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Abstract: Existing methods for analysis of survival data arising from cohort sam-

pling are largely based on Cox’s model and pertained to a certain type of sampling

design. This paper applies the general linear transformation model, which includes

Cox’s model and proportional odds model as special cases, to a class of sampling

designs including nested case-control, case-cohort and classical case-control designs.

A simple likelihood-based method is developed, and the resulting estimator of the

regression coefficient is shown to be consistent and asymptotic normal. The compu-

tation and inference procedures are straightforward. In addition to the simplicity

and generality of the method, it also has minimal loss of efficiency as the observa-

tions with missing covariates that are not used contain little information about the

regression parameter. The proposed estimation performs well in simulation studies

and is applied to analyze the Colorado Plateau uranium miners cohort data.

Key words and phrases: Complete case analysis, generalized case-cohort sampling,

linear transformation model, missing at random.

1. Introduction

For reasons such as costs of covariate ascertainment or disease rareness,

cohort sampling design becomes an important issue in epidemiological studies

and clinical trials. When a time-to-failure response subject to censoring is in-

volved, nested case-control (N-C-C), case-cohort (C-C), and classical case-control

(C-C-C) designs are widely used sampling designs, categorized as generalized

case-cohort (G-C-C) designs in Chen (2001). This paper proposes a likelihood

method of regression analysis of G-C-C sampling via linear transformation mod-

els. Throughout the paper, sampling always means sampling for covariate ascer-

tainment.

Consider a cohort of size n. Let (Yi, δi, Xi), i = 1, . . . , n, be the full cohort

data where, for subject i, Yi represents event time, δi failure/censoring index,

and Xi the covariate. Let n1 =
∑n

i=1 δi be the total number of failures and

n0 = n−n1 the total number of non-failures of the cohort. A C-C-C design takes

m1 failures and m0 non-failures without replacement; a C-C design takes all n1
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failures and m subjects from the entire cohort without replacement; a N-C-C

design takes all n1 failures and m subjects without replacement from each risk

set of a failure time. A G-C-C design, as defined in Chen (2001), consists of

K independent sampling steps with the k-th step taking mk subjects without

replacement from a certain specified subcohort. The subcohorts and K must

only depend on (Yi, δi), i = 1, . . . , n. Then, G-C-C covers C-C-C, C-C and N-C-

C designs as special cases and offers more flexibility.

There are many publications addressing the regression analysis of cohort

data with the above designs; see Thomas (1977), Oakes (1981), Prentice (1986),

Self and Prentice (1988), Kalbfleisch and Lawless (1988), Langholz and Thomas

(1990, 1991), Goldstein and Langholz (1992), Bednarski (1993), Sasieni (1993),

Barlow (1994), Borgan, Goldstein, and Langholz (1995), Langholz and Goldstein

(1996), Breslow (1996), Samuelsen (1997), Suissa, Edwards, and Biovin (1998),

Chen and Lo (1999), Lawless, Kalbfleisch, and Wild (1999), Chen (2001, 2004),

Kulich and Lin (2000, 2004) and Nan, Yu, and Kalbfleisch (2006) among many

others. All publications except for Chen (2001) address only one of C-C-C, C-C,

or N-C-C designs. In addition, Chen (2001) only considers Cox’s proportional

hazards model and the estimation method therein cannot be generalized for the

more general transformation model. Moreover, most of the articles use Cox’s

model and little is reported using the transformation model. Indeed, Kong, Cai,

and Sen (2004), Zeng et al. (2006), Lu and Tsiatis (2006) and Chen and Zucker

(2009) applied the transformation model but only to C-C or N-C-C designs, and

these methods take advantage of the simple structure of C-C designs and cannot

be readily extended to more general sampling designs.

This paper applies the linear transformation model to the G-C-C designs

and proposes a simple likelihood-based estimation method. Compared with the

existing ones, the proposed method is superior not only in simplicity but also in

generality. It applies the transformation model, more general than Cox’s model,

to the G-C-C designs. The computation of the estimator, through maximization

of a likelihood function, is straightforward. The inference procedure is also easily

available with the variance estimator in closed form. Although the method is

not based on a full likelihood but based on a likelihood of the complete cases, it

does not cause much loss of efficiency. In most practical designs, failures are all

sampled while the non-complete cases, the cohort members that are not sampled,

are largely censored and censoring times alone, without observed covariates, con-

tain little information about the regression parameter. Since the full likelihood

method encounters the curse of dimensionality arising from the dependence of

censoring time on covariates and is difficult to implement, the proposed method

offers a simple and general alternative which may be near optimal, for example,

in a N-C-C design with Cox model and with m controls matching each case. The
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relative efficiency of the N-C-C partial likelihood estimation, which is not even

the best (e.g., Chen (2004)), can be as high as m/(m+1). If cases are rare, which

is often the situation for rare disease or large cohort, the sample used in the N-

C-C design has a much smaller size than the size of the full cohort. This implies

that the vast majority of censored observations, even with covariate identified,

contribute relatively little to improve the accuracy of the estimation. An intuitive

point of view is that every censored observation plays only the role of comparison

in estimation. Thus, every additional censored observation contributes less to the

improvement of the estimation accuracy.

The next section introduces the linear transformation model, proposes the

estimation method, and provides theoretical results regarding consistency and

asymptotic normality. Some simulation results are reported in Section 3 to eval-

uate the proposed method and compare it with some existing methods. In Section

4, the method is illustrated with an analysis of the Colorado Plateau uranium

miners cohort data. Technical proofs are relegated to the Appendix.

2. Estimation and Inference

Let (T,C) be the pair of failure and censoring times that are conditionally

independent given the p-dimensional covariate X. The linear transformation

model is

logH(T ) = −β′X + ϵ, (2.1)

where H is an unknown increasing function with H(0) = 0, β is an unknown

p-dimensional regression parameter of interest, and ϵ is a continuous random

variable with known distribution and is independent of (X,C). The event time

Y = min(T,C) and the censoring index δ = I(T ≤ C). Let (Yi, δi, Xi, ϵi, Ci), for

i = 1, . . . , n, be i.i.d copies of (Y, δ,X, ϵ, C).

Recall that K = Kn is the number of steps of sampling in a G-C-C design,

and note that K is 2, 2, and n1 + 1 for C-C-C, C-C and N-C-C designs, respec-

tively. For 1 ≤ k ≤ K and 1 ≤ j ≤ n, let ∆kj be the indicator of subject j

being sampled for covariate ascertainment at step k. By definition of G-C-C,

{∆kj , j = 1, . . . , n} are independent of {∆lj , j = 1, . . . , n} for l ̸= k, and ∆j =

1−
∏K

k=1(1−∆kj) is the index of j being ever sampled. Then, the observed data

of a G-C-C design can be written as (Yi, δi,∆ki,∆iXi), k = 1, . . . ,K; i = 1, . . . , n.

Let πj be the conditional probability of individual j being sampled given the lon-

gitudinal data of full cohort, πj = P{∆j = 1 | (Yi, δi), 1 ≤ i ≤ n}. Note that a

subscript n is suppressed in the notations πj and ∆j .

Let λ(·) and Λ(·) be the known hazard and cumulative hazard functions of

eϵ, respectively. With the linear transformation model (1), the log-likelihood
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function of the full cohort data is

n∑
i=1

(
δi

[
log λ{H(Yi)e

β′Xi}+ β′Xi + log h(Yi)
]
− Λ{H(Yi)e

β′Xi}

)
, (2.2)

where h(·) is the derivative function of H(·). Zeng and Lin (2006) considered

maximizing the log-likelihood function with a discretization of H(·). Specifically,
let qj represent size of increment of H(·) at the j-th smallest failure times, say

sj , j = 1, . . . , n1. Set

H(t) =

n1∑
j=1

qjI(sj ≤ t), and h(t) =

n1∑
j=1

qjI(sj = t).

Then the maximization of (2.2) over (β, q1, . . . , qn1) leads to consistent, asymp-

totic normal and semiparametric efficient estimators of β.

In a G-C-C design, let d =
∑n

i=1 δi∆i be the total number of sampled failures

and tj be the j-th smallest sampled failure time. With G-C-C data, we propose

maximizing

n∑
i=1

∆i

πi
li(β, q)≡

n∑
i=1

∆i

πi

(
δi

[
log λ{H(Yi)e

β′Xi}+β′Xi+log h(Yi)
]
−Λ{H(Yi)e

β′Xi}

)
,

(2.3)

where q = (q1, . . . , qd),

H(t) =

d∑
j=1

qjI(tj ≤ t), and h(t) =

d∑
j=1

qjI(tj = t).

The maximizer is denoted as (β̂, q̂1, . . . , q̂d). Let Ĥ(t) =
∑d

j=1 q̂jI(tj ≤ t).

Remark. The above estimation procedure is essentially a complete case analysis

and usually cannot produce efficient estimation. For cohort sampling, however,

this may not be a severe drawback. First, without covariate, the event times nor-

mally do not contain much information. Second, in practice all or most failures

are sampled and the information contained in subjects that are not sampled may

be minimal as they are all or largely censoring times with unobserved covariates.

Third, the proposed method is based on a likelihood for complete cases, which

contain nearly all information about the regression parameter. Moreover, unless

there are further restrictive assumptions on the censoring variable, efficient es-

timation cannot be obtained because of curse of dimensionality involved in the

conditional distribution of the censoring variable given the covariate. In addition,

the cohort could be loosely defined, and the event times of the subjects that are
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not sampled are not as reliable as those that are. More comments may be found

in Chen and Lo (1999).

Let β0 and H0 be the true values of β and H. Consider the following regu-

larity conditions.

(C1) The functionH0(t) is strictly increasing and continuously differentiable with

H0(0) = 0, and β0 lies in the interior of a compact set B.

(C2) λ(t) > 0, and P (Y ≥ τ |X) > 0.

(C3) X is bounded, and if there exists a vector γ and a deterministic function

γ0(t) such that γ0(t) + γ′X = 0 with probability one, then γ = 0 and

γ0(t) = 0.

(C4) For any positive c0, lim supx→∞[log{x supy≤x λ(y)}/Λ(c0x)] = 0.

These conditions are similar to those used by Zeng and Lin (2006) for count-

ing processes, and condition (C4) is only used in the consistency proof of β̂ and

Ĥ.

Theorem 1. If (C1)−(C4) hold, |β̂ − β0| → 0 and ∥Ĥ − H0∥l∞[0,τ ] → 0 in

probability, where ∥ · ∥l∞[0,τ ] is the supremum norm in the interval [0, τ ].

To describe the asymptotic distribution of β̂ and Ĥ, let D = {ϕ(t) : ϕ(t) ∈
BV [0, τ ], ∥ϕ∥BV [0,τ ] ≤ 1}, where BV [0, τ ] denotes the set of functions with

bounded total variations and ∥ϕ∥BV [0,τ ] denotes the total variation of ϕ(t) in

[0, τ ]. Hence Ĥ can be considered as a bounded linear functional in l∞(D) by the

definition Ĥ(ϕ) =
∫ τ
0 ϕ(t)dĤ(t). Thus (β̂ − β0, Ĥ −H0) is treated as a random

element in the metric space Rp × l∞(D).

Theorem 2. If (C1)−(C4) hold, n1/2(β̂ − β0, Ĥ − H0) converges weakly to a

zero-mean Gaussian process in the metric space Rp × l∞(D).

In order to obtain a variance estimate of β̂, let l̇i ≡ l̇i(β, q) and l̈i ≡ l̈i(β, q)

be the first and second derivatives of li(β, q) with respect to (β, q), respectively.

Then, l̇i is a vector of p+ d dimension and l̈i is a (p+ d)× (p+ d) matrix. Let

πij = E{∆i∆j |(Y1, δ1), . . . , (Yn, δn)}

and let τ denote the duration of the study. For any function w with bounded

total variation in [0, τ ] and a real vector b, we show in the Appendix that the

asymptotic variance of

n1/2b′(β̂ − β0) + n1/2

∫ τ

0
w(t)d[Ĥ(t)−H0(t)] (2.4)
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can be estimated by (b′, w′)Â−1B̂Â−1(b′, w′)′, where

Â = n−1
n∑

i=1

∆i

πi
l̈i(β̂, q̂), (2.5)

B̂ = n−1
n∑

i=1

∆i

π2
i

l̇i(β̂, q̂)l̇i(β̂, q̂)
′+n−1

∑
1≤i ̸=j≤n

∆i∆j(πij − πiπj)

πijπiπj
l̇i(β̂, q̂)l̇j(β̂, q̂)

′,

(2.6)

and w = (w(t1), . . . , w(td))
′. Thus, the variance estimator of n1/2(β̂ − β0) is

the upper left p × p submatrix of Â−1B̂Â−1. We note that it is not possible,

although quite appealing, to derive a sandwich formula without involving a high-

dimensional matrix, as in Zeng and Lin (2006), which paper deals with the trans-

formation model with full cohort data.

With the structure of G-C-C sampling, the computation of πi and πij are

not difficult, although a universal form is not available because it relies on the

specification of the subcohorts. For example, with C-C-C data, πi = m1/n1

(m0/n0) if subject i is a failure (non-failure), and

πij =


m1(m1−1)
n1(n1−1) if subjects i and j are both failures;

m0(m0−1)
n0(n0−1) if subjects i and j are both non-failures;

m1m0
n1n0

else.

For C-C design, πi = 1 (m/n) if subject i is a failure (nonfailure), and

πij =


1 if subjects i and j are both failures;
m(m−1)
n(n−1) if subjects i and j are both non-failures;
m
n if one is a failure and the other is not.

For N-C-C design, πi = 1 if subject i is a failure, and

1−
∏
t<Yi

(
1− m

nt

)dN(t)
if not,

where nt =
∑n

j=1 I(Yj > t) denotes the size of the risk set at time t and, using

the counting process notation, dN(t) =
∑n

i=1 δiI(Yi = t) and

πij =


1 if subjects i and j are both failures;

πj if i is a failure and j is not;

πi if j is a failure and i is not.
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In the case both subjects i and j are non-failures,

πij = πi + πj − 1 +
∏

t<min(Yi,Yj)

(
nt −m− 1

nt − 1

)dN(t) ∏
t<max(Yi,Yj)

(
nt −m

nt

)dN(t)

.

3. Simulation Study

Extensive simulation studies have been carried out to assess the performance

of the likelihood-based estimators for C-C-C, C-C and N-C-C designs. The linear

transformation model was specified as

logH(T ) = −β1X1 − β2X2 + ϵ,

where H(t) = t/2, X1 Bernoulli with success probability 0.5 and X2 uniform on

[0, 1]. We set β1 = 1 and β2 = −1. The hazard function of ϵ was

λ0(t) =
exp(t)

1 + r exp(t)
,

with r = 0, 0.5, 1 and 2 (Dabrowska and Doksum (1988); Chen, Jin, and Ying

(2002)). Note that the proportional hazards and proportional odds models cor-

respond to r = 0 and r = 1, respectively. The censoring time C was independent

of the covariates, exponential with parameter adjusted for a censoring rate of

about 80%. In other words, about 20% of all the failure times were observed.

The sample size n was set to be 500 and all simulations were based on 1,000

replications. For C-C design, we took all n1 failures and m = 0.2n subjects from

the entire cohort without replacement. For C-C-C design, we took m1 = n1 for

failures, and m0 = n1 for non-failures. For N-C-C design, we took m = 2.

Table 1 below summarizes the simulation results of the estimation of β1
and β2. It includes the averages (Mean), sample standard deviations (SSD), and

averages of the estimated standard errors (ESE) of the estimates. It also contains

the coverage probabilities (CP) for β1 and β2 at level 95%. It is seen that the

proposed estimation procedures performed well in all cases. The bias of the

estimation was negligible. The estimated and empirical standard errors agreed

with each other. The coverage probabilities were generally close to the nominal

level 95%. Other simulation studies showed similar results.

We compared the proposed method with widely used methods in the liter-

ature, such as the partial likelihood of Thomas (1977) for N-C-C sampling, the

pseudo-likelihood estimation of Prentice (1986) for C-C sampling, and the inclu-

sion probability method of Samuelsen (1997) for N-C-C sampling. The methods

of Thomas and Prentice cannot be generalized to treat G-C-C sampling while
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Table 1. Summary of simulation results.

C-C design

r Mean SSD ESE CP
β1 β2 β1 β2 β1 β2 β1 β2

0 1.031 -1.046 0.306 0.531 0.313 0.525 0.949 0.937
0.5 1.015 -1.038 0.325 0.536 0.334 0.568 0.952 0.950
1 1.019 -1.035 0.336 0.560 0.349 0.596 0.959 0.957
2 1.009 -1.026 0.367 0.619 0.377 0.646 0.961 0.956

C-C-C design

r Mean SSD ESE CP
β1 β2 β1 β2 β1 β2 β1 β2

0 1.022 -1.032 0.287 0.487 0.292 0.491 0.952 0.950
0.5 1.019 -1.033 0.299 0.496 0.313 0.532 0.961 0.960
1 1.019 -1.014 0.308 0.513 0.325 0.555 0.961 0.961
2 1.011 -1.023 0.336 0.567 0.355 0.607 0.967 0.958

N-C-C design

r Mean SSD ESE CP
β1 β2 β1 β2 β1 β2 β1 β2

0 1.014 -1.016 0.224 0.386 0.216 0.382 0.931 0.933
0.5 1.010 -1.019 0.246 0.395 0.257 0.440 0.960 0.964
1 1.015 -1.017 0.256 0.425 0.276 0.472 0.965 0.959
2 1.009 -1.021 0.294 0.488 0.302 0.524 0.954 0.961

that of Samuelsen can. The local average method of Chen (2001) for G-C-C

sampling was also considered for comparison. We note that all the four methods

were designed for Cox’s model rather than the transformation model. The setup

of the simulation was similar to that reported in Table 1. The bias (BIAS) and

sample standard errors (SSD) of the estimation are reported in Table 2.

It is seen in Table 2 that, when Cox’s model is true (r = 0), the proposed

estimators are comparable to the existing ones in the sense that the bias and stan-

dard errors are close to one another. When r is increased from 0 to 2, implying

the true model deviates from Cox’s model, the bias of the proposed estimators

remains very small, but those of other estimators all become rather large. As a

result, the existing methods become invalid under a transformation model other

than Cox’s model. On the other hand, the proposed method performs well in all

cases.

4. Application: Colorado Plateau Uranium Miners Cohort

In this section, we consider the application of the proposed method to the

Colorado Plateau uranium miners cohort data. This data set was gathered for
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Table 2. Comparing BIAS (SSD) of the proposed method with existing ones (×103).

C-C design

r = 0 r = 0.5 r = 1 r = 2
β1 β2 β1 β2 β1 β2 β1 β2

Proposed 31(306) -46(531) 15(325) -38(536) 19(336) -35(560) 9(367) -26(619)
Chen 26(320) -33(563) -66(328) 57(562) -127(318) 131(559) -234(317) 237(566)

Prentice 15(338) -28(621) -77(337) 61(602) -137(330) 137(595) -244(324) 240(583)
Samuelsen 36(323) -42(566) -59(329) 50(566) -122(319) 126(561) -232(318) 233(567)

C-C-C design

r = 0 r = 0.5 r = 1 r = 2
β1 β2 β1 β2 β1 β2 β1 β2

Proposed 22(287) -32(487) 19(299) -33(496) 19(308) -14(513) 11(336) -23(567)
Chen 21(304) -20(522) -60(305) 63(524) -130(291) 148(509) -235(288) 238(515)

Samuelsen 28(306) -28(525) -56(305) 59(527) -126(292) 145(510) -233(289) 236(516)

N-C-C design

r = 0 r = 0.5 r = 1 r = 2
β1 β2 β1 β2 β1 β2 β1 β2

Proposed 14(224) -16(386) 10(246) -19(395) 15(256) -17(425) 9(294) -21(488)
Chen 27(248) -23(431) -65(255) 66(430) -131(242) 145(423) -238(247) 249(431)

Thomas 83(217) -95(474) -17(267) 74(463) - 87(257) 89(455) -203(259) 209(463)
Samuelsen 17(244) -14(420) -72(249) 74(418) -136(237) 151(413) -242(243) 251(421)

Full cohort data

r = 0 r = 0.5 r = 1 r = 2
β1 β2 β1 β2 β1 β2 β1 β2

Fulllt 8(196) -7(328) 3(211) -10(334) 7(222) -10(363) 3(255) -11(416)
Fullcox 10(219) -8(360) -79(219) 84(358) -144(210) 158(358) -248(213) 259(361)

‘Proposed’,‘Chen’,‘Thomas’,‘Prentice’,‘Samuelsen’ refer to the estimators proposed by our

method, Chen (2001), Thomas (1977), Prentice (1986), Samuelsen (1997), respectively. Fulllt

and Fullcox refer to the estimators proposed by linear transformation model and proportional

hazards model using the full cohort data, respectively.

the study of the effects of radon exposure and smoking on the rates of lung cancer;

it has been described in detail in Lubin et al. (1994), Langholz and Goldstein

(1996), and Langholz et al. (1999). Here we compare the results using the full

cohort analysis to those based on C-C-C, C-C and N-C-C designs.

The cohort consisted of 3347 (n) Caucasian male miners who worked un-

derground at least one month in the uranium mines of the four-state Colorado

Plateau area. For each subject, the information included the age at entry to the

study, the age at exit from the study, the death time if death occurred during

the study, the cumulative radon exposure, and cumulative smoking in number of

packs and the death information. In this study, a total of 258 (n1) miners died of
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lung cancer. Subjects who died of lung cancer were taken to be the failures and

all other were censored at their exit times. Let X1 denote the cumulative radon

exposure in 100 working level months (WLMs), X2 be the cumulative smoking

in 1,000 packs, and X = (X1, X2)
′.

For the analysis, we used the model

logH(T ) = −g(X;β) + ϵ, (4.1)

where the hazards function of ϵ is exp(t)/(1+ r exp(t)) with r unknown, and the

function g was used to describe different models. Following Thomas et al. (1994)

and Langholz and Goldstein (1996), we considered four models of g as a function

of radon and smoking:

Radon:

g(X;β) = β1X1; (4.2)

Smoking:

g(X;β) = β2X2; (4.3)

Radon and smoking:

g(X;β) = β1X1 + β2X2; (4.4)

Interaction:

g(X;β) = β1X1 + β2X2 + β3X1X2. (4.5)

With πi = 1 and πij = 1 for i, j = 1, · · · , n, we obtain the full cohort analysis.

For the full cohort data, the choices of r were determined as follows. First, for

given r ≥ 0, we used the proposed estimation procedure in Section 2 (e.g., Zeng

and Lin (2006)) to obtain the estimators β̂ and Ĥ. Second, we computed the

estimated observed log-likelihood l̂(r; β̂, Ĥ) defined in (2.2). Finally, we chose r̂

as the estimation of r, where r̂ maximizes the l̂. The estimates of r for the four

models are included in Table 3.

The results of fitting the four models (4.2)−(4.5) using the full cohort data

and the three G-C-C sampling data are given in Table 3. The regression results

using the full cohort data suggest strong association between radon and smoking

and lung cancer mortality rates. For the interaction model (4.5), the interaction

parameter β3 is negative with p-value of 10−11, there is significant evidence of

the joint negative effect of the two exposures on the mortality rates. For all

the G-C-C sampling, we used the same setups as in the simulation studies, and

took all cases of 258 failures. That is, we took m = 0.2n for the C-C design,

m1 = n1 and m0 = n1 for the C-C-C design, and m = 2 for the N-C-C design.

For each design, we sampled the data 1,000 times and obtained the averages of

the parameter estimates, their standard errors and p-values. We drew similar
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Table 3. Comparison of parameter estimation (Standard error, approxi-
mated p-value) for radon and smoking models using different sampling meth-
ods a.

Univariate models

Radon (β1)
b Smoking (β2)

c

Full cohort 0.04286 (0.00177, 1.623e-129) 6.665 (0.3582, 3.012e-77)
C-C 0.04128 (0.00449, 2.527e-013) 7.089 (0.7120, 4.587e-11)

C-C-C 0.04247 (0.00513, 3.069e-007) 7.461 (0.9703, 1.849e-06)
N-C-C 0.03495 (0.00357, 1.975e-020) 7.036 (0.7521, 1.877e-09)

Adjusted modeld

Radon (β1) Smoking (β2)
Full cohort 0.03899 (0.00206, 3.734e-80) 6.959 (0.3845, 3.303e-73)

C-C 0.04002 (0.00484, 4.028e-09) 7.190 (0.7299, 5.467e-14)
C-C-C 0.04104 (0.00540, 3.282e-05) 7.519 (0.9882, 4.263e-08)
N-C-C 0.02720 (0.00395, 1.044e-10) 6.736 (0.6992, 1.250e-12)

Interaction modele

Radon (β1) Smoking (β2) Interaction (β3)

Full cohort 0.06043 (0.0030, 8.96e-90) 8.552 (0.363, 1.78e-122) -0.1292 (0.0199, 9.62e-11)

C-C 0.06657 (0.0069, 1.98e-10) 9.508 (0.831, 5.33e-13) -0.1590 (0.0426, 0.0238)

C-C-C 0.07066 (0.0077, 5.59e-07) 10.31 (1.092, 4.03e-08) -0.1753 (0.0472, 0.0322)

N-C-C 0.05406 (0.0067, 1.22e-13) 9.244 (0.865, 3.19e-11) -0.1576 (0.0379, 9.21e-4)

a Randon slopes given as per 100 WLMs. Smoking slopes given as per 1,000 cumulative packs

of cigarettes.
b Univariate radon: g(X;β) = β1X1, r̂ = 0.
c Univariate smoking: g(X;β) = β2X2, r̂ = 0.05.
d Adjusted model: g(X;β) = β1X1 + β2X2, r̂ = 0.
e Interaction model: g(X;β) = β1X1 + β2X2 + β3X1X2, r̂ = 0.

conclusions about the statistical relationships between Radon, smoking, their

joint exposure, and cancer mortality rates.

For comparisons, we also show the results of fitting model (4.4) in Table 4 for

r = 0, r = 0.5, and r = 1. Note that the proportional hazards and proportional

odds models correspond to r = 0 and r = 1, respectively. From Table 4, we see

results similar to those in Table 3.

Our study shows that analysis of G-C-C designs using the proposed estima-

tion method can effectively draw the same conclusion as that of full cohort data,

while saving the costs of covariate ascertainment. In many practical situations,

accurately identifying the covariates, such as genotype, for every individual of a

large cohort can be quite expensive, especially in the case of rare diseases. In

these situations, G-C-C designs may be the ideal alternative, and this paper pro-

vides a statistical methodology for data analysis through linear transformation
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Table 4. Comparison of parameter estimation (Standard error, approxi-
mated p-value) for adjusted model using different r.

r = 0, Proportional hazards model

Radon (β1) Smoking (β2)
Full cohort 0.03899 (0.00206, 3.734e-80) 6.959 (0.3845, 3.303e-73)

C-C 0.04002 (0.00484, 4.028e-09) 7.190 (0.7299, 5.467e-14)
C-C-C 0.04104 (0.00540, 3.282e-05) 7.519 (0.9882, 4.263e-08)
N-C-C 0.02720 (0.00395, 1.044e-10) 6.736 (0.6992, 1.250e-12)

r = 0.5

Radon (β1) Smoking (β2)
Full cohort 0.05594 (0.00345, 5.514e-59) 8.439 (0.4457, 6.103e-80)

C-C 0.05700 (0.00943, 9.522e-06) 8.496 (0.8664, 5.258e-13)
C-C-C 0.05956 (0.01088, 0.002077) 8.931 (1.1910, 1.579e-06)
N-C-C 0.05728 (0.00889, 7.011e-09) 11.36 (0.9637, 6.210e-20)

r = 1, Proportional odds model

Radon (β1) Smoking (β2)
Full cohort 0.07150 (0.00423, 5.497e-64) 9.833 (0.4990, 2.007e-86)

C-C 0.07280 (0.01075, 2.608e-06) 9.998 (0.9579, 4.609e-15)
C-C-C 0.07562 (0.01418, 0.001579) 10.33 (1.3560, 2.406e-06)
N-C-C 0.08391 (0.01092, 8.965e-13) 15.55 (1.1700, 2.397e-30)

models.

5. Concluding Remarks

The existing statistical methodologies are either focused on a special type

of cohort sampling or are valid only under Cox’s model. This paper presents an

effective and unified approach to a broad of class of sampling designs (G-C-C)

using linear transformation models. The computation procedure and variance

estimation are straightforward. The estimation and inference proposed in this

paper can also be generalized in a straightforward fashion to slightly more general

models with H(t) = g(β′X, ϵ), where g is a known smooth function.
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Appendix: Proofs of Theorems

Proof of Theorem 1. Mimicking the consistency proof of Zeng and Lin (2006),

we first show that the jump sizes of Ĥ are finite. Note that supβ∈B,t∈[0,τ ] |β′X| ≤
d0 almost surely, where d0 is a constant. Then it follows from that the ith term

in (2.3) is bounded above by

Λ(H(Yi)e
−d0)

πi

[ log{H(Yi)e
d0 supy≤H(Yi)ed0

λ(y)}
Λ(H(Yi)e−d0)

− 1
]
,

which diverges to −∞ by (C4) if H(Yi) is infinite for some Yi. Thus, the jump

sizes of Ĥ must be finite. Next we show that Ĥ is bounded almost surely. For

this, let

ln(β,H) =
n∑

i=1

∆i

πi

(
δi

[
log λ{H(Yi)e

β′Xi}+ β′Xi + log h(Yi)
]
−Λ{H(Yi)e

β′Xi}

)
.

Since ln(β,H) is maximized at (β̂, Ĥ), we have

n−1[ln(β̂, αnH̄)− ln(β̂, H̄)] ≥ 0, (A.1)

where αn = Ĥ(τ) and H̄ = Ĥ/αn. From (A.1), we obtain that

n−1
n∑

i=1

∆i

πi

[
δi log

{
αnλ{αnH̄(Yi)e

β̂′Xi
}
− Λ{αnH̄(Yi)e

β̂′Xi}
]

≥ n−1
n∑

i=1

∆i

πi

[
δi log λ{H̄(Yi)e

β̂′Xi} − Λ{H̄(Yi)e
β̂′Xi}

]
. (A.2)

Note that the right-hand side of (A.2) is bounded from below by

n−1
n∑

i=1

∆i

πi

[
δi log{min

y≤ed0
λ(y)} − Λ(ed0)

]
> −∞.

However, the left-hand side is bounded from above by

n−1
n∑

i=1

∆i

πi

[
log{αn sup

y≤αned0
λ(y)} − Λ(αne

−d0)I(Yi ≥ τ)
]
.
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Suppose that αn → ∞ for some subsequence. Condition (C4) implies that for

any ν > 0 when n is sufficiently large,

log{αn sup
y≤αned0

λ(y)} ≤ νΛ(α−d0
n ).

Thus

n−1
n∑

i=1

∆i

πi

[
ν − I(Yi ≥ τ)

]
Λ(αne

−d0) > −∞.

If we choose ν such that ν ≤ P (Y ≥ τ)/2, the left-hand side diverges to −∞ when

αn → ∞. This is a contradiction. Hence Ĥ is bounded with probability one. Then

Helly’s Selection Theorem yields that there exists a convergent subsequence such

that β̂ → β∗ and Ĥ → H∗ weakly. Finally we show that β∗ = β0 and H∗ = H0.

By taking derivatives of ln(β,H) with respect to h(Yi) to zero, we get

Ĥ(t) = n−1
n∑

i=1

∆i

πi

∫ t

0

dNi(u)

Φn(u, β̂, Ĥ)
,

where

Φn(u, β,H) = n−1
n∑

j=1

∆j

πj
λ{H(Yj)e

β′Xj}eβ′XjI(Yj ≥ u)

−n−1
n∑

j=1

∆j

πj

λ̇{H(Yj)e
β′Xj}

λ{H(Yj)eβ
′Xj}

δje
β′XjI(Yj ≥ u),

and the superscript dot denotes derivative. Let

H̃(t) = n−1
n∑

i=1

∆i

πi

∫ t

0

dNi(u)

Φn(u, β0,H0)
.

It follows from Proposition in Appendix 1 of Kulich and Lin (2000) that H̃(t)

converges to H0(t) uniformly in t in probability. Also, following Step 3 in the

Appendix of Zeng and Lin (2006), we have that Ĥ(t) is absolutely continuous

with respect to H̃(t), and that dĤ(t)/dH̃(t) converges to a bounded measurable

function. Thus, H∗(t) is absolutely continuous with respect to Lebesgue measure,

its derivative is denoted as h∗(t). Note that ln(β̂, Ĥ)− ln(β0, H̃) ≥ 0. By taking

the limits on both sides, we obtain that the Kullback-Leibler information between

the density indexed by (β∗,H∗) and the true density is negative. Therefore, with

probability one,

δ
[
log λ{H(Y )eβ

∗′X}+ β∗′X + log h∗(Y )
]
− Λ{H(Y )eβ

∗′X}

= δ
[
log λ{H0(Y )eβ

′
0X}+ β

′
0X + log h0(Y )

]
− Λ{H0(Y )eβ

′
0X},
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where h0(·) is the derivative function of H0(·). Equality holds when δ = 0, and

also when δ = 1. The difference between the equalities from these two cases

entails that Λ{H(Y )eβ
∗′X} = Λ{H0(Y )eβ

′
0X}. Thus,

H(Y )eβ
∗′X = H0(Y )eβ

′
0X .

It then follows from Condition (C3) that β∗ = β0 and H∗ = H0. Hence we

have shown that β̂ → β0 and Ĥ(t) → H0(t) in probability. The continuity and

monotonicity of H0 imply that the convergence of Ĥ(t) can be strengthened to

uniform convergence in t ∈ [0, τ ].

Proof of Theorem 2. We choose ρ small enough and letA = {(β,H) : |β−β0| <
ρ, ∥H −H0∥l∞[0,τ ] < ρ}. Define a map Wn = (Wn1,Wn2) from A to Rp × l∞(D)

as follows: for any ϕ(t) ∈ D,

Wn1(β,H) = n−1∂ln(β,H)

∂β

= n−1
n∑

i=1

∆i

πi

(
δi
λ̇{H(Yi)e

β′Xi}
λ{H(Yi)eβ

′Xi}
eβ

′Xi + 1− λ{H(Yi)e
β′Xi}eβ′Xi

)
Xi,

Wn2(β,H)[ϕ] = n−1∂ln(β,H(t) + ε
∫ t
0 ϕ(u)dH(u))

∂ε
|ε=0

= n−1
n∑

i=1

∆i

πi

(
δie

β′Xi
λ̇{H(Yi)e

β′Xi}
λ{H(Yi)eβ

′Xi}

∫ Yi

0
ϕ(u)dH(u)

+δiϕ(Yi)− eβ
′Xiλ{H(Yi)e

β′Xi}
∫ Yi

0
ϕ(u)dH(u)

)
.

Let W1 and W2 be the limits of Wn1 and Wn2, respectively, and W =

(W1,W2). Clearly, Wn(β̂, Ĥ) = 0 and W (β0,H0) = 0. By Proposition in Ap-

pendix 1 of Kulich and Lin (2000),

n1/2(Wn −W )(β̂, Ĥ)− n1/2(Wn −W )(β0,H0) = op(1)

in the metric space Rp × l∞(D). Following the proof of weak convergence in

the Appendix of Zeng and Lin (2006), it can be verified that W is Fréchet-

differentiable at (β0,H0) and that the derivative is continuously invertible in the

set A. Thus, it follows from Theorem 3.3.1 of van der Vaart and Wellner (1996)

that n1/2(β̂ − β0, Ĥ −H0) converges weakly to a zero-mean Gaussian process in

the metric space Rp × l∞(D). Furthermore,

n1/2Ẇ
( β̂ − β0
Ĥ −H0

)[( b
ϕ

)]
= n−1/2

(
l
(n)
β (β0,H0)

′b+ l
(n)
H (β0, H0)[

∫
ϕdH0]

)
+ op(1),

(A.3)
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where Ẇ is the Fréchet derivative of W at (β0, H0), l
(n)
β (β,H) is the score vector

for β, and

l
(n)
H (β,H)[ϕ] = lim

ε→0

ln(β,H + εϕ)− ln(β,H)

ε
.

Asymptotic variance for (2.4). Let

l
(n)
HH(β,H)[ϕ1, ϕ2] = lim

ε→0

l
(n)
H (β,H + εϕ2)[ϕ1]− l

(n)
H (β,H)[ϕ1])

ε
,

and l
(n)
ββ (β,H) denote the Hessian matrix of ln(β,H) with respect to β, with

l
(n)
βH(β,H)[ϕ] and l

(n)
Hβ(β,H)[ϕ] defined similarly. Let lββ(β,H), lβH(β,H)[ϕ],

lHβ(β,H)[ϕ], and lHH(β,H)[ϕ1, ϕ2] be the limits of n−1l
(n)
ββ (β,H), n−1l

(n)
βH(β,H)[ϕ],

n−1l
(n)
Hβ(β,H)[ϕ] and n−1l

(n)
HH(β,H)[ϕ1, ϕ2], respectively. A straightforward cal-

culation yields, for any (β,H) and (b, ϕ),

Ẇ

(
β−β0
H−H0

)[(
b

ϕ

)]
=−

(
lββ(β0,H0) lβH(β0,H0)

lHβ(β0,H0) lHH(β0,H0)

)[(
β−β0
H−H0

)
,

(
b∫

ϕdH0

)]
,

which, combined with (A.3), implies

−

(
lββ(β0,H0) lβH(β0,H0)

lHβ(β0, H0) lHH(β0, H0)

)[(
n1/2(β̂ − β0)

n1/2(Ĥ −H0)

)
,

(
b∫

ϕdH0

)]

= n−1/2

(
l
(n)
β (β0, H0)

′b+ l
(n)
H (β0,H0)[

∫
ϕdH0]

)
+ op(1). (A.4)

This approximation holds uniformly for ϕ with bounded variation and b with

bounded norm. Take H̃0(t) as a step function with jumps at the sampled failure

times {t1, . . . , td} with jump size at tj equal to h̃(tj) ≡ H0(tj)−maxtk<tj H0(tk).

Clearly, H̃0(tj) = H0(tj). For any bounded vector {p1, . . . , pd} and bounded

vector b ∈ Rp, let the step function p(t) jump only at tj with p(tj) = pj , and

let η be the vector consisting of pj ĥ(tj), where ĥ(t) =
∑d

j=1 q̂jI(tj = t). By the

definition of Â in (2.5),

(b′, η′)Â

(
b

η

)
= −n−1

(
l
(n)
ββ (β̂, Ĥ) l

(n)
βH(β̂, Ĥ)

l
(n)
Hβ(β̂, Ĥ) l

(n)
HH(β̂, Ĥ)

)[(
b∫
pdĤ

)
,

(
b∫
pdĤ

)]
which converges to

−

(
lββ(β0,H0) lβH(β0,H0)

lHβ(β0,H0) lHH(β0,H0)

)[(
b∫

pdH0

)
,

(
b∫

pdH0

)]
> 0
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uniformly in any bounded function p(t) and b. This means that Â is positive

definite for large n. On the other hand, let ∆Ĥ = (ĥ(t1), . . . , ĥ(td))
′ and ∆H̃0 =

(h̃(t1), . . . , h̃(td))
′. Then it follows from (A.4) that

−n1/2(b′, η′)Â

(
β̂ − β0

∆Ĥ −∆H̃0

)

= −n−1/2

(
l
(n)
ββ (β̂, Ĥ) l

(n)
βH(β̂, Ĥ)

l
(n)
Hβ(β̂, Ĥ) l

(n)
HH(β̂, Ĥ)

)[(
β̂ − β0
Ĥ − H̃0

)
,

(
b∫
pdĤ

)]

= −n1/2

(
lββ(β0,H0) lβH(β0,H0)

lHβ(β0,H0) lHH(β0, H0)

)[(
β̂ − β0
Ĥ −H0

)
,

(
b∫

pdH0

)]
+ op(1)

= n−1/2
(
l
(n)
β (β0,H0)

′b+ l
(n)
H (β0,H0)[

∫
pdH0]

)
+ op(1)

= n−1/2
(
l
(n)
β (β0,H0)

′b+ l
(n)
H (β0,H0)[

∫
pdĤ]

)
+ op(1). (A.5)

Since Â is invertible, for any bounded vector w = (w1, . . . , wd)
′ and b̃, we can

choose η and b such that Â(b′, η′)′ = (b̃′, w′)′. With such choices, (A.5) implies

that

n1/2b̃′(β̂ − β0) + n1/2
d∑

i=1

wi(ĥ(ti)− h̃(ti))

= n−1/2
(
l
(n)
β (β0,H0)

′b+ l
(n)
H (β0,H0)[

∫
pdĤ]

)
+ op(1),

which converges to normal with covariance matrix

V = lim
n→∞

{
n−1

n∑
i=1

E
[ 1
πi

(
l
(i)
β (β0,H0)

′b+ l
(i)
H (β0, H0)[

∫
pdĤ]

)2]}
+ lim

n→∞

{
n−1

∑
1≤i̸=j≤n

E
[πij − πiπj

πiπj

(
l
(i)
β (β0,H0)

′b+ l
(i)
H (β0,H0)[

∫
pdĤ]

)
×
(
l
(j)
β (β0,H0)

′b+ l
(i)
H (β0,H0)[

∫
pdĤ]

)]}
,

where l
(i)
β (β,H) is the derivative of li(β,H) = δi[log λ{H(Yi)e

β′Xi} + β′Xi +

log h(Yi)] − Λ{H(Yi)e
β′Xi} with respect to β, l

(i)
H (β,H)[

∫
pdĤ] is the derivative

of li(β,H) with respect to H along the path H + ϵ
∫
pdĤ. It is easy to see that
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V can be consistently estimated by

n−1
n∑

i=1

∆i

π2
i

(
l
(i)
β (β̂, Ĥ)′b+ l

(i)
H (β̂, Ĥ)[

∫
pdĤ]

)2
+n−1

∑
1≤i̸=j≤n

∆i∆j(πij − πiπj)

πijπiπj

(
l
(i)
β (β̂, Ĥ)′b+ l

(i)
H (β̂, Ĥ)[

∫
pdĤ]

)
×
(
l
(j)
β (β̂, Ĥ)′b+ l

(j)
H (β̂, Ĥ)[

∫
pdĤ]

)
,

which is equal to (b′, η′)B̂(b′, η′)′, where B̂ is defined in (2.6). Thus, the asymp-

totic variance for

n1/2b̃′(β̂ − β0) + n1/2
d∑

i=1

wi(ĥ(ti)− h̃(ti))

can be consistently estimated by (b′, η′)B̂(b′, η′)′ = (b̃′, w′)Â−1B̂Â−1(b̃′, w′)′. That

is, for any vector b̃ and any function w with bounded total variation in [0, τ ] such

that w(ti) = wi, the asymptotic variance for

n1/2b̃′(β̂ − β0) + n1/2

∫ τ

0
w(t)d[Ĥ(t)−H0(t)]

can be estimated by (b̃′, w′)Â−1B̂Â−1(b̃′, w′)′, where w = (w(t1), . . . , w(td))
′.
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