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Abstract: The small-n-large-P situation has become common in genetics research,

medical studies, risk management, and other fields. Feature selection is crucial in

these studies yet poses a serious challenge. The traditional criteria such as AIC,

BIC, and cross-validation choose too many features. In this paper, we examine

the variable selection problem under the generalized linear models. We study the

approach where a prior takes specific account of the small-n-large-P situation. The

criterion is shown to be variable selection consistent under generalized linear models.

We also report simulation results and a data analysis to illustrate the effectiveness

of EBIC for feature selection.

Key words and phrases: Consistency, exponential family, extended Bayes informa-

tion criterion, feature selection, generalized linear model, small-n-large-P .

1. Introduction

In many scientific investigations, researchers explore the relationship between

a response variable and some explanatory features through a random sample. Ex-

amples of such features include disease genes and quantitative trait loci in the

human genome, biomarkers responsible for disease pathways, and stocks gener-

ating profits in investment portfolios. The selection of causal features is a crucial

aspect in this. When the sample size n is relatively small but the number of

features P under consideration is extremely large, there is a serious challenge

to the selection of causal features. Feature selection in the sense of identifying

causal features is different from, but often interwoven with, model selection; the

latter involves two operational components: a procedure for selecting candidate

models, and a criterion for assessing the candidate models. In this article, we

concentrate on the issue of model selection criteria.

Traditional model selection criteria such as Akaike’s information criterion

(AIC) (Akaike (1973)), cross-validation (CV) (Stone (1974)) and generalized

cross-validation (GCV) (Craven and Wahba (1979)) essentially address the pre-

diction accuracy of selected models. The popular Bayes information criterion

(BIC) (Schwarz (1978)) was developed from the Bayesian paradigm in a differ-

ent vein. BIC approximates the posterior model probability when the prior is
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uniform on the model space. However, in the small-n-large-P situation, these cri-

teria become overly liberal and fail to serve the purpose of feature selection. This

phenomenon has been observed by Broman and Speed (2002), Siegmund (2004),

and Bogdan, Doerge and Ghosh (2004) in genetic studies. See also Donoho

(2000), Singh et al. (2002), Marchini, Donnelly, and Cardon (2005), Clayton et

al. (2005), Fan and Li (2006), Zhang and Huang (2008), and Hoh, Wille, and Ott

(2008). Some recent BIC related model selection procedures in new situations

can be found in Wang, Li, and Tsai (2007), Jiang et al. (2008) and many others.

Recently, Chen and Chen (2008) pointed out that the uniform prior on the

model space is the cause of BIC’s liberality in small-n-large-P situation. Cor-

rection of this problem leads to a family of extended Bayes information criteria

(EBIC). Bogdan, Doerge and Ghosh (2004) made the same observation but pro-

vided slightly different correction measures. Mathematically, the EBIC is the

classical BIC with an additional penalty term 2γ logP with a positive γ. Inter-

estingly, Foster and George (1994) found that, instead of adding the logP term,

simply replacing log n with 2 logP in BIC gives empirically optimal results in

view of risk inflation, and their finding was echoed in Abramovich et al. (2006).

The EBIC is shown to be selection consistent in the small-n-large-P frame-

work under the normal linear model. Its validity under a wide class of regression

models remains an unsolved problem. In this paper, we have tailor-developed

technical results for exponential family distributions which are of interest in

themselves. They are particularly useful in proving the uniform consistency of

the maximum likelihood estimates of the coefficients in the linear predictor of all

generalized linear models (GLM) containing causal features (Theorem 1), and

the selection consistency of EBIC under GLM with canonical links (Theorem 2).

In the implementation, we need to place an upper bound K on the number of

causal features. If K is chosen too small in an application, the selection consis-

tency of the procedure with EBIC may not be realized. To tackle this issue, we

show that if K is chosen too small the EBIC will select a model exhausting all K

features. If the selected model exhausts all the K features allocated, reanalyzing

the data with a larger K is suggested.

We have also investigated the performance of EBIC by simulation under the

logistic regression model and the Poisson log-linear model. The logistic regression

model is valid in both prospective and retrospective studies, see McCullagh and

Nelder (1989, Chap. 4), and is a major approach in genetic research, see for ex-

ample The Wellcome Trust Case-Control Consortium (2007). In principle, EBIC

is an all subsets method which is computationally infeasible. Our implementa-

tion strategy for EBIC follows that of Wang, Li, and Tsai (2007) and Zhang,

Li, and Tsai (2010). We use regularization methods such as LASSO (Tibshirani

(1996)), SCAD (Fan and Li (2001)) or Elastic Net (Zou and Hastie (2005)) to
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obtain regression models with various levels of sparsity. Because they only deter-

mine the order of the penalty level for selection consistency, some cross validation

procedure is ultimately used to select the final model. Replacing the computer

intensive cross validation procedure by EBIC creates a promising new approach.

In simulation, we used R packages (R Development Core Team (2010)) glmpath

(Park and Hastie (2007)) and glmnet (Friedman, Hastie, and Tibshirani (2010)).

designed for LASSO and Elastic Net.

The remainder of the paper is arranged as follows. In Section 2 the GLM

is briefly reviewed and its properties in the small-n-large-P framework are in-

vestigated. In Section 3, EBIC for GLM is introduced and its consistency is

established. Simulation studies are reported in Section 4. A data example is

analyzed in Section 5, and we put some technical proofs and other information

in an Appendix.

2. The Small-n-Large-P Sparse GLM and Its Asymptotic Properties

Let Y be a response variable and x a vector of feature variables (hereafter,

for convenience, the variables are called features). A GLM consists of three

components. The first component is an exponential family distribution assumed

for Y , with density function

f(y; θ) = exp{θτy − b(θ)} (2.1)

with respect to a σ-finite measure ν. The parameter θ is called the natural

parameter and the set

Θ =

{
θ :

∫
exp{θτy}dν < ∞

}
.

is called the natural parameter space. The exponential family has the properties:

(a) the natural parameter space Θ is convex; (b) at any interior point of Θ, b(θ)

has all derivatives and b′(θ) = E(Y ) ≡ µ , b′′(θ) = Var (Y ) ≡ σ2; (c) at any

interior point of Θ, the moment generating function of the family exists and is

given by M(t) = exp{b(θ + t) − b(θ)}. The second component of the GLM is a

linear predictor given by η = xτβ; that is, the GLM assumes that the features

affect the distribution of Y through this linear form. The third component of

the GLM is a link function g that relates the mean µ to the linear predictor by

g(µ) = η = xτβ.

We investigate the feature selection problems given a random sample {(yi,xi) :

i = 1, . . . , n} with two characteristics: (i) small-n-large-P , the number of features

is much larger than the sample size; and (ii) sparsity, only a few un-identified

features affect Y . We refer to a GLM with these two characteristics as the small-

n-large-P sparse GLM.
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The GLM implies a restrictive relationship between µ and σ2. A more flex-

ible model is f(y; θ, ϕ) = exp{ϕ−1[θτy − b(θ)] + c(y, ϕ−1)} for some function

c(y, ϕ−1) and dispersion parameter ϕ. When the value of ϕ is assumed, this

model reduces to the usual GLM. Otherwise, ϕ must be estimated together with

µ or θ. Nevertheless, the EBIC procedure discussed in the next section can be

directly implemented. The asymptotic properties of the GLM and the selection

consistency of EBIC must be re-established for the new model. For the special

normal linear regression model where ϕ = σ2, selection consistency and other

properties of the EBIC are given in Chen and Chen (2008).

Let X be the set of all features under consideration. Let s be a subset of X ,

ν(s) the number of features in s, and β(s) the vector of the components in β that

corresponds to the features in s. Let s0 ∈ X be the subset of causal features that

contains and only contains all the features affecting Y . Let β0 be the unknown

true value of the parameters. The components of β0 other than those in s0 are

zero. Let xi(s) be the vector of the components of xi that correspond to β(s).

Let

B(s) = {β : xi(s)
τβ(s) ∈ Θ, i = 1, . . . , n}.

Note that B(s) is convex. Let ln be the log likelihood function ln(β) =
∑n

i=1 log

f(yi; θi), where θi depends on xi through the relationship g(µi) = xτ
i β. Here g

is the link function. We consider only the canonical link g(µi) = θi. Let

sn(β) =
∂ln
∂β

, Hn(β) = − ∂2ln
∂β∂βτ .

With the canonical link, we have

ln(β) =

n∑
i=1

[yix
τ
i β − b(xτ

i β)],

sn(β) =

n∑
i=1

[yi − b′(xτ
i β)]xi,

Hn(β) =
n∑

i=1

b′′(xτ
i β)xix

τ
i .

Here β is a generic dimension reduced β(s), and xi, sn, and Hn are also corre-

sponding dimension reduced quantities.

Let A0 = {s : s0 ⊂ s; ν(s) ≤ K}, and A1 = {s : s0 ̸⊂ s; ν(s) ≤ K}. We allow

the composition of s0 and therefore A0 and A1 vary in the limiting process. The

asymptotic results are established when n → ∞, with s0, β0 and other subjects

evolving in an orderly fashion as specified in the following conditions. We assume

that features are standardized. Our results are rigorously established for fixed
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K, while providing insight on what happens when K = O(log n) to avoid overly

tedious technical specifications.

A1. As n → ∞, P = O(exp(nκ)) for some constant 0 < κ < 1/3.

A2. inf min{|β0(j)| : j ∈ s0} > n−1/4.

A3. The interior of B(s) is not empty, and β0(s) ∈ B(s) for all s ∈ A0 ∪A1.

A4. There exist positive constants c1, c2 such that, for all sufficiently large n,

c1 ≤ λmin(n
−1Hn(β0(s ∪ s0))) ≤ λmax(n

−1Hn(β0(s ∪ s0))) ≤ c2,

for all s ∈ A1, where λmin and λmax denote, respectively, the smallest and

the largest eigenvalues.

A5. For any given ϵ > 0, there exists a constant δ > 0 such that, when n is

sufficiently large,

(1− ϵ)Hn(β0(s ∪ s0)) ≤ Hn(β(s ∪ s0)) ≤ (1 + ϵ)Hn(β0(s ∪ s0))

for all s ∈ A1 and β(s ∪ s0), and ∥β(s ∪ s0)− β0(s ∪ s0)∥ ≤ δ.

A6. With xij the jth component of xi, there exists a positive constant C such

that |xij | ≤ C and

max
1≤i≤n

{
x2ij∑n

i=1 x
2
ijσ

2
i

}
≤ Cn−1/6

log n

for all 1 ≤ j ≤ P , all n sufficiently large.

Remark. Condition A4 is similar to the UUP condition given by Candes and

Tao (2007), which might be too restrictive. For instance, if two features in s

but not in s0 are collinear, A4 is violated. The selection consistency is likely

valid under weaker conditions than A4 but we have yet to identify such. We also

suspect that the proof under weaker conditions would be lengthy. Condition A5

extends A4 to a small neighborhood of β0. These two require the true model to

stay at some distance from wrong models as n increases. A6 can be violated only

if the square of a feature has a severely skewed distribution, for instance, when

a binary feature has less than log n 1’s in n observations. However, such features

would have readily been screened out before a variable selection procedure is

applied. The above conditions are placed on x’s as if they were not random. For

random x, these properties are usually satisfied in probability due to the Law of

Large Numbers.

Let β̂(s) be the MLE of β(s) in the GLM with features in s. We first have a

uniform consistency result of β̂(s) for s ∈ A0. The proof is given in the Appendix.
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Theorem 1. Under A1-A6 with n → ∞,

max
s∈A0

∥β̂(s)− β0(s)∥ = Op(n
−1/3).

Remark: (a) The result is unaffected if β0 depends on n. (b) Condition A4 is

crucial for the validity of this result. For, suppose there exist two completely

collinear features, say x1 = x2, then the likelihood values at β0(s) and β1(s) =

β0(s) + (α,−α, 0, . . . 0) are identical for any α and this clearly invalidates our

result. Since β1(s) is not as sparse as β0(s), the EBIC likely screens it out of

consideration. Hence, the selection consistency of the EBIC (to be established)

may still be true though the proof is beyond our reach at the moment. (c)

As long as Knκ = o(n1/3), the proof of this result remains valid, that is, the

theoretical result remains true when K increases with n albeit at a low rate, for

instance K = O(log n). However, Condition A4 with very large K becomes more

restrictive.

3. The EBIC and Its Consistency under Small-n-Large-P Sparse GLM

In the small-n-large-P setting, the traditional Bayes information criterion

(BIC) is inappropriate for feature selection. It tends to select too many features

that are not necessarily causal. Chen and Chen (2008) have recently proposed a

family of extended Bayes information criteria (EBIC). In EBIC, models are clas-

sified according to the number of features they contain, and the prior probability

assigned to a model is inversely proportional to the size of the model class to

which the model belongs. EBIC for model s is

EBIC(s) = −2ln(β̂(s)) + ν(s) log n+ 2ν(s)γ logP.

The consistency of EBIC has been proved under normal linear models when

P = O(nκ) and γ > 1 − 1/(2κ). The false discovery rate (FDR) (Benjamini

and Hochberg (1995)) is the proportion of falsely selected features among all

the selected features, and the positive selection rate (PSR) is the proportion of

selected causal features among all the causal features. The selection consistency

leads to that FDR converges to 0 and PSR converges 1 simultaneously as n goes

to infinity. Simulation results indicate that EBIC with γ in the above consistency

range effectively keeps the FDR low while achieving a reasonable PSR.

We now state the consistency of EBIC under generalized linear models with

canonical links. Its proof is deferred to the Appendix.

Theorem 2. Under A1−A6 with n → ∞, we have

P{min
s∈A1

EBIC(s) ≤ EBIC(s0)} → 0, (3.1)
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for any γ > 0;

P{ min
s∈A0,s ̸=s0

EBIC(s) ≤ EBIC(s0)} → 0, (3.2)

for γ > 1− log n/(2 logP ).

As long as Knκ = o(n1/3), for instance when K = O(log n), the above results

remain valid. In applications, one must choose a K to start the process. If K

is less than the cardinality of s0, Theorem 3 below shows that the EBIC selects

almost surely the model that exhausts all K retained features.

We make some preparation. Let

Gn(k) = sup{
n∑

i=1

[θib
′(θ0i)− b(θi)] : θi = xi(s)

τβ(s); ν(s) = k},

where θ0i=xτ
i β0 is the true parameter value and θib

′(θ0i)−b(θi)=E{log f(yi; θi)}.
Because of the convexity of b(·), the supremum Gn(k) is attained at some βk that

has k non-zero components. We replace conditions A4 and A5 by

A4
′

c1 < λmin(n
−1Hn(β(s))) for all ν(s) < 2ν(s0) and some c1 > 0.

A5
′

n1/3∥βk − βk+1∥2 → ∞ as n → ∞.

Condition A4
′
is slightly more restrictive than A4. Both have potential to be

weakened but we have yet to find substitutes. Condition A5
′
is not restrictive

though hard to grasp. If n−1
∑n

i=1[θib
′(θ0i) − b(θi)] has a non-degenerate and

smooth limit, then βk should converge to the maximum point of this limit. Hav-

ing different number of non-zero elements, βk and βk+1 should be different, which

leads to A5
′
. The technical conditions to ensure these results could be lengthy.

Theorem 3. Under A1−A3, A4’, A5’ and A6 with n → ∞,

P{EBIC(k) > EBIC(k + 1)} → 1, (3.3)

where EBIC(k) = min{EBIC(s) : ν(s) = k} for any γ > 0 and k < ν(s0).

The proof is given in the Appendix. Theorem 3 states that EBIC(k) is

monotone decreasing when k < ν(s0) and provides an adaptive strategy for the

choice of K. We start with a generous upper bound of the number of causal

features according to the scientific background and the feasibility of the current

sample size. If the selected model does not exhaust all K retained features, K is

then a right choice. Otherwise, we choose a larger K and repeat the procedure

until K is large enough that the selected final model does not exhaust all the

retained features.



562 JIAHUA CHEN AND ZEHUA CHEN

4. Simulations

We present simulation studies for assessing the performance of EBIC under

GLM. They were conducted under the logistic regression model and the Poisson

log-linear model.

We first consider simulations in the framework of a case-control study with an

equal number of cases and controls. The disease status y, the response variable,

takes value 1 for cases and 0 for controls. The features xij under study are single

nucleotide polymorphisms (SNPs) in the human genome. Let s0 be the index

set of SNPs that are causally associated with the disease status. For j ̸∈ s0, xij
values were generated under the assumption of Hardy-Weinberg equilibrium; that

is, they were simulated from a binomial distribution with parameters (2, pj), pj
the allele frequency of an allele for the jth SNP. The allele frequency pj was not

fixed but was generated from a Beta distribution with parameters (α = 2, β = 2),

independently for each j and in each simulation run. This choice was made after

some simple computer experiments. The outcomes of generated pj concentrated

mainly around .5, but moderately spread out to .1 and .9. Given pj , xij : i =

1, . . . , n = n1 + n2 were independently generated.

For j ∈ s0, the xij values were generated in the same way as in control group.

At the same time, from

logitP (Y = 1|X(s0) = x(s0)) = α+ xτ (s0)β0,

we get

P (X(s0) = x(s0)|Y = 1) = P (X(s0) = x(s0)|Y = 0) exp(α∗ + xτ (s0)β0), (4.1)

where α∗ is the normalization factor.

The conditional probability P (X(s0) = x(s0)|Y = 0) can be reasonably

specified such that it decreases as the number of disease alleles of the SNPs

involved increases, or simply taken as a constant. Once P (X(s0) = x(s0)|Y = 0)

is specified, the conditional probabilities given by (4.1) up to the normalization

factor are computed. After having been normalized, these probabilities are used

in an R program to sample from the set of all possible x(s0)’s. When s0 contains

m variables, there are 3m possible x(s0) distinct vectors of dimension m with

−1, 0, 1 entries. The vectors for the n2 cases are sampled with replacement.

In the simulation studies, we set the number of both cases and controls to

be n = 500. Because of the extensive computational effort required, we did not

increase n, but instead used a number of different β0 vectors, which has the same

effect on the detectability of the causal features. The choices of m, P , and β0

used in the simulation studies are given in Table 1.

With P ≤ 10,000, the glmnet function was directly applied to identify a

sequence of ordered SNPs, denoted by s, of length no more than K = 40.
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Table 1. Model specifications.

Model m P β0

1 2 500 (0.5, 0.7)
2 2 500 (0.3, 0.5)
3 3 500 (0.5, 0.6, 0.7)
4 3 500 (0.3, 0.4, 0.5)
5 5 500 (0.3, 0.4, 0.5, 0.6, 0.7)
6 8 500 (0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9)
7 2 1,000 (0.5, 0.7)
8 2 1,000 (0.3, 0.5)
9 3 1,000 (0.5, 0.6, 0.7)
10 3 1,000 (0.3, 0.4, 0.5)
11 5 1,000 (0.3, 0.4, 0.5, 0.6, 0.7)
12 8 1,000 (0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9)
13 3 10,000 (0.6, 0.7, 0.8)
14 3 10,000 (0.4, 0.5, 0.6)
15 5 10,000 (0.3, 0.4, 0.5, 0.6, 0.7)
16 8 10,000 (0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9)
17 3 100,000 (10.3, 10.4, 10.5)
18 3 100,000 (0.5, 0.6, 0.7)

We then used glm.fit to evaluate the submodels (at most 40 of them) formed

by the first k variables in the sequence for k = 1, . . . ,K. The BIC and EBIC

values were computed and the submodels minimizing BIC or EBIC were selected.

Because glmnet does not give complete sample path, some intermediate models

were not included. In comparison, glmpath provides complete sample path but

is computationally less efficient. The simulation results based on glmpath for

P ≤ 10, 000 were similar and are omitted here because our purpose is to compare

information criteria, not numerical methods.

With P = 100, 000, the computer does not have large enough memory to

store the design matrix to be screened by glmnet. We randomly divided them

into groups of size 1,000. We used glmnet to select 30+ features from each

group, and pooled them together to be further screened. Using several rounds of

selection when P is very large was proposed and investigated in Chen and Chen

(2008).

To shed light on the appropriate size of γ, we present the results obtained

by taking γ = 0, .25, .5, 1. Note that the ordinary BIC is a special form of EBIC

with γ = 0. The number of simulation replicates is N = 500. The simulation

results in terms of average positive selection and false discovery rates (PSR and

FDR), as well as the average number of selected SNPs, are summarized in Table

2. The average PSR and FDR are defined as follows. Let s0 be the set of causal
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Table 2. Simulation results under Logistic Regression Model (FDR, PSR, ν∗)

Model γ = 0 γ = 0.25 γ = 0.50 γ = 1.0
1 (0.60, 0.95, 6.73) (0.27, 0.88, 3.05) (0.13, 0.80, 2.10) (0.03, 0.67, 1.42)
2 (0.60, 0.76, 5.58) (0.26, 0.61, 2.11) (0.07, 0.44, 1.06) (0.02, 0.29, 0.62)
3 (0.53, 0.95, 7.75) (0.24, 0.89, 4.17) (0.10, 0.83, 3.00) (0.02, 0.70, 2.20)
4 (0.56, 0.78, 6.82) (0.22, 0.64, 2.87) (0.07, 0.49, 1.71) (0.01, 0.29, 0.90)
5 (0.45, 0.86, 9.25) (0.18, 0.75, 5.05) (0.07, 0.66, 3.71) (0.01, 0.48, 2.47)
6 (0.39, 0.80, 11.96) (0.15, 0.71, 7.27) (0.07, 0.64, 5.74) (0.01, 0.52, 4.25)
7 (0.73, 0.96, 1.06) (0.32, 0.88, 3.50) (0.13, 0.78, 2.08) (0.03, 0.63, 1.35)
8 (0.74, 0.76, 9.08) (0.31, 0.57, 2.33) (0.10, 0.42, 1.08) (0.01, 0.26, 0.54)
9 (0.67, 0.96, 11.68) (0.28, 0.89, 4.48) (0.11, 0.80, 2.93) (0.02, 0.67, 2.10)
10 (0.70, 0.79, 1.37) (0.26, 0.60, 2.90) (0.09, 0.46, 1.67) (0.01, 0.26, 0.80)
11 (0.59, 0.87, 12.64) (0.24, 0.76, 5.70) (0.08, 0.63, 3.61) (0.01, 0.46, 2.33)
12 (0.51, 0.81, 15.14) (0.20, 0.71, 7.77) (0.08, 0.62, 5.64) (0.02, 0.49, 4.07)
13 (0.84, 1.00, 2.51) (0.60, 1.00, 1.37) (0.34, 0.96, 6.03) (0.15, 0.89, 3.73)
14 (0.90, 1.00, 31.84) (0.61, 0.99, 11.20) (0.34, 0.96, 5.95) (0.13, 0.89, 3.57)
15 (0.82, 1.00, 3.28) (0.51, 0.99, 13.22) (0.29, 0.95, 8.30) (0.10, 0.86, 5.25)
16 (0.66, 0.99, 25.19) (0.37, 0.97, 14.50) (0.19, 0.92, 1.12) (0.06, 0.83, 7.36)
17 (0.89, 1.00, 29.00) (0.76, 0.99, 16.16) (0.53, 0.97, 9.12) (0.26, 0.90, 4.69)
18 (0.90, 0.99, 3.22) (0.77, 0.99, 16.15) (0.47, 0.96, 7.54) (0.15, 0.86, 3.60)

features, and s∗j the features selected in the jth replicate, j = 1, . . . , N . Then

PSR =

∑N
j=1 ν(s

∗
j ∩ s0)

Nν(s0)
, FDR = N−1

N∑
j=1

ν(s∗j/s0)

ν(s∗j )
.

In Table 2, ν∗ = (1/N)
∑N

j=1 ν(s
∗
j ).

The simulation results confirm the inadequacy of BIC for feature selection

when P is large. The FDR with BIC is high under all models and increases as

P gets larger. On the other hand, EBIC with γ = 1 tightly controls the FDR in

all cases. At the same time, its PSR remains competitive with that of BIC. This

is particularly important because the latter yields substantially smaller average

model sizes ν∗.
In practical problems, one often needs to make a trade-off between PSR and

FDR. If the FDR is of less concern, a value of γ less than 1 can be used. The

simulation results indicate that γ = 0.5 is worth considering. It keeps the FDR

at reasonably low levels but achieves a higher PSR than γ = 1. γ = 0.25 could

also be an appropriate choice. The BIC is not a good choice because of its high

FDR and its liberal nature as indicated by the noticeably larger average model

sizes in Table 2.

We used K = 30 and recorded the number of times all K features were

exhausted. This was 181 in Models 1-16 and 534 in Models 17-18 for BIC. For
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Table 3. Frequency of ν(ŝ) = K in 500 repetitions

K m γ = 0 γ = 0.25 γ = 0.50 γ = 1.0
5 10 357 297 212 75
5 15 419 380 325 185
15 10 55 2 0 0
15 15 119 13 1 0
30 10 0 0 0 0
30 15 0 0 0 0

Table 4. Simulation results under the Poisson Log-linear Model (FDR, PSR, ν∗).

Model γ = 0 γ = 0.25 γ = 0.50 γ = 1.0
8 (0.72, 0.97, 7.97) (0.30, 0.95, 3.06) (0.07, 0.90, 2.01) (0.00, 0.79, 1.58)
10 (0.63, 0.98, 8.88) (0.22, 0.96, 3.97) (0.06, 0.94, 3.03) (0.00, 0.86, 2.57)
12 (0.36, 0.95, 12.56) (0.10, 0.93, 8.35) (0.02, 0.90, 7.36) (0.00, 0.85, 6.82)
14 (0.85, 0.99, 21.16) (0.49, 0.98, 6.42) (0.10, 0.97, 3.38) (0.00, 0.93, 2.78)
16 (0.65, 0.93, 22.24) (0.24, 0.90, 9.77) (0.05, 0.86, 7.29) (0.00, 0.80, 6.43)
18 (0.89, 0.99, 28.30) (0.65, 0.99, 9.26) (0.17, 0.98, 3.77) (0.00, 0.96, 2.89)

EBIC with γ = 0.25 the corresponding totals were 2, 57, with γ = 0.5, 1, 4, and

none with γ = 1. Apparently, the average model size would be even larger if BIC

is accompanied with K > 30. At the same time, Theorem 3 correctly predicts

that there is no need of increasing K for EBIC.

To examine the relevance of the asymptotic result in Theorem 3, we gener-

ated data from models with m = ν(s0) = 10, 15, P = 500, and let β be replicates

of (0.2, 0.3, 0.4, 0.5, 0.6). We applied EBICs with K = 5, 15, 30. The numbers

of times all K features were exhausted are reported in Table 3. The simulation

results clearly conform to the theoretical conclusions.

In Table 4, we report simulation results under the Poisson log-linear model.

In this case, the response Y has Poisson distribution with mean in the form

x(s0)β0(s0). We generated x the same way as in the logistic regression model

for the control group. We used the same β0, but divided by 2 because the task

of identifying casual features was found much less challenging, in the pilot study.

We only included models with P ≥ 1,000 and smaller β0.

The results were impressive for EBIC. Take the outcome of Model 8 as an

example, EBIC0.5 cut the false positive rate from 72% to 7% while the positive

selection rate was only reduced from 97% to 90%. The most impressive case was

for Model 18 where P = 100, 000. EBIC0.5 practically achieved the same positive

selection rate but substantially reduced the false positive rate from 89% to 17%.

In all cases, the average model sizes selected by EBIC0.5 were close to the true

model sizes, while BIC persistently selected too many features.
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5. An Example

In Singh et al. (2002), the researchers measured P =6,033 genes on each

of n = 102 men, n1 = 50 controls and n2 = 52 prostate cancer patients. The

purpose of the study was to build a model for predicting the disease status

of a man given the microarray measurement of the same 6,033 genes. Efron

(2008) proposed an empirical Bayes approach that puts the discriminant power

of each gene into a single t-type statistic, Ŵi, and a linear combination Ŝλ =∑
δ̂iŴi is used for prediction. The Bayes component is introduced through a

shrunken centroids algorithm (Tibshirani et al. (2002)); it shrinks the δ̂i values

by increasing the value of a tuning parameter (shrinkage value λ) and the non-

zero δ̂i values corresponding to a particular value of the tuning parameter are

used for prediction. In particular, when the shrinkage value λ = 2.16, 377 genes

are chosen, which achieves the lowest cross-validation error rate of 9%. When

λ = 4.32, 4 genes are chosen with a cross-validation error rate of 41%.

We re-analyze the data by building a generalized linear model

logit{P (Y = 1|x)} = xτβ,

where Y is the status of prostate cancer and x is the vector of P = 6, 033

gene expression levels. The feature selection method with EBIC is used for the

analysis.

We first examined the correlation structure of the gene expression data. We

randomly selected samples of 20 of the 6,033 genes and computed the eigenvalues

of the matrix xτ (s)x(s). We found that in only about 8% of these samples was

the smallest eigenvalue of the above matrix below 10. Therefore, we are confident

that the identifiability conditions A4 and A5 can be satisfied with K = 20. We

chose γ = 0.5 for EBIC, because it offers a good trade-off between the FDR and

the PSR as our simulation study suggested.

With the powerful R software package glmnet, we easily identified the 10

most important genes. These genes are then ordered in importance by glmpath.

The generalized linear models including the first gene, the first two genes, and

so on, were fitted and the deviances (given in the second row), BIC and EBIC

values (given in the third and fourth row) were computed. The delete-one cross-

validation errors were also computed and are given in the fifth row.

Gene No. 610 1720 332 364 1068 914 3940 1077 4331 579

Deviance 113.6 94.2 80.0 74.8 64.3 58.0 50.0 31.9 25.1 21.3

BIC 113.6 98.8 89.2 88.7 82.8 81.1 77.7 64.3 62.1 62.9

EBIC0.5 113.6 107.6 106.7 114.8 117.6 124.6 130.0 125.2 131.7 141.2

CV-error 27.5 19.6 16.7 14.7 14.7 8.8 11.8 7.8 9.8 10.8



EXTENDED BIC FOR SMALL-n-LARGE-P SPARSE GLM 567

Using EBIC, the first three genes were selected. When these genes were

used for classification, the cross-validation error rate was 16.7%. In comparison,

the Bayes method chooses around 80 genes to attain a similar cross-validation

error rate, see Efron (2008). When cross-validation was used as the criterion, an

eight-gene model was selected with a cross-validation error rate of 7.8%. If the

ordinary BIC is used, a nine-gene model was selected with a cross-validation error

rate of 9.8%. The delete-one cross-validation is widely known to be too liberal,

and the BIC is even worse in this example. EBIC selects a more parsimonious

model but retains a low cross-validation error rate.
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A. Appendix

We state and prove one technical lemma, provide proofs of Theorems 1−3

and give a pseudo-code in R for the convenience of potential users.

A.1. Lemma 1 and its proof

Lemma 1. Let Yi, i = 1, . . . , n, be independent random variables following expo-

nential family distributions of form (2.1) with natural parameters θi. Let µi

and σ2
i denote the mean and variance of Yi, respectively. Suppose that {θi;

i = 1, . . . , n} is contained in a compact subset of the natural parameter space

Θ. Let ani, i = 1, . . . , n, be real numbers such that
∑n

i=1 a
2
niσ

2
i = 1, and

max1≤i≤n{|ani|} = o(n−1/6). Then, for any m = O(n1/3) and positive ϵ,

P

(
n∑

i=1

ani(Yi − µi) >
√
2m

)
≤ exp{−m(1− ϵ)}

when n is sufficiently large.

Remark. The constant ϵ does not depend on a particular {ani}ni=1 whenever ani

have the same upper bound.



568 JIAHUA CHEN AND ZEHUA CHEN

Proof. Let qn =
√
2m. For any t > 0

P (
n∑

i=1

ani(Yi − µi) > qn) ≤ E exp{t[
n∑

i=1

ani(Yi − µi)− qn]}

= exp{
n∑

i=1

[b(θi + anit)− b(θi)− µianit]− qnt}

= exp

[
− t2

2
{1 +

n∑
i=1

a2ni(b
′′(θi + anit̃)− b′′(θi))}

]
for some 0 < t̃ < t. Let t = qn and, by the compactness of Θ, |anit̃| = o(1).
Hence, there exists a generic constant ϵ such that

n∑
i=1

a2ni|b′′(θi + anit̃)− b′′(θi)| ≤ ϵ.

Consequently,

n∑
i=1

[b(θi + anit)− b(θi)− µianit]− qnt ≤ −1

2
q2n{1− ϵ} = −m(1− ϵ).

Hence,

P (

n∑
i=1

ani(Yi − µi) >
√
2m) ≤ exp{−m(1− ϵ)}

for any ϵ > 0 and sufficiently large n. This completes the proof.

A.2. Proof of Theorem 1

Proof. For any unit vector u, let β(s) = β0(s) + n−1/3u. Clearly, when n is
sufficiently large, β(s) falls into the neighborhood of β0(s) so that A4 and A5
are applicable. Thus, for all s ∈ A0,

ln(β(s))− ln(β0(s)) = n−1/3uτsn(β0(s))−
1

2
n1/3uτ{n−1Hn(β̃(s))}u

≤ n−1/3uτsn(β0(s))− c1(1− ϵ)n1/3.

Hence, for some generic positive constant c,

P{ln(β(s))− ln(β0(s)) > 0 : for some u}
≤ P{uτsn(β0(s)) ≥ cn2/3 : for some u}
≤
∑
j∈s

P (s2nj(β0(s)) ≥ cn4/3)

=
∑
j∈s

P (snj(β0(s)) ≥ cn2/3) +
∑
j∈s

P (−snj(β0(s)) ≥ cn2/3).
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Note that

snj(β0(s)) =

n∑
i=1

[Yi − b′(xτ
i β0(s))]xij =

n∑
i=1

(Yi − µi)xij .

Let B2
n =

∑n
i=1 x

2
ijσ

2
i and ani = B−1

n xij . By A6, we have B2
n = O(n) and

max |ani| = o(n−1/6). Under these conditions, Lemma 1 provides the inequality:

P (snj(β0(s)) ≥ cn2/3) ≤ P (

n∑
i=1

ani(Yi − µi) ≥
√

2cn1/3) ≤ exp{−cn1/3}.

The number of models in A0 is no more than PK = exp{Knκ} = exp{o(n1/3)}).
Therefore, ∑

s∈A0

∑
j∈s

P (snj(β0(s)) ≥ cn2/3) = o(1).

Replacing Yi − µi with −(Yi − µi) in the above argument, we also have∑
s∈A0

∑
j∈s

P (−snj(β0(s)) ≥ n2/3) = o(1).

Because ln(β(s)) is a concave function for any s, this implies that with probability

tending to 1 as n → ∞, the maximum likelihood estimator β̂(s) exists and falls

within an n−1/3-neighborhood of β0(s) uniformly for s ∈ A0. The theorem is

proved.

A.3. Proof of Theorem 2

Proof of (3.1). Note that for any s, EBIC(s) ≤ EBIC(s0) implies that

ln(β̂(s))− ln(β̂(s0)) ≥ {ν(s)− ν(s0)}(log n+ 2γ logP )

≥ −ν(s0)(log n+ 2γ logP ). (A.1)

We show that the probability that (A.1) occurs at any s ∈ A1 goes to 0. For any

s ∈ A1, let s̃ = s ∪ s0. Consider those β(s̃) near β0(s̃). We have

ln(β(s̃))− ln(β0(s̃)) = {β(s̃)− β0(s̃)}τsn(β0(s̃))

−1

2
{β(s̃)− β0(s̃)}τHn(β

∗(s̃)){β(s̃)− β0(s̃)}

for some β∗(s̃) between β(s̃) and β0(s̃). By A4 and A5,

{β(s̃)− β0(s̃)}τHn(β
∗(s̃)){β(s̃)− β0(s̃)} ≥ c1n(1− ϵ)∥β(s̃)− β0(s̃)∥2.

Therefore,

ln(β(s̃))− ln(β0(s̃)) ≤ {β(s̃)− β0(s̃)}τsn(β0(s̃))−
c1
2
n(1− ϵ)∥β(s̃)− β0(s̃)∥2.
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Hence, for any β(s̃) such that ∥β(s̃)− β0(s̃)∥ = n−1/4, we have

ln(β(s̃))− ln(β0(s̃)) ≤ n−1/4∥sn(β0(s̃))∥ −
c1
2
(1− ϵ)n1/2.

By Lemma 1, maxs∈A1 ∥sn(β0(s̃))∥ = Op(
√
nm), where m = o(n1/3). Therefore,

max{ln(β(s̃))− ln(β0(s̃)) : s ∈ A1, ∥β(s̃)− β0(s̃)∥ = n−1/4}
≤ c{n−1/4(nm)1/2 − n1/2} ≤ c(n5/12 − n1/2) ≤ −cn1/2

for a generic positive constant c in probability.

Because ln(β(s̃)) is concave in β(s̃), the above result implies that the max-

imum of ln(β(s̃)) is attained inside ∥β(s̃)− β0(s̃)∥ ≤ n−1/4. The concavity also

implies that

sup{ln(β(s̃))− ln(β0(s̃)) : s ∈ A1, ∥β(s̃)− β0(s̃)∥ ≥ n−1/4}
≤ sup{ln(β(s̃))− ln(β0(s̃)) : s ∈ A1, ∥β(s̃)− β0(s̃)∥ = n−1/4}
≤ −cn1/2. (A.2)

Now let β̆(s̃) be β̂(s) augmented with zeros corresponding to the elements

in s̃− s. It can be seen that

∥β̆(s̃)− β0(s̃)∥ ≥ ∥β0(s0 − s)∥ > n−1/4,

by A2. Therefore, uniformly over s ∈ A1 and with probability tending to 1,

ln(β̂(s))− ln(β0(s0)) = ln(β̆(s̃))− ln(β0(s̃)) ≤ −cn1/2.

Hence, the probability that (A.1) occurs at any s ∈ A1 tends to 0 which is (3.1).

Proof of (3.2). For s ∈ A0, let k = ν(s)−ν(s0). It suffices to consider a fixed k,

since k takes only the values 1, . . . ,K−ν(s0). By definition, EBIC(s) ≤ EBIC(s0)

if and only if

ln(β̂(s))− ln(β̂(s0)) ≥ k{0.5 log n+ γ logP}.

We show that, uniformly in s ∈ A0 with ν(s) = k, this inequality does not occur.

For large n,

ln(β̂(s))− ln(β̂(s0)) ≤ ln(β̂(s))− ln(β0(s))

≤ {β̂(s)− β0(s)}τsn(β0(s))−
1− ϵ

2
{β̂(s)− β0(s)}τHn(β0(s)){β̂(s)− β0(s)}

≤ 1

2(1− ϵ)
sn(β0(s))

τ{Hn(β0(s))}−1sn(β0(s))

Hence we show that, uniformly over s ∈ A0 with ν(s) = k,

sn(β0(s))
τ{Hn(β0(s))}−1sn(β0(s)) ≥ 2(1− ϵ)k{0.5 log n+ γ logP}
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occurs with diminishing probability. Note that H
−1/2
n sn(β0(s)) is a linear com-

bination of Yi − µi as specified in Lemma 1. Thus, applying Lemma 1, we have

for each s ∈ A0,

P
[
sn(β0(s))

τ{Hn(β0(s))}−1sn(β0(s)) ≥ 2k(1− ϵ)(0.5 log n+ γ logP )
]

≤ exp{−k(1− ϵ)(0.5 log n+ γ logP )}

with a generic but arbitrarily small ϵ > 0. With the choice of γ as given, we have

exp{−k(1− ϵ)(0.5 log n+ γ logP )} ≤ P−k(1+ϵ)

with a different generic ϵ > 0 on the right hand side. Since the number of models

in A0 is lower than P k, we have shown that

P (sn(β0(s))
τ{Hn(β0(s))}−1sn(β0(s)) ≥ 2k(1− ϵ){0.5 log n+ γ logP},

any s ∈ A0) → 0,

This completes the proof.

A.4. Proof of Theorem 3

Proof. Write θ0i = xτ
i β0. For any θi = xτ

i β, it is seen that

n∑
i=1

log{f(yi; θi)} =
n∑

i=1

θi{b(θ0i)− b(θi)}+
n∑

i=1

θi{yi − b(θ0i)}

=
n∑

i=1

θi{b(θ0i)− b(θi)}+

(
n∑

i=1

θ2i σ
2
i

)1/2

op(n
1/3)

uniformly in op(n
1/3) over all β with at most K non-zero components, with the

order assessment from Lemma 1. In particular, the probability of violation is

smaller than n−κK .

Consequently, with ak = supθ{
∑n

i=1 θ
2
i σ

2
i }1/2, we have

EBIC(k)−EBIC(k+1) ≥ 2{Gn(k+1)−Gn(k)}− (1+2γκ+ak+ak+1)op(n
1/3).

Under the compactness assumption on Θ, we have ak = O(n1/2). Hence, the

inequality reveals that it suffices to show that

Gn(k + 1)−Gn(k)

n2/3
→ ∞. (A.3)

By the Mean Value Theorem, we easily obtain

Gn(k + 1)−Gn(k) = (βk+1 − βk)
τHn(β̃)(βk+1 − βk)
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for some β̃ which has at most 2k + 1 nonzero components. Hence, (A.3) is valid

under conditions A4’ and A5’.

A.5. Pseudo R-code for EBIC

We provide a pseudo-code for those interested in using EBIC.

1. input/create design matrix xx; response vector y;

2. identify a sequence of models with at most K features:

output=glmnet(xx, y, family="binomial", alpha=0.99, pmax=K)

3. identify features from the output, aa[[k]] contains features in kth model:

bb=abs(output$beta); bb[,1]=1:P; aa[[k]]=bb[bb[ ,k]>0, 1]

4. re-calcuate the deviance of the kth model:

dev[k] = glm.fit(xx[, aa[[k]] ], y, family= binomial(),

intercept=T)$deviance

5. add ν[k](log(n)+2γ log(P )) to dev[k] with user’s choice of γ to get EBICγ [k].

The recommended value is γ = 0.5.

6. Select the model and corresponding features that minimizes EBICγ [k].

In most practical situations, one would examine the outcomes based on sev-

eral choices of γ. After all, the subject matter has the final say.
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