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Abstract: A general function to quantify the weight of evidence in a sample of data

for one hypothesis over another is derived from the law of likelihood and from a

statistical formalization of inference to the best explanation. For a fixed parameter

of interest, the resulting weight of evidence that favors one composite hypothesis

over another is the likelihood ratio using the parameter value consistent with each

hypothesis that maximizes the likelihood function over the parameter of interest.

Since the weight of evidence is generally only known up to a nuisance parameter, it

is approximated by replacing the likelihood function with a reduced likelihood func-

tion on the interest parameter space. The resulting weight of evidence has both the

interpretability of the Bayes factor and the objectivity of the p-value. In addition,

the weight of evidence is coherent in the sense that it cannot support a hypothesis

over any hypothesis that it entails. Further, when comparing the hypothesis that

the parameter lies outside a non-trivial interval to the hypothesis that it lies within

the interval, the proposed method of weighing evidence almost always asymptoti-

cally favors the correct hypothesis under mild regularity conditions. Even at small

sample sizes, replacing a simple hypothesis with an interval hypothesis substan-

tially reduces the probability of observing misleading evidence. Sensitivity of the

weight of evidence to hypotheses’ specification is mitigated by making them impre-

cise. The methodology is illustrated in the multiple comparisons setting of gene

expression microarray data, and issues with simultaneous inference and multiplicity

are addressed.

Key words and phrases: Bayes factor, Bayesian model selection, coherence, direct

likelihood, hypothesis testing, evidential support, foundations of statistics, likeli-
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1. Introduction

1.1. Decision-theory and evidential inference

1.1.1. Classical inference frameworks

Current needs to evaluate evidence over thousands of hypotheses in genomics

and data mining reopen the question of how to quantify the strength of evidence.

Some of the most pronounced differences between inferences made by methods
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based on coverage or error frequencies and by other statistical methods occur in

the realm of multiple comparisons, giving new importance to old debates on the

foundations of statistics.

Each of the two main frameworks of statistical inference rests on solid decision-

theoretic foundations. In the most-developed frequentist framework, that of Ney-

man and Pearson, the practice of deciding to reject only those hypotheses with

valid p-values falling below a fixed significance level strictly controls the rate

of Type I errors. In the strict Bayesian framework, that of Estienne (1903a,b,

1904a,b), F. P. Ramsey (cited in Jefreys (1948)), de Finetti (1970), and Savage

(1954), the concept of coherent decision-making leads to probability as a measure

of belief in the sense that it has a one-to-one correspondence with how much an

intelligent agent would wager on its truth given the available information and a

fixed loss function, prior distribution, and model. The methods of both frame-

works find direct applications to problems requiring some degree of automatic

decision-making. For example, the Neyman-Pearson framework provides rules

deciding when a clinical trial is successful or when to stop an unsuccessful trial,

and the Bayes-Estienne framework enables e-mail filters to decide which messages

are unwanted.

The methods of these decision-theoretic frameworks have been adapted to

problems requiring reports of the strength of the evidence in the data support-

ing one hypothesis over another rather than automated decisions to reject one

hypothesis in favor of another. Bayes factors have long been advocated as mea-

sures of the strength of statistical evidence (e.g., Jefreys (1948); Kass and Raftery

(1995)). Accordingly, Osteyee and Good (1974) considered the logarithm of the

Bayes factor the “weight of evidence” for one hypothesis over another. This

seems reasonable since the Bayes factor is equal to the posterior odds divided by

the prior odds. (Weight of evidence is instead used herein as an abbreviation for

strength of statistical evidence.)

Likewise, p-values from methods designed to control the rate of Type I (false

positive) errors are routinely interpreted in the scientific literature as measures

of evidence favoring alternative hypotheses over null hypotheses. Although the

comparison of a p-value to a previously fixed level of significance to make a deci-

sion on rejecting a null hypothesis is common in clinical trials, in less regulated

fields, the p-value is more often interpreted as a measure of evidence or support

that a sample of data provides about a statistical hypothesis. Wright (1992)

put it simply, “The smaller the p-value, the stronger the evidence against the

null hypothesis.” This use by Fisher of the p-value to quantify the degree of

consistency of the data with the null hypothesis is called significance testing to

sharply distinguish it from its use by Neyman to decide whether to reject the

null hypothesis at a previously fixed Type I error rate (Cox (1977)). Among
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the examples of significance testing to be found in scientific disciplines as diverse
as biomedicine, basic neuroscience, and physics may be found the common but
theoretically unjustified practice of taking a sufficiently high p-value as evidence
that there is “no effect” (Spicer and Francisco (1997); Pasterkamp et al. (2003))
and many statisticians’ interpretation of a sufficiently low p-value as strong ev-
idence against the null hypothesis; e.g., Fraser, Reid, and Wong (2004). Even
the critics of significance testing acknowledge that it serves its purpose in some
situations (Spjøtvoll (1977); Goodman and Royall (1988)).

1.1.2. Objectivity and interpretability

In spite of the uncontested value of methods of the Neyman-Pearson and
Bayes-Estienne frameworks in the decision-making roles for which they are opti-
mal, their application to quantifying the strength of statistical evidence remains
controversial. For neither the p-value nor the Bayes factor qualifies as a general
measure of evidence if the strength of statistical evidence in a particular data
set for one given hypothesis over another under a specified family of probability
distributions must meet both of these criteria:

1. the objectivity condition, that the strength of evidence does not vary from one
researcher to another;

2. the interpretability condition, that the strength of evidence has the same prac-
tical interpretation for any sample size.

The first condition rules out Bayes factors that depend on subjective or de-
fault priors, and the second condition rules out the p-value (Bickel (2011b)), as
will be seen later in this subsection. By contrast, the likelihood ratio satisfies
both of the necessary conditions for a measure of the strength of statistical evi-
dence. In a philosophical study of the foundations of statistical theory, I. Hacking
proposed the law of likelihood in terms of data d and hypotheses h and i: “d sup-
ports h better than i whenever the likelihood ratio of h to i given d exceeds 1”
(Hacking (1965, p.71, italics added)). The usual restatement of the law follows.
At each value of θ, the D-dimensional parameter, f (•; θ) denotes the probability
density or probability mass function of the random n-tuple X of which the fixed
n-tuple of observations x is a realization. L (•) = L (•;x) = f (x; •) , a function
on the parameter space Θ, is called the likelihood function. In the evidential
framework of statistical inference, the likelihood ratio L (θ′;x) /L (θ′′;x) is the
strength of statistical evidence in X = x that supports θ = θ′ over θ = θ′′, and if
L (θ′;x) /L (θ′′;x) > 1, there is more evidence for θ = θ′ than for θ = θ′′ (Royall
(2000a)). Both hypotheses under consideration are simple in the sense that each
corresponds to a single parameter value, a point in Θ. In this case of two sim-
ple hypotheses, the logarithm of the Bayes factor equals log (L (θ′;x) /L (θ′′;x)),
which Edwards (1992) called the support for θ = θ′ over θ = θ′′.
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More generally, the Bayes factor has been used to compute a ratio of pos-

terior probabilities of two hypotheses that are composite, that is, corresponding

to multiple parameter values. In the strict Bayes-Estienne framework, however,

since the prior probability of each hypothesis varies from one decision maker to

another, the ratio of posterior probabilities violates the objectivity condition of a

measure of evidence. In the applied data analysis, Bayesians rarely make the ef-

fort required to elicit prior distributions from experts to adequately reflect their

levels of uncertainty about parameter values, perhaps because it is justifiable

in very few practical situations. The arguably less subjective practice of auto-

matically assigning 50% prior probability to each hypothesis reduces the ratio

of posterior probabilities to the Bayes factor. Although the principle of insuffi-

cient reason behind that practice still has its defenders (Williamson (2005)), the

well known problems with partitioning the parameter set into equally probable

subsets remain (Kass and Wasserman (1996)). The Bayes factor also requires

a prior distribution if either hypothesis corresponds to more than one parame-

ter value or if there is a nuisance parameter. Although default priors are much

more convenient than their frankly subjective counterparts and seem to offer

more objectivity (Berger (2004)), there is no consensus on how to select one

of the many available rules for generating default priors, and yet small-sample

inference can be sensitive to such selection (Kass and Wasserman (1996)). Ar-

guments for priors based on group invariance are compelling but do not apply

to all situations, whereas generally applicable and widely used reference priors

are functions of which parameters are of interest (Bernardo (1979)), thereby

eroding Bayes-Estienne foundations unless the prior levels of an agent’s beliefs

should depend on which parameter that agent intends to use in decision mak-

ing. Regardless of the specific algorithm selected, the automatic generation of

priors introduces a problem of interpreting the resulting posterior probabilities

since the prior probabilities do not correspond to any scientist’s actual levels of

belief, as a more rigorous application of Bayes-Estienne decision theory would

require. Consequently, a default prior often serves to determine what an ideal

agent whose beliefs were encoded by that prior would believe upon observing the

data (Bernardo (1997)). If a prior is instead chosen in order to derive credible

sets that match confidence intervals, using Bayesian calculations for Neyman-

Pearson inference, objectivity and an unambiguous interpretation of probability

are thereby purchased at the price of abandoning strict Bayes-Estienne decision

theory, except in special cases.

The interpretability condition for a measure of evidence is defined at the end

of this subsection after introducing its foundational concepts. With the likelihood

ratio as the measure of the strength of evidence, the analog of a Type I error rate

plays key roles in sample size planning and in the choice of a method of elim-

inating nuisance parameters without itself quantifying the strength of evidence
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(Strug, Rohde, and Corey (2007); Blume (2008).) This analog, the probability

of observing misleading evidence, is defined as follows. Consider the strength of

evidence in observed data generated by distribution Pθ in favor of the false hy-

pothesis that the data were generated by a distribution in the set {Pθ′ : θ
′ ̸= θ}.

The observation of misleading evidence is the event that the strength of evidence

for the false hypothesis exceeds a fixed threshold representing the boundary be-

tween weaker and stronger evidence, and the probability of observing misleading

evidence is the limiting relative frequency of observations of misleading evidence

under repeated sampling.

Ideally, the probability of observing misleading evidence would converge to 0

with increasing sample size. In other words, more information would increase the

reliability of inferences made from the available evidence, at least asymptotically.

Hypothesis testing with a fixed Type I error rate, say 0.05, as the threshold sep-

arating weaker evidence from stronger evidence, with the p-value as the level of

evidence, fails in this regard. Indeed, under the null hypothesis, the probability

that the p-value is less than that threshold is equal to the fixed error rate for all

samples sizes and thus cannot vanish. Consequently, the result of a conventional

hypothesis test, whether expressed as a p-value or as an accept/reject decision,

cannot be evidentially interpreted without taking the sample size into considera-

tion, which is why a given p-value is thought to provide stronger evidence against

the null hypothesis if the sample is small than if it is large (Royall (1997)). For

example, as Goodman and Royall (1988) explain, a p-value of 0.05 in many cases

corresponds to a likelihood ratio indicating overwhelming evidence in favor of

the null hypothesis for sufficiently large samples. For this reason, a candidate

measure of evidence is considered interpretable if the associated probability of

observing misleading evidence approaches 0 asymptotically.

1.2. Evidence for a composite hypothesis

In spite of meeting the two criteria of a measure of evidence, the classical

law of likelihood is insufficient for statistical inference if either hypothesis is

composite. This insufficiency threatens to severely limit the scope of likelihood-

evidential inference since most statistical tests in common use compare a simple

null hypothesis θ = θ′′ to a composite alternative hypothesis such as θ > θ′′ or

θ ̸= θ′′.

In some areas of application, subject-matter knowledge may inform the re-

placement of a composite hypothesis θ ∈ Θ′ (for some Θ′ ⊆ Θ) with a simple

hypothesis θ = θ′ for computing L (θ′) /L (θ′′) as the weight of evidence. For ex-

ample, in linkage analysis, Strug and Hodge (2006) set θ′ to the smallest plausible

value of the recombination fraction θ for the purpose of using likelihood ratios
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instead of p-values that employ composite alternative hypotheses. In other do-

mains, any selection of a simple hypothesis in place of a composite hypothesis

would be unacceptably arbitrary or subjective. Nonetheless, there may some-

times be advantages in evidential inference to setting θ′ to the parameter value

as close as possible to θ′′ such that |θ′ − θ′′| remains high enough to be practically

significant; this concept of scientific significance was previously applied to non-

evidential gene expression data analyses (Bickel (2004); Van De Wiel and Kim

(2007)). An alternative is to set θ′ to some conventional value, e.g., the value cor-

responding to a two-fold expression difference (an expression ratio estimate of 1/2

or 2) remains a commonly used threshold with gene expression studies in spite of

its arbitrary nature (Lewin et al. (2006)). Comparing the evidential strength of

one simple hypothesis to another has the advantage that Pθ′′ (L (θ′) /L (θ′′) ≥ Λ),

the probability of observing misleading evidence at level Λ > 1, is asymptotically

bounded by the standard normal cumulative distribution function evaluated at

−
√
2 log Λ if L is smooth and if the parameter dimension D is fixed, or by the

Chebyshev or Markov bound 1/Λ more universally (Royall (2000a)). In addi-

tion, limiting the parameter of interest to one of two values is convenient when

planning the size of a study (Strug, Rohde, and Corey (2007)).

Nonetheless, the weight of evidence involving a composite hypothesis cannot

in general be measured or even approximated by substituting a simple hypoth-

esis selected prior to observing the data. However, a solution to the composite

hypothesis problem does appear to lie in the use of a likelihood interval or more

general likelihood set. The level-Λ likelihood set E (Λ) consists of all values of θ

satisfying L (θ) ≥ L
(
θ̂
)
/Λ, where θ̂ is the maximum likelihood estimate. Non-

membership in a likelihood set determines which parameter values are considered

“obviously open to grave suspicion” (Fisher (1973, pp.75-76)) if not inconsis-

tent with the data (Barnard (1967); Hoch and Blume (2008)). Thus, whenever

L
(
θ̂
)
/L (θ′′) > Λ and θ̂ ̸= θ′′, one or more parameter values in E (Λ) are consid-

ered better supported than θ = θ′′ by the data, and, for that reason, L
(
θ̂
)
/L (θ′′)

measures the weight of evidence for the composite hypotheses θ ∈ E (Λ) over the

simple hypothesis θ = θ′′. By the same reasoning, L
(
θ̂
)
/L (θ′′) measures the

weight of evidence for the composite hypotheses θ ̸= θ′′ over the simple hypoth-

esis θ = θ′′.

More generally, a formal interpretation of the principle of inference to the

best explanation entails that W (Θ′,Θ′′) = supθ′∈Θ′ L (θ′) / supθ′′∈Θ′′ L (θ′′) un-

iquely quantifies the weight of evidence for the hypotheses that θ ∈ Θ′ over the

hypothesis that θ ∈ Θ′′ in the absence of prior hypothesis probabilities, where

Θ′ and Θ′′ are subsets of the parameter space (Section 2). It follows that, if θ is

the parameter of interest, θ ∈ Θ′ is better supported than θ ∈ Θ′′ if and only if
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supθ′∈Θ′ L (θ′;x) > supθ′′∈Θ′′ L (θ′′;x), a conclusion a preliminary version of the

present article (Bickel (2008)) and Zhang (2009b) independently derived from

different axiomatic systems.

Zhang (2009b) also recorded asymptotic properties of W (Θ′,Θ′′), applied it

to several interesting examples, refuted objections against its adoption, and gave

guidelines for its derivation from statistical reports in the absence of the origi-

nal data. The most important practical difference between our two approaches

emerges in the presence of a nuisance parameter. Zhang (2009b) follows Roy-

all (1992) and He, Huang, and Liang (2007) in framing the nuisance parameter

problem as a special case of the composite hypothesis problem, whereas Bickel

(2008) maintains the complete separation between the two problems (see Section

2.5, below). Unique contributions of the present paper are summarized in Section

6.1.

A discrepancy between the performance of the likelihood ratio for two fixed

simple hypotheses and the likelihood ratio maximized over a subset of the pa-

rameter space including parameter values arbitrarily close to that of a simple

hypothesis was uncovered by the example of the multivariate normal family with

a 5-dimensional mean as θ (Kalbfeisch (2000)). Asymptotically, for any fixed

θ′ and θ′′ in Θ = R5, there is a 2.1% upper bound on Pθ′′ (L (θ′) /L (θ′′) > 8),

the probability of observing misleading evidence at level Λ = 8 (Royall (2000a)).

By contrast, the probability that the level-8 likelihood set contains θ′′, assuming

it is the true value of θ, is less than 50% (Kalbfeisch (2000)). This means the

asymptotic probability of observing misleading evidence for θ ∈ R5\ {θ′′} over

θ = θ′′ exceeds the asymptotic probability of observing misleading evidence for

θ = θ′ over θ = θ′′ by a factor of 25 or more. This malady is not limited to the

normal case, but is symptomatic of inadequate interpretability when a hypothe-

sis representing practically the entire parameter space is pitted against a simple

hypothesis. The universal upper bound on Pθ′′ (L (θ′) /L (θ′′) > 8) is 12.5%, the

Chebyshev or Markov bound. That is more than a factor of 4 smaller than

Pθ′′(L(θ̂)/L(θ
′′) > 8) = 52.7% in the example of D = 5 and conditions under

which 2 log(L(θ̂)/L(θ′′)) is asymptotically distributed as χ2 with D degrees of

freedom.

Given such an asymptotic distribution, L
(
θ̂
)
/L(θ′′) does not meet the in-

terpretability condition of Section 1.1 since

∀Λ>1 lim
n→∞

Pθ′′

(
L(θ̂)/L

(
θ′′
)
> Λ

)
= α

for some α > 0. Thus, L
(
θ̂
)
/L (θ′′) is no more interpretable than a p-value as

the strength of evidence.
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Interpretability is recovered by instead quantifying the strength of evidence

for a composite hypothesis over an interval hypothesis, e.g., for |θ| > θ+ over

|θ| ≤ θ+ for some fixed θ+ > 0. The proof is in Section 2. In addition to satis-

fying the interpretability condition, weighing evidence for composite hypotheses

has intrinsic scientific merit, as, for example, when assessing evidence for bioe-

quivalence or differential gene expression. Section 2 also highlights connections

between Hacking’s law of likelihood, evidence sets, and evidence for or against

composite hypotheses.

For some applications, the main drawback of replacing a simple hypothesis

with an interval hypothesis is the dependence on the interval bounds. This is

largely overcome by the extension of evidential inference to handle imprecise

composite hypotheses in Section 3.

The proposed methodology is studied by simulation (Section 4) and illus-

trated by application to microarray gene expression data (Section 5). Imprecise

composite hypotheses provide a natural formalization of the imprecision inherent

in what is meant when a biologist says a gene is “differentially expressed”; this

imprecision applies to differential protein and metabolite expression as well as to

differential gene expression. (Looking over thousands of genes for differential ex-

pression poses an extreme multiple comparisons problem in the Neyman-Pearson

framework. Because, unlike the p-value, the likelihood ratio as a measure of

statistical evidence is not based on the control of a Type I error rate, it is not

adjusted for multiple comparisons by enforcing control of a family-wise error rate

or a false discovery rate (Section 2.4). While many statisticians see the ability to

correct for multiple tests in this way as an important advantage of the p-value

over the likelihood ratio alone (Korn and Freidlin (2006)), others maintain that

the perceived need to correct for multiple comparisons exposes a shortcoming in

the evidential interpretation of the p-value (Royall (1997)).)

Section 6 has a discussion and opportunities for further research.

2. Inference about Precise Hypotheses

2.1. Preliminaries

2.1.1. Basic notation

The symbols ⊂ and ⊆ designate proper subsets and (possibly improper)

subsets, respectively.

Consider the fixed positive integer D and the parameter space Θ ⊆ RD.

For all θ ∈ Θ, the probability distribution of the observable random n-tuple

X ∈ Ω ⊆ Rn admits a probability density or mass function f (•; θ) on Ω such

that θ′ ̸= θ′′ ⇒ f (•; θ′) ̸= f (•; θ′′). For X = x, the likelihood function on Θ is

L (•) = L (•;x) = f (x; •). Unless specified otherwise, the propositions of this
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paper hold generally for all x in {y : y ∈ Ω,∀θ′∈Θf (y; θ′) > 0}. Both Θ and Ω

are nonempty. If imprecise hypotheses are under consideration, the probability

distributions that determine the values of L are incomplete (Section 3).

2.1.2. Hypothesis types

Definition 1. For any nonempty subset Θ′ of Θ, the hypothesis that θ ∈ Θ′

is simple if Θ′ has only one element; otherwise, the hypothesis that θ ∈ Θ′ is

composite. Any simple or composite hypothesis θ ∈ Θ′ is intrinsically simple if θ,

conditional on θ ∈ Θ′, is a random D-tuple of some probability space (Θ′,A′, p′).

Any composite hypothesis that is not intrinsically simple is complex.

As will become clear in Example 3, distinguishing composite hypotheses that

are intrinsically simple from those that are complex facilitates inference about

a random θ with frequency distribution p, not to be confused with any prior

distribution π that represents uncertainty from the subjective viewpoint of an

intelligent agent rather than objective variability actually occurring in the world.

Thereby differentiating the random-effects or physical distribution p from the

epistemological or mental distribution π (Williamson (2005)) plays a crucial role

in the framework of Section 2.2. Whereas physical probabilities model limiting

relative frequencies or proportions of real objects, mental probabilities instead

model hypothetical levels of belief.

If θ is physically random with marginal probability space (Θ,A, p), then the

hypothesis θ ∈ Θ′ will not be of interest unless Θ′ ∈ A\∅. To succinctly represent

the hypotheses of potential interest, let Φ = {φ (Θ′) : Θ′ ∈ A\∅} denote a param-

eter set isomorphic to A\∅, where φ : A\∅ → Φ is an invertible A-measurable

function. Consider the family
{
P ϕ : ϕ ∈ Φ

}
of probability distributions of X that

admit probability density or mass functions
{
f (•;ϕ) : ϕ ∈ Φ

}
satisfying

f
(
x;ϕ′) = ∫ f

(
x; θ′

)
dp
(
θ′|θ ∈ φ−1

(
ϕ′)) (2.1)

for all ϕ′ ∈ Φ. Then the likelihood function on Φ is L (•) = L (•;x) = f (x; •).
Thus, every intrinsically simple hypothesis θ ∈ Θ′ under the first family of sam-

pling distributions corresponds to a simple hypothesis ϕ = φ (Θ′) under the

new family. By contrast, a complex hypothesis cannot be reduced to a simple

hypothesis.

Whether θ ∈ Θ′ means “θ that is in Θ′” or “the hypothesis that θ is in

Θ′” may be determined from the context. In the sequel, every subset of Θ is

nonempty and corresponds to either a simple hypothesis or a composite hypoth-

esis of potential interest. Accordingly, 2Θ denotes the set of all non-empty subsets

of Θ if θ is fixed or A\∅ if θ is random, in which case “all Θ′ ⊆ Θ” stands for

“all Θ′ ∈ A\∅.”
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2.2. Explanatory theory of evidence

Section 2.2.1 formalizes the concept of explanatory power that will be used

in Section 2.2.2 to define the weight of evidence. For the sake of applications,

Section 2.2.3 expresses the weight of evidence more concisely.

2.2.1. Inference to the best explanation

Let ex (Θ′) = ex (Θ′;x) denote the explanatory power of θ ∈ Θ′ with respect

to X = x, that is, the ability of θ ∈ Θ′ to explain why x was observed as

opposed to some other realization of X. The function ex on 2Θ × Ω will be

restricted by weak conditions needed for use with the weight of evidence. To

motivate the condition that pertains specifically to simple hypotheses, measures

of explanatory power proposed by Popper (2002, Appendix IX) and Niiniluoto

(2004) will exemplify the concept.

Example 1. Niiniluoto (2004) recorded two functions that quantify the ability of

a simple hypothesis to explain data. The one that does not necessitate assigning

probabilities to hypotheses is now generalized to continuous parameter values.

Let f (x) =
∫
f (x; θ) dπ (θ), where π is a non-Dirac measure on Θ and f (•; θ) is

a probability mass function. Then

ex
({

θ′
}
;x
)
=

f (x; θ′)− f (x)

1− f (x)
(2.2)

is the explanatory power of θ = θ′ with respect to X = x.

Example 2. Also with discrete data and parameters in mind, Popper (2002,

pp.416, 420-421) considered

ex
({

θ′
}
;x
)
=

f (x; θ′)− f (x)

f (x; θ′) + f (x)
;

ex
({

θ′
}
;x
)
= log2

(
f (x; θ′)

f (x)

)
as two possible values of explanatory power that are equally applicable to con-

tinuous data and parameters.

Since ex will only serve to rank hypotheses, the measure π defining f (x)

in the examples need neither be specified nor included in the simple-hypothesis

axiom to be included in the definition of ex. Intrinsically simple hypotheses are

replaced with the equivalent simple hypotheses for application of that axiom.

A strong idealization of the principle of inference to the best explanation

stipulates that the simple hypothesis of highest explanatory power be inferred
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(Niiniluoto (2004)). The complex-hypothesis axiom of the explanatory function

ex weakens that idealization by stipulating only that the ability of θ ∈ Θ′ to

explain X = x cannot exceed that of θ ∈ Θ′′, where Θ′′ contains a parameter

value of highest explanatory power, unless either θ ∈ Θ′ or θ ∈ Θ′′ is intrinsically

simple.

For application to both simple hypotheses and composite hypotheses ac-

cording to the above sketch, ex satisfies the conditions imposed by the following

recursive definition.

Definition 2. A function ex on 2Θ × Ω is an explanatory function if it satisfies

the following axioms.

1. ex ({θ′} ;x) : Θ → R1 increases monotonically with the likelihood function L

as θ′ ∈ Θ varies.

2. For all Θ′ ⊆ Θ and Θ′′ ⊆ Θ such that each of the hypotheses θ ∈ Θ′ and

θ ∈ Θ′′ is either simple or complex,

arg sup
θ∈Θ′∪Θ′′

ex ({θ} ;x) ∈ Θ′′ =⇒ ex
(
Θ′;x

)
≤ ex

(
Θ′′;x

)
. (2.3)

3. For all Θ′ ⊆ Θ such that θ ∈ Θ′ is an intrinsically simple hypothesis,

ex
(
Θ′;x

)
= ex

({
φ
(
Θ′)} ;x) , (2.4)

where ex is an explanatory function on {{ϕ} : ϕ ∈ Φ} × Ω, i.e., ex satisfies

Axioms 1 and 2 with {{ϕ} : ϕ ∈ Φ} in place of 2Θ, ϕ = φ (Θ′) in place of

θ ∈ Θ′, etc. (Axiom 3 does not apply to ex since the fact that ϕ is fixed

rather than random means each hypothesis that ϕ = φ (Θ′) is simple, not

intrinsically simple.)

(2.4) says the explanatory power of an intrinsically simple hypothesis is equal

to that of the equivalent simple hypothesis about the parameter in the family of

distributions induced by (2.1).

Violation of (2.3) would mean there is a simple or complex hypothesis that

explains the data better than a simple or complex hypothesis that contains the

best explanation.

2.2.2. Evidential functions

Let W (Θ′,Θ′′) = W (Θ′,Θ′′;x) denote the weight of evidence in X = x that

supports θ ∈ Θ′ over θ ∈ Θ′′. In the terminology of Section 2.2.1, the evidential

function W is now defined in terms of the explanatory function ex that yields

ex (Θ′;x) as the power of the hypothesis θ ∈ Θ′ to explain why X = x.
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Definition 3. A function W on 2Θ×2Θ×Ω is an evidential function with respect

to an explanatory function ex if it satisfies the following axioms.

1. For all θ′ ∈ Θ and θ′′ ∈ Θ,

W
({

θ′
}
,
{
θ′′
}
;x
)
=

L (θ′;x)

L (θ′′;x)
. (2.5)

2. For all Θ′,Θ′′,Θ′′′ ⊆ Θ,

W
(
Θ′,Θ′′;x

)
= W

(
Θ′′,Θ′;x

)
⇐⇒ W

(
Θ′,Θ′′′;x

)
= W

(
Θ′′,Θ′′′;x

)
⇐⇒ W

(
Θ′′′,Θ′;x

)
= W

(
Θ′′′,Θ′′;x

)
.

(2.6)

3. For all Θ′,Θ′′ ⊆ Θ,

W
(
Θ′,Θ′′;x

)
≤ W

(
Θ′′,Θ′;x

)
⇐⇒ ex

(
Θ′;x

)
≤ ex

(
Θ′′;x

)
. (2.7)

4. For all Θ′,Θ′′ ⊆ Θ such that θ ∈ Θ′ and θ ∈ Θ′′ are intrinsically simple

hypotheses,

W
(
Θ′,Θ′′;x

)
= W

({
φ
(
Θ′)} ,{φ (Θ′′)} ;x) , (2.8)

where W is any evidential function on {{ϕ} : ϕ ∈ Φ}2 × Ω.

According to (2.5) , the likelihood ratio W ({θ′} , {θ′′}) is the weight of evi-

dence in X = x that supports θ = θ′ over θ = θ′′; this special law of likelihood is

restricted to the special case of simple hypotheses (Section 1.1.2). (2.5) calibrates

the weight of evidence for one simple hypothesis over another. The special law

of likelihood does not in itself specify how to weigh evidence for or against a

complex hypothesis (Royall (2000b); Blume (2002)) unless all parameter values

represented by the complex hypothesis have the same likelihood (Royall (1997,

pp.17-18)).

By contrast, Definition 3 does apply to composite hypotheses. Specifically,

the principle of inference to the best explanation idealized by (2.3) extends the

special law of likelihood to complex hypotheses, whereas intrinsically simple hy-

potheses are replaced with simple hypotheses in accordance with (2.1).

Following Jefreys (1948) with the weight of evidence in place of the Bayes

factor and with a slight change of wording, the number of achieved bans (b =

log10W (Θ′,Θ′′)) indicates weak evidence (0 < |b| < 1/2), moderate evidence

(1/2 ≤ |b| < 1), strong evidence (1 ≤ |b| < 3/2), very strong evidence (3/2 ≤
|b| < 2), or decisive evidence (|b| ≥ 2) supporting θ ∈ Θ′ over θ ∈ Θ′′ if b > 0, or

supporting θ ∈ Θ′′ over θ ∈ Θ′ if b < 0.
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Example 3. Let Θ = {1, . . . , 101} correspond to 101 urns, each containing

black balls and white balls. An urn is selected randomly, with known probability

p (i) = 1/101 of selecting the ith urn. A ball is then randomly drawn with an

equal probability of drawing any ball from the selected urn θ, as in Kyburg and

Teng (2006, p.216). The proportion of black balls in the first urn is 10−0.8, and

the proportion of black balls in each other urn is 10−2. Consider the simple

hypothesis that θ = 1 and the composite hypothesis that θ ∈ {1, 2}. The latter

is not the complex hypothesis that the ball was drawn either from the first urn

or the second urn but rather is the intrinsically simple hypothesis that the ball

was randomly selected either from the first urn with 50% probability or from

the second urn with 50% probability. Thus, (2.8) pertains and, if a black ball is

drawn, then

W ({1} , {1, 2} ; black) = W ({ϕ1} , {ϕ1,2} ; black)

=
f (black;ϕ1)

f (black;ϕ1,2)

=
f (black; 1)

(50%) f (black; 1) + (50%) f (black; 2)

=
10−0.8

(10−0.8 + 10−2) /2
≈ 2 ∈

(
0, 101/2

)
,

where ϕ = ϕ1 and ϕ = ϕ1,2 are the two hypotheses in the new parameterization

in the notation of Section 2.1.2. In words, drawing a black ball weakly supports

the hypothesis that the ball was drawn from the first urn over the hypothesis that

the ball was randomly selected either from the first urn with 50% probability or

from the second urn with 50% probability. Again applying Definition 3 gives

W ({1} , {2, . . . , 100} ; black) = 10−0.8

10−2
= 101.2 ≥ 101,

showing that drawing a black ball strongly supports the hypothesis that the ball

was randomly selected from the first urn over the hypothesis that it was selected

randomly from one of the other urns.

Popper (2002, p.430) anticipated a special case of Definition 3 by noting

that the explanatory power can be interpreted as a measure “of the weight of

the evidence in favor of” the hypothesis. From that perspective, the weight of

evidence for one hypothesis over another may be deemed synonymous with the

explanatory power of the former hypothesis relative to the latter hypothesis,

thereby obviating normalization by f (x). However, the simple identification

of the weight of evidence with relative explanatory power breaks down in the

presence of a nuisance parameter (Section 2.5.2).
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The evidential functions on 2Θ × 2Θ × Ω should not be confused with the

evidence functions on Θ × Θ × Ω that Lele (2004) studied. Definition 3 may

extend the latter to composite hypotheses by substituting each evidence function

for the likelihood ratio in (2.5) and by making the analogous modification to the

likelihood axiom of Definition 2.

2.2.3. General law of likelihood

Sections 2.2.1 and 2.2.2 lead to two practical equations for weighing evidence

favoring one hypothesis over another.

Proposition 1. General law of likelihood. For any explanatory function ex, let

W denote the evidential function with respect to ex. Then the weight of evidence

in X = x that supports θ ∈ Θ′ over θ ∈ Θ′′ is

W
(
Θ′,Θ′′;x

)
=

supθ′∈Θ′ L (θ′;x)

supθ′′∈Θ′′ L (θ′′;x)
(2.9)

for all Θ′ ⊆ Θ and Θ′′ ⊆ Θ such that θ ∈ Θ′ and θ ∈ Θ′′ is each either a simple

hypothesis or a complex hypothesis but is

W
(
Θ′,Θ′′;x

)
=

∫
Θ′ L (θ′;x) dp (θ′|θ ∈ Θ′)∫

Θ′′ L (θ′′;x) dp (θ′′|θ ∈ Θ′′)
(2.10)

for all Θ′ ⊆ Θ and Θ′′ ⊆ Θ such that θ ∈ Θ′ and θ ∈ Θ′′ are intrinsically simple.

Proof. In the case that θ ∈ Θ′ and θ ∈ Θ′′ are intrinsically simple, (2.8), (2.1),

and (2.5) together entail (2.10). The remainder of the proof derives (2.9) for the

case that θ ∈ Θ′ and θ ∈ Θ′′ is each either a simple hypothesis or a complex

hypothesis. By (2.3),

θ′ = arg sup
θ∈Θ′

ex ({θ}) =⇒ ex
(
Θ′) = ex

({
θ′
})

for all Θ′ ⊆ Θ. Then, according to Definition 2 and (2.7),

θ′ = arg sup
θ∈Θ′

L (θ) =⇒ W
(
Θ′,
{
θ′
})

= W
({

θ′
}
,Θ′) ,

which, by (2.6), in turn yields

θ′ = arg sup
θ∈Θ′

L (θ) =⇒ W
(
Θ′,Θ′′) = W

({
θ′
}
,Θ′′)

and, similarly,

θ′′ = arg sup
θ∈Θ′′

L (θ) =⇒ W
(
Θ′,Θ′′) = W

(
Θ′,
{
θ′′
})
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for all Θ′,Θ′′ ⊆ Θ. Combining results,

W
(
Θ′,Θ′′) = W

({
arg sup

θ∈Θ′
L (θ)

}
,

{
arg sup

θ∈Θ′′
L (θ)

})
and thus, from (2.5),

W
(
Θ′,Θ′′) = L (arg supθ∈Θ′ L (θ))

L (arg supθ∈Θ′′ L (θ))
.

The proof does not depend on the exact form of the explanatory power of
a simple hypothesis but only requires that it monotonically increase with the
likelihood (Definition 2). See Foster (2004) for a defense of that requirement.
The connection to the principle of inference to the best explanation largely an-
swers the objection that an explanatory rationale for (2.9) “has no strong logical
grounding” (Lehmann (2006)).

2.3. Implications of the theory

2.3.1. Properties of the weight of evidence

The “coherence” of the weight of evidence in the technical sense of Schervish
(1996) and Lavine and Schervish (1999) follows trivially from Proposition 1.

Proposition 2. Coherence. For any explanatory function ex, let W denote the
evidential function with respect to ex. Given any simple or complex hypotheses
θ ∈ Θ′ and θ ∈ Θ′′,

∀Θ′′,Θ′′′⊆Θ∀Θ′⊆Θ′′W
(
Θ′,Θ′′′;x

)
≤ W

(
Θ′′,Θ′′′;x

)
. (2.11)

The coherence property prevents attributing more evidence to a simple or
complex hypothesis than to an implication of that hypothesis (Schervish (1996);
Lavine and Schervish (1999)).

While a ratio of posterior probabilities satisfies coherence, it generally vio-
lates the principle of inference to the best explanation.

Example 4. Let Θ =
{
θ(1), . . . , θ(101)

}
correspond to 101 distinct cosmological

theories, each providing a different physical explanation of astronomical observa-
tions represented by x. The outcome X = x would occur with probability 10−0.8

on the big bang theory
(
θ = θ(1)

)
and 10−2 on each of the other 100 theories,

including the steady state theory
(
θ = θ(2)

)
(cf. Efron (2004)). If the theories

were judged equally plausible before the measurements were made, each would
have equal prior probability. Then the Bayes factor would ascribe more eviden-
tial weight to the big bang than to the hypothesis that either the big bang or the
steady state theory is true:

WBF

({
θ(1)
}
,
{
θ(1), θ(2)

}
;x
)
=

10−0.8

(10−0.8 + 10−2) /2
≈ 2,
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formally violating the coherence property. The ratio of posterior probabilities is
coherent:

π
(
θ = θ(1)|x

)
π
(
θ ∈

{
θ(1), θ(2)

}
|x
) =

10−0.8

10−0.8 + 10−2

However, the posterior odds fails to ascribe more weight to the big bang than to
its denial, revealing a conflict between the principle of insufficient reason and the
principle of inference to the best explanation:

π
(
θ = θ(1)|x

)
π
(
θ ̸= θ(1)|x

) =
10−0.8

(100) (10−2)
= 10−0.8 < 1.

Few scientists would let a plethora of less adequate explanations prevent them
from making an inference to the best explanation, the merits of Bayesianism
in other settings notwithstanding. By contrast, the general law of likelihood
indicates that there is strong evidence that the big bang occurred:

W
({

θ(1)
}
,
{
θ(2), . . . , θ(101)

}
;x
)
=

10−0.8

10−2
= 101.2.

The Bayesian approach treats the theories of Example 4 exactly as if they
were the randomly selected urns of Example 3, as seen in the mathematical
equality of the results. Bayesianism has long been criticized for its inability to
distinguish between frequencies of parameter values and levels of belief about
parameter values (e.g., Kardaun et al. (2003)). While it is now generally ac-
knowledged that no prior distribution can encode the state of zero information
(Kass and Wasserman (1996); Bernardo (1997)), it is still claimed that a con-
stant likelihood function does do so (Edwards (1992, Sec. 4.5); Schweder and
Hjort (2002)).

In order to establish two more properties of the weight of evidence, the
probability of observing misleading evidence mentioned in Section 1.1 is now
defined more generally.

Definition 4. For any Θ′ ⊆ Θ, Θ′′ ⊆ Θ, and Λ > 1, the probability of observing
misleading evidence in X = x that supports θ ∈ Θ′ over θ ∈ Θ′′ at level Λ with
respect to some θ in Θ′′ is

αθ

(
Λ;Θ′,Θ′′) = Pθ

(
W
(
Θ′,Θ′′;X

)
≥ Λ

)
,

where X has probability density or mass function f (•; θ).
As argued in Section 1.1, the weight of evidence is difficult to interpret unless

the probability of observing misleading evidence approaches 0 asymptotically.
That interpretability condition is satisfied in the case that one of two mutually
exclusive hypotheses is a composite hypothesis corresponding to a parameter
interval. The proof is facilitated by first noting that the weight of evidence
almost always asymptotically selects the correct hypothesis:
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Proposition 3. Consistency. For any Θ′′ ⊂ Θ such that its interior intΘ′′

contains θ,

lim
n→∞

Pθ

(
W
(
Θ\Θ′′,Θ′′) < 1

)
= lim

n→∞
Pθ

(
W
(
Θ′′,Θ\Θ′′) > 1

)
= 1 (2.12)

under regularity conditions ensuring the weak consistency of θ̂(n), the maximum

likelihood estimate of θ.

Proof. The weak consistency of θ̂(n) implies limn→∞ Pθ

(
θ̂(n) ∈ intΘ′′

)
= 1.

(2.12) then follows from Proposition 1.

Proposition 4. Interpretability. For any Θ′′ ⊂ Θ such that its interior intΘ′′

contains θ,

lim
n→∞

αθ

(
Λ;Θ\Θ′′,Θ′′) = 0

for all Λ > 1 under regularity conditions ensuring the weak consistency of the

maximum likelihood estimate of θ.

Proof. By Proposition 3,

Λ > 1 =⇒ lim
n→∞

Pθ

(
W
(
Θ\Θ′′,Θ′′) ≥ Λ

)
= 0.

2.3.2. Likelihood sets

The concept of the likelihood set is closely related to that of the strength of

evidence for composite hypotheses, as sketched in Section 1.2.

Definition 5. Given some fixed Λ > 1 and Θ′ ⊆ Θ, the likelihood set of level Λ

for X = x with respect to Θ′ is

E (Λ) = E
(
Λ;x,Θ′) = {θ′′ : θ′′ ∈ Θ, L

(
θ′′;x

)
≥ sup

θ′∈Θ′

L (θ′;x)

Λ

}
.

Definition 6. Given some fixed β ∈ R1 and Θ′ ⊆ Θ, the β-ban likelihood set Θ′

is E
(
10β
)
, its likelihood set of level 10β.

Remark 1. Likewise, the β-bit likelihood set and the β-nat evidence set could

be defined by substituting Λ = 2β and Λ = eβ, respectively. MacKay (2002)

discusses the history of calling logarithmic “units” bits, bans, or nats, according

to the base of the logarithm.

The likelihood set is used to distinguish parameter values supported by the

data from parameter values less consistent with the data (Fisher (1973); Barnard

(1967); Hoch and Blume (2008)). Such usage implicitly invokes a method of
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measuring the strength of evidence of a composite hypothesis in the same way as

rejecting the hypothesis of a parameter value falling outside a 1 − α confidence

interval implicitly invokes a hypothesis test with a Type I error rate of α. This

practice is more precisely understood in terms of the weight of evidence for a

composite hypothesis over its negation.

Proposition 5. If E (Λ) is the likelihood set of level Λ for X = x with respect to

Θ′, then

W
(
E (Λ) ,Θ′\E (Λ) ;x

)
> Λ.

Proof. The result follows immediately from Proposition 1 and Definition 5.

In short, the practice of considering a parameter value insufficiently sup-

ported by the data if it falls outside a likelihood set receives some justification

from measuring the strength of evidence for a composite hypothesis by its best-

supported parameter value. However, since that practice is equivalent to weighing

evidence for a simple hypothesis against that of a composite hypothesis in which

it is essentially nested, it lacks interpretability in the sense of Sections 1.1 and

2.3.1 Non-interpretable procedures can be unsuitable for sequential data analysis

(Section 2.4.4).

2.3.3. Bioequivalence illustration

Suppose θ is some scalar difference between two treatments that are consid-

ered bioequivalent if θ− < θ < θ+ for two values θ− and θ+, which are often set

by a regulatory agency. The bioequivalence testing problem is naturally framed

as that of measuring the strength of evidence for θ ∈ (θ−, θ+) over θ ̸∈ (θ−, θ+).

In a Neyman-Pearson approach to bioequivalence, θ ∈ (θ−, θ+) is accepted if an

interval of a sufficient level of confidence is a subset of (θ−, θ+). Choi, Cafo, and

Rohde (2008) similarly consider there to be strong evidence of bioequivalence if

a likelihood interval E (Λ) of sufficiently high level Λ is a subset of (θ−, θ+).

The latter approach is justified by the following implication of the explana-

tory theory of evidence (Section 2.2). In order to accommodate multidimensional

parameters, the implication is stated in terms of equivalence sets and likelihood

sets rather than equivalence intervals and likelihood intervals. Quantifying the

strength of evidence for equivalence, θ ∈ Θ′, over nonequivalence, θ ̸∈ Θ′, for

some Θ′ ⊆ Θ corresponds to finding the likelihood set of highest level that is a

subset of Θ′:

Proposition 6. The weight of evidence in X = x that supports θ ∈ Θ′ over

θ ̸∈ Θ′ exceeds Λ if and only if E (Λ), the likelihood set of level Λ, is a subset of

Θ′.
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Proof. From E (Λ) ⊆ Θ′, the definition of a likelihood set gives

∀θ′′ ̸∈Θ′∃θ′∈Θ′L
(
θ′′;x

)
Λ < L

(
θ′;x

)
,

requiring that supθ′∈Θ′ infθ′′ ̸∈Θ′ L (θ′;x) /L (θ′′;x) > Λ, the left-hand side of which

equals W (Θ′,Θ\Θ′;x) by Proposition 1, proving sufficiency. To prove necessity,

assume there is a value θ′′ that is in E (Λ) but not in Θ′. Given W (Θ′,Θ\Θ′;x) >

Λ, Proposition 1 yields supθ′∈Θ′ L (θ′;x) > ΛL (θ′′;x) since θ′′ ∈ Θ\Θ′. Because

θ′′ ∈ E (Λ) , we have supθ′∈Θ L (θ′;x) ≤ ΛL (θ′′;x), producing a contradiction.

2.4. Multiplicity

2.4.1. Simultaneous inference

In a typical problem commonly encountered in high-dimensional biology,

there are multiple focus subparameters θ1, . . . , θD with the corresponding hy-

potheses θ1 ∈ Θ′
1, . . . , θD ∈ Θ′

D such that θ = ⟨θ1, . . . , θD⟩ and Θ′
1 × · · · ×Θ′

D ⊂
Θ1×· · ·×ΘD = Θ. A necessary and sufficient condition for multiple hypotheses to

hold simultaneously is that the parameter of interest is in the intersection of their

representative sets. For example, θ1 ∈ Θ′
1 and θ2 ∈ Θ′

2, i.e., ⟨θ1, θ2⟩ ∈ Θ′
1 × Θ2

and ⟨θ1, θ2⟩ ∈ Θ1×Θ′
2, if and only if ⟨θ1, θ2⟩ ∈ (Θ′

1 ×Θ2)∩ (Θ1 ×Θ′
2) = Θ′

1×Θ′
2.

In the same way, whether one or more of multiple hypotheses holds is equivalent

to whether the parameter of interest is in the union of their representative sets.

The simultaneous inference problem is thereby reduced to a composite hypothesis

problem to which the laws of likelihood apply without modification.

According to the models most widely used in bioinformatics, each focus

subparameter generates data independent of the data of the other focus subpa-

rameters:

f (x; θ, γ) =

D∏
i=1

fi (xi; θi, γ) , (2.13)

where ⟨x1, . . . , xD⟩ = x and fi (•; θi) is the probability density or mass function

of Xi for i ∈ {1, . . . , D}. The likelihood function on Θi is Li = Li (•;xi). Then

the weight of evidence for θi ∈ Θ′
i over θi ∈ Θ′′

i is simply

Wi

(
Θ′

i,Θ
′′
i

)
= W

(
Θ1 × · · · ×Θ′

i × · · · ×ΘD,Θ1 × · · · ×Θ′′
i × · · · ×ΘD

)
=

supθ′i∈Θ′
i
Li (θ

′
i;xi)

supθ′′i ∈Θ′′
i
Li (θ′′i ;xi)

,

according to (2.9). Likewise, the weight of evidence for θ1 ∈ Θ′
1 and θ2 ∈ Θ′

2 over

θ1 ∈ Θ′
1 alone is

W
(
Θ′

1 ×Θ′
2 ×Θ3 × · · · ×ΘD,Θ

′
1 ×Θ2 × · · · ×ΘD

)
=

supθ′2∈Θ′
2
L2 (θ

′
2;x)

supθ2∈Θ2
L2 (θ2;x)

,
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and so on. The weight of evidence for θ1 ∈ Θ′
1 and θ2 ∈ Θ′

2 over θ1 /∈ Θ′
1 and

θ2 /∈ Θ′
2 is at least as large as that for θ1 ∈ Θ′

1 and θ2 ∈ Θ′
2 over θ1 /∈ Θ′

1 or

θ2 /∈ Θ′
2, that is, with Θ′

1 = Θ\Θ′
1,

supθ′1∈Θ′
1
L1 (θ

′
1)

supθ′′1 /∈Θ′
1
L1 (θ′′1)

supθ′2∈Θ′
2
L2 (θ

′
2)

supθ′′2 /∈Θ′
2
L2 (θ′′2)

≥
supθ′1∈Θ′

1
L1 (θ

′
1) supθ′2∈Θ′

2
L2 (θ

′
2)

sup⟨θ′′1 ,θ′′2 ⟩∈(Θ′
1×Θ)∪(Θ×Θ′

2)
L1 (θ′′1)L2 (θ′′2)

.

Example 5. Supposing D murder trials take place on a certain day, let θi = 0

if the ith defendant is neither guilty of manslaughter nor murder, θi = 1 if guilty

of manslaughter, and θi = 2 if guilty of murder. Since the evidence presented in

each trial does not depend on that of other trials, the weight of evidence that

defendant i is guilty of murder is

Wi ({2} , {0, 1}) =
Li (2;xi)

Li (0;xi) ∨ Li (1;xi)
.

The independence condition is not always as appropriate as in the example:

it would produce erroneous results in Example 9.

2.4.2. Multiple-comparison adjustments

It is often maintained that multiple comparisons such as those made in the

analysis of microarray data call for adjustments to reported levels of evidence

that would be obtained for single comparisons. Such adjustments are almost in-

variably justified by a desire to control a false discovery rate or other generalized

Type I error rate. For example, Korn and Freidlin (2006) regard the repeated

application of the law of likelihood as highly dangerous since it treats the number

of comparisons performed as evidentially irrelevant. Indeed, because the special

law of likelihood quantifies the strength of evidence associated with each com-

parison rather than controlling a rate of false positives, the strength of evidence

for one hypothesis over another remains the same irrespective of the number of

comparisons made (Blume (2002)). More generally, while the approach based on

the laws of likelihood accounts for data dependence between comparisons (Sec-

tion 2.4.1), it is not modified to control error rates. In fact, the rationale for such

control applies even under the independence of the data associated with each

comparison.

Example 6. Since Korn and Freidlin (2006) liken the problem of multiple com-

parisons to that of selective reporting, consider a drug company that replicates

N independent microarray experiments each yielding n measured ratios of ex-

pression between paired treatment and control mice for each of D genes under

essentially the same conditions. For the jth experiment, the company calculates

the weight of evidence in expression ratios X
(j)
i = x

(j)
i for θi ∈ Θ′, the hypothesis
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that the ith gene is differentially expressed, over θi ∈ Θ′′, the hypothesis that

it is equivalently expressed between treatment and control. However, the com-

pany only reports to the regulatory agency which genes have decisive evidence of

differential expression within each experiment along with the details of the sta-

tistical model and selection process. For any given gene, the process of selection

clearly has no impact on the probability of observing misleading evidence. Let

y
(j)
i = 1 if the ith gene has decisive evidence of differential expression in the jth

experiment and y
(j)
i = 0 otherwise. The cumulative weight of evidence in the

censored or reduced data for the ith gene under the simplifying assumption of

independence (2.13) is

wi

(
Θ′

i,Θ
′′
i

)
=

supθ′i∈Θ′
∏N

j=1 Pθ′i

(
1[100,∞)

(
W
(
Θ′,Θ′′;X

(j)
i

))
= y

(j)
i

)
supθ′′i ∈Θ′′

∏N
j=1 Pθ′′i

(
1[100,∞)

(
W
(
Θ′,Θ′′;X

(j)
i

))
= y

(j)
i

)
=

supθ′i∈Θ′ (αθ′ (100;Θ
′,Θ′′))N1 (1− αθ′ (100;Θ

′,Θ′′))N−N1

supθ′′i ∈Θ′′ (αθ′′ (100;Θ′,Θ′′))N1 (1− αθ′′ (100;Θ′,Θ′′))N−N1
,

where N1 is the number of experiments for which y
(j)
i = 1, in the terminology of

Definition 4. As N → ∞, N1 → N if θi ∈ Θ′ or N1 → 0 if θi ∈ Θ′′, with the

implication that 1(1,∞) (wi (Θ
′
i,Θ

′′
i )) is a weakly consistent estimator of 1Θ′ (θ) by

a variant of Proposition 3. From this perspective of estimating 1Θ′ (θ), the loss

in efficiency due to the selection-induced data reduction is not addressed by the

control of an error rate.

The evidential interpretation of p-value adjusted for multiple comparisons

has its roots in Fisher’s disjunction: if the p-value is low, then either an event

of low probability has occurred or the null hypothesis is false (Fisher (1925);

Johnstone (1986); Barnard (1967)). Without some adjustment, a low p-value

can instead occur with high probability given enough tests. Thus, even when

the p-value is understood as a measure of evidence, the multiple testing problem

is formulated in terms of error rate control. If a single hypothesis is tested at

a given significance level α, then α is the probability of making a Type I error

under the null hypothesis. However, if multiple hypotheses are each tested at

level α, then the probability of at least one Type I error under the truth of all

null hypotheses is greater than α except in the trivial case of complete depen-

dence between test statistics. This probability is called the family-wise error rate

(FWER). Consequently, a plethora of methods have been developed to control

the FWER for various assumptions while retaining as much power to reject the

null hypothesis as possible. The control of FWERs has been criticized for ad-

mitting many false negatives in order to avoid all false positives in most samples,
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and newer criteria for judging significance gain power by allowing more false pos-

itives. Such criteria include control of the probability that false positives exceed

a given number or proportion (Van der Laan, Dudoit, and Pollard (2004)). A

less conservative multiple comparison procedure controls the false discovery rate

(FDR), the expectation value of the ratio of the number of Type I errors to the

number of rejected null hypotheses (Benjamini and Hochberg (2000); Benjamini

et al. (2001); Benjamini and Yekutieli (2005); Yekutieli et al. (2006); Benjamini

and Liu (1999)). The smallest FDR at which a hypothesis is rejected (Storey

(2002)) is offered in many microarray data analysis programs as a corrected or

adjusted p-value; e.g., Pollard et al. (2005). All of these approaches replace con-

trol of the test-wise error rate with control of a different Type I error rate, and

all may lead to a corrected p-value for each null hypothesis considered (Van der

Laan, Dudoit, and Pollard (2004)).

Considering the p-value as a measure of statistical evidence that must be

adjusted to continue to measure statistical evidence under multiple comparisons

has been formally justified as follows. In significance testing, the observed p-

value is viewed as the probability that a true null hypothesis would be rejected

under repeated sampling in the hypothetical case that the observed test statistic

happened to lie on the boundary of the rejection region (Cox (1977)). Here, the

rejection region is purely hypothetical since no decision to reject or not reject

the null hypothesis is made on the basis of any error rate actually selected before

observation, as the Neyman-Pearson framework would require. That significance

testing interpretation of the p-value lies behind defining the adjusted p-value

of a null hypothesis as the lowest Type I error rate of a test at which the null

hypothesis would be rejected (Shafer (1995)). This overall Type I error rate

is usually a family-wise error rate, a generalization thereof, or a false discovery

rate (Van der Laan, Dudoit, and Pollard (2004)). This formalism of defining

a corrected p-value in terms of controlling an error rate is combined with the

motivation behind reporting a corrected p-value rather than a decision on the

rejection of the hypothesis, namely, the corrected p-value quantifies the strength

of evidence against the null hypothesis (Wright (1992)). Evidentially interpreting

a p-value corrected in order to control a hypothetical Type I error rate exemplifies

what Goodman (1998) and Johnstone (1986) noted of significance testing in

general: Neymanian theory fuels Fisherian practice.

The argument that p-values must be corrected to control a Type I error rate

would obtain even in the absence of information about the distribution of interest

in data from other distributions. This raises the question of whether an adjusted

p-value or an unadjusted quantity such as a raw p-value or likelihood ratio bet-

ter measures the weight of evidence with respect to one of several comparisons.

Example 5 may clarify the issue. In weighing the evidence for and against the hy-

pothesis that a defendant is guilty, should the jury take into account the number
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of defendants currently under trial for the same crime elsewhere in the country,

perhaps to control a rate of false convictions, or is that information irrelevant to

task of assessing the strength of evidence for guilt over innocence in the trial at

hand? As Mayo and Cox (2006) argued, while controlling family-wise error rates

may prove advantageous in certain contexts in which the goal of data analysis is

to determine a course of action, the uncorrected p-value is more appropriate in

contexts where inductive reasoning or evidence evaluation is the aim. Such clar-

ification of the purpose behind data analysis is crucial, for confusing the weight

of statistical evidence with how that evidence should be used can have unde-

sired consequences. Since Fisher (1973, pp.95-96, 103-106), a primary argument

for measuring evidential strength rather than computing optimal decisions has

relied on the unpredictability of the use to which evidence will be put. While

the nuisance parameter problem may often make complete separation between

evidence and application impossible even when guided by the explanatory theory

of evidence (Section 2.5), such distinction remains an ideal worth approaching,

at least in basic science.

A non-decision-theoretic context suggesting adjustment of p-values is that in

which it is believed that “most of the individual null hypotheses are essentially

correct” (Cox (2006, p.88)), thereby to some extent combining the strength of

evidence in the data with that of one’s prior confidence. The same purpose is

served more precisely and frankly by assigning prior probability to each of the

null hypotheses in proportion to such confidence (Westfall, Johnson, and Utts

(1997)).

The observation that correcting p-values for selection has decision-theoretic

rather than inferential or evidential rationales does not mean an evidential ratio-

nale for such correction will never be formulated. That would be accomplished

either by arguing without appeal to the control of error rates, to optimality, or

to other decision-theoretic concepts or by demonstrating that the problem of ev-

idence cannot be separated from the problem of decision. For related discussions

on the distinction between the decision problem and the inference problem, see

Fisher (1973), Edwards (1992, Appendix I), Hald (2007), Montazeri, Yanofsky

and Bickel (2010), and Bickel (2011a).

Evidential inference based directly on the law of likelihood is only beginning

to find applications in extreme multiple comparison situations. Taking a first

step, Strug and Hodge (2006) studied the implications of evidential inference as

an alternative to Neyman-Pearson error rate control in linkage analysis. They

find that although consideration of error rates informs study design, their use in

correcting p-values distorts the strength of evidence.
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2.4.3. Empirical Bayes

The error-control rationale for adjusting p-values is distinct from the ratio-

nale behind empirical Bayes methods formulated in order to “borrow strength”

or available information from distributions besides the distribution correspond-

ing to the comparison at hand. The latter rationale motivates some applications

to genomic expression data since it is believed that measurements of the expres-

sion of some genes are informative for inference about the expression of other

genes. It is also consistent with the uncontested applicability of Bayes’s theo-

rem in the presence of a distribution of parameter frequencies (Fisher (1973);

Wilkinson (1977); Edwards (1992); Kyburg and Teng (2006); (Hald, 2007, p.36);

Fraser (2011)), a situation in which few would insist on corrections to control the

FWER or FDR when the problem is one of inference rather than decision.

Typical empirical Bayes methods rely on modeling parameter values as ran-

dom variables of a physical distribution p intended to reflect actual variability

rather than levels of belief. While that approach often leads to competitive per-

formance (Yanofsky and Bickel (2010); Montazeri, Yanofsky and Bickel (2010))

or even optimality under some class of loss functions, its relevance to objectively

weighing evidence has received little attention. Section 5.2 explores the use of a

successful empirical Bayes method for inference under the special law of likelihood

in the context of microarray data analysis.

2.4.4. Sequential data analysis

The consideration of stopping times in settings involving sequential analysis,

like that of error rates in settings involving multiple comparisons, is relevant to

study design (Berger and Wolpert (1988)) but not to measuring the strength

of evidence under the likelihood principle (Blume (2008)). An “unscrupulous

investigator” may attempt to conclude that θ ∈ Θ′ by supplementing a sample of

n− independent and identically distributed (IID) observations x1, . . . , xn− with

additional IID observations xn−+1, . . . , xn just until W (Θ′,Θ′′) ≥ Λ, called the

stopping condition, where Θ′ ∩ Θ′′ = ∅, Θ′ ∪ Θ′′ = Θ, and Λ is the desired level

of evidence (Λ > 1).

LetX(n) = ⟨X1, . . . , Xn⟩ denote the n-tuple of IID random variables of which

x1, . . . , xn are realizations, and assume that θ = Eθ (X1) for some θ ∈ Θ′′ and

that σ2 = Var θ (X1) is known and finite. The probability that the investigator

can ever successfully support the false hypothesis depends on the construction of

Θ′′.

If θ = θ′′ is the hypothesis the investigator endeavors to reject, then Θ′′ =

{θ′′}. For any finite n− and Λ, the number of additional observations needed

to satisfy the stopping condition is almost surely finite according to the law

of the iterated logarithm (Robbins (1970)). In other words, the probability of
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eventually observing misleading evidence is 1. By implication, as more data
are obtained indefinitely, a level-Λ likelihood interval that does not contain θ
will almost always occur. An anonymous reviewer pointed out this objection to
likelihood sets as defined in Section 2.3.2.

The ability of the investigator to sample until achieving the desired con-
clusion regardless of the initial study size n− is a consequence of the non-
interpretability of W

(
R1\ {θ′′} , {θ′′}

)
that was noted in Sections 1.1 and 2.3.1.

It will now be seen that the use of an interpretable weight of evidence solves the
problem.

Proposition 7. For any Θ′′ ⊂ Θ such that its interior intΘ′′ contains θ, any
α ∈ (0, 1], and any Λ > 1, there exists a counting number n− such that

Pθ

(
∃n ∈ {n− + 1, n− + 2, . . .} : W

(
Θ\Θ′′,Θ′′;X(n)

)
≥ Λ

)
≤ α

under regularity conditions ensuring the strong consistency of θ̂(n) = θ̂
(
X(n)

)
,

the maximum likelihood estimate of θ, where X(n) is a random n-tuple on a basic
probability space (Ω,Σ, Pθ).

Proof. Pθ

(
limn→∞ θ̂(n) ∈ intΘ′′

)
= 1 by the strong consistency of θ̂(n), imply-

ing

lim
n−→∞

Pθ

(
∀n ∈ {n− + 1, n− + 2, . . .} : θ̂(n) ∈ Θ′′

)
= 1;

lim
n−→∞

Pθ

(
∃n ∈ {n− + 1, n− + 2, . . .} : W

(
Θ\Θ′′,Θ′′;X(n)

)
> 1
)
= 0.

If the data are censored, e.g., by the drug company of Example 6, just until
satisfying the stopping condition, then the observation is

⟨
X(N), N

⟩
=
⟨
x(n), n

⟩
,

where the reported sample size n is a realization of the random quantity N .
In that case, the likelihood function for the purposes of weighing evidence or,
alternatively, for performing Bayesian inference, is specified by

L
(
θ;
⟨
x(n), n

⟩)
= f

(
x(n); θ

)
Pθ (N = n)

rather than simply by L
(
θ;x(n)

)
= f

(
x(n); θ

)
, as in the absence of censor-

ing. To see that in the discrete-data case, note that Pθ

(
X(N) = x(n), N = n

)
=

Pθ

(
X(N) = x(n)|N = n

)
Pθ (N = n). The factor Pθ (N = n) automatically ac-

counts for the stopping rule without any ad hoc adjustments.

2.5. Nuisance parameters

2.5.1. Elimination of nuisance parameters

Suppose the family of distributions is parameterized by a free nuisance pa-
rameter γ ∈ Γ ⊆ Rν as well as by the free interest parameter θ ∈ Θ ⊆ RD such
that neither θ nor γ is a function of the other parameter; both ν and D are fixed
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positive integers. The likelihood function corresponding to each probability den-

sity or mass function f (•; θ, γ) on Ω is ℓ (•) = ℓ (•;x) = f (x; •) on Θ× Γ.

The problem of measuring the weight of evidence in the presence of a nuisance

parameter has been posed as a problem of approximating the weight of evidence

that would be in the data were the value of the nuisance parameter known (Tsou

and Royall (1995)). The nuisance parameter is often eliminated by replacing the

unknown likelihood function ℓ on Θ×Γ with a known reduced likelihood function L

on Θ such as an integrated likelihood function, a conditional likelihood function,

a marginal likelihood function, an estimated likelihood function, or a profile

likelihood function.

Applying that approach to composite hypotheses, a reduced likelihood func-

tion is chosen to approximate Wγ (Θ
′,Θ′′) = supθ′∈Θ′ ℓ (θ′, γ) / supθ′′∈Θ′′ ℓ (θ′′, γ),

the weight of evidence for θ ∈ Θ′ over θ ∈ Θ′′, since Wγ (Θ
′,Θ′′) is unknown

without knowledge of γ. Some of the reduced likelihood functions provide better

approximations than others, depending on the family of distributions, as will be

seen in Section 2.5.2. Once the nuisance parameters have been eliminated, the

reduced likelihood function L on Θ takes the place of the likelihood function,

yielding supθ′∈Θ′ L (θ′) / supθ′′∈Θ′′ L (θ′′) to approximate Wγ (Θ
′,Θ′′).

The elimination of nuisance parameters is exemplified here with the profile

likelihood function Lprofile, defined by ∀θ∈ΘLprofile (θ) = Lprofile (θ;x) = supγ∈Γ
ℓ (θ, γ;x). Under the special law of likelihood, the profile likelihood ratio Lprofile

(θ′;x) /Lprofile (θ
′′;x) serves as a widely applicable approximation to the weight

of evidence in X = x for θ = θ′ over model θ = θ′′. Likewise, the strength of

evidence in X = x that supports θ ∈ Θ′ over θ ∈ Θ′′ may be approximated by

Wprofile

(
Θ′,Θ′′) = Wprofile

(
Θ′,Θ′′;x

)
=

supθ′∈Θ′ Lprofile (θ
′;x)

supθ′′∈Θ′′ Lprofile (θ′′;x)
, (2.14)

provided that each hypothesis is either simple or complex.

Example 7. The proposed methodology is illustrated with the comparison of

the hypotheses |θ| > θ+ and |θ| ≤ θ+ for some θ+ ≥ 0 on the basis of x =(
x(1), . . . , x(n)

)
, a sample of n independent observations from a normal distri-

bution with unknown mean θ ∈ R1 and variance γ = σ2 ∈ (0,∞). Hence, the

density function satisfies

f
(
x; θ, σ2

)
=

n∏
j=1

1√
2πσ

exp

−1

2

(
x(j) − θ

σ

)2
 . (2.15)

Since

Lprofile

(
θ′
)
/Lprofile

(
θ′′
)
=
(
σ̂
(
θ′
)
/σ̂
(
θ′′
))−n

,
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the strength of evidence for |θ| > θ+ over |θ| ≤ θ+ is

Wprofile

(
R1\ [−θ+, θ+] , [−θ+, θ+]

)
=

infθ′′∈[−θ+,θ+]

(
σ̂

σ̂(θ′′)

)−n ∣∣∣θ̂∣∣∣ > θ+

supθ′∈[−θ+,θ+]

(
σ̂(θ′)
σ̂

)−n ∣∣∣θ̂∣∣∣ ≤ θ+
,

where θ̂ and σ̂ = σ̂
(
θ̂
)

are the maximum likelihood estimates of θ and σ. In

bioequivalence applications (Section 2.3.3),

Wprofile

(
(−θ+, θ+) ,R1\ (−θ+, θ+)

)
= 1/Wprofile

(
R1\ (−θ+, θ+) , (−θ+, θ+)

)
approximates the evidence for equivalence.

The profile likelihood has several advantages as an approximation: it resem-

bles a likelihood ratio under certain conditions and has a low asymptotic proba-

bility of misleading evidence (Royall (2000a)), and, if the nuisance parameter is

orthogonal to the interest parameter, it is equal to the likelihood ratio (Royall

(1997)). For some models, the nuisance parameter may instead be eliminated by

use of a conditional or marginal likelihood (Royall (1997)) as approximations of

the likelihood function without nuisance parameters. The latter is convenient and

reliable for cases in which a test statistic carries most of the relevant information

in the data (Schweder and Hjort (2002); Johnson (2005); Royall (1997)).

Alternatively, provided a probability distribution or other measure of γ that

is suitable for evidential inference, the nuisance parameter could be eliminated

by integration. Methods have been proposed for specifying a nuisance parameter

distribution or other measure to integrate the likelihood not only for Bayesian

statistics (Kass and Raftery (1995); Berger, Liseo, and Wolpert (1999); Kass and

Raftery (1995); Berger, Liseo, and Wolpert (1999); Clyde and George (2004)) but

also for Neyman-Pearson statistics (Severini (2007, 2010)). In fact, the nuisance

parameter measure need not be a pure prior distribution since it may depend

on data (Kalbfeisch and Sprott (1970); Aitkin (1991); Dempster (1997); Severini

(2007, 2010)).

This flexibility of choice in the method for eliminating nuisance parameters

allows researchers to tailor data analyses to particular applications such as that

of Example 9, underscoring the fact that the motivating objectivity condition

of Section 1.1 by no means reduces statistical inference to a series of automatic

calculations. On the other hand, different approaches to eliminating nuisance

parameters can yield similar results. For example, likelihoods integrated with re-

spect to certain distributions approximate the profile likelihood (Severini (2007)).



1174 DAVID R. BICKEL

2.5.2. Other interpretations of profile likelihood

Instead of seeing the profile likelihood as one of many possible approxima-

tions of the unknown likelihood function of the interest parameter, the profile

likelihood could be derived from Proposition 1 by framing the nuisance parameter

problem as an instance of the composite hypothesis problem as follows. Royall

(1992), He, Huang, and Liang (2007), and Zhang (2009b), contrary to Section

2.5.1, identified the weight of evidence for ⟨θ, γ⟩ ∈ Θ′ × Γ over ⟨θ, γ⟩ ∈ Θ′′ × Γ

with the weight of evidence for θ ∈ Θ′ over θ ∈ Θ′′, thus assuming that the

latter can be precisely known without knowledge of γ. Under that conflation of

the problem of composite hypotheses with the problem of nuisance parameters,

(2.14) would exactly specify the weight of evidence for θ ∈ Θ′ over θ ∈ Θ′′, as it

does in the axiomatic system of Zhang (2009b).

However, there are families of distributions in which the profile likelihood

can fail to meaningfully measure the weight of evidence (Royall (2000a); He,

Huang, and Liang (2007)). For that reason, Royall (1992) and He, Huang, and

Liang (2007) represented the weight of evidence as an interval of profile likelihood

ratios, and the weight was represented as a single likelihood ratio in Sections 2.2

and 2.5.1 that is unknown if there is an unknown nuisance parameter. The

elimination of a nuisance parameter γ, whether by profiling, integration, or other

means, only approximates Wγ (Θ
′,Θ′′).

The profile likelihood ratio (2.14) would much more plausibly measure the

explanatory power of θ ∈ Θ′ relative to θ ∈ Θ′′ than it would measure the

weight of evidence for θ ∈ Θ′ over θ ∈ Θ′′, provided that each hypothesis is

either simple or complex, as seen in the following examples. More generally, the

relative ability ex (Θ′,Θ′′) of θ ∈ Θ′ compared to θ ∈ Θ′′ to explain X = x, is

supγ′∈Γ exγ′ (Θ′) / supγ′′∈Γ exγ′′ (Θ′′), where exγ′ is an explanatory function for

each γ′ ∈ Γ such that exγ′ ({θ′} , {θ′′}) = ℓ (θ′, γ′) /ℓ (θ′′, γ′) for all θ′, θ′′ ∈ Θ

and γ′ ∈ Γ, assuming γ is fixed. The weight of evidence nonetheless remains

Wγ (Θ
′,Θ′′), a function of γ.

Example 8. For any single observation x of a normal variate X of unknown

mean γ and variance θ, the profile likelihood would ascribe infinite weight of

evidence in that observation to the hypothesis that θ = 0 over any θ ̸= 0, which

is clearly untenable (Royall (2000a); He, Huang, and Liang (2007)). However,

the hypothesis that θ = 0, if true, would explain the observation much better

than would any other simple hypothesis about θ, resonating with interpreting

the profile likelihood ratio as a measure of relative explanatory power.

The Neyman-Scott problem also precludes viewing profile likelihood as evi-

dence (Royall (1992); He, Huang, and Liang (2007)) but accords with viewing it

as explanatory power. Less pathological problems point to the same conclusion.
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Example 9. In a scenario posed by an anonymous reviewer, exactly D insiders

know a secret. The probability that the secret does (x = 1) or does not (x = 0)

leak is

f (x; θ1, . . . , θD) =

(
1−

D∏
i=1

(1− θi)

)x( D∏
i=1

(1− θi)

)1−x

,

where θi = 1 if the ith insider leaks the secret and θi = 0 otherwise. If the secret

leaks (X = 1), the likelihood function is given by

L (θ1, . . . , θD; 1) =

{
1 if

∏D
i=1 (1− θi) = 0,

0 if
∏D

i=1 (1− θi) = 1.

Thus, the leaking of a secret constitutes irrefutable evidence that at least one of

the insiders leaked it over the hypothesis ⟨θ1, . . . , θD⟩ = ⟨0, . . . , 0⟩ that none of

them leaked it:

W
(
{0, 1}D

\
{⟨0, . . . , 0⟩} , {⟨0, . . . , 0⟩}

)
=

1

0
.

However, the evidence against any given suspect is much weaker. Quantifying

Wi ({1} , {0}), the weight of evidence that θi = 1 over θi = 0, treats θi as the

interest parameter and γ = ⟨θ1, . . . , θi−1, θi+1, . . . , θD⟩ as the nuisance parameter.

In this case, eliminating the latter by means of the profile likelihood yields

Wi ({1} , {0}) =
supγ∈{0,1}D−1 L (θ1, . . . , θi−1, 1, θi+1, . . . , θD; 1)

supγ∈{0,1}D−1 L (θ1, . . . , θi−1, 0, θi+1, . . . , θD; 1)
= 1,

which is reasonable for sufficiently large D. For small D, the integration method

of eliminating nuisance parameters is more reasonable since it allowsWi ({1} , {0})
to be close to but greater than 1. This can be accomplished without recourse to

subjective or conventional priors by modeling each θi as an independent Bernoulli

random variable of limiting relative frequency p (θi) ∈ (0, 1), entailing that p (1)

or p (0) is the frequentist probability that the ith insider does or does not reveal

the secret. Then the integration method gives

Wi ({1} , {0})

=

∫
L (θ1, . . . , θi−1, 1, θi+1, . . . , θD; 1) dp (θ1) · · · dp (θi−1) dp (θi+1) · · · dp (θD)∫
L (θ1, . . . , θi−1, 0, θi+1, . . . , θD; 1) dp (θ1) · · · dp (θi−1) dp (θi+1) · · · dp (θD)

=
1

1− p (0)D−1
> 1,

approaching the result of the profile likelihood as D → ∞, but Wi ({1} , {0}) =
1/p (1) for D = 2.
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Thus, the integrated likelihood is more reasonable than the profile likelihood

for weighing the evidence that a given insider revealed a secret since the use

of the latter would mean the revelation has no evidence to that effect even if

there were only two insiders. The profile likelihood may nonetheless quantify

explanatory power, in which case the hypothesis that a given insider revealed

the secret would not explain its revelation better than would the hypothesis that

he or she did not reveal it.

3. Inference about imprecise hypotheses

Since the boundary between one composite hypothesis and another is often

arbitrary to a large extent, the effect of specifying that boundary will be miti-

gated by making it imprecise or, more technically, fuzzy. An objection against

the use of fuzzy logic is that problems solved using fuzzy set theory can be

solved using probability theory instead (Laviolette (2004)). However, whereas

in the context of statistical inference, probability is usually seen in terms of the

representation of uncertainty, there is no uncertainty associated with hypothesis

specification as envisioned here. Because the specification of hypotheses does not

depend on frequencies of events or levels of belief, fuzzy set membership functions

rather than probability distributions will be used to specify hypotheses in order

to avoid confusion. This approach is in line with traditional interpretations of

degrees of set membership (Klir (2004); Nguyen and Walker (2000)) as opposed

to reinterpreting them as degrees of uncertainty as per Singpurwalla and Booker

(2004). By keeping vagueness or imprecision distinct from uncertainty, fuzzy set

theory enables a clearer presentation of the proposed methodology than would

be possible with the probability calculus alone. Thus, the proposed methodology

remains objective in the sense that the strength of evidence for a given hypothesis

over another given hypothesis does not depend on any researcher’s prior levels of

belief even though each given hypothesis may have an imprecise specification.

The use of vague hypotheses to broaden the framework of Section 2 has a dif-

ferent motivation than related work on the interface between statistics and fuzzy

logic. Fuzzy set theory has been used to specify vague hypotheses for generaliza-

tions of both Neyman-Pearson hypothesis testing (Romer, Kandel, and Backer

(1995)) and Bayesian inference (Zadeh (2002)). Similarly, Dollinger, Kulinskaya,

and Staudte (1996) suggested measuring evidence by the extent to which a test

statistic falls in a fuzzy rejection region determined by a fixed Type I error rate;

this leads to fuzzy hypothesis tests and fuzzy confidence intervals. Fuzzy hypoth-

esis tests and fuzzy confidence intervals have also been formulated to overcome

a flaw in previous methods involving discrete distributions (Geyer and Meeden

(2005)).
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3.1. Incomplete likelihood

A measure P of total mass c =
∫
dP is a complete, incomplete, or strictly

incomplete probability distribution of completeness c if c = 1, 0 < c ≤ 1 or

0 < c < 1, respectively (Rényi (1970, p.569)). Consider the family{
P⟨θ′,c′⟩ : θ

′ ∈ Θ, c′ ∈ (0, 1]
}

(3.1)

of incomplete probability distributions on Ω such that P⟨θ′,c′⟩ (•) = c′P⟨θ′,1⟩ (•),
where θ′, γ′, and c′ are the interest parameter value, nuisance parameter value,

and level of completeness that uniquely specify P⟨θ′,c′⟩. Denote each complete

distribution P⟨θ′,1⟩ by Pθ′ . The true sampling distribution of X is Pθ with θ

unknown.

The incomplete likelihood function L̃ (•) = L̃ (•;x) on Θ × (0, 1] satisfies

L̃ (θ, c) = f (x; θ, c) for all ⟨θ, c⟩ ∈ Θ × (0, 1], where f (•; θ, c) is an incomplete

probability mass or density function of P⟨θ,c⟩. Thus, L̃ (θ;x) = L̃ (•, 1;x) is the

Fisherian or complete likelihood function. For all θ ∈ Θ and c ∈ (0, 1], the identity

L̃ (θ, c;x) = cL̃ (θ;x) follows from the parameterization (3.1) since it requires that

f (x; θ, c) = cf (x; θ, 1).

3.2. Imprecise hypotheses

In order to concisely represent hypothesis imprecision in terms of incomplete

probability distributions, the subsection employs concepts from fuzzy set theory.

Definition 7. Any measurable function that maps Θ to [0, 1] is a fuzzy subset

of Θ.

Following Nguyen and Walker (2000), this definition makes no distinction

between a fuzzy subset and its membership function; Θ̃′ (θ) is considered to be

the extent to which θ belongs to a fuzzy subset Θ̃′ of Θ, summarized as θ∈̃Θ̃′.

The ∈̃ symbol plays the role of the ∈ symbol in order to specify a hypothesis in

terms of membership in a fuzzy subset, which is literally a function rather than a

set of parameter values. The meaning of “the hypothesis θ∈̃Θ̃′ is true to extent

Θ̃′ (θ)” depends on whether θ is random according to a physical distribution, as

will be seen in the remainder of this subsection. Each such Θ̃′ corresponding to

a hypothesis must be a member of F (Θ), the set of all fuzzy subsets of Θ such

that Θ̃′ ∈ F (Θ) =⇒ ∃θ ∈ Θ : Θ̃′ (θ) = 1.

If θ is random with sampling distribution p and if Θ′ ∈ A, then the general-

ized probability of θ∈̃Θ̃′, conditional on some event X ∈ Ω′, is defined as

P̃
(
θ∈̃Θ̃′|X ∈ Ω′

)
= E

(
Θ̃′ (θ) |X ∈ Ω′

)
,
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where P̃ generalizes the probability measure P, an extension of Pθ and p, and

where E is the usual expectation operator E (•) =
∫
•dP. By construction, P̃

obeys Bayes’s rule:

P̃
(
X ∈ Ω′|θ∈̃Θ̃′

)
= Pθ

(
X ∈ Ω′) E(Θ̃′ (θ) |X ∈ Ω′

)
E
(
Θ̃′ (θ)

) .

Accordingly, each P̃
(
X ∈ •|θ∈̃Θ̃′

)
such that Θ̃′ ∈ F (Θ) is assumed to admit

the generalized probability density or mass function f̃
(
•; φ̃

(
Θ̃′
))

satisfying

f̃
(
x;ϕ′) = E (f (x; θ))

E
(
φ̃−1 (ϕ′) (θ) |X = x

)
E (φ̃−1 (ϕ′) (θ))

(3.2)

for all x ∈ Ω and ϕ′ ∈ Φ̃, where Φ̃ is a parameter set isomorphic to F by

the invertible map φ̃ : F → Φ̃. Then the generalized likelihood function on Φ̃

for purposes of quantifying evidential weight and explanatory power is L̃ (•) =
L̃ (•;x) = f̃ (x; •). Thus, each composite hypothesis θ∈̃Θ̃′ corresponds to a simple

hypothesis ϕ = φ̃
(
Θ̃′
)
.

For the case of fixed θ, every imprecise hypothesis is equivalent to a precise

hypothesis. Let ξ
Θ̃′ (θ) =

⟨
θ, Θ̃′ (θ)

⟩
and Ξ

(
Θ̃′
)

=
{
ξ
Θ̃′ (θ) : θ ∈ Θ

}
for all

Θ̃′ ∈ F (Θ). Every parameter value ξ in Ξ
(
Θ̃′
)

indexes Pξ, a member of the

family of incomplete probability distributions (3.1). Each imprecise hypothesis

θ∈̃Θ̃′ is called simple, intrinsically simple, or complex if the precise hypothesis

ξ
Θ̃′ (θ) ∈ Ξ

(
Θ̃′
)
is simple, intrinsically simple, or complex, respectively.

These calibrations of θ∈̃Θ̃′ by distribution completeness values overcome the

objection against fuzzy set theory that it fails to unambiguously assign fractional

membership values (Lindley (2004)). The calibrations facilitate the extension

of evidential theory to imprecise hypotheses by automatically attenuating the

weight of evidence and explanatory power according to the imprecision.

3.3. Extended theory of evidence

For fuzzy subsets Θ̃′, Θ̃′′ ∈ F (Θ), let W̃
(
Θ̃′, Θ̃′′

)
= W̃

(
Θ̃′, Θ̃′′;x

)
denote

the weight of evidence in X = x that supports θ∈̃Θ̃′ over θ∈̃Θ̃′′. The function W̃

is defined by transforming each imprecise hypothesis concerning complete prob-

ability distributions to an equivalent precise hypothesis concerning incomplete

probability distributions in accordance with Section 3.2.
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Definition 8. A function W̃ on F (Θ) × F (Θ) × Ω is the extended evidential

function with respect to an explanatory function ex if it satisfies the following

conditions.

1. For all Θ̃′, Θ̃′′ ∈ F (Θ) such that θ∈̃Θ̃′ and θ∈̃Θ̃′′ is each either a simple

hypothesis or a complex hypothesis,

W̃
(
Θ̃′, Θ̃′′;x

)
= W

(
Ξ
(
Θ̃′
)
,Ξ
(
Θ̃′′
)
;x
)
, (3.3)

where W is any evidential function on 2Θ×(0,1] × 2Θ×(0,1] × Ω.

2. For all Θ̃′, Θ̃′′ ∈ F (Θ) such that θ∈̃Θ̃′ and θ∈̃Θ̃′′ are intrinsically simple

hypotheses, let W be any evidential function on
{
{ϕ} : ϕ ∈ Φ̃

}2
× Ω defined

with L̃ as the likelihood function on Φ̃. Then

W̃
(
Θ̃′, Θ̃′′;x

)
= W

({
φ̃
(
Θ̃′
)}

,
{
φ̃
(
Θ̃′′
)}

;x
)
. (3.4)

The general law of likelihood given by Proposition 1 is now extended to

govern imprecise hypotheses:

Proposition 8. Extended law of likelihood. For any explanatory function ex,

let W denote the evidential function 2Θ×(0,1] × 2Θ×(0,1] × Ω with respect to ex.

Further, let W̃ denote the extended evidential function with respect to ex. Then

the weight of evidence in X = x that supports θ∈̃Θ̃′ over θ∈̃Θ̃′′ is

W̃
(
Θ̃′, Θ̃′′;x

)
=

supθ′∈Θ Θ̃′ (θ′) L̃ (θ′;x)

supθ′′∈Θ Θ̃′′ (θ′′) L̃ (θ′′;x)
(3.5)

for all fuzzy subsets Θ̃′, Θ̃′′ ∈ F (Θ) such that θ∈̃Θ̃′ and θ∈̃Θ̃′′ is each either a

simple hypothesis or a complex hypothesis, but is

W̃
(
Θ̃′, Θ̃′′;x

)
=

∫
Θ̃′ (θ′) dP (θ′|X = x) /

∫
Θ̃′ (θ′) dp (θ′)∫

Θ̃′′ (θ′′) dP (θ′′|X = x) /
∫
Θ̃′′ (θ′′) dp (θ′′)

(3.6)

for all Θ′ ⊆ Θ and Θ′′ ⊆ Θ such that θ∈̃Θ̃′ and θ∈̃Θ̃′′ are intrinsically simple.

Proof. The case that θ∈̃Θ̃′ and θ∈̃Θ̃′′ are intrinsically simple hypotheses is

addressed first. (3.4), (2.5) , and (3.2) yield

W̃
(
Θ̃′, Θ̃′′;x

)
=

E
(
Θ̃′ (θ) |X = x

)
/E
(
Θ̃′ (θ)

)
E
(
Θ̃′′ (θ) |X = x

)
/E
(
Θ̃′′ (θ)

) ,
from which (3.6) immediately follows. Next consider the case that θ∈̃Θ̃′ and θ∈̃Θ̃′′

is each either a simple hypothesis or a complex hypothesis. The hypotheses θ∈̃Θ̃′
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and θ∈̃Θ̃′′ are thus shorthand for
⟨
θ, Θ̃′ (θ)

⟩
∈ Ξ

(
Θ̃′
)
and

⟨
θ, Θ̃′′ (θ)

⟩
∈ Ξ

(
Θ̃′′
)
,

respectively (Section 3.2). By Definition 8 and (2.9),

W̃
(
Θ̃′, Θ̃′′;x

)
=

sup⟨θ,C⟩∈Ξ(Θ̃′) L (⟨θ, C⟩ ;x)

sup⟨θ,C⟩∈Ξ(Θ̃′′) L (⟨θ, C⟩ ;x)
.

Since ⟨θ, C⟩ ∈ Ξ
(
Θ̃′
)
if and only if

⟨
θ, Θ̃′ (θ)

⟩
∈ Ξ

(
Θ̃′
)
, we have

W̃
(
Θ̃′, Θ̃′′;x

)
=

supθ∈Θ L
(⟨

θ, Θ̃′ (θ)
⟩
;x
)

supθ∈Θ L
(⟨

θ, Θ̃′′ (θ)
⟩
;x
)

in terms of the likelihood function L (⟨•⟩ ;x) on Θ× (0, 1]. By the equivalence of

L
(⟨

θ, Θ̃′ (θ)
⟩
, x
)
and L̃

(
θ, Θ̃′ (θ) ;x

)
,

W̃
(
Θ̃′, Θ̃′′;x

)
=

supθ′∈Θ L̃
(
θ′, Θ̃′ (θ′) ;x

)
supθ′′∈Θ L̃

(
θ′′, Θ̃′′ (θ′′) ;x

)
in terms of the (possibly reduced) incomplete likelihood function L̃ (•;x) on Θ×
(0, 1]. Using the identity L̃ (θ, c;x) = cL̃ (θ;x) of Section 3.1 for substitution

completes the proof of (3.5).

In the presence of a nuisance parameter, the reduced likelihood function

L̃ (•, C) is formed by eliminating the nuisance parameter in order to approximate

the weight of evidence, analogous to the precise hypothesis case of Section 2.5.

Then each L̃ (θ, C) is a function of the distributions indexed by the same interest

parameter value and with the same level of completeness but not a function of

other members of the family of incomplete probability distributions. The method

of nuisance parameter elimination must also preserve L̃ (θ, C;x) = CL̃ (θ, 1;x)

for all θ ∈ Θ and C ∈ (0, 1]. The application of (3.5) in the presence of a nuisance

parameter is illustrated in Section 5.1.

4. Simulation Study

To quantify the impact of replacing a simple hypothesis with a small-interval

composite hypothesis in evidential inference, a series of simulations was carried

out for the case of normal distributions (Example 7). M = 105 independent

samples of independent standard normal observations were randomly generated

for each of 23 sample sizes from n = 2 to n = 10, 000. Given samples x1, . . . , xM ,
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each of size n, and a threshold of b bans of evidence for θ ̸= 0 over θ = 0, the

probability of observing misleading evidence was computed by

α̂Θ′′
n (b) =

1

M

M∑
i=1

1[10b,∞)

(
Wprofile

(
R1
\
Θ′′,Θ′′;xi

))
(4.1)

with Θ′′ = {0} for the composite-simple hypothesis pair or with Θ′′ = [−1/10,

1/10] for the composite-composite hypotheses pair. The levels of evidence were

chosen to correspond to the probabilities of observing at least weak evidence

(b = 1/∞), at least moderate evidence (b = 1/2), at least strong evidence (b = 1),

at least very strong evidence (b = 3/2), and decisive evidence (b = 2). Every

observation of evidence favoring θ ̸= 0 or |θ| > 1/10 at any level is misleading

since the data were generated under θ = 0.

The results are displayed as Figures 1−5, with one figure per level of evidence.

Figure 1 highlights the most obvious discrepancy between the two choices of

hypothesis pairs. Since the maximum likelihood estimate almost never equals 0,

the evidence favors θ ̸= 0 over θ = 0 with probability 1. By contrast, the evidence

usually favors |θ| ≤ 1/10 over |θ| > 1/10, except for small samples. At the

higher evidence grades, Figures 2−5 also show that the probability of observing

evidence for the incorrect hypothesis decreases as the sample size increases for

Θ′′ = [−1/10, 1/10], as expected from Proposition 4, but not for Θ′′ = {0}, with
the exception of smaller samples.

Figure 6 displays probabilities of misleading evidence (4.1) for sample sizes

common in experimental biology. Its plots for n = 5 and n = 6 are directly

relevant to the application of the next section.

5. Application to Gene Expression Data

5.1. Evidence of differential expression

In this section, the theory of Sections 2 and 3 is illustrated with some of

the tomato gene expression data described in Alba et al. (2005). Dual-channel

microarrays were used to measure the mutant-to-wild-type expression ratios of

13, 440 genes at the breaker stage of ripening and at 3 and 10 days thereafter.

Each of the later two stages has six biological replicates (n = 6), but one of the

biological replicates is missing at the breaker stage of ripening (n = 5).

For each of the three time points, there are two competing hypotheses per

gene: the geometric mean of the expression ratio between mutant tomatoes and

wildtype tomatoes is either 1 (the simple hypothesis corresponding to no muta-

tion effect) or is not 1 (the composite hypothesis corresponding to a mutation

effect). Since the data are approximately lognormal, the relevant family of dis-

tributions for each gene i is that of (2.15), replacing θ with θi, the logarithm of
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Figure 1. Probabilities α̂
{0}
n (1/∞) and α̂

[−1/10,1/10]
n (1/∞) of observing any

misleading positive evidence for the hypothesis that θ ̸= 0 over the “simple”
hypothesis that θ = 0 and for the hypothesis that |θ| > 1/10 over the
“composite” hypothesis that |θ| ≤ 1/10, respectively.

geometric mean of the expression ratio of the ith gene, and replacing x with xi,

each component of which is the logarithm of an observed expression ratio of the

ith gene. The maximum likelihood estimate of θi is θ̂i, the sample mean of the

logarithms of the expression ratios for the ith gene. The commonly made inde-

pendence assumption of Section 2.4, although known to be incorrect, remains a

useful approximation in the absence of sufficiently large n to reliably estimate

gene-gene interactions.

Like in the simulation study of the last section, (2.14) gives the strength of

evidence for differential expression between the wild type and the mutant (θi ̸= 0)

over equivalent expression (θi = 0). Since, however, the expression ratio is not

exactly 1, Bickel (2004), Lewin et al. (2006), Van DeWiel and Kim (2007), Bochk-

ina and Richardson (2007), and McCarthy and Smyth (2009) redefined what is
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Figure 2. Probabilities α̂
{0}
n (1/2) and α̂

[−1/10,1/10]
n (1/2) of observing mis-

leading moderate or stronger evidence for the hypothesis that θ ̸= 0 over
the “simple” hypothesis that θ = 0 and for the hypothesis that |θ| > 1/10
over the “composite” hypothesis that |θ| ≤ 1/10, respectively. The hori-

zontal gray line is drawn at limn→∞,M→∞ α̂
{0}
n (1/2) according to the χ2

distribution with 1 degree of freedom; limn→∞,M→∞ α̂
[−1/10,1/10]
n (1/2) = 0

by Proposition 4.

meant by “differential expression” by employing some biologically relevant value

θ+ > 0. Accordingly, (2.14) also yields the strength of evidence for biologi-

cally significant differential expression between the wild type and the mutant

(|θi| > θ+) over biologically insignificant differential expression (|θi| ≤ θ+). Due

to the importance of the twofold change in biochemistry, θ+ is here set to 1
2 log 2,

the midpoint between 0 and log 2. (Similarly, Lewin et al. (2006) and Bochk-

ina and Richardson (2007) derived posterior probabilities that |θi| > log 2, and

Bickel (2004), Van De Wiel and Kim (2007), and McCarthy and Smyth (2009)

considered false discovery rates for which a “discovery” is defined in terms of fold
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Figure 3. Probabilities α̂
{0}
n (1) and α̂

[−1/10,1/10]
n (1) of observing misleading

strong, very strong, or decisive evidence for the hypothesis that θ ̸= 0
over the “simple” hypothesis that θ = 0 and for the hypothesis that |θ| >
1/10 over the “composite” hypothesis that |θ| ≤ 1/10, respectively.

change thresholds.)

As seen in Figure 7, the use of |θi| > log
√
2 rather than |θi| > 0 as the hy-

pothesis corresponding to differential expression leads to considering many fewer

genes differentially expressed at each stage of maturity and at each level of evi-

dence. Now the composite hypotheses for gene i are θi ∈ Θ′ = R1\[− log
√
2,

log
√
2] and θi ∈ Θ′′ =

[
− log

√
2, log

√
2
]
. There is an order of magnitude

more genes counted as differentially expressed at each evidence grade when using

Wprofile

(
R1\ {0} , {0} ;xi

)
than when using Wprofile (Θ

′,Θ′′;xi) as the strength of

evidence in xi, the data for the ith gene.

The left-hand-side of Figure 8 stresses the main limitation of comparing two

composite hypotheses: the results depend on the specification of θ+, the value

that determines the sharp boundary between equivalent expression (|θi| ≤ θ+)



THE STRENGTH OF STATISTICAL EVIDENCE FOR COMPOSITE HYPOTHESES 1185

Figure 4. Probabilities α̂
{0}
n (3/2) and α̂

[−1/10,1/10]
n (3/2) of observing mis-

leading very strong or decisive evidence for the hypothesis that θ ̸= 0 over
the “simple” hypothesis that θ = 0 and for the hypothesis that |θ| > 1/10
over the “composite” hypothesis that |θ| ≤ 1/10, respectively.

and differential expression (|θi| > θ+) ; in this case, θ+ = log
√
2. By instead

allowing degrees of whether a gene is differentially expressed, the approach of

Section 3 mitigates this effect. For correspondence with the above analyses with

precise hypotheses, a gene is considered differentially expressed to extent

Θ̃′ (θ) =

{ |θ|
log 2 |θ| ≤ log 2

1 |θ| > log 2

and equivalently expressed to extent Θ̃′′ (θ) = 1− Θ̃′ (θ), as illustrated in Figure

9. Sokhansanj et al. (2004) instead considered a fuzzy subset on gene expression

measurements that would only achieve full expression membership for infinite

measurements. By contrast, Θ̃′ considers all genes with two-fold or greater dif-
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Figure 5. Probabilities α̂
{0}
n (2) and α̂

[−1/10,1/10]
n (2) of observing misleading

decisive evidence for the hypothesis that θ ̸= 0 over the “simple” hypothesis
that θ = 0 and for the hypothesis that |θ| > 1/10 over the “composite”
hypothesis that |θ| ≤ 1/10, respectively.

ferential expression between populations to be fully differentially expressed.

The success in eliminating the undesirable discontinuity at the rigid bound-

ary between hypotheses is evident from the right-hand-side of Figure 8, which

displays W̃profile

(
Θ̃′, Θ̃′′;xi

)
, the result of putting the profile likelihood function

in place of likelihood function in (3.5), against exp
(
θ̂i

)
, the maximum likelihood

estimate of the expression ratio. Although the strength of evidence still changes

sign at θ̂i = ± log
√
2, no trace remains of what resembles a phase transition at

those points in the precise hypothesis case.

The replacement of W̃profile (Θ
′,Θ′′;xi) with W̃profile

(
Θ̃′, Θ̃′′;xi

)
has high

impact on inference for a large portion of the genes (Figure 10). Levels of evidence

between 0 and 2 are most important for finding genes with evidence of differential
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Figure 6. Probabilities α̂
{0}
n (b) and α̂

[−1/10,1/10]
n (b) of observing misleading

evidence for the hypothesis that θ ̸= 0 over the “simple” hypothesis that
θ = 0 and for the hypothesis that |θ| > 1/10 over the “composite” hypothesis
that |θ| ≤ 1/10, respectively, for each of the evidence levels b of previous
figures and at each of three sample sizes (n ∈ {4, 5, 6}).

expression since negative levels correspond to evidence for equivalent expression,

and levels above 2 normally indicate decisive evidence for differential expression

regardless of whether precise or imprecise hypotheses are specified.

5.2. Empirical Bayes inference

The “theoretical null” version of the empirical Bayes model of Efron (2007),

when applied to data structured as in Section 5.1, assumes the Student t statistic

T (Xi) has probability density f (•; 1) if gene i is differentially expressed, which

occurs with probability p (1), and f (•; 0) if gene i is equivalently expressed, which

occurs with probability p (0), where f (•; 0) is the Student t density with n − 1

degrees of freedom. Thus, θi ∈ {0, 1} has physical probability distribution p for
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each i (Section 2.4.3).

On the basis of the 10-day microarrays for the 7139 genes with complete data

(n = 6), the probability mass function p was estimated by p̂ and the probability

density function f (•; 1) by f̂ (•; 1), with both estimators defined by the method

of Efron (2007). Then

ŵ (1, 0;T (xi)) =
f̂ (T (xi) ; 1)

f (T (xi) ; 0)

is an approximate Bayes factor according to its role in approximating posterior

probabilities by estimated local false discovery rates. Herein, ŵ (1, 0;T (xi)) is

instead employed as an estimate of the weight of evidence for θi = 1 over θi = 0

as defined by the special law of likelihood.

Figure 11 compares log10Wprofile

(
R1\ {0} , {0} ;xi

)
and log10Wprofile(Θ

′,Θ′′;

xi) of the fixed-parameter model (Section 5.1) to log10 ŵ (1, 0;T (xi)) of the

random-parameter model defined in the present subsection. The discrepancies

stem from the differences in model assumptions.

6. Closing Remarks

6.1. Highlights and discussion

Sections 2.1 and 2.2 axiomatically defined the evidential function W in or-

der to uniquely weigh the evidence in observation x for a hypothesis θ ∈ Θ′ over

another hypothesis θ ∈ Θ′′. W applies not only to simple hypotheses, but also

to composite hypotheses, including complex hypotheses about fixed parameter

values and intrinsically simple hypotheses about random parameter values. Prop-

erly distinguishing between the nuisance parameter problem and the composite

hypothesis problem in Section 2.5 avoids pathologies of the profile likelihood with-

out resorting to the representation of evidence by intervals of profile likelihoods.

The proposed framework compares favorably with Bayesianism in Example 4

because the former, but not the latter, satisfies the idealized principle of infer-

ence to the best explanation (Section 2.2.1). The evidential weight W (Θ′,Θ′′;x)

is consistent, coherent, and interpretable, as seen in Sections 2.3 and 4. These

properties warrant consideration of a new approach to simultaneous inference,

multiple comparisons, and sequential analysis (Section 2.4).

Incomplete probability distributions represent imprecision in hypotheses to

mitigate the effect of hypothesis boundaries on the weight of evidence, as illus-

trated in the gene expression application (Sections 3 and 5). Nonetheless, mak-

ing hypotheses imprecise sometimes insufficiently reduces the dependence of the

weight of evidence on arbitrarily selected parameter values. In such settings, the

use of two composite hypotheses separated by a non-arbitrary boundary entirely
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Figure 7. Proportions α̂
{0}
n (b) and α̂

[− log
√
2,log

√
2]

n (b) of genes with differ-
ential expression evidence meeting or exceeding a fixed evidence threshold
for the hypothesis that θi ̸= 0 over the “simple” hypothesis that θi = 0 and
for the hypothesis that |θi| > log

√
2 over the “composite” hypothesis that

|θi| ≤ log
√
2, respectively. Results are displayed for each of the evidence

thresholds of the previous figures (b ∈ {1/∞, 1/2, 1, 3/2, 2}) and at each of
three stages of maturity (0, 3, and 10 days after the breaker stage of ripen-
ing). These proportions were computed using (4.1), but with xi as the vector
of the logarithms of the expression ratios for the ith gene and with M as the
number of genes that have sufficient data for the computation of likelihood
ratios.

eliminates such dependence. In the gene expression illustration of Section 5, the

weight of evidence for biologically significant differential expression (|θi| > θ+)

versus biologically insignificant differential expression (|θi| ≤ θ+) would then be

replaced by the weight of evidence for overexpression/upregulation (θi > 0) versus

underexpression/downregulation (θi < 0), either superseding or complementing

an application of decision theory to the latter two hypotheses (Bickel (2011a)).
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Figure 8. The weight of evidence for differential expression over equivalent
expression plotted against the maximum likelihood estimate of the expres-
sion ratio for the tomato data at 10 days after the breaker stage of ripening.
The vertical gray lines are drawn at the boundary that separates the two
precise hypotheses, reflecting the idea that a gene is either differentially
expressed or is equivalently expressed, with no possibility of something in
between. By contrast, the imprecise hypotheses have no rigid boundary be-
tween differential expression and equivalent expression. Darker circles rep-
resent genes that correspond to higher values of |2Θ̃′(θ̂i)− 1| and that thus
seem to be more closely aligned with either one imprecise hypothesis or the
other, whereas lighter circles correspond to more borderline genes. Θ̃′(θ̂i)

estimates Θ̃′ (θi), the degree to which the ith gene is differentially expressed.

6.2. Opportunities for further research

6.2.1. Additional models and applications

The laws of likelihood offer an evidential framework that invites examination

of their practical effects on statistical inference. The examination of normal vari-

ates of Section 4 concentrated on the probability of observing misleading evidence

for a composite hypothesis over an interval hypothesis, finding that it is often

much less than that for a composite hypothesis over a simple hypothesis. The

microarray case study of Section 5 quantified the impact on evidential inference

of replacing simple hypotheses with interval hypotheses and of replacing precise

hypotheses with imprecise hypotheses.

The proposed framework may be further examined for other families of dis-

tributions and for other applications. In particular, the findings of Sections 2.3.3

and 3 suggest a fresh approach to bioequivalence studies in which researchers seek

to determine whether the evidence favors an interval hypothesis over a compos-

ite hypothesis without requiring an artificially precise specification of the largest

effect size considered equivalent.
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Figure 9. The degree of the truth of each imprecise hypothesis plotted
against eθ, the geometric mean of the expression ratio in the population. The
black curve represents Θ̃′, and the gray curve represents Θ̃′′. The vertical
lines correspond to the boundary between the precise hypotheses Θ′ and Θ′′.
Degrees of truth are calibrated by Definition 8.

6.2.2. Robust evidential inference

There remains ample opportunity for research to make evidential inference

about composite hypotheses robust to unanticipated data distributions. Possible

solutions may utilize robust adjusted likelihood functions, contamination mixture

models, or nonparametric approaches, all of which require at least moderately

large samples. Each strategy is discussed in turn.

A likelihood function adjustment designed to make the law of likelihood less

sensitive to model misspecification (Royall and Tsou (2003); Blume et al. (2007))

might be used for robust inference under the general law of likelihood. The

resulting robust adjusted likelihood function performs well under certain violations

of the working model and yet retains full asymptotic efficiency if the working

model is correct (Royall and Tsou (2003)). Since the adjustment improves both
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Figure 10. Effects of replacing the precise hypotheses with the impre-
cise hypotheses for the data of Figure 8. The left-hand-side displays
Wprofile(Θ̃

′, Θ̃′′;xi) plotted against Wprofile(Θ
′,Θ′′;xi), and the right-hand-

side has Wprofile(Θ
′,Θ′′;xi)− Wprofile(Θ̃

′, Θ̃′′;xi) against Θ̃′(θ̂i), the esti-
mated extent of differential expression. The grayscale is the same as that of
Figure 8.

Neyman-Pearson and Bayesian uses of the likelihood function (Royall and Tsou
(2003)), the adjustment is expected to improve evidential inference regarding
composite hypotheses as well.

A more classical approach to making the likelihood function robust against
potential outliers replaces the working model {f (•; θ) : θ ∈ Θ} with a mixture
model {(1− ε) f (•; θ) + εg (•; γ) : θ ∈ Θ}, where ε is the unknown probability of
contamination and g is the contamination density or mass function parameterized
by γ (Aitkin and Wilson (1980)). It may be advisable to extend this methodology
to evidential inference about simple hypotheses before attempting to generalize
it to handle precise and imprecise composite hypotheses.

The empirical likelihood version of (2.9) is

W
(
S′, S′′) = supF ′∈S′ L (F ′;x)

supF ′′∈S′′ L (F ′′;x)
,

where L (•;x) is the nonparametric likelihood function (Owen (2001)) and where
S′ and S′′ are broad sets of distributions corresponding to different hypotheses
distinguished by their constraints, e.g., S′ and S′′ may be large families of distri-
bution with means outside or inside some interval, respectively. Zhang (2009a)
studied the simple hypothesis case W ({F ′} , {F ′′}) = L (F ′;x) /L (F ′′;x). (3.5)
may be analogously modified by replacing the parametric likelihood function
with the nonparametric likelihood function and constraint satisfaction with par-
tial constraint satisfaction indicated by the membership functions of fuzzy sets.
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Figure 11. The weight of evidence for differential gene expression under the
fixed-parameter model versus the Bayes factor under the empirical Bayes
model for all genes with 6 ratios available. Each gray circle and each black
circle represents a different gene. The diagonal is the line of equality.
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Notes added in proof

Bickel (2011b) proposes another likelihood-based measure of the weight of

evidence. Complementing the likelihood-evidential measures, systems of nested

confidence intervals undergird information-theoretic frameworks for applying

Bayesian methods (Bickel (2012a)) and frequentist methods, including multiple

comparison procedures (Bickel (2012b)).
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