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Abstract: In a Gaussian graphical model, the conditional independence between

two variables are characterized by the corresponding zero entries in the inverse co-

variance matrix. Maximum likelihood method using the smoothly clipped absolute

deviation (SCAD) penalty (Fan and Li (2001)) has been proposed in the literature.

In this article, we establish the result that when p is fixed, using the Bayesian

information criterion (BIC) to select the tuning parameter in penalized likelihood

estimation with the SCAD penalty can lead to consistent graphical model selection.

When p increases with the sample size, a modified BIC with an extra penalty term

is proposed. It can consistently select the true graphical model under the condition

that p tends to infinity and all the true edges are included in a bounded subset. We

compare the empirical performance of BIC with the cross validation method and

demonstrate the advantageous performance of BIC criterion for sparse graphical

models through simulation studies.

Key words and phrases: BIC, consistency, cross validation, Gaussian graphical

model, model selection, oracle property, penalized likelihood.

1. Introduction

A multivariate Gaussian graphical model is also known as a covariance se-

lection model. The conditional independence relationships between the random

variables are equivalent to specified zeros among the inverse covariance matrix.

More exactly, let X = (X(1), . . . , X(p)) be a p-dimensional random vector follow-

ing a multivariate normal distribution Np(µ,Σ), with µ denoting the unknown

mean and Σ denoting the nonsingular covariance matrix. Denote the inverse

covariance matrix as Σ−1 = C = (Cij)1≤i,j≤p. Zero entries Cij in the inverse co-

variance matrix indicate conditional independence between the random variables

X(i) and X(j) given all other variables (Dempster (1972), Whittaker (1990),

Lauritzen (1996)). The Gaussian random vector X can be represented by an

undirected graph G = (V,E), where V contains p vertices corresponding to the

p coordinates and the edges E = (eij)1≤i<j≤p represent the conditional depen-

dency relationships between variables X(i) and X(j). It is of interest to identify
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the correct set of edges, and estimate the parameters in the inverse covariance

matrix simultaneously.

To address this problem, many methods have been developed. In general,

there are no zero entries in the maximum likelihood estimate, which results in a

full graphical structure. Dempster (1972) and Edwards (2000) proposed to use

penalized likelihood with the L0-type penalty pλ(|cij |)i ̸=j = λI(|cij | ̸= 0), where

I(·) is the indicator function. Since the L0 penalty is discontinuous, the resulting

penalized likelihood estimator is unstable. Another approach is stepwise forward

selection or backward elimination of the edges. However, this ignores the stochas-

tic errors inherited in the multiple stages of the procedure (Edwards (2000)) and

the statistical properties of the method are hard to comprehend. Furthermore,

the computational complexity of this greedy search algorithm increases exponen-

tially with the number of vertices in the graph. Meinshausen and Bühlmann

(2006) proposed a computationally attractive method for covariance selection; it

performs the neighborhood selection for each node and combines the results to

learn the overall graphical structure. It has been shown that this method is re-

lated to the quadratic approximation of the loglikelihood with L1 penalty (Yuan

and Lin (2007)). Nevertheless this method performs model selection and param-

eter estimation separately. Yuan and Lin (2007) proposed penalized likelihood

methods for estimating the concentration matrix with the L1 penalty (LASSO)

(Tibshirani (1996)). The method can be implemented through the maxdet al-

gorithm in convex optimization. However, due to the inherent computational

complexity, the maxdet algorithm can only handle matrices with small p.

Banerjee, Ghaoui, and D’Aspremont (2007) proposed a block-wise updating

algorithm for the estimation of the inverse covariance matrix. For each block-

wise update, the problem is a box-constrained quadratic program that can be

solved by an interior-point procedure. They further showed that the problem that

emerges from each step of block-wise update is equivalent to a linear regression

under the L1 penalty. Further in this line, Friedman, Hastie, and Tibshirani

(2008) proposed the graphical LASSO algorithm to estimate the sparse inverse

covariance matrix using the LASSO penalty through a coordinate-wise updating

scheme. It is presently the fastest and most convenient algorithm to tackle this

problem. Fan, Feng, and Wu (2009) proposed to estimate the inverse covariance

matrix using the adaptive LASSO and the Smoothly Clipped Absolute Deviation

(SCAD) penalty to attenuate the bias problem. They employed a local linear

approximation method (Zou and Li (2008)) to approximate the LASSO penalty

as weighted L1 penalty, and the method is implemented through the graphical

LASSO algorithm. The resulting methods with both SCAD and adaptive LASSO

penalties are computationally convenient algorithms leading to asymptotically

unbiased, sparse estimators that possess the oracle property.
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In practice, the performance of the penalized likelihood estimator depends

on the proper choice of the regularization parameter. Here we focus on the tun-

ing parameter selection in penalized likelihood estimation of the sparse inverse

covariance matrix. Wang, Li, and Tsai (2007) proposed using the Bayesian infor-

mation criterion (BIC) to select the tuning parameter for the penalized likelihood

method with SCAD penalty. They showed that BIC with the SCAD penalty is

able to identify the true model consistently in the setting of linear regression and

the partial linear model. Yuan and Lin (2007) used BIC to select the tuning pa-

rameter with the L1 penalty in the estimation of the inverse covariance matrix.

The consistency of BIC for the Gaussian graphic model has not yet been inves-

tigated. In this article we show that, for fixed p, the optimum tuning parameter

selected by BIC with SCAD penalty yields the graphical structure of the true

underlying graphical model with probability tending to one as n → ∞. If p tends

to infinity at a certain rate with the sample size, BIC needs to be modified with

an extra penalty term. The modified BIC is consistent under the condition that

p → ∞ and the number of true edges dT is bounded.

The rest of the article is organized as follows. In Section 2.1 we formulate

the penalized likelihood function for the inverse covariance matrix. In Sections

2.2 and 2.3, we consider the case of p fixed, discuss the selection of tuning pa-

rameters through the BIC criterion, and prove its consistency in graphical model

selection with SCAD and the adaptive LASSO penalty. In Section 3, we de-

velop a modified BIC for consistent model selection when p tends to infinity. In

Section 4, simulation studies are presented to demonstrate the empirical per-

formance of the tuning parameter selection with BIC, compared with the cross

validation method, in small p and large p scenarios. Throughout, we use || || to
denote the supreme norm, || ||2 the L2 norm, and || ||F the Frobenius norm, with

||A||F =
√

tr(A′A).

2. Method

2.1. Penalized likelihood estimation of inverse covariance matrix

Given a random sample X1, . . . , Xn from the multivariate normal Np(µ,Σ),

the loglikelihood for µ and C = Σ−1 can be expressed as

n

2
log |C| − 1

2

n∑
i=1

(Xi − µ)′C(Xi − µ),

up to a constant not depending on the parameters. The maximum likelihood

estimator of (µ,Σ) is (X̄, Ā), where

Ā =
1

n

n∑
i=1

(Xi − X̄)(Xi − X̄)′.
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Center the observations so that µ̂ = 0. To obtain the maximum likelihood esti-

mator of the concentration matrix, minimize

− 2

n
ℓ(C) = −log|C|+ tr(CĀ).

In the penalized likelihood method, take Ĉ to minimize:

Q(C) = −log|C|+ tr(CĀ) +
∑
i̸=j

pλ(|cij |), (2.1)

with pλ some penalty function. Yuan and Lin (2007) proposed the LASSO

penalty, pλ(|cij |) = λ|cij |. Friedman, Hastie, and Tibshirani (2008) proposed

a graphical LASSO algorithm using a coordinate descent procedure that is com-

putationally very fast and guarantees the positive definiteness of the resulting

estimate. As the LASSO penalty increases linearly with the size of its argu-

ment, this leads to biases for the estimates of nonzero coefficients. To attenuate

such estimation biases, Fan and Li (2001) proposed the SCAD penalty pλ, with

pλ(0) = 0 and first derivative

p′λ(θ) = λ{I(θ ≤ λ) +
(aλ− θ)+
(a− 1)λ

I(θ > λ)}, for θ > 0,

where a is some constant usually set to 3.7 (Fan and Li (2001)), and (t)+ =

tI(t > 0) is the hinge loss function.

The SCAD penalty is a quadratic spline function with knots at λ and aλ. It

is singular at the origin, which ensures the sparsity and continuity of the solution.

The penalty function does not penalize as heavily as does the L1 penalty function

on large parameters. More importantly, the SCAD penalty not only selects the

correct set of edges, but also produces parameter estimators as efficient as if the

true underlying graphic structure is known, the oracle property.

Fan, Feng, and Wu (2009) proposed using local linear approximation (Zou

and Li (2008)) to approximate the SCAD by a symmetric linear function. The

proposed iterative re-weighted penalized likelihood method optimizes the objec-

tive function at step (k + 1) as:

Q(C)(k+1) = − log |C|+ tr(CĀ) +
∑
i ̸=j

wij |cij |, (2.2)

with wij = p′λ(|ĉ
(k)
ij |) and ĉ

(k)
ij denoting the estimates obtained at previous step.

The computation can be implemented by reiteratively using the graphical LASSO

algorithm.
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2.2. Consistency of BIC with fixed p

For the tuning parameter λ, it is desirable to have a data-driven method.

Let the full graphical model be GF , with the edge set EF = (eij)1≤i<j≤p. Let an

arbitrary graphical model be G with the edge set E ⊆ EF , and the true model

be GT , with edge set ET = (eij)(i,j):cij,0 ̸=0,i<j , where cij,0 denotes the null value

of the parameter. An over-fitted model G has edge set E ⊇ ET and E ̸= ET , and

the collection of all over-fitted model is denoted by G+. An under-fitted model

G has edge set E + ET , and the collection of all over-fitted model is denoted by

G−. Let dT denote the number of true edges and dG denote the number of edges

in graph G.

In practice, as λ is unknown, we search for the optimal λ from the bounded

interval Ω = [0, λmax], for some upper limit λmax. We further assume that the

upper limit λmax → 0, as n → ∞. This implies that the search region shrinks to 0

as n tends to infinity. A similar assumption can be found in Wang, Li, and Tsai

(2007). Given a tuning parameter λ, the penalized likelihood approach yields the

estimated parameters (ĉij,λ)1≤i≤j≤p. The resulting model is denoted by Gλ with

edge set Eλ = (eij)(i,j):ĉij,λ ̸=0. Given a λ, the associated BIC criterion is:

BICλ = −n log |Ĉλ|+ ntr(ĈλĀ) + log(n)
∑

1≤i<j≤p

I(ĉij,λ ̸= 0).

If we know the correct model GT beforehand and obtain the maximum likelihood

estimate ĈGT
, the associated BIC criterion is denoted as

BICGT
= −n log |ĈGT

|+ ntr(ĈGT
Ā) + log(n)

∑
1≤i<j≤p

I(cij,0 ̸= 0).

We focus the discussion on the SCAD penalty. We construct a working

sequence of reference tuning parameters λn = log(n)/
√
n that satisfies the re-

quirement that as λn → 0,
√
nλn → ∞. Under such a working sequence of tuning

parameters, according to Theorem 5.2 in Fan, Feng, and Wu (2009), with prob-

ability tending to one, the method not only identifies ET , but also yields root-n

consistent estimators for the nonzero cij ’s.

Lemma 1. For SCAD penalty, |BICλn −BICGT
| = Op(1).

Next we establish the asymptotic order of the maximum difference of ℓ(Ĉλ)−
ℓ(ĈGT

) over Gλ ∈ G−.

Lemma 2. There exists a constant L1 such that

ℓ(Cλ)− ℓ(ĈGT
) ≤ −L1n

1/3

with probability tending to 1 uniformly for all the λ ∈ [0, λmax], with Gλ ∈ G−.
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Because the penalty term is of order log n, we have the following.

Theorem 1. There exists a constant L2 such that

P ( inf
Gλ∈G−

(BICλ − BICGT
) > L2n

1/3) → 1, as n → ∞.

Theorem 2. Under the regularity assumptions,

P
{

inf
Gλ∈G−

BICλ > BICλn

}
→ 1, as n → ∞.

Next we consider an over-fitted model, in which some zero-valued parameters

are included in the model to be estimated. They are regarded as nuisance pa-

rameters. So the property of the resulting BICλ can be derived under standard

likelihood theory.

Theorem 3. Under the regularity assumptions, Pr(infGλ∈G+BICλ>BICλn)→1.

Theorems 2 and 3 imply that the λ′s that fail to identify the true model have

BIC larger than λn. Consequently, the λ value which minimizes the BIC criterion

identifies the true model.

Theorem 4. Under the regularity assumptions, Pr(Gλ̂BIC
= GT ) → 1, where

λ̂BIC is the tuning parameter that minimizes the BIC criterion with the SCAD

penalty.

It is worth pointing out that the penalty term of the BIC criterion is a step

function of the smoothing parameter, so the minimum tuning parameter λ̂BIC

may not be unique. Nevertheless, the collection of tuning parameters λ̂BIC that

minimize the BIC correspond to the same correct model.

2.3. Consistency of modified BIC with Pn → ∞

In the section above, the dimension of the covariance matrix p is fixed and

the sample size n tends to infinity. In this section, we consider the situation in

which pn may depend on n, and pn tends to infinity as n increases. Thus, in

practice, researchers might include more variables as they increase the sample

size. Under this high-dimensional setup, the penalized likelihood estimation of

the covariance matrix has been investigated by Rothman et al. (2008) and Lam

and Fan (2009).

To deal with high-dimensionality in generalized linear models, Chen and

Chen (2008, 2012) proposed EBIC with an extra penalty on the size of the model

space. For this setup, we propose to modify the BIC with an extra penalty term
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of 4 log pn on the dimension of the covariance matrix. Given a λ, the associated

BIC criterion is:

BICλ = −n log |Ĉλ|+ ntr(ĈλĀ) + {log n+ 4 log pn}
∑

1≤i<j≤p

I(ĉij,λ ̸= 0).

If we know the correct model GT beforehand, the associated BIC criterion is:

BICGT
= −n log |ĈGT

|+ ntr(ĈGT
Ā) + ({log n+ 4 log pn}

∑
1≤i<j≤p

I(cij,0 ̸= 0).

When pn increases with n, the number of competing models increases. It

is shown later in Lemmas 10 and 11 that the supreme difference between the

likelihood of an over-fitting model and the true model is Op(4m log pn), given

that the over-fitting model has m more parameters. To offset this difference, the

penalty term adds an extra multiplying factor of 4 log pn on the size of the model.

Such a modification was also proposed in Foygel and Drton (2010), in which the

likelihood of the EBIC was evaluated at the maximum likelihood estimate for all

the sub-models.

We assume that there are constants τ1 and τ2 such that

0 < τ1 ≤ λmin(Σ0) ≤ λmax(Σ0) ≤ τ2 ≤ ∞, for all n.

Such a condition uniformly bounds the eigenvalues of Σ0 and allows a wide

class of covariance matrices, as noted in Bickel and Levina (2008a,b). We fur-

ther assume that dT is bounded by a finite constant Q and (pn/n)(log pn)
k =

O(1) for some k > 1. We search for the optimal λ from the bounded interval

Ω = [0, λmax], for some upper limit λmax. We suppose λmax → 0 and λmax >

{(pn/n) log pn}1/2 as n → ∞, and consider a working sequence of tuning param-

eters λn = {(pn/n) log pn}1/2. According to Theorems 1 and 2 in Lam and Fan

(2009), there exists a local minimizer Ĉλn such that

||Ĉλn − C0||2F = Op

{(pn) log pn
n

}
.

Furthermore, with probability tending to 1, ĉij,λn = 0, for all ci,j = 0. This entails

lim
n→∞

P (Gλn = GT ) = 1.

Given any graph G = (V,E), we can partition the concentration matrix into

four sub-matrices, with the upper-left sub-matrix C∗ the smallest sub-matrix

containing all the non-zero off-diagonal entries, the upper-right C ′ and the lower-

left C ′′ containing all zeros, and the lower-right C ′′′ a diagonal matrix:(
C∗ C ′

C ′′ C ′′′

)
.
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When C is partitioned, the vector X is partitioned accordingly so that the sub-

vector X∗ has the covariance matrix C∗.

Given GT , let the corresponding sub-matrices be C∗,T , C
′,T , C

′′,T , C
′′′,T . The

sub-vector X∗,T has the covariance matrix C∗,T . If Gλn = GT , then Ĉ
′,T
λn

= 0,

Ĉ
′′,T
λn

= 0, and Ĉ
′′′,T
λn

= Ĉ
′′′,T
GT

, which entails

ℓ(Ĉλn ;X)− ℓ(ĈGT
;X) = ℓ(Ĉ∗,T

λn
;X∗,T )− ℓ(Ĉ∗,T

GT
;X∗,T ),

while the latter is the difference of likelihood based on the penalized likelihood

estimator and the mle estimator given the true model evaluated at the sub-vector

X∗,T . For notational convenience, X and X∗,T are omitted from the likelihood

notation.

Lemma 3. Under the regularity conditions above,

|BICλn − BICGT
| = Op(1).

Given any G, we can construct an extended graph Ġ = GT ∪ G with the

extended edge set Ė = ET ∪ E. Based on Ġ, we partition the concentration

matrix into C∗,e, C
′,e, C

′′,e, and C
′′′,e. The sub-vector of X whose concentration

matrix corresponds to C∗,e is denoted by X∗,e. Then the score function

Un(C
∗,e
0 ;X∗,e) =

∂ℓ(C∗,e, X∗,e)

∂C∗,e |C∗,e
0

= n{(C∗,e
0 )−1 − SX∗,e},

where SX∗,e is the sample covariance matrix for the subset data X∗,e. Because

dT ≤ Q, we restrict our model space to G = {G : dim(C∗,e) ≤ 2Q}.
In order to establish the asymptotic consistency of the modified BIC, we

need a technical lemma.

Lemma 4. Let Zi, i = 1, . . . , n, be independent and identically distributed ran-

dom variables with zero mean and unit variance. Assume there exists a constant

δ such that, for |t| ≤ δ, the absolute value of the third derivative of their cumulant

generating function |g(3)(t)| ≤ M for some constant M. If fn is a sequence such

that fn → ∞ as n → ∞, then for any m > 0, we have

P (

n∑
i=1

Zn >
√
2mn log fn) = o(f−m

n ). (2.3)

Now we establish the asymptotic order of the maximum score functions over

all the possible models in the model space G.

Lemma 5. Under the regularity conditions,

max
G∈G

||Un(C
∗,e
0 )|| = Op(n

1/2(log pn)
1/2).



TUNING PARAMETER SELECTION FOR GAUSSIAN GRAPHICAL MODEL 1131

Lemma 6. For all C∗,e induced by G ∈ G, and for some constant L3,

sup{ℓ(C∗,e)− ℓ(C∗,e
0 ) : ||C∗,e − C∗,e

0 ||2 > n−1/3} ≤ −L3n
1/3, (2.4)

uniformly with probability tending to one.

Next we consider under-fitted models.

Lemma 7. For all λ such that λ ∈ [0, λmax], and Gλ ∈ G−, let C
∗,e be induced

by Ġ = Gλ ∪GT . Then

ℓ(Ĉ∗,e
λ )− ℓ(C∗,e

0 ) ≤ −L4n
1/3

for some constant L4 with probability tending to 1 uniformly.

Lemma 8. For all λ such that λ ∈ [0, λmax], and Gλ ∈ G−, let C
∗,e be induced

by Ġ = Gλ ∪ GT . Let Ĉ∗,e
GT

be the maximum likelihood estimator under GT for

submatrix C∗,e. Then

sup
Gλ∈G−

|ℓ(Ĉ∗,e
GT

)− ℓ(C∗,e
0 )| = Op(1). (2.5)

Theorem 5. For all λ such that λ ∈ [0, λmax], and Gλ ∈ G−,

P ( inf
Gλ∈G−

(BICλ − BICGT
) > L5n

1/2) → 1,

as n → ∞, for some constant L5.

Theorem 6. For all λ such that λ ∈ [0, λmax], and Gλ ∈ G−,

P
{

inf
Gλ∈G−

BICλ > BICλn

}
→ 1, as n → ∞.

Let U(C∗,e) denote the column vector of the first derivatives ∂ℓ/∂cij for all

cij ∈ C∗,e. Let UG(C
∗,e) be the sub-vector of the first derivatives ∂ℓ/∂cij for

all cij ∈ C∗,e, and (i, j) ∈ EG. The indices of the score vectors are reordered

as r from 1 to its length. Let H(C∗,e) be the matrix of the second derivatives

∂2ℓ/∂Cij∂Ci′j′ for all cij ∈ C∗,e, and ci′j′ ∈ C∗,e. Let HG(C
∗,e) be the sub-

matrix of the second derivatives ∂2ℓ/∂cij∂ci′j′ for all cij ∈ C∗,e, and (i, j) ∈ EG,

all ci′j′ ∈ C∗,e, and (i′, j′) ∈ EG. The indices of the Hessian are reordered as r

and t. Next we examine the maximum difference between the log-likelihood ratio

statistic and the score test statistic over all graphs in the model space.

Lemma 9.

max
G∈G

|2{ℓ(Ĉ∗,e
G )− ℓ(C∗,e

0 )} − UG(C
∗,e
0 )′HG(C

∗,e
0 )−1UG(C

∗,e
0 )| = Op(1).
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Next we consider the over-fitted models. Let G+(m) ⊂ G+, with G+(m) =

{G : G ∈ G+, dG − dT = m}, m = 1, . . . , Q− dT . Let C
∗,e be the upper left sub-

matrix induced by the over-fitting model G. Let sT and sG denote the number

of parameters within the sub-matrix C∗,e according to graphs GT and G, re-

spectively. Let DG = (IsT , 0sT ,sG−sT ), with IsT an identity matrix of dimension

sT ×sT , and 0sT ,sG−sT denoting a matrix of zeros with dimension sT × (sG−sT ).

Let MG/T denote the difference matrix (HG(C
∗,e
0 )−1 − D′

GH
−1
T (C∗,e

0 )DG). let

λG[1], . . . , λG[m] be the nonzero eigenvalues of HG(C
∗,e
0 )1/2MG/T (HG(C

∗,e
0 )1/2, a

projection matrix (Shao (2003)) with
∑m

j=1 λG[j] = m. Let

QG/T = UG(C
∗,e
0 )′MG/TUG(C

∗,e
0 ).

Lemma 10. Let DG, G+(m), MG/T , and QG/T be as above. Then

P ( sup
G∈G+(m)

QG/T ≥ 4m log pn) = o(1).

Lemma 11. Under the regularity conditions,

sup
G∈G+

|2{ℓ(Ĉ∗,e
G )− ℓ(Ĉ∗,e

GT
)} −QG/T | = Op(1). (2.6)

Theorem 7. For all λ such that λ ∈ [0, λmax], and Gλ ∈ G+,

P
{

inf
Gλ∈G+

BICGλ
> BICλn

}
→ 1, as n → ∞.

Theorem 6 and Theorem 7 imply that the λ′s that fail to identify the true

model have BIC larger than λn. Consequently, the λ value that minimizes the

modified BIC criterion identifies the true model.

Theorem 8. Under the regularity conditions, Pr(Gλ̂BIC
= GT ) → 1, where

λ̂BIC , which may not be unique, is the tuning parameter that minimizes the

modified BIC criterion with the SCAD penalty.

3. Simulation Studies

Next we report on simulation studies to investigate the performance of BIC

in penalized likelihood estimation of Gaussian graphical model. We compare its

empirical performance with that of cross validation, which is another commonly

used tuning parameter selection method. The K-fold cross-validation method

partitions all the samples into K disjoint subsets with indices of subjects in k-

fold as Tk, k = 1, . . . ,K. The K-fold cross-validation score is:

CV(λ) =

K∑
k=1

nk(− log |Ĉλ,−k|+ tr(Ĉλ,−kSk)),
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where nk is the size of the subset Tk, Ĉλ,−k is the estimated concentration matrix

based on the sample ∪j ̸=kTj , and Sk is the sample covariance matrix calculated

on subset Tk. The optimum tuning parameter λ is selected to minimize CV. In

our simulation, K was 5.

First we consider that p is fixed. We simulated two graphical model struc-

tures.

• Model 1. An AR(1) model with p = 35, cii = 2, and ci,i−1 = ci−1,i = 1.

• Model 2. A full subset model with p = 35, Cii = 1.2, and Cij = 1 for all

1 ≤ i ̸= j ≤ 10, Cij = 0, otherwise. The subset with vertices 1 ≤ i ≤ j ≤ 10

are all connected with edges.

Second we consider that p is large but all the edges are included in a bounded

subset. The modified BIC is applied on the data sets. We simulated two graphical

model structures.

• Model 1. An AR(1) model with p = 250, cii = 3, and ci,i−1 = ci−1,i = 0.8,

for 1 ≤ i ≤ 100.

• Model 2. A full subset model with p = 250, Cii = 1.2, and Cij = 1 for all

1 ≤ i ̸= j ≤ 20, Cij = 0, otherwise. The subset with vertices 1 ≤ i ≤ j ≤ 20

are all connected with edges.

For all the settings, we took sample size N = 500. All results are averaged

from 100 simulated data set. For each model, we used penalized likelihood meth-

ods with SCAD and LASSO penalties. The tuning parameters for both penalties

were selected through either the BIC criterion or the cross-validation criterion.

To assess model selection performance, we evaluated the sensitivity, specificity,

and Matthews correlation coefficient (MCC), fdr, and psr defined as follows:

specificity =
TN

TN + FP
, sensitivity =

TP

TP + FN
,

MCC =
TP× TN− FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
,

fdr =
FP

TP + FP
, psr =

TP

TP + FN
,

where TP, TN, FP, FN are the numbers of true positives, true negatives, false

positives, and false negatives. Taking both true and false positives and negatives

into account, MCC has been widely used to measure the quality of binary clas-

sifiers. Means and standard deviations of the above measures are provided in

Tables 1-2.
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Table 1. Results for Graphical Model with p=35 and N=500.

LASSO SCAD
model 1 model 2 model 1 model 2

bic cv bic cv bic cv bic cv
fp 0.25 87.02 7.26 350.73 0.53 42.59 3.35 240.62

( 0.50) (19.25) ( 3.96) (35.10) ( 0.73) ( 7.73) ( 2.56) (12.77)
fn 32.70 4.06 0.20 0.00 31.23 8.98 0.92 0.00

( 4.08) ( 2.17) ( 0.53) ( 0.00) ( 5.00) ( 2.32) ( 1.38) ( 0.00)
tp 12.30 40.94 44.80 45.00 31.27 53.52 61.58 62.50

( 4.08) ( 2.17) ( 0.53) ( 0.00) ( 5.00) ( 2.32) ( 1.38) ( 0.00)
tn 549.75 462.98 542.74 199.27 549.47 507.41 546.65 309.38

( 0.50) (19.25) ( 3.96) (35.10) ( 0.73) ( 7.73) ( 2.56) (12.77)
spec 1.00 0.84 0.99 0.36 1.00 0.92 0.99 0.56

( 0.00) ( 0.03) ( 0.01) ( 0.06) ( 0.00) ( 0.01) ( 0.00) ( 0.02)
sens 0.27 0.91 1.00 1.00 0.50 0.86 0.99 1.00

( 0.09) ( 0.05) ( 0.01) ( 0.00) ( 0.08) ( 0.04) ( 0.02) ( 0.00)
mcc 0.50 0.49 0.92 0.20 0.68 0.65 0.96 0.34

( 0.08) ( 0.04) ( 0.04) ( 0.03) ( 0.05) ( 0.03) ( 0.02) ( 0.01)
fdr 0.01 0.67 0.13 0.89 0.01 0.44 0.05 0.79

( 0.03) ( 0.04) ( 0.06) ( 0.01) ( 0.02) ( 0.04) ( 0.04) ( 0.01)
psr 0.27 0.91 1.00 1.00 0.50 0.86 0.99 1.00

( 0.09) ( 0.05) ( 0.01) ( 0.00) ( 0.08) ( 0.04) ( 0.02) ( 0.00)

SCAD:the SCAD penalty; LASSO: the L1 penalty. Averages and standard errors are obtained

from 100 simulated data sets. Averages are provided without parenthesis and standard errors

are provided within parentheses.

Implementation was based on the GLASSO algorithm of Friedman, Hastie,

and Tibshirani (2008) and the reiterative weighted GLASSO of Fan, Feng, and

Wu (2009) We examined the empirical performance of the two penalty functions

under the selection of optimal tuning parameter via BIC or cross-validation.

Tables 1 and 2 provide the average specificity, sensitivity, Matthew’s correlation

coefficient, false discovery rate, and positive selection rate over 100 simulated

data sets. Standard errors are provided in the parenthesis.

Across all different settings, the SCAD penalty consistently yielded better

performance than the LASSO penalty. With p fixed, for AR(1) the average

MCC for SCAD was 0.68 versus 0.50 for LASSO; for the full subset model, the

average MCC for SCAD was 0.96 versus 0.92 for LASSO. With p large and subset

dimension bounded, for AR(1) the average MCC for SCAD was 0.99 versus 0.93

for LASSO; for the full subset model, the average MCC for SCAD was 0.78 versus

0.61 for LASSO.

Another comparison was conducted between BIC and cross validation. It

is noted that cross validation consistently gave higher fdr, and lower MCC than

did BIC in the settings investigated in our study. For instance, when p = 35,



TUNING PARAMETER SELECTION FOR GAUSSIAN GRAPHICAL MODEL 1135

Table 2. Results for Graphical Model with p = 250 and N = 500.

LASSO SCAD
model 1 model 2 model 1 model 2

bic cv bic cv bic cv bic cv
fp 16.30 566.24 10.22 952.57 2.94 1981.43 7.99 90.46

( 5.92) (28.12) ( 5.40) (68.63) ( 1.72) (47.17) ( 4.22) (13.37)
fn 0.12 0.00 110.01 23.48 0.36 0.00 112.80 76.93

( 0.38) ( 0.00) ( 8.49) ( 3.95) ( 0.72) ( 0.00) ( 7.58) ( 4.82)
tp 98.88 99.00 79.99 166.52 223.64 224.00 202.20 238.07

( 0.38) ( 0.00) ( 8.49) ( 3.95) ( 0.72) ( 0.00) ( 7.58) ( 4.82)
tn 31010 30460 30925 29982 31023 29045 30927 30845

( 5.92) (28.12) ( 5.40) (68.63) ( 1.72) (47.17) ( 4.22) (13.37)
spec 1.00 0.98 1.00 0.97 1.00 0.94 1.00 1.00

( 0.00) ( 0.00) ( 0.00) ( 0.00) ( 0.00) ( 0.00) ( 0.00) ( 0.00)
sens 1.00 1.00 0.42 0.88 1.00 1.00 0.64 0.76

( 0.00) ( 0.00) ( 0.04) ( 0.02) ( 0.00) ( 0.00) ( 0.02) ( 0.02)
mcc 0.93 0.38 0.61 0.35 0.99 0.31 0.78 0.74

( 0.02) ( 0.01) ( 0.03) ( 0.01) ( 0.00) ( 0.00) ( 0.01) ( 0.02)
fdr 0.14 0.85 0.11 0.85 0.01 0.90 0.04 0.27

( 0.04) ( 0.01) ( 0.05) ( 0.01) ( 0.01) ( 0.00) ( 0.02) ( 0.03)
psr 1.00 1.00 0.42 0.88 1.00 1.00 0.64 0.76

( 0.00) ( 0.00) ( 0.04) ( 0.02) ( 0.00) ( 0.00) ( 0.02) ( 0.02)

SCAD:the SCAD penalty; LASSO: the L1 penalty. Averages and standard errors are obtained

from 100 simulated data sets. Averages are provided without parenthesis and standard errors

are provided within parentheses.

in AR(1) model, when SCAD penalty was used, the fdr rate of cross validation

was as high as 0.44 versus a low fdr rate of 0.01 for BIC. The MCC of cv was

0.65 versus a higher MCC of 0.68 of BIC. For full subset model, the fdr rate of

cross validation was as high as 0.79 versus a low fdr rate of 0.05 for BIC. The

MCC of cv was as low as 0.34 versus a higher MCC of 0.96 of BIC. With p = 250

in the AR(1) model, the fdr rate of cross validation was as high as 0.90 versus

a low fdr rate of 0.01 for BIC. The MCC of cv was 0.31 versus a higher MCC

of 0.99 of BIC. For full subset model,the fdr rate of cross validation was 0.27

versus a low fdr rate of 0.04 for BIC. The MCC of cv was 0.74 versus a higher

MCC of 0.78 of BIC. Overall, when the graph was sparse with the set of all edges

bounded, cross validation method had a higher false discovery rate than did BIC.

Although BIC enjoyed a better control of false discovery rate, its positive selection

rate or sensitivity was lower than that of cross validation. Taking sensitivity

and selectivity into consideration, BIC enjoyed a better performance as reflected

by the higher Matthew correlation coefficient. Computationally, BIC is more

convenient to use than cross validation.
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For the high-dimensional inverse covariance matrix case, the modified BIC

with SCAD penalty retained satisfactory performance. For example, for the

AR(1) model with p = 250 and the number of true edges dT = 224, the modified

BIC with SCAD had a fdr of 0.01, a psr of 1.00, and a MCC of 0.99. For the full

subset model with p = 250 and the number of true edges dT = 315, the modified

BIC with SCAD had a fdr of 0.04, a psr of 0.64 and a MCC of 0.78. This empirical

performance supports the asymptotic consistency result of the modified BIC with

SCAD when pn is large and the number of true edges is bounded.

4. Conclusion

We have investigated tuning parameter selection for penalized likelihood es-

timation of the inverse covariance matrix. We establish the consistency of the

BIC criterion for selecting the true graphical model using the SCAD penalty,

when p is fixed. A modified BIC with an extra penalty on the dimension of the

inverse covariance matrix is shown to be selection consistent when p tends to

infinity with the sample sizes and the number of true edges is bounded.
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Appendix

In proofs, the notation Ĉ − C stands for a column vector stacked from the

difference matrix between Ĉ and C.

Proof of Lemma 1. According to Theorem 5.2 in Fan, Feng, and Wu (2009),

under the reference sequence of tuning parameters, we have

lim
n→∞

P
(∑
i<j

I(ĉij,λn ̸= 0) =
∑
i<j

I(cij,0 ̸= 0)
)
= 1.

Furthermore, both Ĉλn and ĈGT
are root-n consistent for C0, the null value. This

entails |ℓ(Ĉλn)− ℓ(ĈGT
)| = Op(1). The result follows.

Proof of Lemma 2. Denote the score vector ∂ℓ/∂C by Un. For any value of C

such that ||C − C0||2 ≤ n−1/3, we have

ℓ(C)− ℓ(C0) = (C − C0)Un(C0)−
1

2
(C − C0)

′ ∂2ℓ

∂C∂C
(C̃)(C − C0),

for some C̃ between C0 and C. Let ⊗ denote the Kronecker product of two

matrices. As
∂2ℓ

∂C∂C
= (C)−1 ⊗ (C)−1,
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for any ϵ > 0, there exists a constant δ > 0, such that when n is large enough,

(1− ϵ)|| ∂2ℓ

∂C∂C
(C0)|| ≤ || ∂2ℓ

∂C∂C
(C̃)|| ≤ (1 + ϵ)|| ∂2ℓ

∂C∂C
(C0)||

for all ||C̃ − C0|| ≤ δ. This is due to fact that the eigenvalues of C are bounded

from 0 and ∞, and the matrix inverse C−1 is continuous in C. Therefore,

(C − C0)
′ ∂2ℓ

∂C∂C
(C̃)(C − C0) ≥ nM(1− ϵ)||C − C0||22

for some constant M. Thus for any ||C − C0||2 = n−1/3, we have

ℓ(C)− ℓ(C0) ≤ n−1/3||Un(C0)|| −
M

2
n1/3(1− ϵ).

Because ||Un(C0)|| = Op(n
1/2), we have

ℓ(C)− ℓ(C0) ≤ n1/6 −M
n1/3

2
≤ −L1n

1/3

for all C such that ||C−C0||2 = n−1/3 for a constant L1, with probability tending

to 1.

Because ℓ(C) is concave in C, the above result implies that the maximum of

ℓ(C) is attained inside ||C − C0||2 < n−1/3. Concavity also implies that

sup{ℓ(C)− ℓ(C0) : ||C − C0||2 > n−1/3}
≤ sup{ℓ(C)− ℓ(C0) : ||C − C0||2 = n−1/3} ≤ −L1n

1/3. (A.1)

Because Gλ ∈ G−, there is at least one edge (i, j) that Ĉij,λ = 0, while

Cij,0 ̸= 0. For this non-zero |Cij,0|, there is a lower bound depending on neither

n or C. Thus ||Ĉλ − C0||2 ≥ |Cij,0| > n−1/3, and this leads to

ℓ(Ĉλ)− ℓ(C0) ≤ −L1n
1/3

with probability tending to 1 uniformly for Gλ ∈ G−.

Furthermore we have

ℓ(Ĉλ)− ℓ(ĈGT
)

= ℓ(Ĉλ)− ℓ(C0) + ℓ(C0)− ℓ(ĈGT
)

= ℓ(Ĉλ)− ℓ(C0) +Op(1). (A.2)

In view of Lemma 1, the result follows.

Proof of Theorem 3. Let the maximum likelihood estimator under the true

model and under the over-fitted model be ĈGT
, and ĈGλ

. Note that ĈGλ
is



1138 XIN GAO, DANIEL Q. PU, YUEHUA WU AND HONG XU

different from Ĉλ. According to standard asymptotic theory for the loglikelihood

ratio statistic, we have 2(ℓ(ĈGλ
) − ℓ(ĈGT

)) ∼ χ2
dGλ

−dT
= Op(1). Furthermore,

from Theorem 5.2 in Fan, Feng, and Wu (2009), |Ĉλ − ĈGλ
| = Op(n

− 1
2 ). This

implies ℓ(Ĉλ) = ℓ(ĈGλ
) +Op(1). Combining, we have

(BICλ −BICGT
) =− 2ℓ(Ĉλ) + 2ℓ(ĈGT

) + log n(dGλ
− dT )

=− 2ℓ(ĈGλ
) + 2ℓ(ĈGT

) + log n(dGλ
− dT ) +Op(1)

= log n(dGλ
− dT ) +Op(1).

(A.3)

In view of Lemma 1, the result follows.

Proof of Lemma 3. It suffices to show that |ℓ(Ĉ∗,T
λn

) − ℓ(Ĉ∗,T
GT

)| = Op(1). Fo-

cusing on the sub-matrix C∗,T , as dT ≤ Q, the problem reduces to a problem

of estimation with finite dimensions. The working sequence λn satisfies the con-

dition that λn → 0, and
√
nλn → ∞. By Theorem 5.2 of Fan, Feng, and Wu

(2009), Ĉ∗,T
λn

is a
√
n−consistent estimator of C∗,T

0 . By mle’s property, Ĉ∗,T
GT

is also

an
√
n−consistent estimator of C∗,T

0 . Thus |Ĉ∗,T
λn

− Ĉ∗,T
GT

| = Op(n
−1/2). Because

∂2ℓ(C∗,T )/(∂C∗,T∂C∗,T ) = (C∗,T )−1 ⊗ (C∗,T )−1, the eigenvalues of C∗,T are uni-

formly bounded for all n and, since matrix inverse is continuous over non-singular

matrix, we have that for n large enough, ∂ℓ2(C∗,T )/∂C∗,T∂C∗,T ∣∣
C̃∗,T = Op(n)

for any C̃∗,T between Ĉ∗,T
λn

and Ĉ∗,T
GT

. This leads to |ℓ(Ĉ∗,T
λn

)− ℓ(Ĉ∗,T
GT

)| = Op(1).

Proof of Lemma 4. By Taylor expansion, for |t| ≤ δ, the cumulant generating

function

g(t) =
t2

2
+ g(3)(t∗)

t3

6
,

for some 0 ≤ |t∗| ≤ |t| ≤ δ. For any |t|/
√
n ≤ δ, the moment generating function

of n−1/2
∑n

i=1 Zi is equal to

ϕn(t) = exp{ t
2

2
+

g(3)(t∗/
√
n)t3

6
√
n

}.

For convenience, let qn =
√
2m log fn. It can be shown that

I(n−1/2
n∑

i=1

Zi > qn) ≤ exp{t[n−1/2
n∑

i=1

Zi − qn]},
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for any t > 0. Then

P (n−1/2
n∑

i=1

Zi > qn) ≤ E[exp{t[n−1/2
n∑

i=1

Zi − qn]}]

= exp{ t
2

2
+

g(3)(t∗/
√
n)t3

6
√
n

− qnt}

= exp{ t
2

2
(1 + o(1))− qnt}.

With t = qn, we have

P (
n∑

i=1

Zi >
√

2mn log fn) ≤ exp{−1

2
q2n(1 + o(1))} = o(f−m

n ).

Proof of Lemma 5. It can be shown that Var (Un(C
∗,e
0 )/n) = (C∗,e)−1 ⊗

(C∗,e)−1. As

0 < τ1 ≤ λmin(Σ) ≤ λmax(Σ) ≤ τ2 < ∞,

we have

0 <
1

τ2
≤ λmin(C) ≤ λmax(C) ≤ 1

τ1
< ∞.

Because C∗,e is a sub-matrix of C with C
′,e and C

′′,e being 0, and C
′′′,e being

diagonal, the eigenvalues of C∗,e are a subset of that of C’s. Therefore,

0 < τ21 ≤ λmin(Var (Un
C∗,e
0

n
)) ≤ λmax(Var (Un

C∗,e
0

n
)) ≤ τ22 < ∞,

uniformly for all the G ∈ G. Let Un(C
∗
0 )[ij] denote the element of the score vector

corresponding to differentiation with respect to the parameter cij . We have

Un(C
∗
0 )[ij] = nσij −

n∑
l=1

(X
(i)
l −X

(i)
)(X

(j)
l −X

(j)
)

=

n∑
l=1

(σij −X
(i)
l X

(j)
l ) + nX

(i)
X

(j)
. (A.4)

Because X
(i)
l is normal, by Lemma 4 we have maxi |X

(i)| = Op(n
−1/2 log p

1/2
n ). It

then suffices to show that max(i,j) |
∑n

l=1(σij −X
(i)
l X

(j)
l )| = Op(n

1/2(log pn)
1/2).

Let

Zl =
σij −X

(i)
l X

(j)
l√

Var (X
(i)
l X

(j)
l )

.
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As max(i,j)Var (X
(i)
l X

(j)
l ) is uniformly bounded away from zero and infinity, it

can be shown that |
∑n

l=1(σij −X
(i)
l X

(j)
l )| ≤ M |

∑n
l=1 Zl|, uniformly for G ∈ G

for some constant M.

To apply Lemma 4 to the sum of Zls, we need to check the uniform bound-

edness of the third derivative of the cumulant generating function over the model

space.

By Lancaster (1954), the cumulant generating function g(t) for X
(i)
l X

(j)
l is

−1/2 log |I − 2Σ∗,eKt|, where K = kik
′
j , and ki is a vector of zeros except the

ith entry is 1. The third derivative g(3)(t) = 8tr[{Σ∗,eK(I − 2Σ∗,eKt)−1}3]. Let
J = (I − 2Σ∗,eKt), then g(3)(t) = (k′jJΣ

∗,eki)
3 = {(JΣ∗,e)[ij]}3. By choosing δ

small enough, we can make the |(JΣ∗,e)[ij]| uniformly bounded for t ≤ δ, and all

(i, j). According to Lemma 4, we have

P (|Un(C
∗,e
0 )[ij]| >

√
2mn log pn) = o(p−m

n ),

and hence

P (||Un(C
∗,e
0 )|| >

√
2mn log pn) = o(

m(m+ 1)

2
p−m
n ),

where m is the dimension of C∗,e. There are in total at most pmn possible C∗,e

induced by G ∈ G. As m is bounded, according to Bonferroni’s inequality we

have

max
G∈G

P (||Un(C
∗,e
0 )|| >

√
2mn log pn) = o(

m(m+ 1)

2
p−m
n )× pmn = o(1).

Proof of Lemma 6. For any C∗,e such that ||C∗,e − C∗,e
0 || ≤ n−1/3, we have

ℓ(C∗,e)−ℓ(C∗,e
0 )=(C∗,e−C∗,e

0 )Un(C
∗,e
0 )−1

2
(C∗,e−C∗,e

0 )′
∂2ℓ

∂C∗,e∂C∗,e (C̃
∗,e)(C∗,e−C∗,e

0 )

for some C̃∗,e between C∗,e
0 and C∗,e. Since

∂2ℓ

∂C∗,e∂C∗,e = (C∗,e)−1 ⊗ (C∗,e)−1,

we have

0 < τ21 ≤ λmin(n
−1 ∂2ℓ

∂C∗,e∂C∗,e (C
∗,e
0 )) ≤ λmax(n

−1 ∂2ℓ

∂C∗,e∂C∗,e (C
∗,e
0 )) ≤ τ22 < ∞.

For any ϵ > 0, there exist a constant δ > 0, such that when n is large enough,

(1− ϵ)|| ∂2ℓ

∂C∗,e∂C∗,e (C
∗,e
0 )|| ≤ || ∂2ℓ

∂C∗,e∂C∗,e (C̃
∗)|| ≤ (1 + ϵ)|| ∂2ℓ

∂C∗,e∂C∗,e (C
∗,e
0 )||,
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for all C∗,e induced by all G ∈ G and all ||C̃∗,e − C∗,e
0 || ≤ δ. This is due to fact

that all the eigenvalues of C are bounded from 0 and ∞, the dimension of C∗,e

is bounded, and matrix inverse is continuous. Therefore,

(C∗,e − C∗,e
0 )′

∂2ℓ

∂C∗,e∂C∗,e (C̃
∗,e)(C∗,e − C∗,e

0 ) ≥ Mn(1− ϵ)||C∗,e − C∗,e
0 ||22

for some constant M. Thus for any ||C∗,e − C∗,e
0 ||2 = n−1/3, we have

ℓ(C∗,e)− ℓ(C∗,e
0 ) ≤ n−1/3||Un(C

∗,e
0 )|| − M

2
n1/3(1− ϵ).

Because maxG∈G ||Un(C
∗,e
0 )|| = Op(n

1/2(log pn)
1/2), we have

ℓ(C∗,e)− ℓ(C∗,e
0 ) ≤ n1/6(log pn)

1/2 −M(1− ϵ)
n1/3

2
≤ −L3n

1/3,

uniformly over G ∈ G for a generic constant L3.

Because ℓ(C∗,e) is concave in C∗,e, the above result implies that the maximum

of ℓ(C∗,e) is attained inside ||C∗,e − C∗,e
0 || < n−1/3. The concavity also implies

that, uniformly over G ∈ G with probability tending to one,

sup{ℓ(C∗,e)− ℓ(C∗,e
0 ) : ||C∗,e − C∗,e

0 || > n−1/3}
≤ sup{ℓ(C∗,e)− ℓ(C∗,e

0 ) : ||C∗,e − C∗,e
0 || = n−1/3} ≤ −L3n

1/3. (A.5)

Proof of Lemma 7. Given a λ with Gλ ∈ G−, there is at least one edge (i, j)

with Ĉ∗,e
ij,λ = 0, while C∗,e

ij,0 ̸= 0. Thus ||Ĉ∗,e
λ − C∗,e

0 ||2 ≥ |C∗,e
ij,0| > n−1/3, because

|C∗,e
ij,0| has a lower bound not depending on n. According to Lemma 6,

ℓ(Ĉ∗,e
λ )− ℓ(C∗,e

0 ) ≤ −L4n
1/3

with probability tending to 1, uniformly for all λ such that Gλ ∈ G − .

Proof of Lemma 8. Let C∗,T be induced by GT . Then C∗,T is a submatrix

of C∗,e. Let A = C∗,e/C∗,T represent the complement of C∗,T within C∗,e. On

A the estimates of ĈGT
are either zero for off-diagonal entries or the inverse of

sample standard deviation for diagonal entries. According to Theorem 5.10 (Bai

and Silverstein (2006)), supGλ∈G− |ℓ(ÂGT
)− ℓ(A0)| = Op(1). Then

sup
Gλ∈G−

|ℓ(Ĉ∗,e
GT

)− ℓ(C∗,e
0 )|

≤ sup
Gλ∈G−

|ℓ(ÂGT
)− ℓ(A0)|+ |ℓ(Ĉ∗,T

GT
)− ℓ(C∗,T

0 )|

= Op(1). (A.6)
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Proof of Theorem 5. Combining results from Lemmas 7 and 8, We have

ℓ(Ĉ∗,e
λ )− ℓ(Ĉ∗,e

GT
)

= ℓ(Ĉ∗,e
λ )− ℓ(C∗,e

0 ) + ℓ(C∗,e
0 )− ℓ(Ĉ∗,e

GT
)

≤ −Mn1/3 (A.7)

for some generic constant M, with probability tending to 1 uniformly for Gλ ∈
G − . Because the difference in penalty terms is of order log n, the result of the

theorem follows.

Proof of Lemma 9. Let ℓ
(1)
r be the first derivative of the log-likelihood with

respect to the rth parameter, and ℓ
(2)
rt be the second partial derivative of the

log-likelihood with respect to the rth and tth parameter. A Taylor expansion of

ℓ
(1)
r (Ĉ∗,e

G ) = 0 around C∗,e
0 gives the system of equations:

0 = ℓ(1)r (Ĉ∗,e
G ) = ℓ(1)r (C∗,e

0 ) +
∑
t

ℓ
(2)
rt (C

∗,e
0 )(Ĉ∗,e

G − C∗,e
0 )[t]

+
∑
tu

1

2
ℓ
(3)
rtu(C̃

∗,e)(Ĉ∗,e
G − C∗,e

0 )[t](Ĉ
∗,e
G − C∗,e

0 )[u], (A.8)

for some C̃∗,e between Ĉ∗,e
G and C∗,e

0 . For notational brevity, if no argument is

specified in such as ℓ
(1)
r and ℓ

(2)
rt , it is assumed to be evaluated at C∗,e

0 . After

taking matrix inversion on both sides of (A.8), we have

(C∗,e
0 − Ĉ∗,e

G )[r] =
∑
t

{
ℓrtℓ

(1)
t +

1

2
ℓrt

∑
uv

(Ĉ∗,e
G −C∗,e

0 )[u](Ĉ
∗,e
G −C∗,e

0 )[v]ℓ
(3)
tuv(C̃

∗,e)
}
,

(A.9)

with ℓrt denoting the (r, t)th entry of the inverse of the matrix ℓ(2) = (ℓ
(2)
rt ). Let

Mrt = E(ℓ
(2)
rt ) = ℓ

(2)
rt and M rt = E(ℓrt) = ℓrt. That Σ has all eigenvalues bounded

away from zero implies

max
G∈G

|M rt(C∗,e
0 )| ≤ L6

n
(A.10)

for some generic constant L6. By Lemma 5,

max
G∈G

|ℓ(1)r | = Op(n
1/2(log pn)

1/2).

Now we rewrite (A.9) as

(C∗,e
0 − Ĉ∗,e

G )[r] =
∑
t

M rtℓ
(1)
t +Rn,
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with the error term

Rn =
∑
t

{1
2
ℓrt

∑
uv

(Ĉ∗,e
G − C∗,e

0 )[u](Ĉ
∗,e
G − C∗,e

0 )[v]ℓ
(3)
tuv(C̃

∗,e)}.

On the other hand, in light of Lemma 6, we have

lim
n→∞

P (max
G∈G

||Ĉ∗,e
G − C∗,e

0 || ≤ n−1/3) → 1.

As the eigenvalues of Σ are all bounded and matrix inverse is continuous, we

have

lim
n→∞

P (max
G∈G

||ℓ(3)(C̃∗,e)|| ≤ L7N) → 1

for some constant L7. Combining, we can show that

max
G∈G

||Ĉ∗,e
G − C∗,e

0 +HG(C
∗,e
0 )−1UG(C

∗,e
0 )|| = Op(n

−2/3). (A.11)

Next, Taylor expansion for the log-likelihood leads to

ℓ(Ĉ∗,e
G − ℓ(C∗,e

0 )

= UG(C
∗,e
0 )′(Ĉ∗,e

G − C∗,e
0 ) +

1

2

∑
rt

(Ĉ∗,e
G − C∗,e

0 )[r](Ĉ
∗,e
G − C∗,e

0 )[t]Mrt + R̃n,(A.12)

where the error term is

R̃n =
1

6

∑
rtu

(Ĉ∗,e
G − C∗,e

0 )[r](Ĉ
∗,e
G − C∗,e

0 )[t](Ĉ
∗,e
G − C∗,e

0 )[u]ℓ
(3)
rtu(C̃

∗,e),

with maxG∈G |R̃n| = Op(1) based on the results above. This implies

max
G∈G

|2{ℓ(Ĉ∗,e
G )− ℓ(C∗,e

0 )} − UG(C
∗,e
0 )′HG(C

∗,e
0 )−1UG(C

∗,e
0 )| = Op(1).

Proof of Theorem 10. Let QG/T = z′G/T zG/T , where zG/T = M
1/2
G/TUG(C

∗,e
0 ).

Let v be any unit vector of length sG. Then
√
nv′zG/T

Var (v′zG/T )
=

∑
r{aG,r

∑n
i=1 UG(C

∗,e
0 , Y ∗,e

i )r}
Var (v′zG/T )

=

n∑
i=1

YG,i,

with UG(C
∗,e
0 , X∗,e

i ) denoting the score vector on data point X∗,e
i , aG,r denoting

the rth element in the vector aG = v′(nMG/T )
1/2, and

YG,i =
∑
r

{aG,rUG(C
∗,e
0 , X∗,e

i )r}
Var (v′zG/T )

.
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According to the assumptions, supG∈G+(m) ||aG||, supG∈G+(m)Var (UG(C
∗,e
0 , X∗,e

i ))
and supG∈G+(m) {Var (v′zG/T )}−1 are all bounded. This entails that the third
derivatives of the cumulant generating function g(t) of Yg,i is bounded, i.e.,
|g(3)(t)| ≤ M for some constant M for all G ∈ G+(m), and 0 ≤ |t| ≤ δ. Further-
more, the variables YG,i, i = 1, . . . , n are independent and identically distributed
with zero mean and unit variance. Thus according to Lemma 4,

P
( √

nv′zG/T

Var (v′zG/T )
≥

√
2mn log(P 2

n)
)
= o(p−2m

n ).

On the other hand, given any finite set of unit vectors V, it can be shown that
maxv∈V Var (v′zG/T ) ≤ 1. This is because H

1/2
G MG/TH

1/2
G is a projection matrix

of rankm, and thenM
1/2
G/TH

1/2
G can be represented by AΓA′, where Γ is a diagonal

matrix ofm nonzero diagonal entries and A is an ortho-normal matrix. Then zG/t

can be represented as AΓA′H
−1/2
G UG(C

∗,e
0 ). Thus Var (v′zG/T ) = v′Cov (zG,t)v =

v′AΓA′H
−1/2
G HGH

−1/2
G AΓA′v = v′AΓA′v ≤ 1, for any unit vector v. Therefore,

P (v′zG/T ≥
√

4m log pn)

≤ P (
v′zG/T

Var (v′zG/T )
≥

√
4m log pn) = o(p−2m

n ).

Combining, P (v′zG/T ≥
√
4m log pn = o(p−2m

n ). By Lemma 2 in Chen and Chen
(2012),

P (z′G/T zG/T ≥ 2l log n) ≤
∑
v∈V

P (v′zG/T ≥
√

2l log n)

for any constant l > 0, where V is a finite set of unit vectors independent of
n. Therefore, P (z′G/T zG/T ≥ 4m log pn) = o(p−2m

n ). As there are p2mn different
over-fitting model with dimension sG = m+ sT , by the Bonferroni inequality,

P ( sup
G∈G+(m)

z′G/T zG/T ≥ 4m log pn) = o(1).

Proof of Lemma 11. From Lemma 10, we have

sup
G∈G+

|2{ℓ(Ĉ∗,e
G )− ℓ(C∗,e

0 )} − UG(C
∗,e
0 )′HG(C

∗,e
0 )−1UG(C

∗,e
0 )| = Op(1).

Furthermore,

sup
G∈G+

|2{ℓ(Ĉ∗,e
GT

)− ℓ(C∗,e
0 )} − UT (C

∗,e
0 )′HT (C

∗,e
0 )−1UT (C

∗,e
0 )| = Op(1),

where C∗,e is induced by G and Ĉ∗,e
GT

denote the maximum likelihood estimate
for the submatrix C∗,e. Note that UT (C

∗,e
0 ) = DGUG(C

∗,e
0 ), so

sup
G∈G+

|2{ℓ(Ĉ∗,e
G )− ℓ(Ĉ∗,e

GT
)} −QG/T | = Op(1). (A.13)
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Proof of Theorem 7. Let

Rλ = 2{ℓ(Ĉ∗,e
Gλ

)− ℓ(Ĉ∗,e
GT

)} −QGλ/T .

Given any λ such that Gλ ∈ G+(m), we consider the following three events:

BGλ
= {QGλ/T ≤ 4m log pn}, JGλ

(M) = {|Rλ| ≤ M}, and Fλ = {BICλ >

BICGT
}. According to Lemma 10, we have P (∩Gλ∈G+(m)BGλ

) ≥ 1−o(1). This en-

tails that given any ϵ > 0, for n large enough, P (∩Gλ∈G+(m)BGλ
)≥ 1−ϵ/2. In light

of Lemma 11, there exists Mϵ and, for n large enough, P (∩Gλ∈G+(m)JGλ
(Mϵ)) ≥

1 − ϵ/2. Furthermore, for n large enough, if BGλ
and JGλ

(Mϵ) both hold, then

Fλ holds because

BICλ − BICGT
=− 2

{
ℓ
(
Ĉ∗,e
λ

)
− ℓ

(
Ĉ∗,e
GT

)}
+m(log n+ 4 log pn)

≥− 2
{
ℓ
(
Ĉ∗,e
Gλ

)
− ℓ

(
Ĉ∗,e
GT

)}
+m(log n+ 4 log pn)

≥− 4m log(pn)− 2Mϵ +m(log n+ 4 log pn)

≥m log(n)− 2Mϵ

>0,

with Ĉ∗,e
Gλ

denoting the maximum likelihood estimator given the model Gλ. This

implies that P (∩Gλ∈G+(m)Fλ) ≥ P (∩Gλ∈G+(m){BGλ
∩ JGλ

(Mϵ)}) ≥ 1 − ϵ, for n

large enough. Therefore, we have

P
{

inf
Gλ∈G+(m)

BICλ > BICGT

}
→ 1, as n → ∞.

As there are only finite number of subsets G+(m) within G+, in light of Lemma

3 the result follows.
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