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Abstract: For two-level regular designs, we obtain the structures of Fisher informa-

tion matrices for estimating main effects and two-factor interactions (2fi’s). Based

on these results, we propose the definition of minimal sufficient confounding in-

formation among main effects and 2fi’s. As an application, we demonstrate that

minimum aberration (MA) designs must be (M,S)-optimal designs for two-level reg-

ular designs. In addition, we show that sequentially minimizing M(1,2)1
,M(2,2)2

and

M(2,2)1
, as the core of the minimum M-aberration criterion proposed by Zhu and

Zeng (2005), is equivalent to sequentially minimizing word length pattern A3 and

A4. In particular, we show that sequentially minimizing A3 and A4 is equivalent

to sequentially maximizing the first two components of the maximum estimation

capacity, E1(d) and E2(d), defined in Cheng, Steinberg, and Sun (1999).
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1. Introduction

The effect hierarchy principle is important in fractional factorial design. The

principle states that lower-order effects are more likely to be important than

higher-order ones, and effects of the same order are equally like to be important.

Therefore, good designs should estimate as many lower-order effects as possible.

Aimed at such a purpose, many criteria have been advised in the literature, of

which the MA criterion proposed by Fries and Hunter (1980) is the most popular

criterion, for it has many good properties such as model robustness. For details,

we refer to Cheng, Steinberg, and Sun (1999).

For a regular 2n−m fractional factorial design, say d, let Ai(d) be the number

of words of length i in the defining relation. Then A(d) = (A1(d), . . . , An(d))

is called the word length pattern of design d. For any designs d1 and d2, let r

be the smallest integer such that Ar(d1) ̸= Ar(d2). Then d1 is said to have less

aberration than d2 if Ar(d1) < Ar(d2). If no design has less aberration than d1,

then d1 is called the MA design.
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For ease of computation, S-optimality was introduced by Shah (1960) in the

context of incomplete block designs. Based on S-optimality, the (M,S) procedure

proposed by Eccleston and Hedayat (1974) has been widely used and advocated

in optimal design literature, see especially Shah and Sinha (1989). Cheng, Deng,

and Tang (2002) and Mandal and Mukerjee (2005) also studied (M,S)-optimality

in factorial designs. In fact, (M,S)-optimality can be used to quickly identify

designs that might turn out to be optimal, or highly efficient, according to other

meaningful criterion, such as MA, minimum moment aberration (MMA) and so

on. Recently, (M,S)-optimality was once again proposed by Qu, Kushler, and

Ogunyemi (2008) for selecting two-level factorial designs. Note that the two con-

cepts of (M,S)-optimality are slight different. Shah and Sinha (1989), Cheng,

Deng, and Tang (2002), and Mandal and Mukerjee (2005) considered the joint

information on the main effects and two-factor interaction, while Qu, Kushler,

and Ogunyemi (2008) focused on the conditional information on the two-factor

interaction given main effects. Both Jacroux (2004) and Qu, Kushler, and Ogun-

yemi (2008) considered the connection between the (M,S) and MA criteria for

two-level regular designs of resolution III or higher. They showed that, for designs

of resolution IV or higher, MA designs must be (M,S)-optimal. Furthermore, Qu,

Kushler, and Ogunyemi (2008) showed that all designs of resolution III up to 64

runs are also (M,S)-optimal. However, for designs of resolution III with N(> 64)

runs, whether an MA design is (M,S)-optimal is still unresolved.

In order to give a close characterization of the aliasing patterns of a fractional

factorial design, the coset pattern matrix (CPM) was defined by Zhu and Zeng

(2005). Based on the CPM, the minimum M-aberration criterion was proposed,

by Zhu and Zeng (2005), to rank-order designs. The minimum M-abberation

criterion selects designs through sequentially minimizing the following aliasing

type pattern

M = (M(1,2)1 ,M(2,2)2 ,M(2,2)1 ,M(1,3)1 ,M(2,3)2 ,M(2,3)1 , . . .).

They noticed that sequentially minimizing M(1,2)1
and M(2,2)2

is equivalent to

sequentially maximizing the first two components of the maximum estimation

capacity, E1(d) and E2(d), where Ei(d) denote the number of models containing

all i-factor interaction that can be estimated by d, but they did not discuss the

further connection between the minimum M-aberration and MA criteria.

Recently, by introducing an aliased effect-number pattern (AENP), Zhang et

al. (2008) proposed a general minimum lower-order confounding (GMC) criterion

for selecting two-level regular designs. For more details of the GMC criterion,

we refer to Zhang et al. (2008). Considering regular 2n−m designs with n factors

and N = 2n−m runs, they defined #
iC

(l)
j as the number of ith-order effects aliased
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with l jth-order effects. They showed that the AENP can manage many other

criteria. Further connotations and applications of the AENP are not known.

Throughout this paper, we only discuss the case of two-level regular designs

of resolution III or higher. In Section 2, we obtain the structure of Fisher informa-

tion matrices for estimating main effects and 2fi’s. In Section 3, we propose the

definition of minimal sufficient confounding information among main effects and

2fi’s. As an application, we demonstrate that minimum aberration (MA) designs

must be (M,S)-optimal designs. In Section 4, we show that the CPM is just a suf-

ficient, but not minimal sufficient, confounding information among main effects

and 2fi’s. As another application of the new concept, we show that sequentially

minimizing M(1,2)1
,M(2,2)2

, and M(2,2)1
is equivalent to sequentially minimizing

word length pattern A3 and A4. This means that sequentially minimizing A3

and A4 is equivalent to sequentially maximizing the first two components of the

maximum estimation capacity, E1(d) and E2(d). Thus, the essential connection

between the two criteria is revealed.

2. Structures of Fisher Information Matrices for Estimating Main

Effects and Two-Factor Interactions

2.1. Model

For any regular 2n−m design with n factors each at two levels and N = 2n−m

runs, we consider the scenario in which grand mean, main effects, and 2fi’s are of

interest and need to be estimated, three-factor and higher order interactions are

negligible. To estimate the grand mean, main effects, and 2fi’s, the fitted model

is given by

Y = Xβ + ϵ = X0β0 +X1β1 +X2β2 + ϵ,

where Y denotes the vector of N observations, β0 is the grand mean, X0 the all

+1 column, X1 is the original design matrix D, β1 is the vector of all main effects,

X2 is the collection of products of two columns from D, β2 is the corresponding

two-factor interaction effects, and ϵ is the vector of random errors, assumed to

have zero mean and constant variance. Note that XT
1 X1 = NI and XT

1 X0 = 0

for all designs considered.

The normal equation for estimating the grand mean, main effects and 2fi’s

is

Sβ = XTY,

where

S = XTX =

 N 0 0

0 XT
1 X1 XT

1 X2

0 XT
2 X1 XT

2 X2

 .
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We say, an effect is estimable if its least squares estimate (LSE) is unique.

It is easy to see that β0 is estimable and its least squares estimate is β̂0 =∑N
i=1 Yi/N .

In the following two subsections, we explore the structures of Fisher infor-

mation matrices for estimating main effects and two-factor interactions.

2.2. Fisher information matrix for estimating 2fi’s

Consider the estimates of 2fi’s. The reduced normal equation for estimating

β2 is

C2β2 = XT
2 Y −N−1XT

2 X1X
T
1 Y,

where C2 = XT
2 X2 −N−1(XT

1 X2)
T (XT

1 X2). Thus, β2 is estimable if and only if

C2, the Fisher information matrix for estimating β2, is positive definite. Since

C2 plays a key role for estimating β2, it is important to give a clear expression

for each of its elements.

Define

Jstu = J(s, t, u) =

N∑
l=1

sltlul,

Jstuv = J(s, t, u, v) =

N∑
l=1

sltlulvl,

where il is the l-th component of column s, and so on.

We use C2(ij, pq) to denote the (ij, pq)-th element of C2. Then

C2(ij, pq) = Jijpq −N−1(J1ij , J2ij , . . . , Jnij)(J1pq, J2pq, . . . , Jnpq)
T

= Jijpq −N−1
n∑

l=1

JlijJlpq.

If ij = pq or ij is aliased with pq, C2(ij, pq) = N−N−1
∑n

l=1 J
2
lij . In particu-

lar, if ij is aliased with one main effect, C2(ij, pq) = 0, otherwise C2(ij, pq) = N .

If ij ̸= pq and ij is not aliased with pq, C2(ij, pq) = −N−1
∑n

l=1 JlijJlpq = 0

since there is no main effect aliased with both ij and pq.

Therefore, when we adjust β2 and thus the corresponding X2 to an ap-

propriate order, the information matrix C2 has a block diagonal form C2 =

diag{0t2 , NIr2 , N1u1
T
u , . . . , N1v1

T
v }, where 1l denotes a l × 1 vector of 1’s, and

Ir2 denotes the identity matrix of order r2.

From the above discussion, each of the 2fi’s corresponding to Ir2 is neither

aliased with any other 2fi nor aliased with any main effect, and thus is estimable.

Each of the 2fi’s corresponding to 0t2 is aliased with one main effect and thus is
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not estimable. Each of the 2fi’s corresponding to 1l1
T
l is aliased with other l− 1

2fi’s but not aliased with any main effect, and thus is not estimable.

Clearly, there are #
2C

(l)
2 /(l+1) alias sets containing l+1 2fi’s and #

1C
(l+1)
2 alias

sets containing l+1 2fi’s and one main effect. Moreover, an alias set contains at

most h = min{⌊n/2⌋, 2m} 2fi’s, where ⌊x⌋ is the integer part of x. All the alias

sets containing 2fi’s but none of the main effects can be partitioned into h classes.

The l-th class consists of the alias sets which contain l+1 2fi’s, l = 0, 1, . . . , h−1.

Let Cl be the l-th class. Then |Cl| = #
2C

(l)
2 /(l + 1) − #

1C
(l+1)
2 , where | · | denotes

the cardinality of a set Cl for l = 0, 1, . . . , h − 1. In particular, if l = 0, |C0|
denotes the number of sets each of which contains only one 2fi but none of the

main effects, i.e., the number of clear 2fi’s. This means r2 = |C0|.
It is also easy to see that there are |Cl|(1l+11

T
l+1). There are altogether(

n
2

)
−

∑h−1
l=0 (l + 1)|Cl| 2fi’s, each of which is aliased with one main effect, i.e.,

t2 =
(
n
2

)
−

∑h−1
l=0 (l + 1)|Cl|.

Therefore, the structure of information matrix C2 is uniquely determined by
#
2C

(l)
2 /(l + 1)− #

1C
(l+1)
2 (l = 0, 1, . . . , h− 1).

2.3. Fisher information matrix for estimating main effects

We turn to the estimates of main effects. The reduced normal equations for

estimating β1 is

C1β1 = XT
1 Y − (XT

2 X2)
−XT

2 Y,

where C1 = NIn − (XT
1 X2)(X

T
2 X2)

−(XT
1 X2)

T and (XT
2 X2)

− is the generalized

inverse of XT
2 X2. Thus, β1 is estimable if and only if C1, the Fisher informa-

tion matrix for estimating β1, is positive definite. Since C1 plays a key role for

estimating β1, it is important to give a clear expression for each of its elements.

When we adjust β2 and thus the corresponding X2 to an appropriate order,

XT
2 X2 has a block diagonal form XT

2 X2 = diag{NIr, N1u1
T
u , . . . , N1v1

T
v }. Since

X2(X
T
2 X2)

−XT
2 is independent of the selection of (XT

2 X2)
−, we can take the

generalized inverse,

(XT
2 X2)

− = diag{N−1Ir, N
−1Eu, . . . , N

−1Ev},

where Eu = {1, 0, . . . , 0} is one of the generalized inverses of 1u1
T
u .
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We use C1(i, j) to denote the (i, j)th element of C1. Then

C1(i, j) =Nδij −N−1



Jjs1
...

Jjsr
Jj(sr+1)

Jj(sr+2)
...



T 
Ir

Eu

. . .

Ev





Jjs1
...

Jjsr
Jj(sr+1)

Jj(sr+2)
...


=Nδij −N−1(

∑(n2)
k=1 JiskJjsk − Ji(sr+2)Jj(sr+2) − · · · )

=Nδij −N−1
∑

s∈S1
JisJjs,

where S1: (1) contains all the 2fi’s; (2) if a 2fi is aliased with other 2fi’s, only one

2fi’s are allowed to appear in S1. Furthermore, δ is the Kronecker delta function

defined by δij = 1 if i = j, otherwise δij = 0.

If i = j, C1(i, j) = N − N−1
∑

s∈S1
J2
is. In particular, if i is aliased with

some 2fi’s, then C1(i, j) = 0, otherwise C1(i, j) = N . If i ̸= j, C1(i, j) =

−N−1
∑

s∈S1
JisJjs = 0 since there is no 2fi aliased with both of i and j.

Thus, the structure of information matrix C1 has a diagonal form

C1 = N

(
0t1

Ir1

)
n×n

.

From this, we can see that each of the main effects corresponding to Ir1 is not

aliased with any 2fi and thus is estimable. Each of the main effects corresponding

to 0t1 is aliased with at least a 2fi and thus is not estimable.

Obviously, r1 = #
1C

(0)
2 , t1 = n − #

1C
(0)
2 . This means that the structure of

information matrix C1 is uniquely determined by #
1C

(0)
2 . Note that C1 and C2 do

not contain the detailed information of #
1C

(l)
2 (l = 1, . . . , h).

3. Minimal Sufficient Confounding Information among Main Effects

and Two-Factor Interactions

3.1. Definition

We give the definition of minimal sufficient confounding information among

main effects and 2fi’s.

Definition 1. If the confounding information among main effects and 2fi’s is

uniquely determined by information T , then T is called the sufficient confounding

information among main effects and 2fi’s.
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Definition 2. Suppose T is sufficient confounding information among main ef-

fects and 2fi’s, and for any sufficient confounding information T1 among main

effects and 2fi’s, T is determined by T1. Then T is called the minimal sufficient

confounding information among main effects and 2fi’s.

Results in Section 2 show that the confounding information among main

effects and 2fi’s is uniquely determined by #
1C

(l)
2 (l = 0, 1, . . . , h) and #

2C
(l)
2 /(l +

1) − #
1C

(l+1)
2 (l = 0, 1, . . . , h − 1) and vice versa. Thus #

1C
(l)
2 (l = 0, 1, . . . , h) and

#
2C

(l)
2 /(l + 1)− #

1C
(l+1)
2 (l = 0, 1, . . . , h− 1) is the minimal sufficient confounding

information among main effects and 2fi’s.

Obviously, #1C
(l)
2 (l = 0, 1, . . . , h) and #

2C
(l)
2 /(l+1)−#

1C
(l+1)
2 (l = 0, 1, . . . , h−1)

are uniquely determined by #
1C

(l)
2 (l = 0, 1, . . . , h) and #

2C
(l)
2 (l = 0, 1, . . . , h − 1)

and vice versa. Thus #
1C

(l)
2 (l = 0, 1, . . . , h) and #

2C
(l)
2 (l = 0, 1, . . . , h − 1) is also

the minimal sufficient confounding information among main effects and 2fi’s.

3.2. MA criterion in view of minimal sufficient confounding informa-

tion

Let A3, as usual, denote the number of words of length 3 in the defining

relation. Then A3 reveals some confounding information among main effects and

2fi’s. Also, denote by A4 the number of words of length 4 in the defining relation.

Then A4 reveals some confounding information among 2fi’s. Thus, A3 and A4

must be functions of the minimal sufficient confounding information among main

effects and 2fi’s. This can be verified by a lemma that can be deduced from

Theorem 2 of Zhang et al. (2008).

Lemma 1. A3 = (1/3)
∑h

l=1 l
#
1C

(l)
2 , A4 = (1/6)

∑h−1
l=1 l#2C

(l)
2 .

Lemma 1 implies that the MA criterion loses part of confounding information

among main effects and 2fi’s.

3.3. Another version of minimal sufficient confounding information

The minimal sufficient confounding information among main effects and 2fi’s

has other versions. We show that the mi’s (1 ≤ i ≤ g) defined by Cheng,

Steinberg, and Sun (1999) are also the minimal sufficient confounding information

among main effects and 2fi’s under a certain condition.

In a 2n−m design d with resolution III or higher, 2m − 1 of the 2n − 1

factorial effects appear in the defining relation. The remaining 2n − 2m effects

are partitioned into g = 2n−m − 1 alias sets each of size 2m, n of which sets

contain main effects. Let f = g − n, and take the f alias sets not containing

main effects to be M1, . . . ,Mf . Also, let the n alias sets containing main effects

be Mf+1, . . . ,Mg. For 1 ≤ i ≤ g, let mi(d) be the number of 2fi’s in Mi.
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Lemma 2. For 0 ≤ l ≤ h, we have

#
1C

(l)
2 =#{i : f + 1 ≤ i ≤ g,mi = l},

#
2C

(l)
2

(l + 1)
− #

1C
(l+1)
2 =#{i : 1 ≤ i ≤ f,mi = l + 1},

where # denotes the cardinality of a set.

Under the assumption that we need not identify effects aliased with others at

the same degree, the mi’s (1 ≤ i ≤ f) and mi’s (f + 1 ≤ i ≤ g) can be arranged

in nondecreasing order respectively, then obviously, #
1C

(l)
2 (l = 0, 1, . . . , h) and

#
2C

(l)
2 /(l+ 1)− #

1C
(l+1)
2 (l = 0, 1, . . . , h− 1) are uniquely determined by mi’s (1 ≤

i ≤ g) and vice versa. Therefore, the mi’s (1 ≤ i ≤ g) are also the minimal

sufficient confounding information among main effects and 2fi’s under a certain

condition.

By Lemmas 1 and 2, A3 and A4 must be functions of the mi’s (1 ≤ i ≤ g).

Corollary 1. A3 = (1/3)
∑g

i=f+1mi, A4 = (1/6)(
∑g

i=1m
2
i −

(
n
2

)
).

By Corollary 1, and thus the minimal sufficient confounding information

among main effects and 2fi’s, Cheng, Steinberg, and Sun (1999) showed that

the MA criterion is a good surrogate for maximum estimation capacity, a model

robustness criterion. Their work can be viewed as an important application of

the minimal sufficient confounding information among main effects and 2fi’s.

3.4. MA designs must be (M, S)-optimal designs

There are other applications of the minimal sufficient confounding infor-

mation among main effects and 2fi’s. For example, by the minimal sufficient

confounding information among main effects and 2fi’s, the uniquely optimal con-

founding structure between main effects and two-factor interactions, possessed

by resolution III designs with and only with minimum A3, was found by Hu

and Zhang (2011). For more applications of the minimal sufficient confounding

information among main effects and 2fi’s, we refer to Hu and Zhang (2009).

Denote by fthe number of factors of the complementary design, f = 2n−m−
n − 1. For 2n−m−1 ≤ f ≤ 2n−m − 1, designs with A3 being minimized must be

those of resolution four or higher. Therefore, for these cases, the main effects are

orthogonal to the 2fi’s. Next, only 2ω−1 ≤ f ≤ 2ω − 1 and 1 ≤ ω ≤ n −m − 1

need be considered.

Lemma 3. For 2ω−1 ≤ f ≤ 2ω − 1, 1 ≤ ω ≤ n−m− 1, T is a design for which
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A3 is minimized if and only if

#
1C

(k)
2 =


n− (2ω − 1− f), if k = 1

2(n− f − 1),

2ω − 1− f, if k = 1
2(n− f − 1) + f − 2ω−1 + 1,

0, otherwise.

We turn to the connection between the (M,S) and MA criteria. First, we
need the following results.

Lemma 4. From the structure of C2, it is easy to see that trace(C2) = N
∑h−1

l=0

(l + 1)|Cl|, trace(C2
2 ) = N2

∑h−1
l=0 (l + 1)2|Cl|, trace(C2) = N(

(
n
2

)
− 3A3).

Proof. The first two equalities are evident from the structure of C2. We only
show the third. Since there are altogether

(
n
2

)
−
∑h−1

l=0 (l+1)|Cl| 2fi’s, each of which

is aliased with one main effect, it is easy to see that 3A3 =
(
n
2

)
−
∑h−1

l=0 (l+1)|Cl|.
By the first equality, we have trace(C2) = N(

(
n
2

)
− 3A3).

The (M,S) criterion first identifies a subclass of designs that maximize
trace(C2), and then finds designs within this subclass that minimize trace(C2

2 ).
If a design has the maximum trace(C2) and minimum trace(C2

2 ) within a class
of designs D, it is called an (M,S)-optimal design in D.

Lemma 4 implies that the (M,S) criterion loses part of the confounding
information among main effects and 2fi’s.

Theorem 1. For any regular design of resolution III or higher, selecting designs
in a subclass of designs that maximize trace(C2), then finding designs within this
subclass that minimize trace(C2

2 ) is equivalent to sequentially minimizing A3 and
A4.

Proof. By Lemma 4, trace(C2) = N(
(
n
2

)
− 3A3). This means that maximizing

trace(C2) is equivalent to minimizing A3. By Lemmas 1 and 4, we have

trace(C2
2 ) =N2

h−1∑
l=0

(l + 1)2|Cl|

=N2
h−1∑
l=0

(l + 1)2
( #

2C
(l)
2

(l + 1)
− #

1C
(l+1)
2

)
=N2

h−1∑
l=0

(l + 1)#2C
(l)
2 −N2

h−1∑
l=0

(l + 1)2#1C
(l+1)
2

=N2
h−1∑
l=0

l#2C
(l)
2 +N2

h−1∑
l=0

#
2C

(l)
2 −N2

h−1∑
l=0

(l + 1)2#1C
(l+1)
2

= 6N2A4 +N2

(
n

2

)
−N2

h−1∑
l=0

(l + 1)2#1C
(l+1)
2 .
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Under the condition that A3 is minimized, by Lemma 3, the confounding struc-

ture between main effects and 2fi’s is uniquely determined. This means that

N2
∑h−1

l=0 (l+ 1)2#1C
(l+1)
2 is a constant under the condition that A3 is minimized.

Thus, minimizing A4 is equivalent to minimizing trace(C2
2 ) under the condition

that A3 is minimized. Therefore, selecting designs in a subclass of designs that

maximize trace(C2), and then finding designs within this subclass that minimize

trace(C2
2 ) is equivalent to sequentially minimizing A3 and A4.

By Theorem 1, it is easy to see that MA designs must be (M,S)-optimal

designs.

4. Other Applications of Minimal Sufficient Confounding Information

4.1. The coset pattern matrix is sufficient confounding information

Denote by Fl the collection of all l-th order effects cosets and r(Fl) the

collection of ranks of the cosets in Fl. Suppose i1 · · · ipG is the lth coset, that is,

r(i1 · · · ipG) = l, with 0 ≤ l ≤ N − 1. Let Alj be the number of words of length

j in i1 · · · ipG. The vector Wl = (Al1, . . . , Aln) is the coset pattern of i1 · · · ipG.

The N × n matrix A(d) = (W T
0 , . . . ,W T

N−1)
T is called the coset pattern matrix

by Zhu and Zeng (2005).

By the definitions of CPM and the aliased effect-number pattern (AENP),

we get the following.

Lemma 5. For any regular design, #
iC

(l)
j is a function of Alj,

#
iC

(l)
j =

{
(l + 1)#{h ∈ r(

∪x
k=0Fk) : Ahi = l + 1}, if i = j,∑

{h∈r(
∪x

k=0 Fk):Ahj=l}Ahi, if i ̸= j,

where x = min(i, j).

Proof. The proof is evident. No ith-order effect is aliased with jth-order effects

in the coset when h ∈ r(
∪n−1

k=x+1Fk). When i ̸= j, for any given h ∈ {h ∈
r(
∪x

k=0Fk) : Ahj = l}, there are Ahi ith-order effects aliased with l jth-order

effects. When i = j, for any given h ∈ {h ∈ r(
∪x

k=0Fk) : Ahi = l + 1}, there are

Ahi = l + 1 ith-order effects aliased with l ith-order effects.

In particular, when i = 1, Ahi = 1 for any regular design of resolution III or

higher. Thus, we have the following corollary.

Corollary 2. For any regular design of resolution III or higher,

#
1C

(l)
j = #{h ∈ r(F0 ∪ F1) : Ahj = l}, j ≥ 2.
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Although the minimal sufficient confounding information among main effects

and 2fi’s is uniquely determined by the CPM, the CPM cannot be determined by

the minimal sufficient confounding information among main effects and 2fi’s. This

means that the CPM is just a sufficient but not minimal sufficient confounding

information among main effects and 2fi’s.

4.2. Relationship between minimum M-abberation and MA criteria

Based on the CPM, Zhu and Zeng (2005) proposed the minimumM-abberation

criterion for regular designs of resolution at least III. Suppose e1 and e2 are two

effects of ith-order and jth-order respectively, and aliased with each other. Then

e1 and e2 must belong to the same coset, say i1 · · · ikG. They have the aliasing

between e1 and e2 as of type (i, j)k, where k ≤ i. For a given (i, j)k, they took

M(i,j)k to be the number of pairs of aliased effects which are of the subtype (i, j)k.

It is easy to see that M(i,j)k can be calculated from the CPM as follows,

M(i,j)k =

{∑
h∈r(Fk)

1
2Ahi(Ahi − 1), if i = j,∑

h∈r(Fk)
AhiAhj , if i < j.

Lemma 6. For any regular design of resolution III or higher,

M(1,j)1 =

Kj∑
l=1

l#1C
(l)
j ,M(i,i)1 =

Ki∑
l=2

(
l

2

)
#
1C

(l)
i ,

M(2,2)2 =

h−1∑
l=1

(
l + 1

2

)
|Cl|,

where i ≥ 2, j ≥ 2.

Proof. When i = 1, Ahi = 1, so M(1,j)1 =
∑

h∈r(F1)
Ahj is just the number

of jth-order effects aliased with main effects. There are #
1C

(l)
j cosets with main

effects as their coset leaders, each of which contains l jth-order effects. Thus,

M(1,j)1 =
∑Kj

l=1 l
#
1C

(l)
j . M(i,i)1 =

∑
h∈r(F1)

(1/2)Ahi(Ahi − 1) denotes the number

of pairs of aliased ith-order effects that are of type (i, i)1. There are #
1C

(l)
i cosets

containing l ith-order effects and with main effects as their coset leaders. There

are
(
l
2

)
pairs of aliased ith-order effects for any coset containing l ith-order effects

and with one main effect as its coset leader. Thus, M(i,i)1 =
∑Ki

l=2

(
l
2

)#
1C

(l)
i .

M(2,2)2 =
∑

h∈r(F2)
(1/2)Ahi(Ahi − 1) denotes the number of pairs of aliased

2fi’s, which are of type (2, 2)2. There are |Cl| cosets containing l + 1 ith-order

effects with 2fi’s as their coset leaders. There are
(
l+1
2

)
pairs of aliased 2fi’s for

any coset containing l 2fi’s and with one 2fi as its coset leader. Thus, we have

M(2,2)2 =
∑h−1

l=1

(
l+1
2

)
|Cl|.
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Lemma 7. For any regular design,

i∑
k=0

M(i,j)k =


∑Ki

l=0
l
2
#
iC

(l)
i , if i = j,∑Kj

l=0 l
#
iC

(l)
j , if i < j.

Proof. When i < j, we have

i∑
k=0

M(i,j)k =
i∑

k=0

∑
h∈r(Fk)

AhiAhj

=
∑

h∈r(
∪i

k=0 Fk)

AhiAhj

=

Kj∑
l=0

∑
{h∈r(

∪i
k=0 Fk):Ahj=l}

lAhi

=

Kj∑
l=0

l
∑

{h∈r(
∪i

k=0 Fk):Ahj=l}

Ahi

=

Kj∑
l=0

l#iC
(l)
j .

Similarly, when i = j, we have
∑i

k=0M(i,i)k =
∑Ki

l=0
l
2
#
iC

(l)
i .

Although the CPM has more detailed information than the minimal suf-

ficient confounding information among main effects and 2fi’s, the core of the

minimum M-abberation criterion, the first and most important three elements of

the aliasing type pattern based on the CPM, M(1,2)1
,M(2,2)2

, and M(2,2)1
, are still

functions of the minimal sufficient confounding information among main effects

and 2fi’s. This means that the minimum M-aberration criterion also loses part

of the confounding information among main effects and 2fi’s.

Now, as an application of the minimal sufficient confounding information

among main effects and 2fi’s, we prove a following result that reveals the close

relationship between the minimum M-abberation and MA criteria.

Theorem 2. For any regular design of resolution III or higher, sequentially

minimizing M(1,2)1
,M(2,2)2

, and M(2,2)1
is equivalent to sequentially minimizing

A3 and A4.

Proof. By Lemmas 1 and 6, it is easy to see that A3 = (1/3)M(1,2)1 . This means

that minimizing M(1,2)1 is equivalent to minimizing A3. By Lemmas 1 and 6, we
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also have

A4 =
1

6

h−1∑
l=1

l#2C
(l)
2

=
1

6

h−1∑
l=1

l(l + 1)
( #

2C
(l)
2

(l + 1)
− #

1C
(l+1)
2 )− 1

6

h−1∑
l=1

l(l + 1)#1C
(l+1)
2

=
1

3

h−1∑
l=1

(
l + 1

2

)
|Cl| −

1

6

h−1∑
l=1

l(l + 1)#1C
(l+1)
2

=
1

3
M(2,2)2 −

1

6

h−1∑
l=1

l(l + 1)#1C
(l+1)
2 .

Under the condition that A3 is minimized, by Lemma 3 the confounding struc-

ture between main effects and 2fi’s is uniquely determined. This means that

(1/6)
∑h−1

l=1 l(l+1)#1C
(l+1)
2 is a constant under the condition that A3 is minimized.

Thus, minimizing A4 is equivalent to minimizing M(2,2)2
under the condition that

A3 is minimized. For the same reason, M(2,2)1
is also a constant under the con-

dition that A3 is minimized. Therefore, sequentially minimizing M(1,2)1
,M(2,2)2

,

and M(2,2)1
is equivalent to sequentially minimizing A3 and A4.

4.3. MEC and MA criteria often produce quite consistent results

Theorem 3. For any regular design of resolution III or higher, sequentially

minimizing A3 and A4 is equivalent to sequentially maximizing E1(d) and E2(d).

Proof. Zhu and Zeng (2005) showed that E1 = n(n − 1)/2 − M(1,2)1
and

E2 = E1(E1 + 1)/2 − M(2,2)2
. By Theorem 2, it is easy to see that sequen-

tially minimizing A3 and A4 is equivalent to sequentially maximizing E1(d) and

E2(d).

Next, we use Theorem 3 to explain the phenomenon in Section 5 of Cheng,

Steinberg, and Sun (1999): for N = 16, 32, the MA and MEC criteria produce

quite consistent results.

On the one hand, by checking the catalog of 2n−m designs in Mukerjee and

Wu (2006), we know that for N = 16, 32, all the MA designs are uniquely deter-

mined by sequentially minimizing A3, A4.

On the other hand, obviously, the maximum estimation capacity criterion

is a stronger condition than only sequentially maximizing E1, E2. As is well

known, for N = 16, 32, a design with the maximum estimation capacity may not

exist. But if it does exist, it must have minimum aberration since all the 16-run
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and 32-run minimum aberration designs are uniquely determined by sequentially

minimizing A3, A4. For detailed examples, see Cheng, Steinberg, and Sun (1999)

and Chen and Cheng (2004). Thus we have almost completely explained the

phenomenon in Section 5 of Cheng, Steinberg, and Sun (1999). For small runs,

we can illustrate this as follows.

MEC ⇒ simutaneously maximizing E1 and E2

⇒ sequentially maximizing E1 and E2

⇔ sequentially minimizing A3 and A4

≈ MA.

Theorfore, Theorem 3 can be rephrased as follows.

Corollary 3. For given parameters n and m, if the MEC 2n−m design exists

and the MA 2n−m design is uniquely determined by sequentially minimizing A3,

A4, then the MA 2n−m design is just an MEC 2n−m design.

At last, we point out that, by a similar discussion, we can demonstrate that

some other nice criteria, such as those in Zhang and Park (2000), Xu (2003), Ai,

Li, and Zhang (2005), Fang and Qin (2005), and Xu (2006) that are equivalent

to the MA criterion, also have the similar properties discussed in Theorems 1−3

and Corollary 3.
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