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Abstract: Composite likelihoods are increasingly used in applications where the full

likelihood is analytically unknown or computationally prohibitive. Although some

frequentist properties of the maximum composite likelihood estimator are akin to

those of the maximum likelihood estimator, Bayesian inference based on composite

likelihoods is in its early stages. This paper discusses inference when one uses com-

posite likelihood in Bayes’ formula. We establish that using a composite likelihood

results in a proper posterior density, though it can differ considerably from that

stemming from the full likelihood. Building on previous work on composite likeli-

hood ratio tests, we use asymptotic theory for misspecified models to propose two

adjustments to the composite likelihood to obtain appropriate inference. We also

investigate use of the Metropolis Hastings algorithm and two implementations of

the Gibbs sampler for obtaining draws from the composite posterior. We test the

methods on simulated data and apply them to a spatial extreme rainfall dataset.

For the simulated data, we find that posterior credible intervals yield appropri-

ate empirical coverage rates. For the extreme precipitation data, we are able to

both effectively model marginal behavior throughout the study region and obtain

appropriate measures of spatial dependence.

Key words and phrases: Bayesian hierarchical model, composite likelihood, Gibbs

sampler, Markov chain Monte Carlo, max-stable process, Metropolis–Hastings al-
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1. Introduction

1.1. Motivation

The likelihood function is central to both frequentist and Bayesian inference,

but in many modern settings it may be infeasible to calculate it, either because

no analytical form is available, or because such a form is known but is com-

putationally prohibitive. The first difficulty arises with max-stable processes,

which are used to construct probability models for complex rare events, but for

which closed forms are typically available only for the bivariate marginal den-

sities (Smith (1990); Schlather (2002); de Haan and Pereira (2006); Kabluchko,

Schlather, and de Haan (2009)), though Genton, Ma, and Sang (2011) show that
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substantial efficiency gains are possible if trivariate margins can be used. The

second difficulty may be experienced when dealing with Gaussian random fields

on large lattices. These problems, and many other similar ones, can be tackled

using composite likelihoods. Padoan, Ribatet, and Sisson (2010) and Gholam-

rezaee (2010) propose the use of composite likelihood based on marginal events

to fit max-stable processes, and Rue and Tjelmeland (2002) have used composite

likelihoods based on omitting components of the full likelihood in approximat-

ing Gaussian random fields. Rydén and Titterington (1998) describe the use of

pseudo-likelihood, a form of composite likelihood, in simulation-based inference

involving missing data, and show that their approach leads to a valid Markov

chain simulation algorithm.

Frequentist methods for composite likelihoods have been used for some time

(for an overview, see Varin (2008)), but little work has been done to explore how

composite likelihoods could be employed in a Bayesian framework. The moti-

vating application for this work is the spatial modelling of extremes. Recently

authors (e.g., Padoan, Ribatet, and Sisson (2010) and Gholamrezaee (2010)) have

used composite likelihoods to fit max-stable models, enabling the researchers to

successfully model dependence between observations. However, the frequentist

methods they employ may not be flexible enough to accurately fit the marginal

behavior across the study region. Cooley, Nychka, and Naveau (2007) and Sang

and Gelfand (2009) have used Bayesian hierarchical spatial models to capture

the marginal effects for spatial extremes, but have not used the max-stable pro-

cess models suggested by extreme value theory to describe the dependence in the

data. The goal of this work is combine these two approaches, and this entails

appropriately deploying a composite likelihood within a Bayesian framework.

1.2. Likelihood asymptotics for composite likelihoods

Although it has numerous antecedents, the notion of a composite likelihood

was crystallized by Lindsay (1988), who defined it as a combination of valid

likelihood entities. Consider a random vector Y ∈ RK with probability density

function f(y; θ) where θ ∈ Rp is an unknown parameter vector. Let {Ai : i ∈ I},
I ⊂ N, be a set of marginal or conditional events for Y and let {wi, i ∈ I} be a

set of non-negative weights. A composite likelihood is defined as

Lc(θ; y) =
∏
i∈I

f(y ∈ Ai; θ)
wi , (1.1)

with corresponding log-composite likelihood

ℓc(θ; y) =
∑
i∈I

wi log f(y ∈ Ai; θ). (1.2)
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Below we assume that n independent replicates Y 1, . . . , Y n of Y are available,

yielding the total composite likelihood and log likelihood as

Ltot
c (θ; y) =

n∏
j=1

∏
i∈I

f(yj ∈ Ai; θ)
wi , ℓtotc (θ; y) =

n∑
j=1

∑
i∈I

wi log f(y
j ∈ Ai; θ),

and consider asymptotics as n → ∞, with a fixed number of observations K in

each replicate. The development below is simpler if we work with quantities that

remain of order one as n→∞, and we shall do so wherever possible.

If the true likelihood is unavailable or difficult to work with, θ is often es-

timated by the maximum composite likelihood estimator θ̂c. Let θ0 denote the

true value of the parameter. As each term on the right-hand side of (1.2) is a

valid loglikelihood, the composite score function ∇ℓtotc (θ; y) is a linear combina-

tion of unbiased estimating functions and so has mean zero. Under appropriate

regularity conditions, therefore, the maximum composite likelihood estimator θ̂c
converges in distribution:

√
n{H(θ0)J(θ0)

−1H(θ0)}1/2(θ̂c − θ0)
d−→ N (0, Idp) , n→∞, (1.3)

where M1/2 denotes a matrix square root, Idp denotes the p× p identity matrix,

H(θ0) = −E[∇2ℓc(θ0;Y )], and J(θ0) = Var[∇ℓc(θ0;Y )], where the expectations

are with respect to the full density. Both H(θ0) and J(θ0) are positive definite

in a regular model, and both are of order one as n→∞.

Essentially the usual regularity conditions for the asymptotic normality of the

maximum likelihood estimator as n→∞ apply (Davison (2003), Sec. 4.4.2), but

the parameter θ must be identifiable from the densities appearing in (1.2). The

limiting distribution in (1.3) also stems from the behavior of the maximum likeli-

hood estimator under mis-specification (Kent (1982)). The maximum composite

likelihood estimator may thus be viewed as resulting from a mis-specified, or,

more accurately, under-specified, statistical model, leading to consistent estima-

tion, but with a “sandwich” variance estimator of the type arising in longitudinal

data analysis and many other domains.

1.3. Bayesian inference with a composite likelihood

Bayesian inference based on composite likelihoods has been little explored.

Motivated by the spatial extremes problem mentioned above, Smith and Stephen-

son (2009) use a pairwise likelihood and Markov chain Monte Carlo simulation

to fit a max-stable model for rainfall at five sites in South-West England. They

obtain a posterior by replacing the unavailable full likelihood with the pairwise

likelihood, but although they mention that this substitution may lead to overly
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precise inferences, they do not describe how to correct this. Pauli, Racugno, and

Ventura (2011) independently suggest the adjustment to the composite likeli-

hood, termed the magnitude adjustment in Section 2.1, establish the asymptotic

normality of the corresponding composite posterior and apply the method to a

five-dimensional data set on air pollution.

Related to Bayesian inference with composite likelihoods is work in Bayesian

methods when one lacks or wishes to avoid using the true likelihood. Monahan

and Boos (1992) explore the validity of a posterior when the likelihood is not

the conditional density of the data given the parameter, and propose both an

alternative definition based on the coverage of posterior sets and a test that can

be used to invalidate a particular replacement likelihood. Lazar (2003) applies

this test when an empirical likelihood is used in place of a parametric one. Other

work on Bayesian methods with conditional or pseudo likelihoods (e.g., Efron

(1993), Chang and Mukerjee (2006) and Ventura, Cabras, and Racugno (2009))

is typically motivated by a desire to avoid specifying a full likelihood when there

are nuisance parameters, and thus focuses on Bayesian implementation using

a pseudo-likelihood, often a marginal, conditional or profile likelihood, for the

parameters of interest. Like Monahan and Boos (1992), our ultimate aim is

the practical one of using a composite likelihood to provide valid inferences; for

example, the resulting posterior confidence sets should be correctly calibrated.

Provided that
∫
Ltot
c (θ; y)π(θ)dθ is finite, we use (1.1) to define a composite

posterior density as

πc(θ | y) =
Ltot
c (θ; y)π(θ)∫

Ltot
c (θ; y)π(θ)dθ

, (1.4)

where π(·) is the prior density. The first question arising is under what cir-

cumstances
∫
Ltot
c (θ; y)π(θ)dθ < ∞, so that (1.4) is well-defined. In Bayesian

analysis, integrability questions usually arise when discussing improper priors,

but here we suppose that π(·) is proper. Then a sufficient condition for (1.4) to

be proper is that for each i there exists a finite bi such that supθ f(y ∈ Ai; θ) ≤ bi,
since in that case∫

Ltot
c (θ; y)π(θ)dθ =

∫ ∏
j

∏
i∈I

f(yj ∈ Ai; θ)
wiπ(θ)dθ ≤

∏
i∈I

bnwi
i <∞. (1.5)

The boundedness of f(y ∈ Ai; θ) holds in many cases, and in cases of doubt it

can be imposed by recalling that in practice continuous observations are always

rounded to some extent. The correct likelihood is therefore a product of prob-

abilities obtained as differences of cumulative distribution functions, for which

bi ≡ 1. The rounding is often ignored so that simpler density function approxi-

mations to the correct likelihood may be used, but if these approximations lead
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to difficulties, then we may choose to work with the correct likelihood; see, e.g.,
Copas (1972). As this rounding argument applies to any probability elements in
(1.1), and, with minor changes, also applies to the modified composite likelihoods
used below, in practice we may always arrange that

∫
Ltot
c (θ; y)π(θ)dθ <∞ and

thus that (1.4) is proper.
Since the composite likelihood is not the likelihood believed to have generated

the data, the naive implementation of a composite posterior may give misleading
inferences, as we now illustrate.

Example 1. Let {Y (x)} be a stationary Gaussian process with unknown mean
µ ∈ R and with covariance function γ(h) = τ exp(−h/ω), where the sill τ > 0 is
unknown but the scale ω > 0 is known. Let {y(x1), . . . , y(xK)} be one realisation
of this process at locations x1, . . . , xK ∈ R. Now consider a prior density of the
form π(θ) = π(µ)π(τ), where π(µ) ∼ N(a, b) and π(τ) ∼ IG(c, d), i.e., an inverse
Gamma distribution with shape c and scale d.

Here the prior densities are conjugate for π(θ | y), so the full conditional
distributions needed for Gibbs sampling are easily found to be

π(µ | · · · ) ∼N
(
µ̃, σ̃2

)
,

π(τ | · · · ) ∼ IG

{
c+

K

2
, d+

1

2
(y − µ1)TΣ−1(y − µ1)

}
,

where σ̃2 =
(
b−1 + τ−11TΣ−11

)−1
, µ̃ = σ̃2

(
ab−1 + τ−11TΣ−1y

)
, and Σ is the

correlation matrix derived from γ(·).
The full conditional pairwise distributions are also readily available, and are

πp(µ | · · · ) ∼N
(
µ̃p, σ̃

2
p

)
,

πp(τ | · · · ) ∼ IG

{
c+

K(K − 1)

2
, d+

1

2
(yp − µ1)TΣ−1

p (yp − µ1)
}
,

where σ̃2p =
(
b−1 + τ−11TΣ−1

p 1
)−1

, µ̃p = σ̃2p
(
ab−1 + τ−11TΣ−1

p yp
)
, Σp is a block

diagonal matrix with blocks[
1 τ−1γ(xi − xj)

τ−1γ(xi − xj) 1

]
, 1 ≤ i < j ≤ K,

and yp = (y1, y2, y1, y3, . . . , y1, yK , y2, y3, . . . , y2, yK , . . . , yK−1, yK)
T .

Example 1 shows that, as might be expected, the full conditional densities
derived from the pairwise likelihood differ from those derived from the full like-
lihood. Since 1TA1 is the sum of all entries of the matrix A and Σp is block
diagonal, it is not difficult to show that

1TΣ−1
p 1 = 2

K−1∑
i=1

K∑
j=i+1

{
1 + τ−1γ(xi − xj)

}−1 ≥ τK(K − 1)

1 + τ
, 1TΣ−11 ≤ K.
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Figure 1. Marginal full and pairwise posterior densities for the mean µ (left)
and sill τ (right), derived from n = 50 realisations of a Gaussian process
observed at K = 20 locations having an exponential covariance function
with µ = 0, τ = 1 and ω = 3.

Thus, in particular,
σ̃2p
σ̃2
≤ (1 + τ)(τ + bK)

(1 + τ)τ + bτK(K − 1)
,

and when τ is fixed, σ̃2p/σ̃
2 ↓ 0 as K →∞.

To illustrate this discussion, Figure 1 shows posterior marginal density es-

timates for µ and τ based on the composite and full likelihoods found using a

Gibbs sampler. These densities were obtained by taking the same setting as in

Example 1 with µ = 0, τ = 1 and ω = 3, the last taken as constant in the sam-

pling algorithm, with K = 20, and with the locations x1, . . . , xK taken uniformly

at random in [0, 20]. There were n = 50 independent replicates of these data.

A Gaussian prior with mean 0 and variance 100 was placed on µ, and indepen-

dently an inverse gamma prior with shape 1/10 and scale 1 was placed on τ . The

marginal composite posterior densities are much too concentrated, because the

pairwise likelihood treats the pairs of observations as though they were mutually

independent and thus uses each observation repeatedly—see the definition of yp
in Example 1.

The aim of this paper is to propose a framework for approximate Bayesian

inference from composite likelihoods when the full likelihood is not available

and, in particular, to obtain composite posterior distributions that give credible

intervals with reasonable coverage. Section 2 introduces two adjustments to the

composite likelihood that are intended to retrieve some of the desirable properties

given by the usual likelihood. Section 3 shows how these adjustments can be

incorporated into Markov chain Monte Carlo samplers, and their performance

in simulation studies is discussed in Section 4. Section 5 gives a case study on
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the modelling of extreme rainfall around Zurich. The paper closes with a brief

discussion and two technical appendices.

2. Adjustment of the Composite Likelihood

We ultimately wish to perform a Bayesian analysis, in which setting there is

no “true” parameter value θ0. However, we use asymptotic relationships devel-

oped under the frequentist paradigm to adjust the likelihood to obtain appropri-

ate inference for the composite posterior, and thus speak of θ0 throughout this

section.

The theory of unbiased estimating functions applied to the score functions

of composite likelihood implies that, under suitable regularity conditions, the

modes of a composite posterior and of the full posterior density approach one

another as the sample size increases; see Figure 1. However, that figure also

shows that the composite posterior density can differ significantly in spread from

the true one, because the composite likelihood treats the events {Ai, i ∈ I} as

though they were mutually independent. Below we seek to modify the composite

likelihood in order to mitigate this.

Suppose that the parameter θ = (ϕT , ψT )T has true value θ0 = (ϕT0 , ψ
T
0 )

T

and that ψ contains q elements. Let θ̃ be the restricted maximum likelihood

estimator, obtained by maximizing the full log likelihood ℓ(θ;Y ) over θ with

ψ held fixed at ψ0, and let θ̃c be the restricted maximum composite likelihood

estimator that maximizes (1.1) with ψ held fixed at ψ0. Then, as n→∞,

Λ(ψ0) = 2{ℓ(θ̂;Y )− ℓ(θ̃;Y )} d−→ χ2
q , (2.1)

whereas for the composite likelihood,

Λc(ψ0) = 2{ℓc(θ̂c;Y )− ℓc(θ̃c;Y )} d−→
q∑
i=1

λiXi, (2.2)

where X1, . . . , Xq are independent χ
2
1 random variables, λ1, . . . , λq are the eigen-

values of the q× q matrix {H(θ0)
−1J(θ0)H(θ0)

−1}ψ[{H(θ0)
−1}ψ]−1, and Aψ de-

notes the sub-matrix of a matrix A corresponding to the elements of ψ Kent

(1982). These relationships have previously been exploited to provide likeli-

hood ratio tests Rotnitzky and Jewell (1990); Chandler and Bate (2007) suitable

for misspecified models. Here we aim to recover convergence in distribution

to the usual χ2 distribution through two modifications of the composite likeli-

hood: a magnitude adjustment and a curvature adjustment. The reasons for

such modifications is to make the composite likelihood ratio, which appears in

the Metropolis–Hastings algorithm but is hidden in the Gibbs sampler, behave

in distribution as it would if a full likelihood were available. In the remainder



820 MATHIEU RIBATET, DANIEL COOLEY AND ANTHONY C. DAVISON

of this section we consider only the case where ψ has dimension zero, but in

Section 3.2.2 we show how partitioning θ can yield better coverage.

2.1. Magnitude adjustment

The magnitude adjustment to the composite log likelihood is inspired by

Rotnitzky and Jewell (1990), who, in the context of hypothesis testing in longi-

tudinal studies, estimate λ1, . . . , λq from estimates of H(θ0) and J(θ0), and use

them to calculate the appropriate rejection region for the χ2 test based on (2.2).

We define the magnitude adjustment by

ℓmagn(θ; y) = kℓtotc (θ; y), θ ∈ Θ, (2.3)

where k is a positive constant; (2.3) was also suggested by Pauli, Racugno, and

Ventura (2011). With this modification and as n→∞ we have

Λmagn(ψ0) = 2{ℓmagn(θ̂c;Y )− ℓmagn(θ̃c;Y )} d−→ k

q∑
i=1

λiXi, (2.4)

E[Λmagn(ψ0)] −→ k

q∑
i=1

λi, Var[Λmagn(ψ0)] −→ 2k2
q∑
i=1

λ2i .

Setting k = q/
∑q

i=1 λi therefore ensures that E[Λmagn(ψ0)] converges to E[χ2
q ] =

q, but the higher moments of (2.4) do not match those of χ2
q unless all the λi’s

are equal or q = 1. For our purposes, we consider the case where ϕ has dimension

zero, i.e., k = p/
∑p

i=1 λi where λ1, . . . , λp are the eigenvalues of H(θ0)
−1J(θ0).

Varin (2008) proposes a Satterthwaite adjustment to match the first two moments

of Λmagn(ψ0) and χ
2
q , though their higher moments would still differ.

2.2. Curvature adjustment

Another strategy is to modify the curvature of the composite likelihood

around its global maximum θ̂c by

ℓcurv(θ; y) = ℓtotc (θ∗; y), θ∗ = θ̂c + C(θ − θ̂c), (2.5)

for some constant p× p matrix C. Clearly θ̂c is also a global maximum for ℓcurv,

and

∇ℓcurv(θ; y) = CT∇ℓtotc (θ; y)|θ=θ∗ , ∇2ℓcurv(θ; y) = CT∇2ℓtotc (θ; y)|θ=θ∗C.

Under mild conditions, a Taylor expansion of the usual log-likelihood and the

asymptotic normality of the maximum likelihood estimator θ̂ yield convergence
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of the likelihood ratio statistic in distribution to a χ2 variable Davison (2003,

Sec. 4.5). More precisely, that

Λ(θ0)
d−→ n(θ̂ − θ0)TΣ(θ̂ − θ0), n→∞,

for some q × q covariance matrix Σ depending only on E[∇2ℓ(θ0;Y )], and

√
nΣ1/2(θ̂ − θ0)

d−→ N(0, Idp), n→∞,

ensure that Λ(θ0) converges in distribution to a χ2
p variable. This occurs because

−n−1∇2ℓ(θ̂; y) converges almost surely to the rescaled inverse of the asymptotic

covariance matrix of the maximum likelihood estimator, the Fisher information

in a single Y .

This suggests that we try to ensure that −n−1∇2ℓcurv(θ̂c; y) converges almost

surely to the inverse of the asymptotic covariance matrix of the maximum com-

posite likelihood estimator, i.e., H(θ0)J(θ0)
−1H(θ0), by taking any semi-definite

negative matrix C such that

CTH(θ0)C = H(θ0)J(θ0)
−1H(θ0). (2.6)

One possible choice, C = M−1MA, where M
T
AMA = H(θ0)J(θ0)

−1H(θ0) and

MTM = H(θ0), corresponds to a suggestion of Chandler and Bate (2007) for

hypothesis testing for clustered data using the independence log-likelihood. How-

ever, the matrix square rootsM andMA are not unique, and although the choice

is immaterial for composite likelihoods that are quadratic in the neighborhood

of θ̂c, it might be necessary to ensure that the mapping (2.5) preserves any di-

rections of asymmetry. For this reason we use singular value decompositions for

M and MA for the curvature adjustments in this paper.

2.3. Properties of the adjustments

Although both adjustments rely on the idea of recovering the usual conver-

gence to a χ2 variable, they express different aspects of this. The magnitude

adjustment (2.3) is an “overall” adjustment, intended to scale the composite

likelihood down to the appropriate magnitude; in Figure 1 it amounts to raising

the narrower curve to a power, thus giving a nonlinear transformation of the ver-

tical axis. All (local) extrema are then left unchanged, because ∇ℓmagn(θ; y) = 0

implies ∇ℓtotc (θ; y) = 0, and the composite and full posterior modes are approx-

imately the same because the composite score function has mean zero. The

curvature adjustment (2.5), on the other hand, stretches the horizontal axis lin-

early so that the curvature of ℓcurv(θ; y) at θ̂c matches that of the large-sample

log-density of θ̂c; this changes the locations of any local maxima other than the

global maximum at θ̂c.
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The magnitude adjustment might therefore be more appropriate if the full

posterior distribution is multi-modal. However, only the curvature adjustment

ensures that the convergence to a χ2 distribution is met; the magnitude adjust-

ment only gets the first moment correct. This can have a strong impact on the

shape of the composite likelihood around θ̂c, and therefore on the composite

posterior density.

2.3.1. Asymptotic posterior distributions

We now derive the asymptotic properties of the composite posterior distri-

butions, both adjusted and unadjusted. Provided that the unadjusted composite

posterior is a valid distribution, it can be shown under the usual regularity con-

ditions that when n is large enough (Appendix A),

πc(θ | y)
·∼ N

{
θ0, n

−1H(θ0)
−1

}
. (2.7)

Here and below we abuse notation; (2.7) means that θ has the stated distribution,

conditional on y, not that the posterior density has a distribution. Unlike in the

usual case, the unadjusted composite posterior distribution does not converge to

the asymptotic distribution of the composite likelihood estimator given by (1.3).

In their investigation of the asymptotic distribution of the the magnitude-

adjusted posterior, Pauli, Racugno, and Ventura (2011, p.8) state that the pos-

terior has approximately the correct variance “by the χ2 approximation for the

null distribution.” Further Pauli, Racugno, and Ventura (2011, pp.8-9) state that

the approximation is asymptotically correct when p = 1, and argue that the ap-

proximation represents an improvement over the naive composite posterior when

p > 1. To expand on this, as the scaling constant estimate k̂ = p/
∑p

i=1 λ̂i used

for the magnitude adjustment converges almost surely to p/tr{H(θ0)
−1J(θ0)} as

n→∞, we conclude that, Appendix A,

πmagn(θ | y)
·∼ N

{
θ0, (np)

−1tr{H(θ0)
−1J(θ0)}H(θ0)

−1
}
. (2.8)

Thus unless θ0 is scalar, i.e., unless p = 1, πmagn differs from the asymptotic dis-

tribution given by (1.3). Compared to (2.7), the asymptotic variance is inflated,

because tr{H(θ0)
−1J(θ0)} ≥ p; see Appendix B.

Since the curvature adjustment obtains the correct curvature, it is straight-

forward to see that

πcurv(θ | y)
·∼ N

{
θ0, n

−1H(θ0)
−1J(θ0)H(θ0)

−1
}
, (2.9)

which is exactly the asymptotic distribution of the maximum composite likeli-

hood estimator.
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Figure 2. Comparison of 200 likelihood ratios for the Gaussian process sim-
ulation with n replicates: Λcurv(θ0) for the curvature-adjusted composite
likelihood (y-axis) versus Λ(θ0) (x-axis). Left: n = 50. Right: n = 200.

2.3.2. Comparison of the adjusted likelihood to the full likelihood

The magnitude or curvature adjustment ensures only that the distribution of

the corresponding adjusted composite likelihood ratio, Λadj(θ0) = 2{ℓadj(θ̂c; y)−
ℓadj(θ0; y)}, approximates the χ2

p distribution of the true likelihood ratio, Λ(θ0).

However, since the composite likelihood should contain some of the information

in the full likelihood, one would hope that Λadj(θ0) ≈ Λ(θ0), i.e., that the values

of these ratios should be related. Figure 2 compares values of Λcurv(θ0) and

Λ(θ0) for 200 datasets simulated as described in Section 1.3. Their correlation

is r̂ = 0.64 when the number of replicate Gaussian processes is n = 50, and

r̂ = 0.79 when n = 500: reasonable correlations, but not overwhelming.

Our aim in adjusting the likelihood is not to approximate the true likelihood–

and in turn, approximate the full posterior—but rather to obtain appropriate

inference from a composite posterior. If we did wish to approximate ℓ(θ1) at

θ1 ∈ Θ, then it can be shown using the curvature-adjusted likelihood that

2{ℓcurv(θ̂c) − ℓcurv(θ1)}
d→ XTX, where X ∼ N({H(θ0)J

−1(θ0)H(θ0)}1/2(θ1 −
θ0), Idp), whereas 2{ℓ(θ̂) − ℓ(θ1)}

d→ Y TY , where Y ∼ N{I(θ0)1/2(θ1 − θ0), Idp}
and I(θ0) is the Fisher information matrix based on the full likelihood. Obvi-

ously, the approximation degrades as (θ1 − θ0) grows. Since the true likelihood

and information about I(θ0) is not available in a realistic application, it seems

unclear how to improve the approximation to the true likelihood away from θ0.

Simply put, by not having the full likelihood available, we lose information.
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3. Markov Chain Monte Carlo Samplers

This section describes implementations of Markov chain Monte Carlo basing
Bayesian inference on composite likelihoods. One must take care to show that
MCMC algorithms converges to the correct target distributions, as composite
likelihoods, adjusted or not, are not valid likelihoods. We describe the adjusted
Metropolis–Hastings algorithm and the Gibbs sampler in turn.

3.1. Adjusted Metropolis–Hastings algorithm

In Section 2 we suggested two adjustments intended to provide approxi-
mations to the full likelihood ratios. We now discuss an adjusted Metropolis–
Hastings algorithm, given in Algorithm 1, and verify that it has the desired
stationary distribution.

Algorithm 1: Adjusted Metropolis–Hastings algorithm.

Input : θ̂c, Ĥ(θ̂c), Ĵ(θ̂c), θ1 ∈ Θ, a proposal distribution q(· | θ) and an
adjusted composite likelihood Ladj(·; y)

Output: A realisation of length N + 1 from a Markov chain

for t← 1 to N do
θ(p) ∼ q(· | θ(t));
αadj(θ

(t), θ(p))← min
{
1,

Ladj(θ
(p);y)π(θ(p))q(θ(t)|θ(p))

Ladj(θ(t);y)π(θ(t))q(θ(p)|θ(t))

}
;

U ∼ U(0, 1);

if αadj(θ
(t), θ(p)) ≤ U then

θ(t+1) ← θ(p);
else

θ(t+1) ← θ(t);
end

end

return {θ(t)}t=1,...,N+1;

Implementation with one of the adjusted likelihoods, Lmagn(θ; y) or Lcurv(θ; y),
requires only a preliminary maximisation of the composite likelihood to estimate
the matrices H(θ0) and J(θ0) for the adjustment. The argument that estab-
lishes detailed balance for the original Metropolis–Hastings algorithm Robert
and Casella (2005, Thm. 7.2) applies to Algorithm 1, and it can be shown that,
apart from normalizing constants, the stationary distribution of the Markov chain
is

Ltot
c (θ; y)kπ(θ), k =

p∑p
i=1 λ̂i

, (3.1)

for the magnitude adjustment and

exp{ℓcurv(θ; y)}π(θ) (3.2)
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for the curvature adjustment. The stationary distributions (3.1) and (3.2) should

provide better coverage than if an unadjusted composite likelihood was used.

3.2. Gibbs sampling

When the unknown parameter θ has low dimension, Algorithm 1 should

provide approximate inference for θ without too much Monte Carlo effort. For

models in which θ is of high dimension, however, the probability of acceptance

may be too low for Algorithm 1 to be viable, and then the parameter vector is

often partitioned and Gibbs sampler employed. Let us write θ = (θT1 , . . . , θ
T
G)

T ,

where θj ∈ Rpj and
∑G

j=1 pj = p, and suppose that we wish to draw from

π(θ | y) ∝ L(θ; y)π(θ). (3.3)

A typical implementation of a Gibbs sampler successively draws from

π(θj | θ−j , y) ∝ L(θj | θ−j , y)π(θj), j = 1, . . . , G, (3.4)

where θ−j is the parameter vector θ with the elements of θj removed. In this

section we propose two Gibbs samplers for use with composite likelihoods.

3.2.1. Overall Gibbs sampler

Since the true likelihood is unobtainable, we use the Gibbs sampler with an

adjusted composite likelihood. We can replace L(θ; y) in (3.3) with Ladj(θ; y),

where Ladj is either the magnitude- or the curvature-adjusted composite likeli-

hood. To perform Gibbs sampling, θ̂c, Ĥ(θ̂c) and Ĵ(θ̂c) can be estimated once

prior to running the algorithm, and Ladj(θ; y) can be calculated. Gibbs sampling

then proceeds as usual.

As the Gibbs sampler is a special case of the Metropolis–Hastings algorithm

Robert and Casella (2005, Sec. 10.2.2) and it was shown in Section 3.1 that the

latter could accommodate an adjusted composite likelihood, this overall Gibbs

sampler algorithm converges to the stationary distributions given by (3.1) or

(3.2).

3.2.2. Adaptive Gibbs sampler

In practice, the dimensions of θ, and hence of θ̂c, can be quite large. By

finding θ̂c, Ĥ(θ̂c), and Ĵ(θ̂c) only once before implementing the algorithm, the

overall Gibbs sampler loses the ‘spirit’ of Gibbs sampling: to sample the lower-

dimensional θj given the current value of θ−j .

An alternative to adjusting the likelihood in (3.3) is to replace the likelihood

in (3.4) by an adjusted composite likelihood. That is, the likelihood for θj can

be adjusted based on the current values of θ−j . Since this adjustment requires
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knowledge of the maximum composite likelihood estimates, the value of θ̂j,c |
θ−j = θ

(t)
−j must be found at each step. This approach has the advantage that

the adjusted composite likelihood approximation using the current value of θ−j
should be more accurate, as the approximation is made in a lower-dimensional

parameter space. In particular if θj is scalar, then the magnitude adjustment of

the composite likelihood ratio statistic is exact; see (2.4). This adaptive Gibbs

sampler is given in Algorithm 2.

Algorithm 2: Adaptive adjusted Gibbs sampler.

Input : θ(1) ∈ Θ
Output: A realisation of length N + 1 from a Markov chain

for t← 1 to N do
for j ← 1 to G do

Get the restricted maximum composite likelihood estimate θ̂j,c with θ−j

held fixed at θ
(t)
−j ;

Get Ĥj,j(θ̂j) = ∇2ℓc(θ̂j,c | θ(t)−j , y) and Ĵj,j(θ̂j), the sample covariance

matrix of ∇ℓc(θ̂j,c | θ(t)−j , yi), i = 1, . . . n, and define the adjusted

composite log-likelihood ℓadj(θj | θ(t)−j , y) from either (2.3) or (2.5);

Draw θ
(t+1)
j from Ladj(θj ; y, θ

(t)
−j)π(θj | θ−j) (using Metropolis–Hastings

updates if necessary);
end

end

return {θ(t)}t=1,...,N+1;

It can be shown that Algorithm 2 corresponds to a well-defined posterior by

considering the completion Robert and Casella (2005, Sec. 10.1.2):

π(θ̂, θ | y) =
G∏
j=1

π(θ̂j | θ, y)π(θ | y),

where π(θ | y) represents the target density. Note that

π(θ | y) =
∫ G∏

j=1

π(θ̂j | θ, y)π(θ | y)dθ̂

as required for a completion, provided that π(θ̂j | θ, y) is a valid density. Define

π(θ̂j | θ, y) = δargmaxLc(θj |θ−j ,y)(θ̂j),

that is, a Dirac measure on the value of θj that maximizes the composite like-

lihood given the current values of θ−j . If the maximum composite likelihood
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estimates θ̂j can be found analytically, then Algorithm 2 is simply a Gibbs sam-

pler on the completion. Since θ̂j is obtained numerically, convergence of the

Markov chains must be carefully checked by examining the output.

In the context of the adaptive Gibbs sampler, both the magnitude and cur-

vature adjustments must be understood as adjusting the conditional likelihood

Lc(θj | θ−j , y). That is, the k at (2.3) is pj/
∑pj

i=1 λ̂i, where λ̂i are the eigenval-

ues of the matrix defined by Ĥ(θ̂j) and Ĵ(θ̂j). Similarly, the matrix C in (2.6) is

defined by Ĥ(θ̂j) and Ĵ(θ̂j).

It is instructive to tie each of the Gibbs samplers to the asymptotic distri-

bution of the posterior. Let π(θ | y) denote the composite posterior distribution

evaluated at θ ∈ Rp, and further assume that the asymptotic posterior distri-

bution corresponds with that of the maximum composite likelihood estimator

log π(θ | y) ∝̇ − 1

2
(θ − θ0)TH(θ0)J

−1(θ0)H(θ0)(θ − θ0), (3.5)

where ∝̇ means ‘asymptotically proportional to’. Gibbs sampling for a given

partition θ = (θj , θ−j)
T , where θ ∈ Rpj and θ−j ∈ Rp−pj , involves drawing from

π(θj | θ−j , y), the conditional posterior distribution of θj given some fixed value

for θ−j .

In the overall Gibbs sampler, one begins by approximating (3.5) with

log πadj(θ | y) ∝̇ −
1

2
(θ − θ̂c)THadj(θ̂c)(θ − θ̂c), (3.6)

where Hadj(θ̂c)
−1 is the covariance matrix in (2.8) or (2.9) for the magnitude-

and curvature-adjusted posteriors, respectively.

Let θ̂c = (θ̂c,j , θ̂c,−j)
T and partition

Hadj(θ̂c) =

 Hadj
j,j (θ̂c) Hadj

j,−j(θ̂c)

Hadj
−j,j(θ̂c)H

adj
−j,−j(θ̂c)

 .
Since (3.6) implies that πadj{(θj , θ−j)T } is approximately a Gaussian density

with mean (θ̂c,j , θ̂c,−j)
T and covariance matrix Σ = Hadj(θ̂c)

−1, we see that

πadj(θj | θ−j , y) is approximately Gaussian with mean

θ̂c,j +Σj,−jΣ
−1
−j,−j(θ−j − θ̂c,−j) = θ̂c,j −Hadj

j,j (θ̂c)
−1Hadj

j,−j(θ̂c)(θ−j − θ̂c,−j) (3.7)

and covariance matrix

Σj,j − Σj,−jΣ
−1
−j,−jΣ−j,j = Hadj

j,j (θ̂c)
−1. (3.8)
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The adaptive Gibbs sampler makes its approximation later in the algorithm.

Starting from (3.5), let θ−j be given and consider log π(θj | θ−j , y). By partition-

ing θ0 and H(θ0)J
−1(θ0)H(θ0), it is straightforward to show that the asymptotic

conditional posterior is

log π(θj | θ−j , y) ∝̇ (θj − µj|−j)TΣ−1
j|−j(θj − µj|−j), (3.9)

where

µj|−j = θ0,j −
{
H(θ0)J

−1(θ0)H(θ0)
}−1

j,j

{
H(θ0)J

−1(θ0)H(θ0)
}
j,−j (θ−j − θ0,−j),

(3.10)

Σj|−j =
{
H(θ0)J

−1(θ0)H(θ0)
}−1

j,j
, (3.11)

analogous to (3.7) and (3.8) above. The adaptive Gibbs sampler makes its ap-

proximation to the conditional distribution, estimating the conditional mean

by finding θ̂c,j|−j , the value which maximizes the conditional composite log-

likelihood ℓc(θj,c | θ(t)−j , y), and then adjusting this lower-dimensional likelihood

to obtain an estimate for
{
H(θ0)J

−1(θ0)H(θ0)
}
j,j
.

The advantage of the overall Gibbs sampler is in computation and in its

simplicity; the adaptive Gibbs sampler’s need to estimate θ̂j at every step slows

it tremendously. The potential gain from the latter is that the approximation

made by employing a composite likelihood is made only for the subvector θj and

is done with knowledge of the current values of the other parameters. In the next

section we explore by simulation whether the adaptive Gibbs sampler improves

overall estimation.

4. Simulation Study

In this section, we report on the use of simulation to assess the performance

of the magnitude and the curvature adjustments. Following Monahan and Boos

(1992), we assess whether our adjustments yield posteriors that are valid by

coverage, i.e., whether Pr[θ ∈ CIα(Y )] = α, under some probability measure for

θ defined on Θ and some credible intervals CIα with level 0 ≤ α ≤ 1.

We first apply the proposed adjustments to the stationary isotropic Gaus-

sian process of Section 1.3 and compare the results obtained using the adjusted

composite likelihood to those using both the full likelihood and the naive com-

posite likelihood. We then focus on spatial extremes by considering a Bayesian

hierarchical model involving max-stable processes.

4.1. Gaussian processes

We again considered a one-dimensional stationary Gaussian process with

mean µ ∈ R and an exponential covariance function γ(h) = τ exp(−h/ω), τ > 0,
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Figure 3. Comparison between the marginal full posterior, the marginal pair-
wise posterior and the marginal adjusted pairwise posterior densities based
on the magnitude and curvature adjustments. The posterior distributions
were derived from n = 50 realisations of a Gaussian process having an ex-
ponential covariance function with µ = 0, τ = 1 and ω = 3 and observed at
K = 20 locations. Top row: Metropolis–Hastings algorithm. Bottom row:
Adaptive adjusted Gibbs sampler.

ω > 0. We examined two different forms of dependence, allowing ω to equal 3

and 1.5, which respectively yield effective ranges for the covariance of roughly 9

and 4.5. The priors on µ, τ were those reported in Section 1 while an inverse

Gamma density with shape 1/10 and scale 1 was assumed on ω. The stochastic

process was replicated n = 50 times in each simulation, and observed at K = 20

locations uniformly generated in the interval [0, 20]. The simulation was repeated

500 times to assess coverage, with µ = 0 and τ = 1 in each case.

Figure 3 compares the posterior densities obtained from the full likelihood,

the unadjusted pairwise posterior, and the adjusted composite posterior distri-

butions using the magnitude and the curvature adjustments from a single sim-

ulation. It shows a large improvement due to the adjustment. Owing to the

asymptotic unbiasedness of the maximum composite likelihood estimator, the

modes of the marginal composite posterior distributions are close to those ob-

tained from the full likelihood. The use of the adaptive Gibbs sampler for the

magnitude adjustment seems to improve the approximation to the full posterior,
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Table 1. Empirical coverages (%) for nominal 95% credible intervals based
on 500 Gaussian process simulations. “Full” denotes coverage with the full
posterior, “Magnitude” corresponds to the magnitude adjusted posterior,
“Curvature” to the curvature adjusted posterior, and “Unadjusted” to the
naive composite posterior.

Metropolis–Hastings
Full Magnitude Curvature Unadjusted

µ τ ω µ τ ω µ τ ω µ τ ω
ω = 3 96 94 94 89 92 100 94 93 94 16 21 37
ω = 1.5 94 95 96 85 93 100 94 94 93 19 22 53

Overall Gibbs sampler
Full Magnitude Curvature Unadjusted

µ τ ω µ τ ω µ τ ω µ τ ω
ω = 3 95 96 95 87 93 100 94 94 90 19 16 41
ω = 1.5 96 96 96 87 94 100 94 94 94 23 21 55

Adaptive Gibbs sampler
Full Magnitude Curvature Unadjusted

µ τ ω µ τ ω µ τ ω µ τ ω
ω = 3 96 94 95 95 92 93 95 94 93 20 24 39
ω = 1.5 95 96 95 95 95 95 94 97 95 17 24 55

particularly for the range parameter ω; recall from Section 3.2 that this is not an

overall magnitude adjustment. The adaptive sampler used here had three blocks,

each comprising a single parameter.

Table 1 summarizes the empirical coverages based on 500 replicate data sets.

Overall, the adjustments give reasonable credible intervals, whereas the naive

composite posterior has poor coverage. The Metropolis–Hastings algorithm and

overall Gibbs sampler have the same stationary distribution and give the same

coverages for each adjustment. The curvature adjustment performs better overall

than the magnitude adjustment, particularly for the mean and range parameters

µ and ω. The improvement in coverage due to using the adaptive Gibbs sampler

appears greater for the magnitude adjustment than for the curvature adjustment,

partly because there is more room for improvement, and because the latter was

already adjusting each element of θ differently. The curvature and adaptive

magnitude adjustments yield the best coverages.

Figure 4, which complements Table 1 by showing how the empirical cover-

ages depend on the credible level for the overall and adaptive Gibbs samplers,

corroborates the conclusions drawn from Table 1. Compared to the unadjusted

composite posterior, the proposed adjustments clearly improve the coverages and

seem to yield essentially the same coverages as the full posterior, though the latter

provides shorter intervals when it is available. The adaptive Gibbs sampler for
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Figure 4. Variation of the empirical coverages with the credible level α, based
on 500 replicates of the Gaussian process simulation with µ = 0, τ = 1 and
ω = 3, for the full, the non adjusted pairwise and the magnitude/curvature
adjusted posteriors. Top row: Overall Gibbs sampler. Bottom row: Adap-
tive Gibbs sampler.

the magnitude adjustment performs better than its overall counterpart, indicat-

ing that the latter might not be flexible enough to provide the correct coverages

for each element of the parameter vector. The curvature adjustment again seems

to be improved less by the adaptive version of the Gibbs sampler.

Figure 4 shows that the proposed adjustments have good coverage proper-

ties, but it is also interesting to check to what extent the composite posterior

distributions share common features with the full posterior. Figure 5 shows box-

plots of the first four centered moments of the estimated posterior distributions.

As one would expect from the fact that the composite likelihoods give unbiased

estimating equations, the first moments of the composite posterior distributions,

including the unadjusted one, match those of the full posterior. The variance of

the unadjusted pairwise posterior distribution is much too small, but those of

the adjusted posterior distributions are closer to that of the full posterior. The

magnitude adjustment combined with the overall Gibbs sampler has a smaller

variance for the mean µ and a larger one for the range ω; this clarifies why Ta-
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Figure 5. Boxplots of the sample centered moments of the estimated poste-
rior distribution for each of the 500 simulations (µ = 0, τ = 1, ω = 3) for the
full posterior (full), the unadjusted pairwise posterior (pair), the magnitude
adjusted composite posterior (magn) and the curvature adjusted composite
posterior (curv).

ble 1 shows that this particular adjustment tends to undercover µ and overcover

ω. Except for µ, none of the adjustments gives the correct skewness and kur-

tosis, though the magnitude adjustment is slightly better. Nevertheless, both

adjustments can capture the first two moments well, and despite the degradation

of the approximation with distance from θ0, yield coverage rates that are very

comparable to those obtained using the full likelihood.

Finally, we investigated the difference between the magnitude- and curvature-

adjusted posteriors and the effect of the dimension of the blocks used in the

adaptive Gibbs sampler. As noted in Section 2.1, the magnitude adjustment

recovers the χ2 null distribution only if the dimension of θj is one. In addi-

tion to running the adaptive Gibbs sampler with µ, τ, and ω each serving as its

own block, we also ran a two-block version of the adaptive Gibbs sampler with

θ1 = µ and θ2 = (τ, ω)T . For the individual block version of the adaptive Gibbs

sampler, there was virtually no difference in the estimates of the magnitude-
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and curvature-adjusted posteriors, suggesting that both adjustments adequately

capture the information contained in the composite likelihood. However, for

the two-block version of the sampler, the empirical posterior correlations of τ

and ω differ: the curvature-adjusted posterior gives Cov(τ, ω) ≈ 0.69, whereas

the magnitude-adjusted posterior gives Cov(τ, ω) ≈ 0.33. It is difficult to esti-

mate both the sill and range parameters of a Gaussian process Zhang (2004),

whose ratio τ/ω is important for such applications as interpolation. The 95%

credible intervals for this ratio had an empirical coverage rate of 96% for the

curvature-adjusted posterior, but a coverage rate of 100% for the magnitude-

adjusted posterior. This suggests that for the two-block Gibbs sampler, the

magnitude adjustment fails to fully capture the relationship between these two

parameters, thus giving further evidence that the curvature adjustment is to be

preferred, since it seems to provide output that can be used more flexibly.

4.2. Bayesian hierarchical model for spatial extremes

Let Ym(x), x ∈ D, m ≥ 1 be independent replications of a stochastic process.

Asymptotic theory for extremes implies that, provided the limit exists and is non-

degenerate, the process

max
m=1,...n

an(x)
−1{Ym(x)− bn(x)}

converges weakly to a max-stable process Z(x) as n → +∞ de Haan (1984).

Given observations that arise as block (e.g., annual) maxima, it is therefore nat-

ural to approximate their joint distribution using such a process. The univariate

marginal distributions for such a process are generalised extreme-value (GEV)

distributions that depend on three parameters.

Although the general methodology we propose could be applied with any

max-stable model Smith (1990); Schlather (2002); Kabluchko, Schlather, and de

Haan (2009), we focus here on the Gaussian extreme value process of Smith

(1990),

Z(x) = max
k≥1

ζkφ(x− sk) (4.1)

where {(ζk, sk)}k≥1 are the points of a Poisson process on (0,∞) × D, with

D ⊂ Rd, having intensity dΛ(ζ, s) = ζ−2dζds, and φ is the zero mean d-variate

normal density with covariance matrix Σ. As formulated, Z(x) has unit Fréchet

margins, and its bivariate and trivariate marginal distributions can be used to

construct a composite likelihood Padoan, Ribatet, and Sisson (2010); Genton,

Ma, and Sang (2011).

A simple approach to fitting max-stable models is to employ a pairwise like-

lihood Padoan, Ribatet, and Sisson (2010); Gholamrezaee (2010). To account for
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non-stationarity in the marginal distributions, it is convenient to assume that the

GEV parameters follow response surfaces that depend on location and on covari-

ates such as altitude. Often, however, the available covariates do not fully explain

the variation of the marginal distribution over the study region. One approach

to capturing the regional effects is to construct a hierarchical model in which

the marginal parameters of the extreme value distribution follow a stochastic

process, such as a Gaussian process, over the study region.

Our approach is to use a max-stable process model within a hierarchical

framework; the max-stable model provides a theoretically justified model for

the local dependence of the extremes, and the hierarchy allows for flexibility in

modeling how the regional effects influence the marginal behavior. The difficulty

is that the full likelihood is unavailable, so fully Bayesian inference cannot be

performed. Instead we employ one of the adjusted MCMC samplers suggested

in Section 3.

Our chosen model has the data-process-prior framework of most hierarchical

models:

Z | µ,σ, ξ,Σ ∼ Smith’s max-stable model,

µ | βµ, τµ, ωµ ∼ GP(Xµβµ, γµ) ,

logσ | βσ, τσ, ωσ ∼ GP(Xσβσ, γσ)

ξ | βξ, τξ, ωξ ∼ GP(Xξβξ, γξ) ,

where µ, σ, ξ represent the three GEV parameters, GP(m, γ) denotes a Gaus-

sian process with mean m and covariance function γ, the γ·’s are exponential

covariance functions with corresponding sill and range parameters τ· and ω·, and

the β· are regression coefficients associated to the design matrices X·.

The prior level places independent priors on all parameters introduced at the

process level. We take conjugate normal priors for all regression parameters β·,

conjugate inverse gamma priors for the τ·, gamma priors for the range parameters

ω·, and a Wishart prior for the covariance matrix Σ appearing in the Smith model.

In all cases, the prior variance is set to be large enough that the prior densities,

though proper, are relatively flat.

We performed a simulation study to evaluate our approach. Gaussian pro-

cesses were simulated for µ(x), σ(x), and ξ(x), with µ(x) and σ(x) dependent,

and with values similar to those found for annual maximum rainfall data. Then,

50 max-stable processes with marginals given by µ(x), σ(x), and ξ(x) were sim-

ulated according to the Smith model. Fifty locations were chosen and the 50

observations at each location were used to fit four models:
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Figure 6. Boxplots of the difference between the true GEV parameters and
all the states of the Markov chains for four stations (left panel). For each
of the stations the boxplots are (from left to right) the conditional indepen-
dence model (M1), the non-adjusted hierarchical model (M2), the hierarchi-
cal model with the curvature adjustment within an adaptive Gibbs sampler
(M3), and the asymptotic 95% confidence limit from the max-stable response
surface model (M4). The right panel shows the proportion of the credible
intervals at level α = 95% containing the true GEV parameters.

M1 the hierarchical model with a conditional independence assumption in the

data layer, yielding a product of K independent GEV densities, analogous

to Cooley, Nychka, and Naveau (2007) or Sang and Gelfand (2009);

M2 the max-stable process hierarchical model with no adjustment;

M3 the max-stable process hierarchical model with an adaptive curvature-ad-

justed Gibbs sampler;

M4 the max-stable process model where the marginals are described by a re-

sponse surface in the covariates x, as proposed by Padoan, Ribatet, and

Sisson (2010).
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Figure 7. Comparison between one realization of the observed field and one
realization of the different models analyzed. From left to right: observed
field; conditional independence model; and max-stable hierarchical model
with adjustment. The same seed was used for each simulation.

The left panels of Figure 6 show boxplots of the differences between the true

GEV parameters and all the states of the Markov chains for four different sta-

tions, with the asymptotic 95% confidence intervals for the max-stable response

surface model. The right panels of Figure 6 display the coverage rates, for all 50

stations, of the 95% posterior credible intervals for the three hierarchical mod-

els, with the 95% confidence intervals for the max-stable response surface model.

As expected, the unadjusted max-stable hierarchical model produces a posterior

that is too concentrated and yields very poor coverages, and the max-stable trend

surface model is not flexible enough to account for the complicated regional be-

havior of the GEV parameters, as evidenced by the poor point estimates in the

box plots and the corresponding poor coverage rates. The adjusted max-stable

hierarchical model and the conditionally independent hierarchical model produce

very similar posterior distributions and have similar coverage rates, although the

max-stable model does slightly less well.

The advantage of the max-stable hierarchical model over the conditional in-

dependence model is that the former can account for local dependence; even with

only 50 locations in the region, it seems to be able to detect the true pattern

of local dependence. The 95% credible intervals for the elements σ11, σ12 and

σ22 of Σ are (5.39, 8.76), (-1.28, 0.67) and (5.58, 8.37), which include the true

values 6, 0, and 6. The fitted max-stable model provides a mechanism for pro-

ducing realistic draws from the spatial process. As Figure 7 shows, a draw from

the posterior distribution of the conditional independence model would be inap-

propriate and unrealistic for spatial phenomena such as rainfall or temperature,

annual maxima of which would produce smoother surfaces.

These results are obtained from a (near) perfect model simulation; that is,

the max-stable hierarchical model fitted to the data was nearly identical to that

from which the data were simulated. Nevertheless, this simulation exercise shows

that the adjusted max-stable hierarchical model can flexibly model marginal be-

havior that captures regional spatial effects and can capture local dependence



BAYESIAN INFERENCE FROM COMPOSITE LIKELIHOODS 837

Figure 8. Map of the study region. The stations used for inference/validation
are depicted by circles/triangles.

through the max-stable process model. Despite the approximation due to em-

ploying a composite likelihood, the inference obtained appropriately captures the

uncertainty associated with the estimation. In the next section we show that it

also seems to perform well on data.

5. Application

We analyze data on maximum daily rainfall amounts for the years 1962–2008

at 51 sites in the Plateau region of Switzerland; see Figure 8. The area under

study is relatively flat, the altitudes of the sites varying from 322 to 910 meters

above mean sea level. Data from 16 of the stations were kept aside for model

validation and not used for fitting.

Figure 9 compares the annual maxima over the 16 validation stations, which

we term the “groupwise maxima”, and the simulated groupwise maxima from the

different models. All the max-stable based models seem able to model the dis-

tributions of the groupwise maxima, though the simple max-stable model badly

overestimates the largest value, perhaps due to inaccurate trend surfaces for the

GEV parameters, particularly the shape parameter. The conditional indepen-

dence model shows systematic underestimation, confirming that this model is

inappropriate. The unadjusted and adjusted Bayesian hierarchical models yield

similar credible envelopes, which seem principally to reflect the variability of

simulated conditional Gaussian processes and GEV realizations.

Figure 10 shows three simulated random fields for each model, taken from a

large number of such fields. To rank these we took a disk VZurich of radius 6 km
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Figure 9. QQ-plots to compare the observed maxima of the annual max-
ima from the validation locations and those simulated from various models.
From left to right: simple max-stable, conditional independence, unadjusted
Bayesian hierarchical, adjusted Bayesian hierarchical models. The 95% con-
fidence/credible envelopes are shown as dashed lines.

Zurich Zurich Zurich Zurich

Zurich Zurich Zurich Zurich

Zurich Zurich Zurich Zurich
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45

55

65
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Figure 10. Three realizations of random fields over the study region for
the conditional independent model (M1), hierarchical models without any
adjustment (M2) and with the curvature adjustment (M3) and a simple max-
stable model with deterministic trend surfaces (M4). The three rows show
realizations corresponding to different risk scenarios according to the values
of SZurich expected to be exceeded once every 1.05, 2 and 20 years (from top
to bottom).

centered near the Zurich gauging station, and ordered the random fields according

to their suprema SZurich = supx∈VZurich Y (x). This allows us to summarize the

intensity of a particular realization of a random field. The three rows of Figure 10

correspond to Pr[SZurich ≤ zcrit] = α, where α = 0.05, 0.50, 0.95, respectively, and

the level zcrit depends on the model considered. Roughly speaking, the three rows
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Figure 11. Comparison between the return level curves (cm) computed on
neighborhoods centered at the Zurich (top) and DOB gauging stations (bot-
tom) and having radius 0.3 and 6 km (left and middle panels) for the condi-
tional independent model (M1), the hierarchical models without any adjust-
ment (M2) and with the curvature adjustment (M3) and a simple max-stable
model with deterministic trend surfaces (M4). The left panels compares the
return level curves to the observations available at the gauging stations. The
right panel is the same as the middle one but shows only the max-stable
based models.

show patterns for which SZurich is expected to be exceeded once every 1.05, 2,

and 20 years.

The conditional independence model leads to unrealistic realizations of ex-

treme rainfall fields, but because of the deterministic trend surfaces for the

marginal parameters, the simple max-stable model produces fields that are too

smooth to be realistic. The unadjusted and adjusted hierarchical models seem

to produce the most plausible realizations.

Figure 11 plots return level curves, i.e., graphs of the estimated pth quantile

of SZurich and a similar quantity SDOB for the DOB gauging station against

1/(1 − p), and smaller disks of radius 0.3. For the smallest neighborhood, the

return level curves are compared to the observations available at the Zurich and

DOB gauging stations; see Figure 8.
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As the neighbourhoods of radius 0.3km are small, the return level curves

should be close to the empirical curves computed from the data available at the

Zurich and DOB gauging stations. This is indeed the case for Zurich, where all

the models apparently reproduce the distribution of extreme rainfall quite well.

The results are less convincing for the DOB gauging station where, apart from

the adjusted hierarchical model, all the models seem to overestimate the largest

extremes. This situation is similar to that seen in Section 4.2: the unadjusted

hierarchical model produces a posterior that is too concentrated, while the max-

stable trend surface model might not be flexible enough. Both models fail to

capture the complicated spatial behavior of the GEV parameters.

For the neighbourhoods of radius 6km, the central panel of the figure shows

a very strong discrepancy between the models, due to their different spatial

assumptions. The conditional independence model yields unrealistically high

return levels, of around 2m for 10-year values, for example. All the max-stable

based give approximately the same return levels for return periods shorter than

10 years. For larger return periods, the unadjusted hierarchical model gives the

largest estimates. The same plots for 20 other gauging stations depicted the

same patterns, suggesting that the unadjusted hierarchical model systematically

overestimates the distribution of the supremum in a given neighborhood.

6. Conclusion

In this paper, motivated by a problem in which Bayesian inference seems

natural but a full likelihood is unavailable, we investigated the usefulness of

composite likelihood within a Bayesian framework.

The posterior distribution obtained from a naive implementation of a com-

posite likelihood can have very poor coverage properties, owing to its inappro-

priate re-use of the data. To bypass this hurdle, we proposed two modifications

of the composite likelihood to recover the usual asymptotic distribution of the

likelihood ratio statistic at the true value of the parameters θ0. We showed how

these adjustments can be implemented in Markov chain Monte Carlo algorithms

and proposed two ways of integrating them into the Gibbs sampler. Although the

approximation degrades with distance from the parameter underlying the data,

simulation studies showed that the proposed framework has coverage properties

similar to those obtained using the full posterior.

The work was motivated by a need to flexibly model the marginal distribu-

tions when modeling spatial extreme phenomena. We constructed a Bayesian

hierarchical model whose data layer was driven by a max-stable process while

the marginal parameters were modeled as realizations of a stochastic process. A

spatial extreme simulation study showed that this framework was able to cap-

ture complex marginal behavior as well as the spatial dependence in the data.



BAYESIAN INFERENCE FROM COMPOSITE LIKELIHOODS 841

An application to extreme rainfall around Zurich showed that the approach can

capture both local dependence due to individual storms and regional dependence

due to similar climatologies, thus broadening the scope of max-stable modelling

beyond its current limits.
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Appendix

Appendix A. Asymptotic Distributions of the Posterior Distributions

The derivation of the asymptotic normality of the posterior distribution relies

heavily on Taylor expansions. Let θ̂c denote the maximum composite likelihood

estimate, let θprior denote the mode of the prior distribution π(θ), and let

htotc (θ̂c) = −∇2
θℓ

tot
c (y; θ̂c), hprior(θprior) = −∇2

θ log π(θprior).

For n large enough we have

πc(θ | y)
·∝ exp

{
ℓtotc (y; θ̂c)−

1

2
(θ − θ̂c)Thtotc (θ̂c)(θ − θ̂c) + log π(θprior)

−1

2
(θ − θprior)Thprior(θprior)(θ − θprior)

}
·∼N

{
θ̃, h̃(θ̂c, θprior)

−1
}
,

where h̃(θ̂c, θprior) = htotc (θ̂c) + hprior(θprior) and θ̃ = h̃(θ̂c, θprior)
−1{htotc (θ̂c)θ̂c +

hprior(θprior)θprior}.
Provided the contribution of the prior distribution π(θ) vanishes as n→∞,

the Strong Law of Large Numbers implies that

n−1h̃(θ̂c, θprior) =

{
htotc (θ̂c)

n
+
hprior(θprior)

n

}
−→ −E[∇2ℓc(θ0;Y )] = H(θ0),

θ̃ =

{
h̃(θ̂c, θprior)

n

}−1{
htotc (θ̂c)

n
θ̂c +

hprior(θprior)

n
θprior

}
−→ θ0,

almost surely, and thus πc(θ | y)
·∼ N

{
θ0, n

−1H(θ0)
−1

}
.

http://www.cces.ethz.ch/projects/hazri/EXTREMES
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The derivation of the asymptotic distribution for the magnitude adjustment

uses the same argument, with a slight modification. As n→∞,

k̂ −→ p/tr
{
H(θ0)

−1J(θ0)
}

almost surely. Since k̂ is estimated prior to running the MCMC algorithm, we

can assume that k̂ is a (tuning) constant that does not depend on θ. Therefore

the analogue of hc(θ̂c) when using ℓmagn in place of ℓtotc is

hmagn(θ̂c)=−̂k∇2
θℓmagn(y; θ̂c) −→ tr{H(θ0)

−1J(θ0)}H(θ0), n→∞,

almost surely, from which we conclude that πmagn(θ | y)
·∼N{θ0, (np)−1tr{H(θ0)

−1

J(θ0)}H(θ0)
−1}.

We conclude with the derivation of the asymptotic distribution of the cur-

vature adjusted composite likelihood. By construction we have

n−1hcurv(θ̂c) = −n−1∇2
θℓcurv(y; θ̂c) −→ H(θ0)J(θ0)

−1H(θ0), n→∞,

almost surely, from which we get that πcurv(θ | y)
·∼ N{θ0, n−1H(θ0)

−1J(θ0)

H(θ0)
−1}.

Appendix B. Asymptotic Variance Inflation

In this appendix we argue that in many cases in which the densities ap-

pearing in the composite likelihood are correct, in that they satisfy the first

two Bartlett identities, E[∇ log f(Y ∈ Ai; θ0)]=0 and E[∇2 log f(Y ∈ Ai; θ0)] +
Var[∇ log f(Y ∈ Ai; θ0)]=0 for all i ∈ I, one has tr{H(θ0)

−1J(θ0)}≥p=dim(θ0).

This agrees with our empirical experience, that in many cases tr{H(θ0)
−1J(θ0)}

≫ p.

We first note that

tr{H(θ0)
−1J(θ0)}−p=tr{H(θ0)

−1J(θ0)−Idp}=tr[H(θ0)
−1{J(θ0)−H(θ0)}] ≥ 0.

Since H(θ0)
−1 is positive semi-definite, the result follows if J(θ0) − H(θ0) is

positive semi-definite, because tr{AB} ≥ 0 when both A and B are positive

semi-definite.

On the one hand we have

H(θ0) = −E

[
∇2

∑
i∈I

log f(Y ∈ Ai; θ0)

]
= −

∑
i∈I

E
[
∇2 log f(Y ∈ Ai; θ0)

]
=

∑
i∈I

Var [∇ log f(Y ∈ Ai; θ0)] ,
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because the variance of the score equals the Fisher information for each individual

summand. On the other hand we have

J(θ0) = Var

[∑
i∈I
∇ log f(Y ∈ Ai; θ0)

]
=

∑
i∈I

Var [∇ log f(Y ∈ Ai; θ0)]

+
∑

i,j∈I,i̸=j
E
[
∇ log f(Y ∈ Ai; θ0)∇ log f(Y ∈ Aj ; θ0)T

]
.

Thus

J(θ0)−H(θ0) =
∑

i,j∈I,i ̸=j
E
[
∇ log f(Y ∈ Ai; θ0)∇ log f(Y ∈ Aj ; θ0)T

]
=

∑
i,j∈I,i<j

E(UiUTj + UjU
T
i ),

say; clearly these expectations are symmetric. To see that they are often positive

definite, let Ai and Aj correspond to the events Y ∈ Ai and Y ∈ Aj . If these

events are independent, then E(UiUTj ) = 0, but if not, suppose that that we

may write let Ai = A′
i ∩ Aij , Aj = A′

j ∩ Aij , for some event Aij such that A′
i

and A′
j are independent conditional on Aij . This arises if, for example, in a

Markov chain Y ∈ Ai corresponds to {Y1 = y1, Y2 = y2}, Y ∈ Aj corresponds

to {Y2 = y2, Y3 = y3}, and we take A′
i ≡ {Y1 = y1}, Aij ≡ {Y2 = y2} and

A′
j ≡ {Y3=y3}. If we write pr(Ai)=pr(A′

i | Aij)pr(Aij), then the corresponding

log likelihood derivative may be written as Ui = U ′
i+Uij in a natural notation,

and

E(UiUTj ) = E{(U ′
i + Uij)(U

′
j + Uij)

T } = E(U ′
iU

′T
j ) + Var(Uij)

= E{Cov(U ′
i , U

′
j | Aij)}+Var(Uij),

because the cross terms E(U ′
iUij) = E(U ′

jUij) = 0, as may be seen by condition-

ing on Aij . If U ′
i and U ′

j are independent conditional on Aij , then E(UiUTj ) =

Var(Uij) is positive semi-definite; this would be the case in the Markov chain ex-

ample mentioned above. If they are not independent, but are sufficiently weakly

correlated conditional on Aij that the term Var(Uij) is dominant, then E(UiUTj )
is also positive semi-definite, and hence so is J(θ0) − H(θ0). This will be the

case in typical applications of composite likelihood, as terms that correspond to

dependent events Ai, Aj will tend to be positively correlated, because they are

proximate in space or time, or both.
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