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Abstract: We study the convergence rate of MCMC on the statistically unidenti-

fiable nonlinear model involving the Michaelis-Menten kinetic equation. We have

shown that, under certain conditions, the convergence diagnosis of Raftery and

Lewis (1992) is consistent with the convergence rate argued by Brooks and Roberts

(1999). Therefore, different MCMC schemes developed in linear models are further

extended and compared in nonlinear models. We demonstrate that the single com-

ponent MCMC (SCM) scheme is faster than the group component MCMC (GCM)

scheme on unidentifiable models, while GCM is faster than SCM when the model is

statistically identifiable. A novel MCMC method is then developed using both SCM

and GCM schemes, termed the Switching MCMC (SWM) method. The proposed

SWM possesses an advantage in that it is able to estimate parameters regardless

of the statistically identifiable situations. In addition, simulations and data analy-

sis suggest a better performance of the proposed SWM algorithm than SCM and

GCM.
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1. Introduction

In nonlinear models, mathematical identifiability refers to the identifiability

of the model parameters from noise-free data. This is also called structural

or deterministic identifiability (Cobelli and DiStefano III (1980)). Statistical

identifiability is the identifiability of parameters provided from the noise data

(Miao et al. (2009)). This is also termed numerical identifiability (Godfrey and

Fitch (1984)).

Historically, neither mathematical nor statistical identifiability is a theoreti-

cal concern in Bayesian approach. Lindley (1971) claimed that non-identifiability

causes no real difficulties for Bayesian analysis since it is always possible to resolve

the issue via proper priors. Many investigators observed that non-identifiability

did not preclude Bayesian learning (Poirier (1998); Gelfand and Sahu (1999);

Eberly and Carlin (2000)). Neath and Samaniego (1997) characterized a class

http://dx.doi.org/10.5705/ss.2010.263
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of prior distributions that lead to posterior estimates of unidentifiable parame-

ters superior to their prior estimates. Xie and Carlin (2006) carefully quantified

Bayesian learning for unidentifiable models and parameters.

Statistically unidentifiable models may lead to poor convergence of MCMC

algorithms (Eberly and Carlin (2000)). In linear models with the normal as-

sumption, the theoretical convergence speed of MCMC (i.e. Gibbs sampling)

was extensively investigated by Roberts and Sahu (1997). They showed that the

convergence speeds of different Gibbs sampling schemes heavily depend on the

correlation structures among parameters. Unidentifiable parameters in the linear

model often have high correlations, resulting in slow convergence. To overcome

the slow convergence of unidentifiable parameters in linear models, the model

reparametrization can be an effective approach. For example, Gelfand, Sahu,

and Carlin (1995) demonstrated that a hierarchically centered parameterization

can lead to faster convergence and mixing.

Similar to linear models, unidentifiable parameters in nonlinear models can

slow MCMC algorithms under the Bayesian framework. However, little research

has been conducted to investigate the convergence speed of MCMC algorithms

for nonlinear models when they have unidentifiable parameters. Unlike linear

models, model reparametrization is seriously limited by the functional form of a

nonlinear model.

Because of the non-closed form of conditional distributions in nonlinear mod-

els, various Metropolis-Hastings algorithms become routine strategies (Gilks,

Richardson, and Spiegelhalter (1996)). Consequently, theoretical guidance for

how to evaluate the speed of convergence of Gibbs sampling in linear models

(Roberts, Gelman, and Gilks (1997)) is not applicable to nonlinear models. Prac-

tically, MCMC diagnosis tests are utilized to assess their convergence (Cowles

and Carlin (1996)), and different MCMC convergence diagnoses have their own

asymptotic theories. Therefore, it is desirable to investigate whether MCMC

schemes developed in linear models can be extended to nonlinear models, and

whether they keep the same performance. However, without comparable evalua-

tion criteria of MCMC convergence between two classes of models, it is impossible

to compare their performances.

In this paper, we speak to three tasks.

• Select a fast MCMC scheme for statistically unidentifiable nonlinear models.

• Investigate whether the order of convergence speed of two MCMC chains

determined by Raftery and Lewis (1992) is comparable to the order defined

by Robert and Sahu (1997).

• Develop a novel MCMC method that can be used for parameter estimation

regardless of the statistical identifiable situation.
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We hope our research can provide some insight on the optimal MCMC scheme

selection for nonlinear models and assert either the similarity or difference among

different MCMC algorithms.

The rest of the paper is organized as follows. Section 2 describes a midazolam

(MDZ) pharmacokinetics (PK) model whose metabolism follows a Michaelis-

Menten equation. In particular, its unidentifiable PK parameters are introduced.

This description of the PK model helps us to define the statistical model and to

later evaluate MCMC performances. It is noteworthy that unidentifiable PK

parameters usually arrise at the subject specific level. Hence, in this paper,

we focus on a nonlinear model for subject’s PK data. In Section 3, a single

component MCMC and a group component MCMC are defined, and a novel

random switching MCMC is proposed for a nonlinear model. In Section 4, the

speed of convergence judged by the diagnosis test of Raftery and Lewis (1992)

is shown to be consistent with the order defined by Robert and Sahu (1997). In

Section 5, the performances of these MCMC algorithms are compared based on

MDZ clinical trial data, as well as on simulated data. Conclusions and discussion

are in Section 6. Note that all statistical analyses and simulations are performed

using the statistical package R (R Development Core Team), and the R code for

the proposed algorithms can be found in the supplement at http://www.stat.

sinica.edu.tw/statistica.

2. Michaelis-Menten Equation and Midazolam Pharmacokinetics Model

2.1. Michaelis-menten equation and statistical identifiability

The drug metabolism rate follows the Michaelis-Menten (MM) kinetics equa-

tion (Atkinson et al. (2001)):

V (t) =
dC(t)

dt
=

V max · C(t)

Km+ C(t)
, (2.1)

where V (t) is the velocity of the reaction, V max is the maximum velocity, Km

is the MM constant, and C(t) is the drug concentration. Monod (1949) first

applied the MM equation to microbiology for the growth rate of microorganisms.

The MM equation (2.1) generally describes the relationship between the rate

of substrate conversion by an enzyme to the concentration of the substrate. In

this relationship, V (t) is the rate of conversion, V max is the maximum rate of

conversion, and C(t) is the substrate concentration. The MM constant Km is

equivalent to the substrate concentration at which the rate of conversion is half of

V max. Km approximates the affinity of enzyme for the substrate. A small Km

indicates high affinity, and a substrate with a smaller Km will approach V max

more quickly. Very high C(t) values are required to approach V max, which is

http://www.stat.sinica.edu.tw/statistica
http://www.stat.sinica.edu.tw/statistica
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reached only when C(t) is high enough to saturate the enzyme. For additional

details, we refer the reader to the paper by Hein and Niemann (1962).

In PK studies, statistical identifiability often occurs with the MM equation.

Suppose the observed data y(t) follows a normal distribution with the MM equa-

tion at a time point t given the parameter θ = (V max,Km):

y(t) ∼ N{logf(θ, t), σ2}, (2.2)

where f(θ, t) = V (t). However, when Km is much higher than the concentration

C(t),

f(θ, t) =
V max · C(t)

Km+ C(t)
≈ V max

Km
· C(t) if C(t) ≪ Km. (2.3)

On the other hand, when Km is much smaller than the concentration C(t),

f(θ, t) =
V max · C(t)

Km+ C(t)
≈ V max if C(t) ≫ Km. (2.4)

That is, if the concentration C(t) is either much less than or much greater than

the true value of the parameter Km, we cannot estimate both Km and V max

separately, there are problems with identifiability.

Definition. For a family of distributions {p(x|θ)|θ ∈ Θ}. The parameter

θ is called statistically identifiable if distinct values of θ correspond to distinct

probability density or mass functions.

If the model is not statistically identifiable, there is difficulty in doing infer-

ence. Since different parameters wcan yield the same likelihood function value

(Casella and Berger (1990, Chap. 11)).

2.2. Midazolam pharmacokinetics and its clinical study

Midazolam (MDZ) is a benzodiazepine used to cause relaxation or sleep

before surgery and to block the memory of the procedure. It can be administrated

in both oral and intravenous formulations (Gorski et al. (1998)).

A MDZ pharmacokinetics (PK) study was conducted in the General Clini-

cal Research Center (GCRC) at Indiana University. Twenty-two subjects were

recruited into this study. Blood samples for MDZ assays were collected in non-

heparinized evacuated blood collection tubes at 0.5, 0.75, 1, 1.5, 2, 4, 6, and 9

hours after intravenously dosing MDZ (2.98 mg 4.8 mg). We look only one of

24 subjects’ clinical trial data.

Compartmental PK analysis uses kinetic models to describe and predict the

concentration-time curve. PK compartmental models are often similar to kinetic



A SWITCHING MARKOV CHAIN MONTE CARLO METHOD ON PK 1203

models used in such other scientific disciplines as chemical kinetics and thermo-

dynamics. The simplest PK compartmental model is the one-compartmental PK

model with oral dose administration and first-order elimination (Chang (2010)).

Here the MDZ PK is assumed to follow a two-compartmental model with the

MM equation. The PK is described by the system of the ordinary differential

equations (ODEs)

dA1(t)

dt
= −CL · A1(t)

V1
+ CL12 ·

(
A2(t)

V2
− A1(t)

V1

)
, (2.5)

dA2(t)

dt
= −CL12 ·

(
A2(t)

V2
− A1(t)

V1

)
,

CL =
Qh · CLint

Qh+ CLint
; CLint =

V max

Km+A1(t)/V1
; (A1, A2)|t=0 = (Dose, 0),

where (A1, A2) are amounts of drug in systemic and peripheral compartments,

respectively, (V1, V2) are volumes of distribution in systemic and peripheral com-

partments, respectively, CL12 is the inter-compartment rate constant, CL is the

systemic clearance, CLint is the intrinsic hepatic clearance, V max is the maxi-

mum of velocity, Km is MM constant, and Qh is the hepatic blood flow known

as 80 l/h.

Since (2.5) is nonlinear, there is no closed-form solution. Therefore we use

the R package odesolve to numerically solve for PK models. Because only the

systemic concentrations are observable in the study, the predicted systemic con-

centration at time t is

log f(θ, t) =
logA1(t)

V1
, (2.6)

where θ = (θ1, θ2, σ
2)′, θ1 = (log V1, log V2, log V max, logCL12)

′, and θ2 = logKm.

3. Nonlinear Models and Monte Carlo Markov Chain Sampling Schemes

3.1. Nonlinear models for MDZ population pharmacokinetics

We illustrate the nonlinear model for MDZ with the MM equation under the

framework of Bayesian analysis. The model has the form

[log yi|θ, σ2] ∼ N{log f(θ, ti), σ2}, i = 1, . . . , N, (3.1)

where N is the number of time points, θ = (θ1, θ2, σ
2)′, θ1 = (log V1, log V2,

log V max, logCL12)
′, θ2 = logKm, and log f(θ, ti) = (logA1(ti))/V1 as de-

scribed in (2.6). It is noteworthy that, since the observed concentration yi is

always greater than zero, the concentration is log-transformed in order for the
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PK model to take advantage of a normal distribution. The prior distributions

are

[θ] ∼ MVN{d,D},
[
1

σ2

]
∼ Ga{v

2
,
u · v
2

}, (3.2)

where d = (d1, d2, . . . , d5)
′, D =

D11 · · ·D15
...

. . .
...

D51 · · ·D55

, MVN stands for a multivariate

normal distribution, and Ga refers to a gamma distribution. Then the posterior

distribution for (θ, σ2) is proportional to

N∏
i=1

[log yi|θ, σ2]× Prior(θ, σ2), (3.3)

Prior(θ, σ2) = MVN{d,D} ×Ga{v
2
,
u · v
2

}.

The following are conditional distributions and their kernels to draw the param-

eters (θ, σ2):

[θ| log y, σ2] ∝ exp
{
− 1

2σ2

N∑
i=1

(
log yi−log f(θ, ti)

)2− 1

2
(θ−d)′D−1(θ−d)

}
, (3.4)

[
1

σ2
| log y, θ] ∼ Ga

{1

2
(v +N),

1

2

( N∑
i=1

(log yi − log f(θ, ti))
2 + v · u

)}
, (3.5)

where log y = (log y1, log y2, . . . , log yN ). Because of the nonlinear MM equation,

the conditional distribution of θ is nonstandard and known up to a normalizing

constant. For this reason, we use the random walk Metropolis (RWM) method to

draw samples from the full conditional distribution of θ. More detailed random

walk description in a PK model can be found in Kim, Hall, and Li (2009).

3.2. Different Monte Carlo Markov chain sampling scheme

Liu, Wong, and Kong (1994) introduced two Gibbs samplers and examined

them based on operator theory. To illustrate, we consider a three-dimensional

distribution π(θ1, θ2, θ3).

Scheme 1: Single component Gibbs sampler

(1) θ1 ∼ π(θ1|θ2, θ3); (2) θ2 ∼ π(θ2|θ1, θ3); (3) θ3 ∼ π(θ3|θ1, θ2). (3.6)

Scheme 2: Group component Gibbs sampler

(1) (θ1, θ2) ∼ π(θ1, θ2|θ3); (2) θ3 ∼ π(θ3|θ1, θ2). (3.7)
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Liu and his colleagues (Liu (1996); Liu, Wong, and Kong (1994)) studied the two

schemes using spectral radii (the rate of convergence). They concluded that the

second was faster in some cases, but otherwise it was not clear which scheme had

the advantage. Further discussion was done by Roberts and Sahu (1997) with a

target normal distribution for π(θ1, θ2, θ3). In particular, they found that Scheme

2 has the faster rate of convergence if all partial correlations of the Gaussian

target density are non-negative. At the same time, they found that Scheme 1

can also be the faster under a condition on the negative partial correlations. We

investigate the speed of the convergence of Schemes 1 and 2 using the general

MCMC algorithm under statistical identifiability given prior information. From

now on, we designate the Single Component MCMC as SCM and the Group

Component MCMC as GCM.

It has been shown that unidentifiable parameters are generally highly corre-

lated, and MCMC methods converge slowly (Rannala (2002)). It is also rarely

possible to determine statistical identifiability without fitting a model (Hengl et

al. (2007)). It is desirable to have a method that can estimate the parameters

regardless of the statistically identifiable situation. We propose a novel switching

algorithm to fulfill this need.

In nonlinear models, we expect that SCM is a more efficient sampling scheme

than GCM in unidentifiable models, while GCM may be more efficient than SCM

in identifiable models. Our idea is to take an average of the different behaviors of

GCM and SCM. To do this, we propose drawing samples randomly with switching

between GCM and SCM. The SWM algorithm is an MCMC algorithm that does

this, as follows.

Step 1: Set a switching probability sp.

Step 2: Generate a random number u ∼ U(0, 1){
Generate a sample using GCM if u ≥ sp,

Generate a sample using SCM if u < sp.

Step 3: Repeat Step 2 until the number of iterations is reached.

The SWM has as tuning parameter the switching probability sp. GCM,

SCM, and SWM are implemented with RWM. In GCM, we directly use (3.4);

however, in SCM, it is divided into two components as
[θ| log y, σ2] ∝ exp{− 1

2σ2

N∑
i=1

(
log yi−log f(θ, ti)

)2− 1

2
(θ−d)′D−1(θ−d)},

[θ| log y, σ2] ∝ exp{− 1
2σ2

N∑
i=1

(
log yi−log f(θ, ti)

)2− 1

2
(θ−d)′D−1(θ−d)}.

(3.8)
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SCM iterates (3.5) along with (3.8) to obtain the required estimates by RWM,

while GCM iterates (3.4) and (3.5). In addition, SWM iterates between GCM

and SCM.

4. Evaluation Criteria for MCMC Convergence

4.1. Introduction to convergence evaluation for MCMC in linear

models

We revisit the convergence rates of SCM and GCM in the linear models of

Section 3.2. We focus on a three-dimensional Gaussian target distribution with

the inverse covariance-variance matrix

Q =

 1 q12 q13
q12 1 q23
q13 q23 1

 (= Σ−1). (4.1)

The convergence rate of the GCM that blocks the first two components together

is 1− |Q|/(1− q212), and the SCM’s convergence rate is max{(b±
√
b2 − 4c)/2},

Roberts and Sahu (1997), where b = q212+ q213+ q223− q12q13q23 and c = q12q13q23.

Using these results and the scaled inverse matrix (4.1), the convergence rates

are examined in Figure 1. Without loss of generality, convergence rates were

compared according to q12 and q13 (−1 ≤ q12, q13 ≤ 1) given q23 = {−0.99,

−0.7, −0.3, −0.01, 0, 0.01, 0.3, 0.7, 0.99}. The unidentifiable parameters are

characterized by q12, which is either close to 1 or -1. Based on Figure 1, the

relative convergence rates between GCM and SCM depend heavily on q23: when

q23 is close to 0, GCM is faster than SCM almost all the time; when q23 is away

from 0, a faster convergence rate is that of GCM or SCM. It is difficult to specify

conditions for it.

Figure 1 suggests that the selection of a fast MCMC scheme is problem-

dependent, even in the linear models. In nonlinear models, additional challenges

appear. Since there is no closed form of marginal or conditional distributions

of model parameters in nonlinear models, their convergence speeds cannot be

assessed as (4.1) in the linear models. Some practical evaluation criteria of con-

vergence, such as the method proposed by Raftery and Lewis (1992), have been

routinely used. It is important then to compare the consistency between practical

and theoretical convergence rates of MCMC algorithms for nonlinear models.

4.2. The consistency between the Raftery/Lewis and Roberts/Sahu

convergence criteria

We use the notation of Raftery and Lewis (1992). Their method is based on

the estimation of a particular quantile of some scalar function θ(X). The method
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Figure 1. Comparison of the convergence rates of Schemes 1 and 2 of the
Gibbs sampler based on the scaled inverse covariance-variance matrix. The
inverse matrix is positive definite in the black and white regions and not
positive definite in the darkgray and gray regions. Scheme 1 is faster than
Scheme 2 in the black and darkgray regions, while Scheme 2 is faster than
Scheme 1 in the white and gray regions.

first calculates θ(Xt) at each iteration t, then takes Zt = δ(θ(Xt) ≤ u), where

δ(·) is the indicator function. The sequence {Zt} is not a Markov chain, but the

new sequence Z
(k)
t = Z(1+(t−1)k) is approximately a Markov chain. Practically,

k is a small number (El Adlouni, Favre, and Bobee (2006); Cowles and Carlin

(1996)). The Raftery and Lewis (1992) approach is implemented with sequence

Zt(= Z
(1)
t ) , as suggested in El Adlouni, Favre, and Bobee (2006). Let

P =

(
1− α α

β 1− β

)
(4.2)

be the transition matrix for the sequence Zt, where α = Prob(Zt = 1|Zt = 0)
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and β = Prob(Zt = 0|Zt = 1). The required number of iterations to converge is

n=n(α, β, ϵ, p, r)=
log((α+ β)ϵ/max(α, β))

log |1−α−β|
+

(2−α−β)αβ(Φ−1((p+ 1)/2))2

r(α+β)3
,

where Φ−1 is the inverse standard normal cumulative distribution function. Note

that it is clear that the convergence rate of the sequence Zt is ρ = 1− α− β, in

view of P .

Lemma 1. If β > α(4− α)/(α+ 2) or α > β(4− β)/(β + 2), then n(α, β, p, r)

is a monotonically decreasing function with respect to α+β, where 0 < α+β < 1,

α, β > 0.

Proof. Without loss of generality, take α, ϵ, p, r fixed, and t = α+β(< 1). Then

n(t) is defined as

n(t) = n1(t)+n2(t) =
log(t · ϵ/max(α, t−α))

log |1−t|
+

(2−t)α(t−α)(Φ−1
(
(p+ 1)/2)

)2
r · t3

.

(4.3)

It is not difficult to show that n1(t) is monotonically decreasing with respect to

t(< 1). On the other hand, with additional calculation, the maximum of n2(t) is

6α/(α+ 2). Therefore, if t > 6α/(α+ 2), n2(t) is monotone decreasing.

A corollary states the consistency of the theoretical and practical convergence

of an MCMC algorithm.

Corollary 1. Suppose P1 and P2 are transition matrices with transition proba-

bilities (α1, β1) and (α2, β2), respectively, and likewise the transition probabilities

satisfy the conditions of the Lemma. Then ρ1 ≥ ρ2 if and only if n1 ≥ n2,

where ρi,ni are the convergence rate and the required number of iterations for

Pi,i = 1, 2.

Although the method of Raftery and Lewis (1992) can underestimate the

convergence rate, as argued by Brooks and Roberts (1999), the order of the

convergence rates between the Raftery and Lewis method and the true theoretical

convergence rate are consistent under mild conditions. Indeed, all the simulations

in Brooks and Roberts (1999) and El Adlouni, Favre, and Bobee (2006) support

our argument (for our case, see the transition probabilities probabilities α and β

that are necessary for estimating the required number of iterations (I) in Table

1.). Accordingly, we use the method of Raftery and Lewis (1992) for the purpose

of comparing the speed of the convergence among different MCMC schemes.
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Table 1. Experiment with MDZ data: The estimates of means and standard
deviations (mean ± SD) of the parameters log V1, log V2, log V max, logKm,
logCL12, σ

2, the ratio of maximum of concentration to estimated Km, rec-
ommended numbers of iterations (I), acceptance rate (AR) for SCM, GCM,
and SWM, and α, β, ρ (= α + β) according to the RWM constant c = 1 and
optimal ARs (c = 0.15, 0.004, 0.05 for SCM, GCM, SWM, respectively).

Optimal ARs (c = 0.15; 0.004; 0.05)
SCM GCM SWM

log V1 4.32±0.07 4.63±0.20 4.33±0.08
log V2 4.61±0.39 2.90±0.32 4.59±0.46

log V max 6.88±0.43 6.79±0.32 6.72±0.31
logKm 1.75±1.23 0.86±0.71 1.13±1.04
logCL12 3.13±0.23 3.53±0.20 3.21±0.22

σ2 0.004±0.006 0.091±0.101 0.006±0.010
maxt C(t)

Km 10.0 24.4 18.6
I 34.1 186.8 59.8
AR 0.239 0.227 0.223
α 0.025 0.024 0.024
β 0.962 0.937 0.945

ρ(= α+ β) 0.987 0.961 0.969

5. MDZ Data Analysis and MM Simulation Studies

5.1. MDZ data analysis

The MDZ PK model described in Sections 2 and 3 was employed for data

analysis. Only one individual was selected, which PK model might be statisti-

cally unidentifiable. The previously published MDZ PK meta-analysis (Li et al.

(2007)) was utilized for prior distributions. The following PK parameter values

were implemented in the prior distribution (8): d = [log 67.05, log 45.08, log 4284,

log 2.11, log 42.9]′; v = 4; u = 11/2, 000;

D =

 0.5 · · · 0
...

. . .
...

0 · · · 0.5

 .

Two runs of 100,000 iterations were conducted, with burn-in = 1, 000 and thin =

5. The RWM was set up such that c = 0.15, 0.004, and 0.05 for SCM, GCM, and

SWM, respectively, for which similar optimal acceptance rates (AR) are achieved

(Roberts, Gelman, and Gilks (1997)) as shown in Table 1.

In parameter estimation (Table 1) and model fitting (Figure 2(a)), the Km

estimates are smaller than the observed concentrations, maxtC(t)/Km ranges

10.0 to 24.4. This suggests that Km may not be identifiable from V max. Table

1 presents the recommended number of iterations (I) and convergence rate (ρ)
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Figure 2(a). Experiment with MDZ data: Concentration-Time Profile and
Mean Squared Error (a) and MCMC Trace plots (b) when RWM constant
c has optimal ARs (c = 0.15, 0.004, 0.05 for SCM, GCM, SWM, respec-
tively). The red is of SCM, green of GCM, and blue of SWM. The estimates
of Km for each method are depicted as the dotted horizontal lines in the
concentration-time profile (top-left plot) in (a). Their estimates of Km are
depicted in Table 1.

for each method. SCM has five times smaller I than GCM (34.1 vs 186.8), while

SCM has larger ρ than GCM (0.987 vs 0.961). These results are consistent with

our theoretical results. As expected, SWM’s I (59.8) and ρ (0.969) fall between

those of SCM and GCM. It should be noted that the recommended number of

iterations (I) is the normalized measure which is the ratio of the total number

of iterations to converge and the lower bound of the number of iterations to

converge.

Figure 2(b) shows the trace plots for all parameters using SCM, GCM, and

SWM on the PK MDZ data. The parameter traces of GCM (green plot) have

relatively poor mixing and convergence. The estimates of V2 and Km of GCM

are smaller than those of SCM and SWM, as shown in Table 1. The mean

squared errors (MSEs) of SCM, GCM, and SWM are 0.0031, 0.0708, and 0.0006,
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Figure 2(b). Experiment with MDZ data: Concentration-Time Profile and
Mean Squared Error (a) and MCMC Trace plots (b) when RWM constant
c has optimal ARs (c = 0.15, 0.004, 0.05 for SCM, GCM, SWM, respec-
tively). The red is of SCM, green of GCM, and blue of SWM. The estimates
of Km for each method are depicted as the dotted horizontal lines in the
concentration-time profile (top-left plot) in (a). Their estimates of Km are
depicted in Table 1.

respectively. In addition, SWM fits better than the others, likely due to its better

mixing procedure that uses both GCM and SCM.

5.2. MM simulation model and its description

To validate the performances of GCM, SCM, and SWM, simulation studies

were designed and compared. Two datasets (identifiable and unidentifiable) were

generated from the MM equation with N (the number of time points) = 20 and

fixing σ2 as 0.22 for simplicity. The concentration C was generated between 0.01
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Figure 3. Simulation: Recommended numbers of iterations (I; first row)
and 95% coverage probability (CP; second row) for the MM constant Km
of SCM (dark bar), GCM (bright bar), and SWM (brightest bar), according
to the identifiable model (left column) and the non-identifiable model (right
column).

and 1 with equal size, and the true value of V max was 1 in both cases. In the

simulation, Km = 1 for the identifiable model, Km = 100 for the unidentifiable

model. The variance component of the prior information was 1, 10, 102, and

103, to reflect how informative is the prior. The initial values of parameters were

taken as the true values. To implement this simulation, we used the expressions

(3.1)−(3.5), (3.8) with

θ = (θ1, θ2)
′ = (log V max, logKm)′; f(θ, C) =

V max · C
Km+ C

. (5.1)

In each analysis, a run of 100,000 iterations was conducted, with burn-in =

3,000 and thin = 5. The performance of the recommended number (I) and 95%

Coverage Probability (CP) of the MM constant Km were compared among SCM,

GCM, and SWM.

Figure 3 presents the average of the total number of iterations (I) recom-

mended for Km by the method of Raftery and Lewis (1992). In case of the
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statistically identifiable model, GCM was almost two times faster than SCM

(SCM/GCM = 2.00, 1.93, 1.91, 2.00 for prior variances of 1, 101, 102, 103), while

GCM was roughly three times slower than SCM (GCM/SCM = 4.30, 3.71, 2.39,

2.05) when the model was statistically unidentifiable. Not surprisingly, the pro-

posed SWM had a robust performance in both situations, with recommended

numbers of iterations (I) between those of SCM and GCM.

Comparing 95% CP (the second row in Figure 3), only SCM had a strong

dependency on the prior variance when the model was not identifiable: 95% CP =

(93.8%, 60.6%, 54.2%, 53.5%) with prior variance = (1,101,102,103), respectively.

It is worth noting that GCM had better 95% CPs than SCM even when the model

was unidentifiable (100%, 100%, 99.9%, 100%). Although SWM is adapted from

GCM and SCM, SWM performed well (95.6%, 93.5%, 93.9%, 93.6%; 100%, 100%,

100%, 99.8%).

6. Conclusions

We have discussed the impact of unidentifiable nonlinear models and param-

eter estimation on MCMC algorithms.

We have shown that, under certain conditions, the convergence diagnosis of

Raftery and Lewis (1992) is consistent with that argued by Brooks and Roberts

(1999). The former diagnosis can generally be used for MCMC algorithms of

both of linear and nonlinear models, while the latter is derived only for linear

models. Our work bridges these two. Two MCMC schemes, GCM and SCM,

and the proposed method, SWM, were compared in identifiable or unidentifiable

nonlinear models with real data analysis and simulation studies.

Using one subject’s data from the MDZ pharmacokinetic study and its two

compartmental model, we have found evidence that Km is unidentifiable. Data

analysis further confirmed that SCM converges faster than GCM when the model

is unidentifiable, and SWM’s performance falls in between that of SCM and

GCM. Both SCM and SWM provided better fits than GCM in the data analysis.

In the simulation studies, when the model is identifiable, GCM is faster

than SCM and SWM. They all have comparable coverage probabilities, however.

When the model is unidentifiable, SCM is faster than GCM, but SCM has worse

coverage probability than GCM and SWM. On the other hand, SWM shows

better performance than GCM in both convergence rate and coverage probability.

In conclusion, the SCM is a fast MCMC scheme for statistically unidenti-

fiable nonlinear models. In order to estimate parameters by SCM, one should,

however, recognize the identifiability of the model, and that might be impossible

to know before parameter estimation. On the other hand, the proposed SWM

shows a robust performance for both identifiable and non-identifiable situations

in data analysis and in simulation. Especially, it is faster and better mixing than
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GCM, and its coverage probability is better than SCM when the model is not

identifiable. Furthermore, it possesses the great advantage that can be applied

to estimate parameters regardless of the statistically identifiability situation.
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