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Abstract: In this paper we develop model checking techniques for assessing func-

tional form specifications of covariates in censored linear regression models. These

procedures are based on a censored data analog to taking cumulative sums of “ro-

bust” residuals over the space of the covariate under investigation. These cumu-

lative sums are formed by integrating certain Kaplan-Meier estimators and may

be viewed as “robust” censored data analogs to the processes considered by Lin,

Wei, and Ying (2002). The null distributions of the stochastic processes can be

approximated by the distributions of certain zero-mean Gaussian processes whose

realizations can be generated by computer simulation. Each observed process can

then be graphically compared with a few realizations from the Gaussian process.

We also develop formal test statistics for numerical comparison. Such comparisons

enable one to assess objectively whether an apparent trend seen in a residual plot

reflects model misspecification or natural variation. We illustrate the methods with

a well-known dataset. In addition, we examine the finite sample performance of

the proposed test statistics in simulation experiments. In them, the proposed test

statistics have good power for detecting misspecification while at the same time

controlling the size of the test.

Key words and phrases: Censored linear regression, goodness-of-fit, partial linear

model, partial residual, quantile regression, resampling method, rank estimation.

1. Introduction

Regression models are widespread statistical tools applied in the analysis

of experimental and observational data. When the model is misspecified, this

can seriously affect the validity and efficiency of inference procedures. Unfortu-

nately, investigators do not routinely check the adequacy of the specified model

for their particular data analysis. Model checking techniques have been devel-

oped for some commonly used regression models, including the linear regression

model (Stute (1997); Stute et al. (1998)), and generalized linear models (Su and

Wei (1991); Lin, Wei, and Ying (2002); Stute and Zhu (2002)). When analyz-

ing failure time outcomes subject to censoring, a commonly used model is the

Cox proportional hazards model (Cox (1972)). For the Cox model, the effects of
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misspecification have been well studied (Gail, Wieand, and Piantadosi (1984), La-

gakos and Schoenfeld (1984), Morgan (1986), Struthers and Kalbfleisch (1986),

DiRienzo and Lagakos (2001)) and model checking procedures have also been

developed (Lin, Wei, and Ying (1993); León and Tsai (2004)). However, the pro-

portional hazards assumption may not be appropriate for certain applications.

A useful alternative is the Accelerated Failure Time (AFT) model (Wei (1992))

which has been studied extensively in recent years for the standard regression set-

ting (Buckley and James (1979), Tsiatis (1990), Ritov (1990), Jin et al. (2003)).

Model checking techniques for the AFT model are not well developed. Recently

Lopez and Patilea (2009) developed omnibus test procedures. Their tests how-

ever can be sensitive to the choice of the bandwidth and an approach for selecting

a bandwidth is not provided. Moreover, their omnibus test can be sensitive to

the degree of censoring, with poor performance under moderate censoring. In

this paper, we propose an alternative procedure for assessing the adequacy of

the AFT model with respect to the functional form specification of covariates.

The AFT model assumes that a transformation (e.g., log-transformation) of the

survival time is linearly related to covariates via

T = α+ β′X + γZ + e, (1.1)

where X is a p×1 vector, Z is a scalar random variable, α , β, and γ are unknown

parameters, and e is an independent error term with unspecified distribution con-

strained so that α is identifiable. Here and in the sequel, we use T to denote the

transformed survival time. Under correct specification β and γ may be estimated

by various procedures, including the Buckley and James estimator (Buckley and

James (1979)), the inverse probability weighted estimator (Koul, Susarla, and

Van Ryzin (1981)), and the rank based estimators (Tsiatis (1990)). However,

when the linear functional form of Z is misspecified, these procedures may result

in biased estimators for β and thus lead to invalid inference. To examine the

appropriateness of the linearity assumption, we consider the alternative class of

partial linear model,

T = α0 + β′0X + g(Z) + ϵ, (1.2)

where α0 and β0 are unknown parameters, g(·) is a completely unspecified func-

tion, and the unknown distribution function of the error term ϵ has zero mean

and is free of X and Z. Model (1.2) reduces to (1.1) when g(z) = z. Here we view

(1.2) as the “true” model and obtain a consistent estimate for β in (1.1), regard-

less of whether or not the functional form for Z is correctly specified therein. We

apply the estimator of León, Cai, and Wei (2009) who have extended model (1.2)
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to the censored linear regression model and developed valid inference procedures

for β0 without involving estimation of g(·) in (1.2).

To check the functional form of Z in model (1.1) for non-censored data, Lin,

Wei, and Ying (2002) proposed residual plots and Kolmogorov-Smirnov (KS)

type lack of fit tests based on the cumulative residual process

Q̂0(v) = n−1
n∑
i=1

[Ti − α̂− β̂′Xi − γ̂Zi]I(Zi ≤ v),

where (α̂, β̂′, γ̂)′ is the least squares estimate of the parameter vector (α, β′, γ)′

in model (1.1) and I(·) is the indicator function. Under correct specification, the

process Q̂0(·) fluctuates randomly around zero. It is important to note that, un-

der functional form misspecification of Z, the parameter estimate β̂ correspond-

ing to the correctly specified covariate vectorX can be seriously biased, especially

when X and Z are highly correlated (Berk and Booth (1995); Grambsch, Th-

erneau, and Fleming (1995)). The ability of the cumulative residual process to

identify the form of misspecification can therefore be jeopardized. An extreme

situation would be (β0 − β̄)′E[X|Z = z] ≈ g(z)− γ̄z for each z in the support of

Z where g(·) is non-linear; the process Q̂ would have little power for detecting

the non-linearity in such a case. In general, the bias of β̂ can lead to misleading

residual plots and/or consistency of the KS-type test W0 can fail. To overcome

such difficulties, we propose an analog of Q̂0 for the censored linear regression

model but based on a robust estimator of β0. That is, we employ the León, Cai,

and Wei (2009) estimator of β0 that is consistent under misspecification of the

functional form of Z. This robustness enables us to develop residual plots and

goodness-of-fit statistics that have the ability to identify misspecification and

suggest the particular form.

The paper is outlined as follows. In Section 2 we state the censored linear

regression model under consideration and outline the parameter estimates used

in forming our “robust” residuals. In addition, we develop a censored data analog

to the cumulative residual process Q̂0 and propose functional form goodness-of-

fit test statistics. In Section 3 we show how to approximate the null distribution

of our cumulative residual process and provide a monte carlo technique for es-

timating the p-values of the goodness-of-fit statistics. Because our cumulative

residual process requires the selection of a smoothing bandwidth, in Section 4 we

develop a cross-validation procedure. In Section 5 we apply our methods to the

Mayo Clinic’s primary biliary cirrhosis (PBC) data set and we examine the finite

sample performance of our test statistics in simulation experiments. Section 6

concludes with some remarks. Technical details are relegated to the Appendix.
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2. Censored Linear Regression Models

2.1. Model and estimators

Let C be the censoring variable. For T , we only observe Y = min(T,C)

and ∆ = I(T ≤ C), where I(·) is the indicator function. The censoring times

C are assumed to be independent of the survival times T and covariates (X,Z),

with a common distribution function G. The covariates (X,Z) are assumed to

be bounded. Without loss of generality, we assume that the support of Z is

[zl, zr] with −∞ < zl < zr < ∞. Let (Ti, Ci, Xi, Zi), i = 1, . . . , n, be independent

realizations of (T,C,X,Z).

To construct a residual process for assessing the covariate functional form,

we first estimate the regression parameters ψ = (β′, γ)′. For β, we consider the

León, Cai, and Wei (2009) estimator based on a quantile regression method under

the working model

T = a+ b′X + c′ κ̂(Z) + e, (2.1)

where a is the intercept, b and c are p × 1 vectors of parameters, and e is the

error term. Here κ̂(Z) =
∑n

i=1Kζ(Zi − z)Xi/
∑n

i=1Kζ(Zi − z) is a nonparamet-

ric kernel estimate of κ(Z) = E(X | Z), where Kζ(·) = ζ−1K(·/ζ), K(·) is a

symmetric density function with
∫
x2K(x)dx <∞, ζ → 0, and (log n)−1nζ → ∞

as n → ∞. Their estimator, θ̂ρ = (âρ, b̂
′
ρ, ĉ

′
ρ)

′, say, is defined as the solution to

the ρth quantile estimating function

Ξρ(θ) =

n∑
i=1

Ûi

{I(Yi ≥ θ′Ûi)

Ĝ(θ′Ûi)
− (1− ρ)

}
, (2.2)

where Û ′
i = (1, X ′

i, κ̂(Zi)
′) and Ĝ(·) is the K-M estimator of G(·). Under mild

regularity conditions, b̂ = b̂ρ is consistent for β0 in the partial linear model (1.2).

For the regression parameter γ0 in the null model (1.1), we consider the Gehan

estimator (Ritov (1990), Tsiatis (1990), Wei, Ying, and Lin (1990)) defined as

follows. Let ψ̃ be the minimizer of

L(ψ) =
n∑
i=1

n∑
j=1

∆i{ei(ψ)− ej(ψ)}−, (2.3)

where ei(ψ) = Yi − β′Xi − γZi and {a}− = |a|I(a ≤ 0). Note that ψ̃ can

be obtained by standard linear programming techniques. Our estimator for γ,

denoted by γ̂, is the corresponding component of ψ̃ corresponding to γ. Let

ψ̂ = (b̂′, γ̂)′ and denote the limit of γ̂ (in probability) by γ̄, assumed to be finite.

By León, Cai, and Wei (2009) and U-process theory, it is straightforward to show

that ψ̂ converges to its limit, ψ̄ = (β′0, γ̄)
′, in probability.
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2.2. Functional form checking techniques

We propose to construct a residual process based on the the “robust” resid-

uals e(ψ̂) = Y − b̂′X− γ̂Z. The residuals e(ψ̂) are robust in the sense that, under

correct specification, they do not depend on the covariate vector (X,Z), whereas

under misspecification of the functional form of Z, they are asymptotically free

of X (by the consistency of b̂ for β0) and only depend on Z (through g(Z)− γ̂Z).
Without censoring, the cumulative residual process

n−1
n∑
i=1

{
ϵi(ψ̂)− ϵ̄(ψ̂)

}
I(Zi ≤ v)

is a convenient choice for assessing the functional form g(·), where ϵi(ψ) = Ti −
β′Xi − γZi and ϵ̄(ψ) = n−1

∑n
i=1 ϵi(ψ). However, ϵ(ψ) is not observable in the

presence of censoring. To incorporate censoring, we note that n−1
∑n

i=1{ϵi(ψ̂)−
ϵ̄(ψ̂)}I(Zi ≤ v) converges in probability to

E
{
ϵi(ψ̄)I(Zi ≤ v)

}
− E

{
ϵi(ψ̄)

}
H(z) = −

∫ v

zl

[∫
td{Sz(t, ψ̄)− S(t, ψ̄)}

]
dH(z),

(2.4)

where Sz(t, ψ) = Pr(ϵ(ψ) ≥ t | Z = z), S(t, ψ) = Pr(ϵ(ψ) ≥ t), and H(z) =

pr(Z ≤ z). This motivates us to consider a residual process based on an empiri-

cal version of (2.4) with Sz(t, ψ) estimated using a local Kaplan Meier estimator,

S(t, ψ) estimated using the unconditional Kaplan Meier estimator, and H esti-

mated using the empirical distribution function of {Zi, i = 1, . . . , n}.
To be specific, we estimate S(t, ψ) as the product-integral functional

Ŝ(t, ψ) = Πs≤t[1− dΛ̂(s, ψ)],

(cf., Andersen et al. (1993)), where Λ̂(t;ψ) =
∫ t
−∞ dN̄(s, ψ)/π̂(s, ψ),

N̄(t, ψ) = n−1
n∑
i=1

Ni(t, ψ), π̂(t, ψ) = n−1
n∑
i=1

I(ei(ψ) ≥ t),

and Ni(t, ψ) = I(ei(ψ) ≤ t)∆i. By the empirical process results of Lai and Ying

(1988), Ŝ(t, ψ) is a uniformly consistent estimator of S(t, ψ) for t ≤ τ and ψ ∈ Ω,

where Ω is a compact set containing ψ̄ as an interior point and τ is a pre-selected

endpoint such that Pr(e(ψ) > τ) > 0 for all ψ ∈ Ω. Here and in the sequel

we take ψ ∈ Ω and t ≤ τ without mention. The conditional survival function

Sz(t, ψ) can be consistently estimated by the Beran estimator (Beran (1981)),

Ŝz(t, ψ) = Πs≤t[1− dΛ̂z(s, ψ)],
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where Λ̂z(t;ψ) =
∫ t
−∞ dN̄z(s, ψ)/π̂z(s, ψ), N̄z(t, ψ) = n−1

∑n
i=1Ni(t, ψ)Kh(Zi −

z), π̂z(t, ψ) = n−1
∑n

i=1 I(ei(ψ) ≥ t)Kh(Zi − z), Kh(·) = h−1K(·/h) is the stan-

dardized kernel function, and K(·) is a symmetric density function. The band-

width h = hn satisfies h→ 0 and n1/4h = op(1). The bandwidth h of order n−1/4

represents the undersmoothing that is common in semiparametric estimation. In

Section 5 we present a cross-validation procedure for choosing h.

Now, under the linear model when g(Z) = γ0Z, Ŝ(t, ψ̂) ≈ Ŝz(t, ψ̂) ≈ S(t, ψ0)

for t ≤ τ , where ψ0 = (β′0, γ0)
′. Thus the residual process∫ v

zl

{∫ τ

−∞
td[Ŝz(t, ψ̂)− Ŝ(t, ψ̂)]

}
dĤ(z) (2.5)

fluctuates randomly about zero. Without censoring, for τ = ∞, −
∫ τ
−∞ tdŜz(t, ψ̂)

is identical to the Nadaraya-Watson estimate of the conditional mean E(ϵ(ψ̂)|Z =

z) and−
∫ τ
−∞ tdŜ(t, ψ̂) is the unconditional mean of the residuals, n−1

∑n
i=1 ϵi(ψ̂).

Therefore (2.5) is a natural analog of Q̂0 for the censored linear regression model.

In practice, however, Sz may only be estimable on the support of the weighted

observations which may be less than τ . For this reason we let Ŝz(τ, ψ̂) = Ŝ(τ, ψ̂).

This is analogous to Efron’s way (Efron (1981)) of setting the K-M estimator to

zero at the last observation. Incorporating this modification into (2.5), we have

our final residual process for assessing the functional form g(·): Q̂(v) =∫ v

zl

{∫ τ−

−∞
td[Ŝz(t, ψ̂)−Ŝ(t, ψ̂)]

}
dĤ(z)−τ

∫ v

zl

[Ŝz(τ
−, ψ̂)−Ŝ(τ−, ψ̂)]dĤ(z), (2.6)

where τ− is the point just prior to τ .

In applications we propose plotting Q̂ against v and supplementing this plot

with realizations of Q̂ generated under correct specification of the linear model.

In addition, as numerical measures of lack-of-fit, we consider the KS and Cramer-

VonMises (CvM)-type tests, defined respectively, by

W = n1/2 sup
v∈[zl,zr]

|Q̂(v)|, (2.7)

D = n

∫ ∞

zl

Q̂(v)2dĤ(v). (2.8)

In Appendix A, we establish consistency of tests based on W and D. That is,

when g is non-linear, the probability of rejecting the null based on W or D goes

to 1 as n→ ∞.
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3. Approximation to the Null Distribution of Q̂(·)

In Appendix B, we show that, under correct specification, n1/2Q̂(v) is asymp-

totically equivalent to a sum of i.i.d random variables, n1/2Q̄(v) =∫ τ−

−∞
n1/2{t[η̂0(t, v, ψ0)−η̄(t, v, ψ0)]dS(t, ψ0)+tS(t, ψ0)[η̂0(dt, v, ψ0)−η̄(dt, v, ψ0)]}

+n1/2τS(τ−, ψ0)[η̂0(τ
−, v, ψ0)− η̄(τ−, v, ψ0)],

where n1/2η̂0(t, v, ψ0) =

n1/2(ψ̂ − ψ0)

∫ v

zl

{
∂(Λz(t, ψ)− Λ(t, ψ))

∂ψ

∣∣∣∣
ψ=ψ0

}
dH(z) (3.1)

and n1/2η̄(t, v, ψ0) =

n−1/2H(v)

n∑
i=1

∫ t

−∞

dNi(u, ψ0)− I(ei(ψ0) ≥ u)Λ(du, ψ0)

π(u, ψ0)
(3.2)

−n−1/2
n∑
i=1

I(Zi ≤ v)Ḣ(Zi)

∫ t

−∞

dNi(u, ψ0)− I(ei(ψ0) ≥ u)ΛZi(du, ψ0)

πZi(u, ψ0)
. (3.3)

We approximate the null distribution of n1/2Q̂(v) by properly perturbing

each term in (3.1)−(3.3) to generate η̂∗0(t, v) and η̄∗(t, v) such that conditional

on the data, the distribution of n1/2Q∗(v) =∫ τ−

−∞
n1/2

{
t[η̂∗0(t, v)− η̄∗(t, v)]dŜ(t, ψ̂) + tŜ(t, ψ̂)[η̂∗0(dt, v)− η̄∗(dt, v)]

}
+n1/2τ Ŝ(τ−, ψ̂)[η̂∗0(τ

−, v)− η̄∗(τ−, v)]

(3.4)

is the same as that of Q̄(v) in the limit. A similar technique for approximating the

distributions of complex empirical processes in survival analysis has been utilizied

by Lin, Wei, and Ying (1993), Lin, Fleming, and Wei (1994), Goldwasser, Tian,

and Wei (2004), and León, Cai, and Wei (2009). In Appendix C, we provide the

exact forms of η̂∗0(t, v) and η̄
∗(t, v). To approximate the p-value of the KS-type

test W , (2.7), let w denote its observed value. The p-value, Pr(W ≥ w), can be

approximated by Pr(W ∗ ≥ w | Data), where W ∗ = supv∈[zl,zr] |n
1/2Q∗(v)|. We

estimate Pr(W ∗ ≥ w) by generating a large number of realizations from Q∗(·).
The p-value of the CvM-type test (2.8) can be approximated analogously.
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4. Delete-k Cross-validation Bandwidth Selection

In this section we develop a cross-validation bandwidth selection procedure.
Without censoring the kernel regression smooth of the partial residuals T − b̂′X
estimates, up to a constant, g(z) in model (1.2) (Cook (1993)). In developing our
cumulative residual plots, we are concerned with choosing the bandwidth h that
estimates g as closely as possible such that the integrated error is minimal. Here
we propose a cross-validation procedure based on the censored partial residuals
r̂i = Yi − b̂′Xi, i = 1, . . . , n.

First consider the non-censored case and let {(r̂1, Z1), . . . , (r̂k, Zk)} denote
k randomly selected (r̂, Z) pairs. For bandwidth h, let ĝh(Zj) denote the non-
parametric kernel estimate of E[r̂|Zj ] based on the remaining n − k pairs for
j = 1, . . . , k. Since ĝh(z) ≈ E[r̂|Z = z] = g0(z) = α0 + g(z) (Cook (1993)),
we have k−1

∑k
j=1 I(Zj ≤ v)[r̂j − ĝh(Zj)] ≈ EI(Z ≤ v){E[r̂|Z] − ĝh(Z)} =∫ v

zl
[g0(z) − ĝh(z)]dH(z). Thus, one may choose h that mimimizes an empirical

version of E[Γ(h)], where

Γ(h) =

∫ ∞

zl

{∫ v

zl

g0(z)dH(z)−
∫ v

zl

ĝh(z)dH(z)

}2

dw(v)

and w(v) can be a trimming function, or H(v), or a combination thereof. Here
Γ(h) compares the error in ĝh in terms of its integrated error. In practice, we
propose to obtain h as the minimizer of M−1

∑M
m=1 γ̃m(h), where

γ̃m(h) =

∫ ∞

zl

{
k−1

∑
j∈Cm

I(Zj ≤ v) [r̂j − ĝh(Zj)]
}2
dw(v), m = 1, . . . ,M, (4.1)

and Cm denotes a collection of k randomly drawn (r̂, Z) pairs.
To incorporate censoring, we replace the term k−1

∑
j∈Cm I(Zj ≤ v)[r̂j −

ĝh(Zj)] in (4.1) with the integrated Kaplan-Meier process

p̂m(v)

∫ τ0

−∞
td[S̃m(t)− S̃v,m(t)], (4.2)

where p̂m(v) = k−1
∑

j∈Cm I(Zj ≤ v), S̃m(·) is the Kaplan-Meier estimator based

on all pairs {(r̂j − ĝh(Zj), Zj) : j ∈ Cm}, S̃v,m(·) is the Kaplan-Meier estima-
tor based on pairs {(r̂j − ĝh(Zj), Zj) : Zj ≤ v, j ∈ Cm}, and τ0 denotes the
largest non-censored partial residual. Note that ĝh(Zj) = −

∫
tdŜZj (t, ψ̂) where

ŜZj (·, ψ̂), defined in Section 2.2, is based on the n− k partial residual pairs not

contained within the Cm sample (In addition, ŜZj (τm, ψ̂) = 0 where τm denotes
the largest non-censored partial residual not contained within the Cm sample.).
Subsequently, we propose to select h by minimizing M−1

∑M
m=1 γ̂m(h), where

γ̂m(h) =

∫ ∞

zl

{
p̂m(v)

∫ τ0

−∞
td[S̃m(t)− S̃v,m(t)]

}2

dw(v), m = 1, . . . ,M, (4.3)
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with S̃m(τ0) − S̃v,m(τ0) = 0. For w(v) = Ĥ(v), the resulting process γ̂m(h) can
be viewed as a CvM goodness-of-fit process.

In applications the partial residuals can be more heavily censored in the
left tail of the Z-covariate space. Consequently, the Kaplan-Meier estimator
restricted to observations with Z ≤ v, S̃v,m(·), may be unreliable. Alternatively,
let S̃+

v,m(·) denote the Kaplan-Meier estimator based on pairs (r̂j − ĝh(Zj), Zj),
restricted to Zj ≥ v, j ∈ Cm. Then, estimate the expectation of Γ+(h) =∫∞
zl

{
∫∞
v g0(z)dH(z)−

∫∞
v ĝh(z)dH(z)}2dw(v) by M−1

∑M
m=1 γ̂

+
m(h) where

γ̂+m(h) =

∫ ∞

zl

{
p̂+m(v)

∫ τ0

−∞
td[S̃m(t)− S̃+

v,m(t)]

}2

dw(v), (4.4)

p̂+m(v) = k−1
∑

j∈Cm I(Zj ≥ v), and S̃m(τ0)− S̃+
v,m(τ0) = 0, m = 1, . . . ,M .

In the context of model selection for the non-censored linear regression model,
Shao (1993) has shown that k (the “validaton” dataset) should be much larger
than n − k (the “construction” dataset). We therefore recommend that k be
some integer larger that n/2.

As is common with goodness-of-fit tests based on smoothing procedures, an
undersmoothed bandwidth is generally required to maintain the size. Based on
our simulation experiments we recommend choosing the slightly undersmoothed
bandwidth h/n0.1.

5. Example and Simulation Study

In this section we apply our methods to the well-known PBC data set devel-
oped by the Mayo Clinic and listed in Appendix D of Fleming and Harrington
(1991). For comparison, we also apply the omnibus test procedure proposed by
Lopez and Patilea (2009). The data contains n = 418 patients with primary bil-
iary cirrhosis (PBC), a fatal chronic liver disease. At the time of data collection,
161 patients had died. Approximately 61% of the survival times were censored.
Recently, Cai, Tian, and Wei (2003) analyzed this data set using the Box-Cox
transformation model

T = hλ(T
0) = β′U + ϵ, (5.1)

where λ = 0.102, hλ(t) = (tλ − 1)/λ if λ ̸= 0, and log(t) if λ = 0, and U consists
of age, log(albumin), log(protime), log(bilirubin), and edema.

For illustration we consider this model except with log(bilirubin) in (5.1)
replaced by bilirubin. We standardize the covariates (subtracting the mean and
dividing by sample standard deviation) and because of the heavy censoring, we
apply the León, Cai, and Wei (2009) estimator using the 25th quantile. The

endpoint τ is chosen as the 90th percentile of the non-censored residuals. In ad-
dition, the p-values of the test statistics and cross-validation curves are estimated
from 1,000 monte carlo realizations.
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Figure 1. PBC data. (a) Partial residuals, Y −β̂′X, for linear bilirubin model
((5.1) with log(bilirubin) replaced by bilirubin). Crosses denote censored
points. (b) Cross-validation curve, via (4.4), for linear bilirubin model. (c)
Partial residuals for log(bilirubin) model. Crosses denote censored points.
(d) Cross-validation curve, via (4.4), for log(bilirubin) model.

Our first step is to choose a bandwidth according to the delete-k cross-

validation procedure described in Section 5. For k we chose the integer value

of 0.65×n. In Figure 1(a) we plot the partial residuals, Y − β̂′X, that we note

are heavily censored in the left tail of the covariate space and thus estimate the

cross-validation curve via (4.4). Figure 1(b) displays the cross-validation curve

where, in (4.4), dw(v) = j(v)dĤ(v) with j(v) denoting a 2.5%-trimming function.

The minimizer of the cross-validation curve, Figure 1(b), is approximately 0.13.

We therefore chose the undersmoothed bandwidth h = 0.13/n0.1. Figure 2(a)

displays the residuals and Figure 2(b) displays the observed Q̂(·) process along

with 50 realizations of Q∗(·), (3.4). The observed process is extreme relative to

the 50 simulated realizations and follows a logarithmic shape. In addition, the

estimated p-values of both tests, (2.7) and (2.8), are < 0.001. The residual

plots and functional form tests therefore indicate that the linear functional

form for bilirubin is misspecified. In contrast, the omnibus test procedure
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Figure 2. PBC data. (a) Residuals for linear bilirubin model ((5.1) with
log(bilirubin) replaced by bilirubin), with crosses denoting censored obser-
vations. (b) Observed cumulative residual process, q̂(·), denoted by solid
curve, and 50 realizations of Q∗(·), (3.4). (c) Residuals for logarithmic
bilirubin model, (5.1). (d) Observed cumulative residual process, q̂(·), and
50 realizations of Q∗(·).

of Lopez and Patilea (2009) does not indicate lack-of-fit; the p-values of their

“WLS” test range from 0.81 (for bandwidth=0.10) to 0.14 (for bandwidth=0.50).

We therefore consider the model with log(bilirubin), model (5.1), and choose

h = 0.20/n0.1 (Figure 1(c) displays the partial residuals and Figure 1(d) the

cross-validation curve, (4.4), with k and dw chosen as above.). Note that Fig-

ure 2(c) displays the residuals which are heavily censored for log(bilirubin) val-

ues less than −1. We therefore estimate Q̂(v) for v ≥ −1 (see Figure 2(d)).

Here the observed process fluctuates around a constant and is not extreme rel-

ative to the 50 simulated realizations. The estimated p-values of both tests are

> 0.80 indicating that the logarithmic functional form of bilirubin appears to

be adequate. In addition the p-values for checking the other continuous covari-

ates, age (bandwidth=0.425), log(albumin) (bandwidth=0.50), and log(protime)

(bandwidth=0.70) are all > 0.90 indicating that the functional forms for these
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covariates appear to be adequate.

Note that this conclusion is consistent with the omnibus test of Lopez and

Patilea (2009) where the p-values of their “WLS” test range from 0.91 (for band-

width=0.10) to 0.08 (for bandwidth=0.5).

We have illustrated the methods for checking the functional form for the sin-

gle covariate bilirubin. In general applications we recommend checking covariates

in a one-at-a-time manner by first focusing on the covariate (if any) with a resid-

ual pattern that suggests a particular functional form. As a guideline, one can

use the prototype residual plots provided in Figure 2 of Lin, Wei, and Ying (2002)

which displays typical residual patterns under various forms of misspecification

in the non-censored generalized linear model setting (we have found these to also

be representative for the AFT model with censoring).

To investigate the performance of our procedures in moderate sample sizes

we conducted a series of simulation experiments. Our key experiment was a

design to mimic the PBC data set by simulating survival times from the model

Ti = 12.5 + 0.74×Xi − 1.44× log(Zi) + ϵi, i = 1, . . . , 418, (5.2)

where X and Z were fixed at the observed (standardized) values of log(albumin)

and bilirubin, respectively, from the PBC data, and ϵ ∼ N(0, 2). The parameters

of (5.2) are obtained by fitting the corresponding Gaussian model to the PBC

data (transformed via (5.1)). To mimic the observed censoring pattern of the

PBC data we simulate censoring times from the observed K-M estimate, 1−Ĝ(·).
We generate 1000 simulations and estimated the p-values of the KS and CvM-

type tests,W andD, from 100 monte carlo realizations. The censoring proportion

for the simulated datasets was about 64%. The powers of W and D in detecting

misspecification of Z in the model T = β′X+γZ were 0.84 and 0.88, respectively.

On the other hand, when the model is correctly specified the empirical sizes of

W and D (based on Q̂(v), v ≥ −1) were 0.023 and 0.034, respectively. Note

that the bandwidths in the above simulations were fixed at h = 0.10/n0.1 for the

misspecified model and h = 0.18/n0.1 for the correctly specified model. These

bandwidth values were chosen based on applying the cross-validation procedure

to 25 randomly selected datasets and then taking the mean of the resulting

estimated bandwidths.

In sharp contrast to the performance of the W and D functional form tests,

the power of the “WLS” omnibus test procedure of Lopez and Patilea (2009) was

only 0.038, 0.053, and 0.052 for the bandwidths 0.01, 0.10, and 0.25, respectively.

However when the censoring times were U(0,25), resulting in an average censoring

of 50%, the power of the “WLS” omnibus test improved to 0.61 and the size was

0.04 (bandwidth=0.10).
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We also investigated the performance of our methods using kernels other

than the normal. In particular, we evaluated the powers for the tests based on

the popular Epanechnikov kernel (Härdle and Marron (1985)) and the “twicing”

kernel K(u) = 2 exp(−u2/2)/
√
2π−exp(−u2/4)/

√
4π (Newey, Hsieh, and Robins

(2004)). The “twicing” kernels are higher-order kernels that have a small bias

property in the context of semiparametric estimation (Newey, Hsieh, and Robins

(2004)). For the Epanechnikov kernel (bandwidth=0.35) the powers of the W

and D tests were approximately 0.78 and 0.84, whereas for the “twicing” ker-

nel (bandwidth=0.25), the powers were approximately 0.70 and 0.80. Although

“twicing” kernels and other higher-order kernels have theoretical advantages with

respect to bias, it is not clear that such properties translate into advantages in

the model checking setting. Though the simulations are limited in scope, we

recommend that the normal kernel be used in applications.

In addition, we investigated the robustness of our methods to violation of the

assumption that the censoring distribution is independent of covariates. Specifi-

cally, we generated covariate-dependent censoring times, Ci, via

Ci = 11.8 + 0.33×Xi + 0.32×Li + ϵi, i = 1, . . . , 418, (5.3)

where X and L were fixed at the observed (standardized) values of log(albumin)

and log(protime) from the PBC data, and ϵ ∼ N(0, 0.97). The survival times Ti
were generated according to (5.2). The censoring proportion for the simulated

datasets was about 64%. The powers of W and D in detecting misspecification

of Z were 0.80 and 0.85. When the model was correctly specified the empirical

sizes of W and D (based on Q̂(v), v ≥ −1) were 0.047 and 0.085. Though the D

test was slightly anti-conservative, the methods performed well in this simulation

setting under violation to the covariate-independent censoring assumption.

6. Remarks

For the censored linear regression model practically useful model checking

techniques have not yet been well developed. The omnibus tests proposed by

Lopez and Patilea (2009) can be sensitive to the choice of the bandwidth and

an approach for selecting a bandwidth is not provided. Moreover, in the simula-

tion experiments considered here we have found their “WLS” omnibus test to be

sensitive to the degree of censoring, with poor performance under moderate cen-

soring (e.g. ≥ 50%). In this paper we developed residual plots and goodness-of-fit

statistics for assessing the functional form specifications. Our procedure is based

on robust estimators of the parameters corresponding to correctly specified co-

variates. This robustness is crucial when covariates are correlated as procedures
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based on non robust estimators can lead to misleading residual plots and/or test

statistics with low power.

Our model checking procedure depends on the quantile regression estimator

of León, Cai, and Wei (2009) that requires the assumption that the censoring

times are independent of the covariates (X,Z) with a common distribution G.

The León, Cai, and Wei (2009) estimator is a generalization of the Ying, Jung,

andWei (1995) median estimator which relies on the same censoring assumptions.

As noted by Ying, Jung, and Wei (1995), the assumption that the censoring times

are independent of the covariates may be strong for some observational studies

but is often satisfied in randomized clinical trials. The PBC data are from an

observational study, and applying a Cox model to the censoring times suggests

that the censoring times are associated with log(albumin) and log(protime) (p-

values < 0.001). Ying, Jung, and Wei (1995) provide numerical evidence that

their procedure can be robust to violations of the aforementioned assumptions

on the censoring distribution. Since the estimator of León, Cai, and Wei (2009)

is a generalization of the Ying, Jung, and Wei (1995) estimator it appears rea-

sonable that such robustness properties may apply to theirs as well. This is

indeed confirmed by the simulation results given in Section 5. Future work is

required to develop alternative estimators based on replacing the unconditional

K-M estimator of the censoring distribution Ĝ utilized in the León, Cai, and Wei

(2009) estimator by its conditional K-M analog. For example, one may impose

an AFT or Cox model relating the censoring distribution to the covariates and

then replace Ĝ(·) by an estimate of P (C > ·|Ui) in the estimation of θρ.

Our procedure requires the selection of a smoothing parameter that can be

difficult to implement for small sample sizes. Another approach is to develop a

cumulative residual process based on ρth quantile residuals. In addition, model

checking techniques based on robust estimators for assessing the link function

would also be useful to practitioners. We plan to investigate both of these topics

in future work.

The computational load for implementing the cross-validation and resam-

pling procedures is extensive compared to the computational requirements of

Lopez and Patilea (2009). Computing code (R Development Core Team (2010))

is available from the first author, as well as strategies for reducing the computa-

tional load.

Appendix A. Consistency of the Test Statistics

Throughout, we assume that model (1.2) holds, where ϵ has a cumulative

distribution function F (x) = pr(ϵ < x). The derivative functions of F and G

are assumed to be continuous and uniformly bounded. The covariates X and
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Z are assumed to be bounded and, without loss of generality, we assume that

the support of Z is [zl, zr] with −∞ < zl < zr < ∞. To ensure the validity of

the kernel-smoothed estimators, we assume that the density function of Z, Ḣ(·),
has bounded continuous first and second derivatives that are also bounded away

from 0. Here and in the sequel, for any function ξ(·) we write ξ̇(·) to denote

the derivative. The bandwidth h → 0 with n1/4h = op(1). This corresponds

to Assumption A of Dabrowska (1989). The kernel function K is a symmetric

density vanishing outside (−1, 1) and the total variation of K is bounded as in

Assumption B of Dabrowska (1989). We note that, for theoretical derivations,

K is typically assumed to have finite support, although in practical settings

the Gaussian kernel appears to work well. Furthermore, we assume that there

is a constant t̃ such that P (Y > t̃) > 0 and P (θ′ρ0Ui < t̃) = 1, where Ui =

(1, X ′
i, κ(Zi)

′)′ and θρ0 is the solution to E[Ui{I(Ti ≥ θ′Ui)− (1− ρ)}] = 0. This

assumption ensures the consistency of b̂, as discussed in Ying, Jung, and Wei

(1995) and León, Cai, and Wei (2009). We assume that ψ̄ is an interior point of

a compact set Ω. Throughout, unless specified otherwise, the supremum is taken

over (−∞, τ ] for t, [zl, zr] for z, and Ω for ψ.

We establish consistency of the KS-type test (2.7), based on Q̂(·), under

model (1.2) where g(·) is a non-linear function. Note that under model (1.2), b̂ is

consistent for β0 while ĉ converges in probability to some c̄. Moreover, for t ≤ τ ,

Ŝz(t, ψ̂) is uniformly consistent for pr{ϵ(z) ≥ t | z} = 1 − F{t − R(z)}, where
ϵ(z) = R(z) + ϵ and R(z) = α0 + g(z) − c̄z. Therefore, Ŝz(τ

−, ψ̂) converges to

1−F{τ −R(z)} by the continuity of F (·) and −
∫ τ−
−∞ tdŜz(t, ψ̂) is consistent for

the restricted mean, m(z) = E[ϵ(z)I(ϵ(z) < τ)]. In addition, −
∫ τ−
−∞ tdŜ(t, ψ̂) +

τ Ŝ(τ−, ψ̂) converges to some constant, m0, say.

Now, the consistency of the K-S test,

sup
v∈[zl,zr]

∣∣∣∣ ∫ v

zl

[ ∫ τ−

−∞
td

{
Ŝz(t, ψ̂)− Ŝ(t, ψ̂)

}
− τ

{
Ŝz(τ

−, ψ̂)− Ŝ(τ−, ψ̂)
}]

dĤ(z)

∣∣∣∣,
fails if

m(z) + τ{1− F (τ −R(z))} = m0 for every z ∈ [zl, zr].

That is, consistency fails if ṁ(z) + τṘ(z)Ḟ{τ −R(z)} = 0 for every z ∈ [zl, zr].

Note that m(z) = E[(ϵ+R(z))I(ϵ ≤ τ −R(z))] =
∫ τ−R(z)
−∞ tdF (t) +R(z)F (τ −

R(z)) = τF (τ −R(z))−
∫ τ
−∞ F (t−R(z))dt, and

ṁ(z) + τṘ(z)Ḟ{τ −R(z)} = Ṙ(z)F (τ −R(z)).

Consequently, if Ṙ(z) > 0, then consistency fails if and only if F (τ−R(z)) = 0 for

every z ∈ [zl, zr]. Therefore, consistency follows if we assume that ϵ has infinite
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support. The above arguments also establish consistency of the CvM-type test∫ ∞

zl

{∫ v

zl

∫ τ

−∞
td[Ŝz(t)− Ŝ(t, ψ̂)]dĤ(z)

}2

dĤ(v).

Appendix B. Derivation of Asymptotic Null Distribution of Q̂(·)

We now establish the asymptotic null distribution of

n1/2Q̂(v) =n1/2
∫ v

zl

{∫ τ−

−∞
td[Ŝz(t, ψ̂)− Ŝ(t, ψ̂)]

}
dĤ(z) (B.1)

− n1/2τ

∫ v

zl

[Ŝz(τ
−, ψ̂)− Ŝ(τ−, ψ̂)]dĤ(z), (B.2)

where τ− is the point just prior to τ . We write Λ(t) and S(t) for Λ(t, ψ0)

and S(t, ψ0), respectively. By the empirical process results of Lai and Ying
(1988), the processes N̄(t, ψ) and π̂(t, ψ) converge in probability at rate n1/2,
uniformly in (t, ψ), to A(t, ψ) = E{N(t, ψ)} and π(t, ψ) = pr{ei(ψ) ≥ t},
respectively. Moreover, by arguments as in Horowitz (1996) it can be shown
that supt,z,ψ |N̄z(t, ψ) − Az(t, ψ)| = op(n

−1/4) and supt,z,ψ |π̂z(t, ψ) − πz(t, ψ)| =
op(n

−1/4), where Az(t, ψ) = E{Ni(t, ψ) | Zi = z} and πz(t, ψ) = pr{ei(ψ) ≥ t |
Zi = z}. It then follows from Lemma (A.3) of Bilias, Gu, and Ying (1997) that

sup
t,z,ψ

∣∣Λ̂z(t, ψ)−Az(t, ψ)
∣∣ = op(n

−1/4), sup
t,ψ

∣∣Λ̂(t, ψ)−A(t, ψ)
∣∣ = op(n

−1/4).

Now, the process
√
n(Ĥ(z) −H(z)) converges weakly to a mean zero Gaussian

process. Applying these results and Lemma (A.3) of Bilias, Gu, and Ying (1997)
we can show that, under correct specification, (B.1) is asymptotically equivalent
to

n1/2
∫ v

zl

∫ τ−

−∞
t
{
de−Λ̂z(t,ψ̂) − de−Λ̂(t,ψ̂)

}
dH(z)

= n1/2
∫ v

zl

∫ τ−

−∞
tS(t)

[
{e−Λ̂(t,ψ̂)+Λ(t) − 1}dΛ̂(t, ψ̂)− {e−Λ̂z(t,ψ̂)+Λ(t) − 1}dΛ̂z(t, ψ̂)

− d{Λ̂z(t, ψ̂)− Λ̂(t, ψ̂)}
]
dH(z)

≈ −n1/2
∫ v

zl

∫ τ−

−∞

{
tη̂(t, v, ψ̂)dS(t) + tS(t)η̂(dt, v, ψ̂)

}
dH(z), (B.3)

where η̂(t, v, ψ) =
∫ v
zl
{Λ̂z(t, ψ) − Λ̂(t, ψ)}dH(z). In addition, using similar argu-

ments we have
(B.2) ≈ n1/2τS(τ−)η̂(τ−, v, ψ̂), (B.4)
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and thus n1/2Q̂(v) ≈ (B.3) + (B.4). Now, we write η̂(t, v, ψ) = η0(t, v, ψ) +
η̂1(t, v, ψ)− η̂2(t, v, ψ), where η0(t, v, ψ) =

∫ v
zl
{Λz(t, ψ)− Λ(t, ψ)}dH(z) and

η̂1(t, v, ψ) =

∫ v

zl

{
Λ̂z(t, ψ)− Λz(t, ψ)

}
dH(z),

η̂2(t, v, ψ) =

∫ v

zl

{
Λ̂(t, ψ)− Λ(t, ψ)

}
dH(z).

It follows from (B.3) and (B.4) that n1/2Q̂(v) is asymptotically equivalent to

n1/2
∫ τ−

−∞
t{η̂2(t, v, ψ)−η̂1(t, v, ψ)}dS(t)+n1/2

∫ τ−

−∞
tS(t){η̂2(dt, v, ψ)−η̂1(dt, v, ψ)}

(B.5)

−n1/2
∫ τ−

−∞

{
tη0(t, v, ψ̂)dS(t) + tS(t)η0(dt, v, ψ̂)

}
(B.6)

+n1/2τS(τ−)η̂(τ−, v, ψ̂). (B.7)

We show that each of these terms can be approximated by a sum of independent
and identically distributed terms. To this end, we first obtain expansions for
n1/2η̂1(t, v, ψ) and n1/2η̂2(t, v, ψ). By the uniform convergence of N̄z(u, ψ) →
Az(u, ψ) and π̂z(u, ψ) → πz(u, ψ), we have

n1/2η̂1(t, v, ψ) ≈ n1/2
∫ v

zl

∫ t

−∞

{
N̄z(du, ψ)

πz(u, ψ)
− π̂z(u, ψ)

πz(u, ψ)2
Az(du, ψ)

}
dH(z).

By Taylor expansion and a change in the order of integration, the first term in
the last display can be written as

n−1/2
n∑
i=1

∫ ∞

−∞
I(z ≤ v)Kh(Zi − z)

{∫ t

−∞

Ni(du, ψ)

πz(u, ψ)

}
Ḣ(z)dz

= n−1/2
n∑
i=1

Ni(t, ψ)
I(Zi ≤ v)Ḣ(Zi)

πZi(ei(ψ), ψ)
+Op(n

1/2h2), as h→ 0.

Similarly, the second term in the aforementioned display can be written as

n−1/2
n∑
i=1

I(ei(ψ) ≥ t)I(Zi ≤ v)Ḣ(Zi)
ȦZi(ei(ψ), ψ)

πZi(ei(ψ), ψ)
2
+Op(n

1/2h2), as h→ 0,

where Ȧz(t, ψ) = ∂Az(t, ψ)/∂t. Therefore, under the assumption that n1/4h =
op(1),

n1/2η̂1(t, v, ψ)≈n−1/2
n∑
i=1

I(Zi≤v)Ḣ(Zi)

∫ t

−∞

Ni(du, ψ)−I(ei(ψ)≥u)ΛZi(du, ψ)

πZi(u, ψ)
.

(B.8)
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By analogous arguments, n1/2η̂2(t, v, ψ) = n1/2H(v){Λ̂(t, ψ)−Λ(t, ψ)} is asymp-

totically equivalent to

n−1/2H(v)

n∑
i=1

∫ t

−∞

Ni(du, ψ)− I(ei(ψ) ≥ u)Λ(du, ψ)

π(u, ψ)
. (B.9)

From (B.8) and (B.9), applying the Functional Central Limit Theorem (Pollard

(1990)), it follows that the processes n1/2η̂1 and n1/2η̂2 converge weakly to Gaus-

sian processes in (t, v, ψ), and are thus equicontinuous in ψ. Therefore, (B.5) is

asymptotically equivalent to∫ τ−

−∞
n1/2 {tη̄(t, v, ψ0)dS(t) + tS(t)η̄(dt, v, ψ0)} , (B.10)

where n1/2η̄(t, v, ψ0) =

n−1/2
n∑
i=1

{
H(v)

∫ t

−∞

Ni(du, ψ0)− I(ei(ψ0) ≥ u)Λ(du, ψ0)

π(u, ψ0)

−I(Zi ≤ v)Ḣ(Zi)

∫ t

−∞

Ni(du, ψ0)− I(ei(ψ0) ≥ u)ΛZi(du, ψ0)

πZi(u, ψ0)

}
.

The expansion for (B.6) follows directly from a Taylor series expansion:

(B.6) ≈ −n1/2(ψ̂ − ψ0)

∫ τ−

−∞
{ta(t, v, ψ0)dS(t) + tS(t)a(dt, v, ψ0)} , (B.11)

where a(t, v, ψ) = ∂η0(t, v, ψ)/∂ψ. Lastly, by similar arguments,

(B.7) ≈ τS(τ−)
{
n1/2(ψ̂ − ψ0)a(τ

−, v, ψ0)− n1/2η̄(τ−, v, ψ0)
}
. (B.12)

Combining (B.10), (B.11) and (B.12), we obtain Q̂(v) ≈

n1/2

[∫ τ−

−∞
{tη̄(t, v, ψ0)dS(t) + tS(t)η̄(dt, v, ψ0)} − τS(τ−)n1/2η̄(τ−, v, ψ0)

]

−n1/2(ψ̂ − ψ0)

[∫ τ−

−∞
{ta(t, v, ψ0)dS(t)+tS(t)a(dt, v, ψ0)}−τS(τ−)a(τ−, v, ψ0)

]
.

This, combined with a Functional Central Limit Theorem and the asymptotic

linear expansion for n1/2(ψ̂ − ψ0) given in León, Cai, and Wei (2009), implies

that Q̂(v) converges weakly to a zero-mean Gaussian process.
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Appendix C. Resampling Procedures

To find expressions for η̂∗0 and η̄∗, let {Vi, i = 1, . . . , n} be a random sample

from a population with mean 0 and variance one that is independent of the

data {(Yi,∆i, Xi, Zi), i = 1, . . . , n}. First, applying the resampling technique of

León, Cai, and Wei (2009) and Jin et al. (2003), it can be shown that (3.1) is

approximated by n1/2η̂∗0(t, v) =

n1/2
∫ v

zl

{
[Λ̂z(t, ψ

∗)− Λ̂z(t, ψ̂)]− [Λ̂(t, ψ∗)− Λ̂(t, ψ̂)]
}
dĤ(z), (C.1)

where, conditional on the data, n1/2(ψ∗−ψ̂) has the same asymptotic distribution

as n1/2(ψ̂ − ψ0), ψ
∗ = (b∗′, γ∗)′ generated as follows. For b∗, recall that b̂ = b̂ρ

denotes the estimate corresponding to the parameter b in θ. We therefore wish to

approximate the distribution of n1/2(θ̂ − θ0), where θ0 = (ā, β′0, c̄) (the limiting

value of θ̂ρ under model (1.2)). León, Cai, and Wei (2009) showed that the

distribution of n1/2(θ̂ − θ0) can be approximated by the conditional distribution

of n−1/2(θ∗ − θ̂) given the data, where θ∗ = θ∗ρ is the solution to

n−1/2Ξρ(θ
∗) = B∗

ρ ,

B∗
ρ = n−1/2

n∑
i=1

Ûi

{I(Yi − θ̂′ρÛi ≥ 0)

G∗(θ̂′ρÛi)
−
I(Yi − θ̂′ρÛi ≥ 0)

Ĝ(θ̂′ρÛi)

}
+n−1/2

n∑
i=1

Ûi

{I(Yi − θ̂′ρÛi ≥ 0)

Ĝ(θ̂′ρÛi)
− (1− ρ)

}
Vi

+n−1/2
n∑
i=1

Ûi

{I(Yi − θ̂′ρU
∗
i ≥ 0)

Ĝ(θ̂′ρU
∗
i )

−
I(Yi − θ̂′ρÛi ≥ 0)

Ĝ(θ̂′ρÛi)

}
+n−1/2

n∑
i=1

(U∗
i − Ûi)

{I(Yi − θ̂′ρÛi ≥ 0)

Ĝ(θ̂′ρÛi)
− (1− ρ)

}
,

U∗
i = (1, X ′

i, κ
∗(Zi))

′, G∗(t) = Ĝ(t)
[
1−

n∑
i=1

{∫ t

−∞

dMC
i (s)∑n

j=1 I(Yj ≥ s)

}
Vi

]
,

κ∗(z) = κ̂(z) + n−1
n∑
i=1

Kζ(Zi − z)(Xi − κ̂(Zi))Vi
n−1

∑n
j=1Kζ(Zj − z)

,

M̂C
i (s) = I(Yi ≤ s)(1 − ∆i) −

∫ s
−∞ I(Yi ≥ u)dΛ̂C(u), and Λ̂C(·) is the Nelson-

Aalen estimate for the cumulative hazard function of the censoring variable C.

The realized b∗ is then defined as the component of θ∗ corresponding to b. To
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obtain γ∗, we apply the techniques of Jin et al. (2003), and define

L∗(ψ) =
n∑
i=1

n∑
j=1

∆i{ei(ψ)− ej(ψ)}−(Vi + 1).

Let ψ̃∗ be a minimizer of L∗(ψ) and take γ∗ as the component of ψ̃∗ correspond-

ing to γ in ψ. It follows from Parzen, Wei, and Ying (1994) that the distribu-

tion of n1/2η̂0(t, v, ψ0) can be approximated by the conditional distribution of

n1/2η̂∗0(t, v).

Next, we can show that the term n1/2η̄(t, v, ψ0) defined by (3.2) and (3.3)

can be approximated by

n1/2η̄∗(t, v) = n−1/2Ĥ(v)

n∑
i=1

{∫ t

−∞

dM̂i(u, ψ̂)

π̂(u, ψ̂)

}
Vi

−n−1/2
n∑
i=1

{∫ t

−∞

dM̂Zi(u, ψ̂)

π̂Zi(u, ψ̂)

}
ViI(Zi ≤ z)f̂Z(Zi), (C.2)

where M̂i(t, ψ̂) = Ni(t, ψ̂) −
∫ t
−∞ I(ei(ψ̂) ≥ u)Λ̂(du, ψ̂), M̂Zi(t, ψ̂) = Ni(t, ψ̂) −∫ t

−∞ I(ei(ψ̂) ≥ u)Λ̂Zi(du, ψ̂) and f̂Z(·) =
∑n

j=1Kh(Zj − ·).
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