number of subjects included in likelihood

(2.6) is about 2−(t−1).

For comparison, we considered the four methods of estimating θt’s (i) us-

ing all data as a standard; (ii) using data from subjects without nonresponse

and ignoring subjects with incomplete data; (iii) maximizing likelihood (2.2) by

discarding observed data after first nonresponse; and (iv) maximizing likelihood

(2.6).

Based on 1000 simulation runs, empirical results for the four quantities are

given in Table 3: the bias and standard deviation (SD) of estimators of all param-

eters, and the coverage probability (CP) and length (CL) of the approximate 95%

confidence interval = estimator ± 1.96
√
the bootstrap variance estimate, where

B = 100. The results in Table 3 can be summarized as follows.

1. The estimator obtained by ignoring subjects with incomplete data can be

seriously biased, although in a few cases the bias is not large. The coverage

probability of the related confidence interval is much lower than the nominal

level 95% when the absolute bias is much larger than the standard deviation.

2. Maximizing (2.2) and (2.6) produce almost unbiased estimators and coverage

probabilities close to 95%, except for the case of σ5. In a few cases, maximizing

(2.2) is somewhat too conservative.
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Table 3. Empirical Results Based on 1000 Runs.

method
standard ignoring maximizing maximizing

parameter quantity (no missing) incomplete likelihood (2.2) likelihood (2.6)

β10 bias (SD) -0.005 (0.18) -0.252 (0.40) -0.103 (0.84) -0.103 (0.84)
CP (CL) 94.8 (0.71) 88.6 (1.52) 95.7 (4.06) 95.7 (4.06)

β11 bias (SD) 0.000 (0.01) -0.083 (0.04) 0.014 (0.08) 0.014 (0.08)
CP (CL) 95.7 (0.06) 43.9 (0.15) 95.8 (0.44) 95.8 (0.44)

σ1 bias (SD) -0.001 (0.04) -0.382 (0.08) 0.049 (0.47) 0.049 (0.47)
CP (CL) 93.9 (0.14) 1.3 (0.3) 95.8 (3.09) 95.8 (3.09)

β20 bias (SD) -0.019 (0.53) 0.856 (1.56) -0.516 (2.70) -0.169 (1.83)
CP (CL) 94.3 (2.04) 89.5 (5.98) 97.0 (15.16) 94.7 (8.59)

β21 bias (SD) 0.001 (0.02) -0.099 (0.05) 0.028 (0.12) 0.014 (0.08)
CP (CL) 94.8 (0.08) 52.8 (0.21) 97.4 (0.76) 97.0 (0.40)

β22 bias (SD) 0.001 (0.05) -0.104 (0.15) 0.032 (0.21) 0.008 (0.15)
CP (CL) 93.6 (0.19) 89.1 (0.60) 98.0 (1.32) 93.4 (0.71)

σ2 bias (SD) -0.001 (0.05) -0.458 (0.10) 0.120 (0.77) 0.064 (0.47)
CP (CL) 94.2 (0.18) 2.7 (0.40) 95.6 (5.38) 95.7 (2.74)

β30 bias (SD) -0.031 (0.58) 1.445 (1.82) -1.288 (4.69) -0.191 (2.02)
CP (CL) 94.3 (2.27) 84.7 (7.05) 98.2 (22.1) 95.3 (9.23)

β31 bias (SD) 0.001 (0.02) -0.082 (0.05) 0.047 (0.19) 0.011 (0.06)
CP (CL) 95.1 (0.08) 67.4 (0.22) 97.9 (0.86) 96.4 (0.33)

β32 bias (SD) 0.001 (0.05) -0.073 (0.16) 0.051 (0.34) 0.009 (0.15)
CP (CL) 94.6 (0.19) 91.4 (0.61) 98.8 (1.67) 95.1 (0.66)

β33 bias (SD) 0.001 (0.04) -0.102 (0.12) 0.041 (0.26) 0.001 (0.12)
CP (CL) 93.3 (0.15) 85.1 (0.46) 97.9 (1.43) 94.4 (0.56)

σ3 bias (SD) -0.001 (0.05) -0.434 (0.11) 0.225 (1.19) 0.040 (0.41)
CP (CL) 93.4 (0.18) 5.3 (0.41) 95.7 (5.75) 95.2 (2.29)

Bias: bias of estimator
SD: standard deviation of estimator
CP: coverage probability of confidence interval in %
CL: length of confidence interval

3. In terms of the efficiency (the standard deviation of the estimator and the

length of confidence interval), the proposed method of maximizing (2.6) is

better than the method of maximizing (2.2). The improvement is more sub-

stantial when t is large.

6. Discussion

In the presence of nonmonotone missing outcomes in longitudinal data, we

propose an estimation procedure that utilizes all observed data. At time point t,

the likelihood containing all observed data under nonmonotone nonresponse in-

volves parameters in the likelihoods for previous time points. Thus, we propose a

computationally sensible sequential procedure that substitutes these parameters

by their estimators obtained at time points 1, . . . , t− 1 and then maximizes the
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Table 3. (continued)

method
standard ignoring maximizing maximizing

parameter quantity (no missing) incomplete likelihood (2.2) likelihood (2.6)

β40 bias (SD) 0.012 (0.53) 1.628 (1.77) -0.195 (3.12) 0.052 (1.62)
CP (CL) 94.3 (1.97) 82.7 (7.03) 96.1 (14.69) 94.7 (6.54)

β41 bias (SD) -0.001 (0.02) -0.038 (0.05) 0.003 (0.07) -0.002 (0.04)
CP (CL) 93.6 (0.07) 88.1 (0.20) 96.8 (0.36) 96.3 (0.16)

β42 bias (SD) -0.001 (0.04) -0.060 (0.14) 0.004 (0.19) -0.002 (0.12)
CP (CL) 94.1 (0.16) 92.4 (0.55) 97.1 (0.97) 94.3 (0.47)

β43 bias (SD) -0.000 (0.03) -0.040 (0.11) 0.004 (0.15) 0.000 (0.10)
CP (CL) 94.4 (0.12) 90.9 (0.42) 96.4 (0.72) 93.9 (0.36)

β44 bias (SD) 0.000 (0.03) -0.086 (0.10) 0.006 (0.17) -0.003 (0.10)
CP (CL) 94.8 (0.12) 84.9 (0.42) 96.5 (0.83) 94.4 (0.40)

σ4 bias (SD) -0.002 (0.04) -0.253 (0.09) -0.034 (0.46) -0.019 (0.20)
CP (CL) 93.6 (0.15) 24.1 (0.35) 93.3 (2.20) 93.0 (0.88)

β50 bias (SD) -0.017 (0.47) 1.247 (1.73) -0.076 (3.16) 0.048 (1.28)
CP (CL) 94.4 (1.82) 88.2 (6.67) 95.0 (12.55) 96.4 (5.35)

β51 bias (SD) -0.000 (0.02) -0.036 (0.05) 0.002 (0.08) -0.001 (0.03)
CP (CL) 94.1 (0.06) 87.2 (0.18) 95.5 (0.36) 95.8 (0.14)

β52 bias (SD) -0.001 (0.04) -0.019 (0.13) -0.003 (0.19) -0.001 (0.10)
CP (CL) 95.1 (0.14) 94.3 (0.50) 97.2 (0.82) 94.8 (0.41)

β53 bias (SD) 0.001 (0.03) -0.024 (0.10) -0.003 (0.15) -0.001 (0.08)
CP (CL) 94.2 (0.11) 94.2 (0.38) 96.5 (0.64) 93.3 (0.32)

β54 bias (SD) 0.002 (0.03) -0.037 (0.10) 0.004 (0.18) -0.000 (0.08)
CP (CL) 95.6 (0.11) 91.7 (0.38) 96.0 (0.67) 93.9 (0.33)

β55 bias (SD) -0.001 (0.03) -0.056 (0.10) 0.003 (0.17) -0.002 (0.09)
CP (CL) 94.6 (0.13) 90.5 (0.42) 97.1 (0.76) 96.0 (0.39)

σ5 bias (SD) 0.000 (0.03) -0.221 (0.08) -0.050 (0.49) -0.029 (0.16)
CP (CL) 93.4 (0.13) 26.8 (0.32) 89.1 (1.70) 89.3 (0.66)

Bias: bias of estimator
SD: standard deviation of estimator
CP: coverage probability of confidence interval in %
CL: length of confidence interval

resulting pseudo-likelihood at time point t. Our method is semiparametric, i.e.,

a parametric model on the likelihood of the outcome given covariates is imposed

but no model on the nonresponse mechanism is required.

To relax Assumption (1.2), suppose that, in addition to the covariate X,

there is a fully observed discrete covariate Z, which can be multivariate or lon-

gitudinal. Assume

P (Rt = 1|X,Z, Y,R1, . . . , Rt−1) = wt(Yt, Z), t = 1, . . . , T, (6.1)

where wt is still nonparametric. The counterpart of Assumption (2.1) is

p(Yt|X,Z, Y1, . . . , Yt−1) = ft(Yt|X,Z, Y1, . . . , Yt−1, θt), t = 1, . . . , T. (6.2)
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Note that

p(X,YA|Yt, Z,Rj = 1, j ∈ A) =
p(Yt|X,Z, YA)p(X,YA|Z,Rj = 1, j ∈ A)∫
p(Yt|x, yA, Z)p(x, yA|Z,Rj = 1, j ∈ A)dxdyA

,

where YA = (Yj , j ∈ A) and yA is a realization of YA. The method described in

Section 2 can be modified to maximizing∏
z

∏
A∈St−1

[ ∏
i:Rit=1,Rij=1,j∈A

gt(Xi, Yij , j ∈ A|Yit, Zi = z,Rij = 1, j ∈ A, θt)

]
,

where gt(Xi, Yij , j ∈ A|Yit, Zi = z,Rij = 1, j ∈ A, θt) is proportional to∫
ft(Yit|Xi, Zi = z, YiA, yAc , θt)ft−1(YiA, yAc |Xi, Zi = z, θ̂1, . . . , θ̂t−1)dyAc∫

[
∫
ft(Yit|x,Zi=z, yA, yAc , θt)ft−1(yA, yAc |x, Zi=z, θ̂1, . . . , θ̂t−1)dyAc ]dĜz(x, yA)

and Ĝz(x, yA) is the empirical distribution based on (Xi, Yij , j ∈ A) with Rij = 1,

j ∈ A, and Zi = z.

One of the two key assumptions required for our approach is the outcome-

dependent nonresponse Assumption (1.2) or (6.1), which is a counterpart of As-

sumption (1.1) in Tang, Little, and Raghunathan (2003), although no model is

required for the function wt. Unfortunately, no assumption on the nonresponse

mechanism, such as (1.1), (1.2), (6.1), the ignorable nonresponse assumption, or

the covariate-dependent nonresponse assumption, can be checked using data due

to the presence of missing values. We may be able to show that the ignorable

nonresponse assumption does not hold under some nonignorable nonresponse as-

sumption (such as (1.2)) which itself cannot be checked using data. However,

this does not lower the importance of studying valid estimation methods under

(1.2) or (6.1) as well as other assumptions. Our investigation will be continued.

The results will be useful if the assumption is appropriate or if one would like to

perform a sensitivity analysis under different assumptions.

Note that we need to assume at least one of p(Y |X) and p(R|Y,X) is para-

metric to be able to identify parameters in p(Y |X). The second key assumption

for our approach is the parametric model (2.1) or (6.2). Parametric models

are sensitive to model violations, and we have to be careful when we apply

them. The same issue exists for the likelihood approach in Little and Rubin

(2002) under ignorable nonresponse. With nonignorable nonresponse or the gen-

eral ignorable nonresponse, unfortunately, we are not able to verify parametric

models using observed data. The parametric model is imposed on the density

p(Yt|X,Y1, . . . , Yt−1), which is a mixture of p(Yt|X,Y1, . . . , Yt−1, Rt = 1) and

p(Yt|X,Y1, . . . , Yt−1, Rt = 0), and we are not able to check a parametric model

assumption on p(Yt|X,Y1, . . . , Yt−1, Rt = 0) since no Yt-observation comes from
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it, although we can check a model on p(Yt|X,Y1, . . . , Yt−1, Rt = 1) using ob-

served data. Under the stronger assumption of covariate-dependent nonresponse,

we can check Assumption (2.1) or (6.2) using observed data and the fact that

p(Y |X,R) = p(Y |X).

A popular parametric model on p(Y |X) is the multivariate normal model.

Other choices of ft in (2.1) include the generalized linear models by treating X,

Y1, . . . , Yt−1 as covariates at time t. When X = (X1, . . . , XT ) is time-dependent,

it is sensible to assume that Yt is statistically related to X1, . . . , Xt only, t =

1, . . . , T . In such cases, the proposed method can be modified with X replaced

by X1, . . . , Xt at each time point t, because (2.1) becomes

p(Yt|X,Y1, . . . , Yt−1) = ft(Yt|X1, . . . , Xt, Y1, . . . , Yt−1, θt).
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Appendix: Proofs

Proof of Lemma 1. Let G0
A be the distribution of (X,Yj , j ∈ A) with Rj = 1,

j ∈ A, and let ψA(θt,ϑt−1, GA) = p(X,Yj , j ∈ A|Yt, Rj = 1, j ∈ A). Then the

left hand side of (3.2) is equal to∑
A∈St−1

E0

[
I(Rt = 1, Rj = 1, j ∈ A) log

ψA(θt,ϑ
0
t−1, G

0
A)

ψA(θ0t ,ϑ
0
t−1, G

0
A)

∣∣∣∣Yt, Rj = 1, j ∈ A

]
.

Each term in this sum is less or equal to 0 by Jensen’s inequality. Since the

log-function is strictly concave, this sum is 0 if and only if all terms are 0, which

implies that

E0

[
I(R1 = · · · = Rt = 1) log

ψAt−1(θt,ϑ
0
t−1, F

0)

ψAt−1(θ
0
t ,ϑ

0
t−1, F

0)

∣∣∣∣Yt, R1 = · · · = Rt−1 = 1

]
= 0,

where At−1 = {1, . . . , t−1}. By Jensen’s inequality again, this implies that either

P (Dt,θt) = 1 or P (Rt = 1|Yt, R1 = · · · = Rt−1 = 1) = P (Rt = 1|Yt) = 0, which

contradicts condition (3.1). This proves (3.2).

Proof of Theorem 1. For any function f(θt, z), where z denotes some other

parameters and/or random variables, let fθt(θt, z) =
∂
∂θt
f(θt, z) and fθtθ′t(θt, z) =

∂
∂θt
fθt(θt, z). Let GA denote a distribution on the same space as that of G0

A,

G = (GA, A ∈ St−1, t = 1, . . . , T ), G0 = (G0
A, A ∈ St−1, t = 1, . . . , T ), ĜA be
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the empirical distribution estimator of G0
A, Ĝ = (ĜA, A ∈ St−1, t = 1, . . . , T ),

ψ
(i)
A (θt,ϑt−1, GA) be ψA(θt,ϑt−1, GA) based on data from subject i, Iit(A) =

I(Rit = 1, Rij = 1, j ∈ A), and

l(t)(θt,ϑt−1, G) =
1

n

n∑
i=1

∑
A∈St−1

Iit(A) logψ
(i)
A (θt,ϑt−1, GA).

We show the consistency of θ̂t, assuming that we have shown the consistency of

θ̂1, . . . , θ̂t−1. Since (ϑ̂t−1, ĜA) → (ϑ0, G0
A) as n → ∞, by the differentiability of

l(t) and the Law of Large Numbers, almost surely we have

l(t)(θt, ϑ̂t−1, Ĝ)− l(t)(θ0t , ϑ̂t−1, Ĝ) = l(t)(θt,ϑ
0
t−1, G

0)− l(t)(θ0t ,ϑ
0
t−1, G

0) + o(1)

= E0

(
h(θt,ϑ

0
t−1, F

0)− h(θ0t ,ϑ
0
t−1, F

0)
)
+ o(1),

which is negative for sufficiently large n (Lemma 1). If limn→∞ θ̂t ̸= θ0t , then

there is a subsequence of {θ̂t}, say {θ̂k,t}, such that θ̂k,t → θ
′
t and θ

′
t ̸= θ0t . This

implies that l(t)(θ̂k,t, ϑ̂t−1, Ĝ) < l(t)(θ0t , ϑ̂t−1, Ĝ) when n is large enough. This

contradicts to the fact that θ̂t is a maximum of l(t)(θ, ϑ̂t−1, Ĝ). Hence, θ̂t is

consistent.

We next show the asymptotic normality of θ̂t, assuming that ϑ̂t−1 is asymp-

totically normal. By Taylor’s expansion and the fact that l
(t)
θt
(θ̂t, ϑ̂t−1, Ĝ) = 0,

−l(t)θt
(θ0t ,ϑ

0
t−1, G

0) = l
(t)
θt
(θ̂t, ϑ̂t−1, Ĝ)− l

(t)
θt
(θ0t , ϑ̂t−1, Ĝ)

+l
(t)
θt
(θ0t , ϑ̂t−1, Ĝ)− l

(t)
θt
(θ0t ,ϑ

0
t−1, Ĝ)

+l
(t)
θt
(θ0t ,ϑ

0
t−1, Ĝ)− l

(t)
θt
(θ0t ,ϑ

0
t−1, G

0)

= l
(t)

θtθ
′
t

(θ0t , ϑ̂t−1, Ĝ)(θ̂t − θ0t ) + op(n
−1/2)

+l
(t)

θtϑ
′
t−1

(θ0t ,ϑ
0
t−1, Ĝ)(ϑ̂t−1 − ϑ0

t−1) + op(n
−1/2)

+Btn,

where

Btn =
1

n

n∑
i=1

∑
A∈St−1

Iit(A)

[∫
ϕθt(Yit, x, yA, θ

0
t ,ϑ

0
t−1)dG

0
A∫

ϕ(Yit, x, yA, θ0t ,ϑ
0
t−1)dG

0
A

−
∫
ϕθt(Yit, x, yA, θ

0
t ,ϑ

0
t−1)dĜA∫

ϕ(Yit, x, yA, θ0t ,ϑ
0
t−1)dĜA

]
,

ϕ(Yit, x, yA, θt,ϑt−1) =

∫
ft(Yit|x, yA, yAc , θt)ft−1(yA, yAc |x,ϑt−1)dyAc .
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A direct calculation shows that

Btn =
1

n

n∑
i=1

∑
A∈St−1

Iit(A)

[∫
ϕθt(Yit, x, yA, θ

0
t ,ϑ

0
t−1)d(G

0
A − ĜA)∫

ϕ(Yit, x, yA, θ0t ,ϑ
0
t−1)dG

0
A

+

∫
ϕθt(Yit, x, yA, θ

0
t ,ϑ

0
t−1)dĜA∫

ϕ(Yit, x, yA, θ0t ,ϑ
0
t−1)dG

0
A

∫
ϕ(Yit, x, yA, θ

0
t ,ϑ

0
t−1)d(ĜA −G0

A)∫
ϕ(Yit, x, yA, θ0t ,ϑ

0
t−1)dĜA

]
= B̃tn + op(n

−1/2),

where

B̃tn =
1

n

n∑
i=1

∑
A∈St−1

Iit(A)

[∫
ϕθt(Yit, x, yA, θ

0
t ,ϑ

0
t−1)d(G

0
A − ĜA)∫

ϕ(Yit, x, yA, θ0t ,ϑ
0
t−1)dG

0
A

+

∫
ϕθt(Yit, x, yA, θ

0
t ,ϑ

0
t−1)dG

0
A

∫
ϕ(Yit, x, yA, θ

0
t ,ϑ

0
t−1)d(ĜA −G0

A)

[
∫
ϕ(Yit, x, yA, θ0t ,ϑ

0
t−1)dG

0
A]

2

]
.

By the Law of Large Numbers, l
(t)

θtθ
′
t

(θ0t , ϑ̂t−1, Ĝ) converges to E0

(
∂2h(θ0t ,ϑ

0
t−1,G

0)

∂θt∂θ
′
t

)
in probability, which is assumed to be positive definite. Combining these results,

we obtain that

θ̂t − θ0t = −
[
E0

(
∂2h(θ0t ,ϑ

0
t−1, G

0)

∂θt∂θ
′
t

)]−1 [
l
(t)
θt
(θ0t ,ϑ

0
t−1, G

0)

+ l
(t)

θtϑ
′
t−1

(θ0t ,ϑ
0
t−1, G

0)(ϑ̂t−1 − ϑ0
t−1) + B̃tn

]
+ op(n

−1/2).

By induction, we have

√
n(θ̂t − θ0t ) = −

[
E0

(
∂h(θ0t ,ϑ

0
t−1, F

0)

∂θt∂θ
′
t

)]−1√
n

t∑
s=1

[Ct
sl
(s)
θs

(θ0s ,ϑ
0
s−1, G

0) + B̃sn]

+op(1),

where Ct
k, k = 1, . . . , t, are some non-random matrices with Ct

t = I. Note

that B̃tn is a type of V-statistic and each l
(t)
θt
(θ0t ,ϑ

0
t−1, G

0) is an average of in-

dependent random vectors with mean 0. By the Central Limit Theorem, (3.3)

holds. The form of Σt in (3.3), however, is very complicated because B̃tn and

l
(t)
θt
(θ0t ,ϑ

0
t−1, G

0), t = 1, . . . , T , are correlated and the matrices Ct
k, k = 1, . . . , t−1,

t = 1, . . . , T , do not have simple forms.
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