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Abstract: The generalized estimating equations (GEE) method has been widely

used to analyze longitudinal data since it was proposed by Liang and Zeger (1986).

It is well known that the efficiency of the GEE estimator can be seriously affected

by the choice of the working correlation matrix. To address the associated misspec-

ification issue, we propose an estimator called mix-GEE based on a finite mixture

model for the working correlation. Under mild regularity conditions, the mix-GEE

estimator is consistent, asymptotically normal, and asymptotically efficient if data

are from a Gaussian mixture model. An important feature of the mix-GEE method

is that it guarantees the positive definiteness of the estimated working correlation

matrix if either the AR(1) or exchangeable structure is included. It is numeri-

cally more stable and displays a better finite sample efficiency than the hybrid

GEE method (Leung, Wang, and Zhu (2009)). The value of our method is further

demonstrated by simulation studies and data examples.
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1. Introduction

Consider a longitudinal study, in which yij is the response measured at the

jth time point on the ith subject, and xij is the corresponding p-dimensional

covariate, i = 1, . . . , N , j = 1, . . . , T . Observations from different subjects

are assumed to be independent whereas those from the same subject are cor-

related. Suppose that E(yij |xij) = µij = µ(xτ
ijβ) and V ar(yij |xij) = vi(µij),

where µ(·) is a link function and β are regression parameters of interest. Let

yi = (yi1, . . . , yiT )
τ , µi = (µi1, . . . , µiT )

τ and Xi = (xi1, . . . ,xiT )
τ . The general-

ized estimating equations (GEE) estimator (Liang and Zeger (1986)) of β is the

solution to the estimating equation

U(β, R) =

N∑
i=1

Ui(β, R) =

N∑
i=1

Dτ
i A

−1/2
i R−1(α)A

−1/2
i (yi − µi) = 0, (1.1)
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where Ai = diag(vi(µi1), . . . , vi(µiT )), Di = ∂µi/∂β, and R(α) is a working

correlation matrix with nuisance parameter α. In the following, we denote by

β̂R the solution to (1.1) for a given working correlation matrix R.

Under mild regularity conditions the GEE estimator is consistent, but its effi-

ciency depends on the choice of the working correlation matrix. Extensive studies

have been done to provide good choices of the working correlation matrix. Often,

one is obtained by simultaneously estimating the nuisance parameter α in (1.1)

for a given correlation structure R, such as exchangeable (CS), AR(1), or MA(1).

The exchangeable structure RCS(α) has 1 on the diagonal and α elsewhere; the

AR(1) structure has Rij = α|i−j|; the MA(1) structure RMA(α) has the diagonal

and the main off-diagonal components equal to 1 and α, respectively, with the

rest of the components equal to 0.

Liang and Zeger (1986) developed several moment methods to estimate these

nuisance parameters but these estimates may not exist even in some simple cases

(Crowder (1995)). Many other methods have been developed since then, such

as extended quasi-likelihood (Hall and Severini (1998)), the quasi-least squares

method (Chaganty (1997); Chaganty and Shults (1999)), unbiased estimating

equations (Wang and Carey (2004)), decoupled pseudo-likelihood (Wang and

Carey (2003); Liu, Lin, and Zhang (2008)) and quadratic inference functions

(Qu, Lindsay, and Li (2000)). GEE estimators based on these methods are ef-

ficient when the working correlation structure is correctly specified, but correct

specification of the working correlation structure is not an easy task. In practice,

the working correlation structure is often selected using some ad hoc method

from a small list of given structures, and efficiency of the method can be se-

riously affected when the structure is misspecified (Wang and Carey (2003)),

though consistency remains still holds. Recently, from an empirical likelihood

perspective, Leung, Wang, and Zhu (2009) proposed a hybrid GEE method to

address this misspecification problem by combining multiple GEEs with differ-

ent linearly independent working correlation matrices. If Rj(α), j = 1, . . . , J , is

a list of working correlation structures, then the hybrid GEE estimator of β is

given by maximizing the empirical likelihood function L(β) = ΠN
i=1pi subject to∑N

i=1 pi = 1 (0 ≤ pi ≤ 1) and

N∑
i=1

pihi(β) =


∑N

i=1 piS
1
i (β)∑N

i=1 piS
2
i (β)

...∑N
i=1 piS

J
i (β)

 = 0, (1.2)

where Sj
i (β) = Dτ

i A
−1/2
i R−1

j (αj)A
−1/2
i (yi − µi). Then if one of the working

correlation structures is correct, the hybrid GEE estimator is asymptotically
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efficient. Generally, it performs better than GEE methods using a single working

correlation structure when the true correlation structure is unknown.

For small samples, however, our experiences suggest that the hybrid GEE

method can be numerically unstable when some of the estimated correlation

matrices are nearly singular, and its finite sample efficiency is sometimes unsat-

isfactory. The importance of the positive definiteness of the working correlation

matrix to the efficiency of GEE estimates was reported by Sutradhar and Das

(1999). Here, we propose an alternative method, called mix-GEE, by viewing the

sample as from a finite mixture of distributions with different correlation struc-

tures. As a result, we obtain a single GEE with the working correlation matrix

represented by a combination of a finite number of matrices, whereas the hybrid

GEE method uses many GEEs with each given by a single working correlation

structure. Under mild regularity conditions, we show that the mix-GEE estima-

tor is consistent and asymptotically normal. It is asymptotically efficient if data

are from a Gaussian mixture model and one of the mixture components gives the

correct correlation structure. If either the AR(1) or exchangeable structure is

included in the considered working correlation structures, the mix-GEE method

guarantees that the estimated working correlation matrix is positive definite.

This assures that it is numerically more stable and often displays a better finite

sample efficiency than the hybrid GEE method. We also propose an iterative

algorithm to solve the mix-GEE estimates that iterates between estimation of

the nuisance parameters in the working correlation and estimation of the regres-

sion coefficients. Estimation of the nuisance parameters is solved by an EM-type

algorithm using pseudo likelihood. A byproduct of our approach is that it can

also serve as a tool for selecting the working correlation structures. For exam-

ple, if estimates of some mixture proportions are close to 0, it indicates that the

corresponding correlation structures should not be considered for the given data.

The rest of this paper is organized as follows. In Section 2, we propose the

mix-GEE method and the computational algorithm, and then prove its asymp-

totic properties. Simulation studies and data examples are given in Section 3

and Section 4, respectively. Technical proofs are given in the Appendix.

2. The Mix-GEE Method

Our basic idea is to assume that yi = (yi1, . . . , yiT )
τ is from an L-component

mixture: yi = zi1y
(1)
i + · · ·+ ziLy

(L)
i , where y

(1)
i , . . . ,y

(L)
i are the L components,

and the zi = (zi1, . . . , ziL)
τ are latent indicators that have only one component

equal to one with the rest of its components equal to zero. Let πl = Pr(zil = 1).

Suppose that y
(l)
i ’s have the same variances but different correlation structures

Corr(y
(l)
i ) = Corr(yi|zil = 1) = R(l)(αl). The covariance matrix of yi can be
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expressed as a weighted linear combination of L components,

Cov(yi) = A
1/2
i

[
L∑
l=1

πlR
(l)(αl)

]
A

1/2
i . (2.1)

The mix-GEE estimate of β is then given by the solution to (1.1) with R(α) =∑L
l=1 πlR

(l)(αl). Direct computation of the mix-GEE estimates can be numeri-

cally challenging, and we use an iterative algorithm that iterates between estimat-

ing nuisance parameters α1, . . . , αL and π1, . . . , πL for given β, and estimating β

for given nuisance parameters.

2.1. Pseudo-likelihood estimation of nuisance parameters

Consider estimating the nuisance parameters given β. Let ψ = (αl, πl)
L
l=1 ∈

Ψ and εi = (εi1, . . . , εiT )
τ = A

−1/2
i (yi − µi). Parameter estimation in a mixture

model has been well studied when the distribution of each component is known,

and estimates are often obtained using EM algorithms. In our context, the distri-

bution of εi is not specified and we consider a pseudo-likelihood (PL) approach.

The PL approach has been considered by many researchers for longitudinal data

or repeated measured data, for example Crowder (1985), Carroll and Ruppert

(1988), Davidian and Giltinan (1995), and Sun, Shults, and Leonard (2009).

Essentially, the nuisance parameters in the working correlation matrix can be

estimated by maximizing a Gaussian log-likelihood. Let

ϕl(εi, αl) = (1/
√
2π)|R(l)(αl)|

−1/2
exp

{
−1

2
εi

τ [R(l)(αl)]
−1εi

}
. (2.2)

A pseudo-log-likelihood function based on the mixture model (2.1) is

ℓ(ψ) =

N∑
i=1

log

(
L∑
l=1

πlϕl(εi, αl)

)
, (2.3)

and the maximum PL estimate (MPLE) of ψ can be obtained by maximizing

(2.3). We propose an PL-EM algorithm to solve this optimization problem, with

each iteration consisting of an E-step and an M-step. A thorough discussion on

EM algorithms can be found in McLachlan and Krishnan (2008).

Suppose ψ(t) is the value of ψ at the t-th step. Then ω
(t)
il = π

(t)
l ϕl(εi, α

(t)
l )/∑L

l=1 π
(t)
l ϕl(εi, α

(t)
l ) is the current estimated posterior probability of εi belonging

to the l-th component. The E-step is to compute the expectation of the complete-

data pseudo-log-likelihood conditional on ψ(t) and the observed data,

Q(ψ,ψ(t)) =

N∑
i=1

L∑
l=1

ω
(t)
il log[πlϕl(εi, αl)].
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In the M-step, we maximize Q(ψ,ψ(t)) with respect to ψ to get ψ(t+1),

π̂l
(t+1) =

1

N

N∑
i=1

ω
(t)
il and α̂l

(t+1) = arg max
αl∈Υl

N∑
i=1

ω
(t)
il log ϕl(εi, αl), (2.4)

where Υl is the region of αl in which R(l) is positive definite. It is easy to show

that, for AR(1), ΥAR = {α| − 1 < α < 1}; for CS, ΥCS = {α| − 1/(T − 1) < α <

1}; and for MA(1), ΥMA = {α| − 1/[2 cos(π/(T +1))] ≤ α ≤ −1/[2 cos(Tπ/(T +

1))]}.
The PL-EM algorithm stops when the difference between ψ(t+1) and ψ(t) is

sufficiently small, and the MPLE ψ̂ = (α̂l, π̂l)
L
l=1 is taken as the value at the last

step.

Theorem 1. In the PL-EM algorithm, ℓ(ψ(t+1)) > ℓ(ψ(t)) for every t.

Theorem 1 shows that if the pseudo-likelihood function ℓ has a unique max-

imum, the PL-EM algorithm converges to this global maximum.

Theorem 2. The estimated working correlation matrix
∑L

l=1 π̂lR
(l)(α̂l) is posi-

tive definite if at least one of R(1), . . . , R(L) is AR(1) or exchangeable.

Theorem 2 shows an important feature of our mix-GEE method. Most ex-

isting methods have no guarantee on the positive definiteness of the working

correlation matrix, and this may cause serious loss of efficiency (Sutradhar and

Das (1999)).

Next we show the consistency of the MPLE ψ̂ for given β. We need some

technical assumptions.

(i) εi(i = 1, . . . , N) have a joint distribution function G with density g.

(ii) The support of ψ, Ψ, is a compact subset of a Euclidean space.

(iii) | log
∑L

l=1 πlϕl(u, αl)| ≤ M(u) for all ψ = (πl, αl)
L
l=1 ∈ Ψ and all u ∈ Ω,

where M is integrable with respect to G.

Theorem 3. Let KL(f, g) =
∫
f log(f/g) denote Kullback-Leibler distance and

suppose that KL(g(εi),
∑L

l=1 πlϕl(εi, αl)) has its unique minimum at ψ∗ = (π∗
l ,

α∗
l )

L
l=1 for given β. Under Assumptions (i), (ii) and (iii), the MPLE ψ̂ =

(α̂l, π̂l)
L
l=1 converges to ψ∗ almost surely as N → ∞. Further, if E[(∂2ℓ(ψ))/

(∂ψ∂ψτ )] is continuous in Ψ, E{∂ℓ(ψ)/∂ψ} = ∂E{ℓ(ψ)}/∂ψ, and there is

a neighborhood N of ψ such that E[supψ∈N ∂2ℓ(ψ)/(∂ψ∂ψτ )] < ∞ and

E[(∂ log
∑L

l=1 πlϕl(εi, αl)/∂ψ)(∂ log
∑L

l=1 πlϕl(εi, αl)/∂ψ)
T
∣∣∣
ψ=ψ∗

] < ∞, then
√
N(ψ̂ −ψ∗) = Op(1).
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Since | log
∑L

l=1 πlϕl(u, αl)| ≤ | log[maxϕl(u, αl)]| + | log[minϕl(u, αl)]| ≤∑L
l=1 | log ϕl(u, αl)|, (iii) is generally satisfied. More generally, even when G is a

non-normal distribution, as long as it has a finite fourth moment, the assumptions

of Theorem 3 are satisfied.

Note that ψ∗ and ψ̂ are actually functions of β, ψ∗ = ψ∗(β), ψ̂ = ψ̂(β).

Given β, Theorem 3 implies that the estimated working correlation matrix based

on the MPLE converges to some constant matrix. Results in Theorem 3 are

similar to those in White (1982) regarding properties of maximum likelihood

estimators under model misspecification. The next theorem has it that if the

responses are from a multivariate Gaussian mixture distribution, ψ̂ converges to

the true parameter in the true correlation matrix.

Theorem 4. If g(εi) =
∑L

l=1 π
0
l ϕl(εi, α

0
l ), where ϕl is defined in (2.2), then

ψ∗ = ψ0, where ψ0 = (π0
l , α

0
l )

L
l=1.

2.2. Mix-GEE estimation of regression parameters

Given estimated nuisance parameters ψ we can estimate regression param-

eters β by plugging the estimated working correlation matrix into (1.1), leading

to the following iterative algorithm.

1. Obtain an initial estimate β̂0 using a N1/2-consistent estimator (for example,

the GEE estimator based on the independent working correlation structure).

2. At the m-th step, compute ε̂mi = A
−1/2
i (yi − µi)|β=β̂m−1 , where β̂

m−1 is the

estimation of β at the (m− 1)-th step.

3. Apply the PL-EM algorithm in Section 2.1 to obtain the MPLE (π̂m
l , α̂m

l )Ll=1.

4. Let Rm =
∑L

l=1 π̂
m
l R(l)(α̂m

l ). Compute β̂m by solving the equation U(β, Rm)

= 0 given in (2.5).

Repeating steps 2−4 until the algorithm converges, we denote the final estimate

by β̂M and call it the mix-GEE estimator. It follows immediately from Lemma

E.4 in Appendix E that for, any integers k and m, the difference between updates

β̂k+m and β̂m, vanishes in probability as N tends to infinity. If Ui(β,M) =

Dτ
i A

−1/2
i MA

−1/2
i (yi − µi) (i = 1, . . . , N), then β̂M is the solution to

U(β,M) =
N∑
i=1

Ui(β,M) =
N∑
i=1

Dτ
i A

−1/2
i M−1A

−1/2
i (yi − µi) = 0, (2.5)

where M = M(ψ̂(β)) =
∑L

l=1 π̂lR
(l)(α̂l) . The next theorem gives the consis-

tency and asymptotic normality of β̂M under some assumptions on Ui(β,M).
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Theorem 5. Assume the following.

1. There exists H(Y,β) = Op(1) such that |∂ψ̂/∂β| ≤ H(Y,β) = Op(1), where
Y = {yi, i = 1, . . . , N}.

2. ∂2Ui(β,M(ψ))/∂ψ∂ψτ is continuous at ψ∗ with probability one, and there is
a neighborhood N of ψ such that E

[
supψ∈N ∂2Ui(β,M(ψ))/∂ψ∂ψτ

]
< ∞.

3. There is a neighborhood N of ψ∗ such that [(1/N)
∑N

i=1 ∂Ui{β,M(ψ)}/∂β]−1

is bounded in N with probability one.

4. E[Ui(β,M(ψ∗))] = 0 has a unique solution β0.

5. The support of β is compact.

6. [∂2Ui{β,M(ψ̂(β))}/∂β∂βτ ] is continuous at β0 with probability one, and
there is a neighborhood N of β such that E[supβ∈N ∂2Ui{β,M(ψ̂(β))}/∂β∂βτ ]
< ∞.

If R∗ =
∑L

l=1 π
∗
l R

(l)(α∗
l ) and R̃ is the true correlation matrix of yi, then N1/2(β̂M

−β) d−→ N(0, V M ) with

V M = lim
N→∞

N
( N∑

i=1

Hi

)−1( N∑
i=1

Gi

)( N∑
i=1

Hi

)−1
, (2.6)

where Hi = Di
τA

−1/2
i (R∗)−1A

−1/2
i Di, Gi = Di

τA
−1/2
i (R∗)−1R̃(R∗)−1A

−1/2
i Di.

The conditions of Theorem 5 are mild. We provide some concrete examples
satisfying the conditions in a supplementary file at http://www.math.wustl.

edu/$\sim$nlin/mixGEEsup.pdf.
To simplify notation, we put ψ∗ ≡ ψ∗(β0) in Theorem 5. If the data are

indeed from a Gaussian mixture model, Theorem 4 implies that R∗ is the true
correlation matrix R̃ =

∑L
l=1 π

0
l R

(l)(α0
l ). Consequently, in Theorem 5, we have

V M = lim
N→∞

( 1

N

N∑
i=1

Di
τA

−1/2
i (R̃)−1A

−1/2
i Di

)−1
,

which shows that β̂M is asymptotically efficient (Chaganty and Joe (2004)).

3. Simulation Studies

In this section, we compare our mix-GEE method with the hybrid GEE
method (Leung, Wang, and Zhu (2009)) through simulation studies. As refer-
ence, we also include the maximum likelihood estimator (MLE) and two other
GEE estimators that use a single prespecified correlation structure. One is the
‘independent’ GEE estimator using the independent correlation matrix with all
off diagonal entries zero, the other is the ‘PL-GEE’ (Crowder (1985); Carroll and
Ruppert (1988); Davidian and Giltinan (1995); Sun, Shults, and Leonard (2009))

http://www.math.wustl.edu/$\sim $nlin/mixGEEsup.pdf
http://www.math.wustl.edu/$\sim $nlin/mixGEEsup.pdf
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that is based on the classic GEE method with nuisance parameters in an as-

sumed single correlation structure estimated by pseudo-likelihood. For PL-GEE,

we consider the correlation structures CS, AR(1), and MA(1). The PL-GEE

estimator is efficient when the working correlation structure is correctly specified

and its efficiency can be seriously affected under misspecification.

In each simulation study, 1,000 Monte Carlo samples were generated.

3.1. Continuous response

We generated the response yik at time k for the i th subject from N(µik =

β0 + xikβ1, 1), k = 1, . . . , 10, i = 1, . . . , n. The true value of (β0, β1) was (1, -1);

covariates xik’s were randomly sampled from N(k, 1); the sample size n was 20,

50, or 100.

We compare the performance of several estimation methods according to

their simulated relative efficiency (SRE) under different correlation structures.

Let β̂true be the GEE estimator obtained from plugging the true correlation

matrix into (1.1). The SRE is taken as the ratio of the sample mean squared

error (MSE) of an estimator and that of β̂true. For an estimator (β̂0, β̂1), its

sample MSE is obtained by averaging (β̂0 − β0)
2 + (β̂1 − β1)

2 over all Monte

Carlo samples.

3.1.1. Three component mixture

Consider the case in which the true correlation is given by a three compo-

nent mixture of AR(1), CS, and MA(1). Let R(1)(α1) = RAR(1)(α1), R
(2)(α2) =

RCS(α2) and R(3)(α3) = RMA(1)(α3). The true values of the correlation pa-

rameter are α1, α2, α3 and the relative component proportion π1, π2, π3 are given

in Table 1. The PL-GEE method uses a single correlation structure, and we

consider PL-GEE estimators with correlation structure CS, AR(1), and MA(1),

respectively. In Table 1, ‘Ind’, ‘hybrid’ and ‘mix’ refer to the independent GEE

estimator, the hybrid GEE estimator, and the mix-GEE estimator, respectively.

The estimated component proportions from the mix-GEE method are given by

π̂1, π̂2, and π̂3. Numbers in brackets are mean squared errors (MSEs) of the

mix-GEE estimator. MSEs of other estimators can then be inferred using their

SREs. Under this setup, independent GEE and PL-GEE both use misspecified

correlation structures, so we can see that their efficiency was always lower than

the mix-GEE estimator. Surprisingly, for small samples, the hybrid GEE estima-

tor performed even worse than the independent GEE and the PL-GEE estimator

even when a misspecified correlation structure was used. Our experience sug-

gests that the hybrid GEE estimator requires a very large sample to achieve the

claimed asymptotic efficiency. Across different finite mixture correlation models,
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Table 1. Comparison for continuous data generated from three-component
mixture distributions.

true parameter SRE mixture proportion

n α1 α2 α3 π1 π2 π3 Ind PLCS PLAR1 PLMA1 hybrid MLE mix (MSE) π̂1 π̂2 π̂3

5 0.7 0.7 0.4 0.3 0.3 0.4 1.1033 1.0925 1.0380 1.0334 7.8143 0.9876 0.9969(0.1450) 0.334 0.334 0.332

5 0.4 0.4 0.4 0.3 0.3 0.4 1.0506 1.0423 1.0186 1.0053 1.2426 1.0566 1.0081(0.1481) 0.257 0.347 0.396

10 0.7 0.7 0.4 0.3 0.3 0.4 1.0669 1.0613 1.0324 1.0113 2.1068 0.9070 1.0049(0.0773) 0.345 0.315 0.340

10 0.4 0.4 0.4 0.3 0.3 0.4 1.0510 1.0467 1.0306 1.0249 1.7227 1.0283 1.0146(0.0668) 0.288 0.310 0.402

20 0.7 0.7 0.4 0.3 0.3 0.4 1.1037 1.0852 1.0309 1.0268 1.4988 0.8552 1.0043(0.0390) 0.338 0.311 0.351

20 0.4 0.4 0.4 0.3 0.3 0.4 1.0692 1.0629 1.0033 1.0038 1.5312 0.9826 1.0010(0.0303) 0.302 0.301 0.394

20 0.7 0.7 0.4 0.5 0.5 0 1.1132 1.1071 1.0487 1.0562 1.4355 0.8759 1.0023(0.0474) 0.460 0.498 0.042

50 0.7 0.7 0.4 0.3 0.3 0.4 1.0597 1.0555 1.0382 1.0239 1.1850 0.8054 1.0034(0.0148) 0.325 0.301 0.374

50 0.4 0.4 0.4 0.3 0.3 0.4 1.0511 1.0515 1.0077 1.0004 1.0822 0.9417 1.0030(0.0139) 0.305 0.282 0.413

50 0.7 0.7 0.4 0.5 0.5 0 1.1362 1.1166 1.0443 1.0660 1.1893 0.8495 0.9974(0.0168) 0.484 0.493 0.123

50 0.7 0.7 0.4 0.2 0.6 0.2 1.0315 1.0283 1.0752 1.0218 1.1137 0.8126 1.0046(0.0174) 0.220 0.600 0.180

100 0.7 0.7 0.4 0.3 0.3 0.4 1.0798 1.0836 1.0196 1.0149 1.0561 0.7888 1.0005(0.0081) 0.314 0.300 0.386

100 0.4 0.4 0.4 0.3 0.3 0.4 1.0587 1.0485 1.0205 1.0043 1.0802 0.9624 1.0017(0.0064) 0.302 0.293 0.405

5 0.7 0.7 0.4 0.2 0 0.8 1.1471 1.1492 1.0337 1.0419 1.3395 1.0759 1.0474(0.1370) 0.270 0.136 0.594

10 0.7 0.7 0.4 0.2 0 0.8 1.1816 1.1748 1.0064 1.0155 1.9327 1.0142 1.0028(0.0643) 0.278 0.087 0.635

20 0.7 0.7 0.4 0.2 0 0.8 1.1173 1.1241 1.0365 0.9944 1.5203 0.9803 1.0013(0.0353) 0.272 0.055 0.673

50 0.7 0.7 0.4 0.2 0 0.8 1.1309 1.1334 1.0071 1.0111 1.1322 0.9950 1.0064(0.0142) 0.247 0.037 0.716

100 0.7 0.7 0.4 0.2 0 0.8 1.0880 1.0939 1.0284 0.9926 1.0769 0.9813 1.0014(0.0061) 0.233 0.023 0.744

5 0.4 0.4 0.4 0.2 0 0.8 1.1150 1.1173 1.0375 1.0350 1.3727 1.0923 1.0430(0.1287) 0.223 0.1520 0.625

10 0.4 0.4 0.4 0.2 0 0.8 1.1514 1.1485 1.0092 1.0163 1.7506 1.0453 1.0107(0.0605) 0.240 0.091 0.669

20 0.4 0.4 0.4 0.2 0 0.8 1.0862 1.0893 1.0171 0.9981 1.4223 1.0164 0.9971(0.0310) 0.234 0.059 0.707

50 0.4 0.4 0.4 0.2 0 0.8 1.1176 1.1203 1.0275 0.9991 1.1607 1.0081 1.0008(0.0128) 0.217 0.033 0.75

100 0.4 0.4 0.4 0.2 0 0.8 1.1360 1.1380 1.0242 1.0003 1.0404 0.9989 1.0008(0.0068) 0.222 0.024 0.754

the SRE of the mix-GEE estimator was always the smallest and close to 1. Mean-
while, we also see that the component proportions are consistently estimated by
the mix-GEE method.

3.1.2. Single component correlation structure

Here we consider data from a single correlation structure, either AR(1), CS
or MA(1). For each, we consider different values of the nuisance parameter α.
In Table 2, the first column gives the true correlation structure while the other
columns are defined similarly as in Table 1.

Table 2 has the PL-GEE estimators as most efficient if the prespecified corre-
lation structure is correct, but they have low efficiency under misspecification. On
the other hand, the mix-GEE estimator has SREs close to 1 under all scenarios,
and its efficiency is close to the PL-GEE estimator when the correlation structure
is correctly specified. Furthermore, similarly as in Table 1, the mix-GEE estima-
tor always gave smaller MSEs than the hybrid GEE and the independent GEE.
And most of the time, the estimated mixture proportions given by the mix-GEE
method correctly identified the true correlation structure, except when the true
correlation matrix is difficult to identify. For example, 0.2AR(0.4)+0.8MA(0.4)
is very close to MA(0.4).
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Table 2. Comparison for continuous data generated from a single correlation
structure.

SRE mixture proportion

R(α) n α Ind PLCS PLAR1 PLMA1 hybrid MLE mix (MSE) π̂ar1 π̂cs π̂ma1

CS 10 0.7 1.0285 1.0000 1.1814 1.0611 2.2181 1.0000 1.0034(0.0832) 0.04 0.95 0.01

CS 10 0.4 1.0202 1.0004 1.0909 1.0471 1.7439 1.0004 1.0027(0.0717) 0.08 0.83 0.09

AR 10 0.7 1.3490 1.3469 0.9951 1.1259 2.3519 0.9951 1.0034(0.0786) 0.85 0.08 0.07

AR 10 0.4 1.0977 1.1003 1.0133 1.0213 1.6165 1.0133 1.0252(0.0750) 0.48 0.16 0.36

AR 10 -0.4 1.0814 1.0870 1.0058 1.0007 1.6589 1.0058 1.0071(0.0229) 0.58 0.09 0.33

AR 10 -0.7 1.6467 1.7952 0.9999 1.0490 2.0795 0.9999 1.0046(0.0097) 0.91 0.01 0.08

MA 10 0.4 1.0644 1.0739 1.0103 1.0183 1.7444 1.0183 1.0206(0.0590 0.17 0.08 0.75

MA 10 -0.4 1.2702 1.2682 1.0393 1.0056 1.6860 1.0056 1.0084(0.0152) 0.20 0.09 0.81

CS 50 0.7 1.0153 1.0000 1.1646 1.0379 1.1464 1.0000 1.0003(0.0177) 0.01 0.98 0.01

CS 50 0.4 1.0159 0.9998 1.0876 1.0403 1.0892 0.9998 1.0015(0.0140) 0.03 0.94 0.03

AR 50 0.7 1.4096 1.3949 1.0026 1.1385 1.1067 1.0026 1.0077(0.0162) 0.94 0.03 0.03

AR 50 0.4 1.1059 1.1108 0.9969 1.0195 1.1159 0.9969 0.9997(0.0135) 0.65 0.08 0.27

AR 50 -0.4 1.1292 1.1168 1.0018 1.0091 1.1465 1.0018 1.0033(0.0047) 0.72 0.04 0.24

AR 50 -0.7 1.5913 1.6796 1.0004 1.0705 1.1561 1.0004 1.0042(0.0020) 0.97 0.00 0.03

MA 50 0.4 1.1333 1.1337 1.0193 1.0019 1.1189 1.0019 1.0019(0.0124) 0.13 0.20 0.67

MA 50 -0.4 1.2469 1.2625 1.0346 1.0031 1.0971 1.0031 1.0042(0.0029) 0.15 0.03 0.82

CS 100 0.7 1.0348 1.0000 1.2559 1.1030 1.0339 1.0000 1.0005(0.0081) 0.01 0.99 0.00

CS 100 0.4 1.0226 0.9998 1.0895 1.0411 1.0744 0.9998 1.0011(0.0063) 0.02 0.96 0.02

AR 100 0.7 1.3061 1.3048 1.0003 1.0958 1.0292 1.0003 0.9992(0.0087) 0.96 0.02 0.02

AR 100 0.4 1.1258 1.1287 1.0043 1.0280 1.0768 1.0043 1.0079(0.0069) 0.69 0.06 0.25

AR 100 -0.4 1.1161 1.1284 1.0014 1.0010 1.0554 1.0014 1.0008(0.0023) 0.75 0.03 0.22

AR 100 -0.7 1.5308 1.5800 0.9992 1.0512 1.0666 0.9992 0.9994(0.0010) 0.98 0.00 0.02

MA 100 0.4 1.1431 1.1390 1.0282 0.9996 1.0176 0.9996 0.9992(0.0060) 0.11 0.01 0.88

MA 100 -0.4 1.2590 1.2656 1.0595 0.9990 1.0456 0.9990 1.0036(0.0016) 0.12 0.02 0.86

3.2. Binary response

3.2.1. Probit model

We generated the binary responses from the probit regression model yit =

I[zit ≤ (β0 + β1xit)], where the Zi = (zi1, . . . , ziT ) are multivariate normal with

mean 0, variance 1, and correlation structure CS, MA(1), or AR(1). The covari-

ates xit were randomly sampled from U(−1, 1) for i = 1, . . . , N and t = 1, . . . , T .

We considered T = 4 and N = 50, 100 or 200. The true values were set at

(β0, β1) = (0, 0.5).

For this setup, the explicit form of the true correlation structure of the

responses yit’s is difficult to obtain even though the correlation structure of the

latent variable zit’s is known. So, as in Chaganty and Joe (2004), we compared

all estimators to the MLE for the case that the latent variable is observed, and

obtained their SRE as the ratio between the sample MSE of an estimator and

that of the MLE. Table 3 again has the mix-GEE estimator with high efficiency
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Table 3. Comparison for binary data from probit model.

SRE mixture proportion

R(α) n α Ind PLCS PLAR1 PLMA1 hybrid mix (MSE) π̂ar1 π̂cs π̂ma1

CS 50 0.7 1.2333 1.0285 1.0904 1.1226 1.1560 1.0304(0.0392) 0.162 0.466 0.372

CS 50 0.9 1.4330 1.0927 1.2079 1.2551 1.2273 1.1030(0.0426) 0.073 0.596 0.331

AR 50 0.7 1.2023 1.0638 1.0282 1.0583 1.1295 1.0321(0.0366) 0.279 0.295 0.426

AR 50 -0.7 1.2940 1.1887 1.0310 1.0795 1.1780 1.0322(0.0256) 0.367 0.226 0.407

AR 50 0.9 1.3378 1.0856 1.0955 1.1355 1.1734 1.0794(0.0433) 0.111 0.515 0.374

MA 50 -0.3 1.0567 1.0280 1.0004 0.9943 1.1167 1.0163(0.0314) 0.283 0.354 0.363

MA 50 0.3 1.0211 1.0007 0.9932 0.9981 1.1467 0.9994(0.0360) 0.305 0.311 0.384

AR 100 0.7 1.2311 1.0566 1.0265 1.0583 1.0811 1.0272(0.0187) 0.284 0.276 0.440

CS 100 0.7 1.2364 1.0196 1.0881 1.1188 1.0648 1.0229(0.0201) 0.146 0.475 0.379

MA 100 0.3 1.0230 1.0137 0.9905 0.9893 1.0401 0.9914(0.0171) 0.313 0.306 0.381

CS 200 0.7 1.2125 1.0034 1.0632 1.0877 1.0222 1.0028(0.0101) 0.147 0.481 0.372

AR 200 0.7 1.2294 1.0326 1.0019 1.0308 1.0130 1.0014(0.0087) 0.290 0.248 0.462

MA 200 0.3 1.0149 0.9963 0.9731 0.9759 1.0003 0.9740(0.0085) 0.318 0.306 0.376

across different correlation models, whereas the hybrid GEE estimator is always

less efficient.

4. Applications to Data

4.1. Six cities data set: Children’s wheezing status

In this section, we apply our mix-GEE method to a respiratory infection

data set from Ware et al. (1984). It has been previously analyzed by Fitzmaurice

and Laird (1993) and Chaganty and Joe (2004). In this, a group of 537 children

from Steubenville, was examined annually at ages 7 through 10 to study the

relationship between health and air pollution. The response variable is a binary

variable indicating a child’s wheezing status. We fit a probit regression model

using the three predictors Age, with value -2,-1,0,1 at ages 7,8,9 and 10; Maternal,

with value 1 if the mother smoked regularly at the first year of study and 0 if

she did not smoke; Age*Maternal indicates the interaction effect between Age

and Maternal. In addition to our mix-GEE estimator, we also computed the

independent GEE estimator, the PL-GEE estimator with working correlation

structure CS, AR(1), or MA(1), the hybrid GEE estimator, and the MLE based

on multivariate probit model. For the hybrid-GEE and the mix-GEE method,

the correlation structures R1(α1) = AR(1), R2(α2) = CS, and R3(α3) = MA(1)

were considered. Results are shown in Table 4. Numbers in brackets are standard

errors of the estimator. Estimates from all methods are quite similar. It is worth

noting that the component proportion estimates from our mix-GEE estimator

are π̂AR = 0.062, π̂cs = 0.694, and π̂ma = 0.244, which indicates a preference to

the exchangeable structure. Interestingly, Chaganty and Joe (2004) also reported

that the pattern of dependence is closer to exchangeable than to AR(1).



766 LILI XU, NAN LIN, BAOXUE ZHANG AND NING-ZHONG SHI

Table 4. Parameter estimates for Child’s wheeze status data.

parameter ind PLcs PLar1 PLma1 hybrid MLE mix

Intercept -1.1259 -0.1258 -1.1387 -1.1391 -1.1288 -1.1192 -1.1264
(0.0634) (0.0634) (0.0637) (0.0637) (0.0684) (0.0611) (0.0635)

Age -0.0768 -0.0768 -0.0805 -0.0858 -0.0783 -0.0781 -0.0771
(0.0313) (0.0313) (0.0318) (0.0321) (0.0340) (0.0302) (0.0313)

Maternal 0.1709 0.1708 0.1561 0.1653 0.1708 0.1611 0.1695
(0.1016) (0.1028) (0.1035) (0.1032) (0.1115) (0.1001) (0.1029)

Age* Maternal 0.0367 0.0367 0.0438 0.0526 0.0392 0.0382 0.0373
(0.0487) (0.0486) (0.0496) (0.0501) (0.0531) (0.0491) (0.0486)

Table 5. Parameter estimates for the Sitka spruce data.

parameter independent PLcs PLar1 PLma1 GEEEL GEEmix

Intercept -8.738 -8.736 -8.545 -8.115 -7.826 -8.505
(0.402) (0.417) (0.408) (0.408) (0.359) (0.407)

ozone -0.215 -0.215 -0.232 -0.216 -0.498 -0.228
(0.158) (0.157) (0.162) (0.168) (0.149) (0.161)

times 2.593 2.592 2.545 2.444 2.424 2.539
(0.068) (0.070) (0.067) (0.067) (0.061) (0.067)

4.2. Growth of Sitka spruces

We consider the Sitka spruce data set, from Diggle et al. (2002), in which

79 spruces were observed at 5 time points. Among them, 54 trees were grown

in ozone-enriched chambers and 25 were grown in the general environment. The

experimental design was balanced with the same number of trees at each time

point. The responses yij ’s were computed as yij = log(heightij × diameter2ij) to

denote the growth status of the trees. The explanatory variables are the ozone

environment indicator (0 = normal, 1=ozone) and log(observation day time),

where observation day time is the number of days from the start of the study.

We fit this data using the linear model E(yij) = β0 + β1ozoneij + β2timesij .

The same set of GEE estimators as in Section 4.1 was considered with results

given in Table 5. Here, the component proportion estimates were π̂AR = 0.96,

π̂cs = 0.03 and π̂ma = 0.01, Thus a strong indication that a single AR(1) correla-

tion structure is perhaps sufficient. The mix-GEE estimates are very similar to

the naive GEE estimates with the AR(1) working correlation.
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Appendix

Appendix A

Proof of Theorem 1. According to the M-step (2.4), we have Q(ψ(t+1),ψ(t)) >

Q(ψ(t),ψ(t)), or
∑N

i=1

∑L
l=1 ω

(t)
il log π

(t+1)
l ϕl(εi, α

(t+1)
l ) >

∑N
i=1

∑L
l=1 ω

(t)
il log π

(t)
l

ϕl(εi, α
(t)
l ). Let H(ω(t),ψ(t+1)) = Q(ψ(t+1),ψ(t))− ℓ(ψ(t+1)) and H(ω(t),ψ(t)) =

Q(ψ(t),ψ(t))− ℓ(ψ(t)). It is easy to show that

H(ω(t),ψ(t))−H(ω(t),ψ(t+1)) =
N∑
i=1

L∑
l=1

ω
(t)
il log

{
ω
(t)
il

ω
(t+1)
il

}
.

Since
∑L

l=1 ω
(t+1)
il = 1, it follows from Jensen’s inequality that

L∑
l=1

ω
(t)
il log

{
ω

(t+1)
il

ω
(t)
il

}
≤ log

L∑
l=1

ω
(t)
il ·

ω
(t+1)
il

ω
(t)
il

= log

L∑
l=1

ω
(t+1)
il = 0.

Hence, H(ω(t),ψ(t)) > H(ω(t),ψ(t+1)) and it then follows that the change from

ψ(t+1) to ψ(t) increases the pseudo-likelihood ℓ.

Appendix B

Proof of Theorem 2. In (2.4), let

f(αl,ψ
(t)) =

N∑
i=1

ω
(t)
il log ϕl(εi, αl)

= −1

2

N∑
i=1

ω
(t)
il log(|R(l)(αl)|)−

1

2

N∑
i=1

ω
(t)
il ε

τ
i {R(l)(αl)}−1εi.

Then, we have

∂f(αl,ψ
(t))

∂αl

∣∣∣αl=α̂l
(t+1)

=

N∑
i=1

ω
(t)
il tr

(
∂(R(l)(αl))

−1

∂αl
εiε

τ
i −R(l)(αl)

∂(R(l)(αl))
−1

∂αl

)∣∣∣∣
αl=α̂l

(t+1)

= 0.
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(i) Suppose one of the R(l)(αl) is AR(1). And without loss of generality, let

R(1)(α1) = RAR(α1). Then the derivative of f can be written as

∂f(α1,ψ
(t))

∂α1
=

N∑
i=1

ω
(t)
il tr

[
∂(RAR(α1))

−1

∂α1
(εiε

τ
i −RAR(α1))

]

∝ (T − 1)

N∑
i=1

ω
(t)
il α1(1− α2

1)

−
N∑
i=1

ω
(t)
il

{
α1

( T−1∑
j=1

ε2ij +

T∑
j=2

ε2ij

)
− (1 + α2

1)

T−1∑
j=1

εijεij+1

}
,

a cubic polynomial of α1. It is easy to show that

lim
α1→−∞

∂f(α1,ψ
(t))

∂α1
= −∞, lim

α1→+∞

∂f(α1,ψ
(t))

∂α1
= +∞,

∂f(α1,ψ
(t))

∂α1

∣∣∣∣
α=−1

=

N∑
i=1

ω
(t)
il [

T−1∑
j=1

(εij + εij+1)
2] > 0,

and

∂f(α1,ψ
(t))

∂α1

∣∣∣∣
α=1

= −
N∑
i=1

ω
(t)
il [

T−1∑
j=1

(εij − εij+1)
2] < 0.

Hence ∂f(α1,ψ
(t))/∂α1 = 0 has a unique solution in (−1, 1), so α̂1

(t+1) ∈ (−1, 1)

and RAR(α̂1) is positive definite. Then because π̂1 > 0, we have
∑L

l=1 π̂lR
(l)(α̂l)

= π̂1RAR(α̂1) + π̂2R(2)(α̂2) + · · ·+ π̂LR(L)(α̂L) is a positive-definite matrix.

(ii) Suppose one of the R(l)(αl) is CS. Let R(1)(α1) = RCS(α1). We have

∂f(α1,ψ
(t))

∂α1

=

N∑
i=1

ω
(t)
il tr

[
∂(RCS(α1))

−1

∂α1
(εiε

τ
i −RCS(α1))

]

∝
N∑
i=1

ω
(t)
il

{
α1[(T − 2)α1 + 2](T − 1)

n∑
j=1

ε2ij − [1 + (T − 1)α2
1]

T∑
j ̸=h

εijεih

}

−
N∑
i=1

ω
(t)
il

{
T (T − 1)α1[(T − 2)α1 + 2]− [1 + (T − 1)α2

1]T (T − 1)α1

}
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Then we can show that

lim
α1→−∞

∂f(α1,ψ
(t))

∂α1
= +∞, lim

α1→+∞

∂f(α1,ψ
(t))

∂α1
= −∞,

∂f(α1,ψ
(t))

∂α1
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α=1

=

N∑
i=1

ω
(t)
il T

{
(T − 2)

T∑
j=1

ε2ij +
1

2

T∑
j ̸=h

(εij − εih)
2
}
> 0,

and

∂f(α1,ψ
(t))

∂α1
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α= −1

T−1

= −
N∑
i=1

ω
(t)
il

{ T

2(T − 1)

T∑
j ̸=h

(εij + εih)
2
}
< 0.

Therefore, ∂f(α1,ψ
(t))/∂α1 = 0 has a unique solution α̂1

(t+1) in (−1/(T − 1), 1),

RCS(α̂1) is positive definite, and
∑L

l=1 π̂lR
(l)(α̂l) is also positive-definite.

Appendix C

Proof of Theorem 3. To prove Theorem 3, we need Theorem 2.2 of White

(1982) and state it as the follows.

Lemma C.1. Let U1, . . . , UN be i.i.d. with joint distribution function G and

density g.

(i) Suppose that a family of distribution functions Fθ(u) has densities fθ(u) that

are measurable in u for every θ ∈ Θ, and continuous in θ for every u ∈ Ω,

with Θ a compact subset of space.

(ii) E(log g(Ui)) exists and | log f(u, θ)| ≤ M(u) for all θ in Θ, where M is

integrable with respect to G.

Then if KL(g; f, θ) has a unique minimum at θ∗ in Θ, we have θ̂N → θ∗ almost

surely as N → ∞, where θ̂N = argmaxθ∈Θ
∑N

i=1 log f(Ui, θ).

Denote the MPLE by

ψ̂ = (α̂l, π̂l)
L
l=1 = argmax

ψ
ℓ(ψ) = argmax

ψ

{ N∑
i=1

log
L∑
l=1

πlϕl(εi, αl)
}
.

Apply Lemma 1 to ε1, . . . , εN and
∑L

l=1 πlϕl(εi, αl). Given Assumptions 1-3 of

Theorem 3, the conditions of Lemma C.1 are all satisfied. It then follow from

Lemma C.1 that ψ̂
a.s.→ ψ∗.

To prove the second part of Theorem 3, we use Lemma 4.3 of Newey and

McFadden (1994, p.2156) as stated below.

Lemma C.2. Given an i.i.d. random sample z1, . . . , zn, if a(z, θ) is continu-

ous at θ0 with probability one, and there is a neighborhood N of θ0 such that

E[supθ∈N |a(z, θ)|] < ∞, then for any θ̃
a.s.→ θ0, (1/n)

∑n
i=1 a(zi, θ̃)

P→ E[a(z, θ0)].
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For any given β, consider the Taylor expansion

∂ℓ(ψ)

∂ψ

∣∣∣
ψ=ψ∗

=
∂ℓ(ψ)

∂ψ

∣∣∣
ψ=ψ̂

+
∂2ℓ(ψ)

∂ψ∂ψτ

∣∣∣
ψ=ψ̃

(ψ∗ − ψ̂),

where ψ̃ is a point on the segment connecting ψ̂ and ψ∗. It is obvious that

ψ̃
a.s.→ ψ∗. Then because ∂ℓ(ψ)

∂ψ

∣∣∣
ψ=ψ̂

= 0, we have

√
N(ψ∗ − ψ̂) =

[
1

N

∂2ℓ(ψ)

∂ψ∂ψτ

∣∣∣
ψ=ψ̃

]−1√
N

[
1

N

∂ℓ(ψ)

∂ψ

∣∣∣
ψ=ψ∗

]
.

Since E
[
∂2ℓ(ψ)/∂ψ∂ψτ

]
is continuous on Ψ and E

[
supψ∈N ∂2ℓ(ψ)/∂ψ∂ψτ

]
< ∞, it follows from Lemma C.2 that

1

N

∂2ℓ(ψ)

∂ψ∂ψτ

∣∣∣
ψ=ψ̃

P→ E

[
1

N

∂2ℓ(ψ)

∂ψ∂ψτ

∣∣∣
ψ=ψ∗

]
.

Because KL
(
g(εi),

∑L
l=1 πlϕl(εi, αl)

)
= E{log g(εi)} − E{log

∑L
l=1 πlϕl(εi,

αl)}, we have ψ∗ = argmax(πl,αl)E
(
log
∑L

l=1 πlϕl(εi, αl)
)
= argmaxψ E{(1/N)

ℓ(ψ)}, and hence E{(1/N)∂ℓ(ψ)/∂ψ|ψ=ψ∗} = 0. In addition,

V ar

(√
N

[
1

N

∂ℓ(ψ)

∂ψ

∣∣∣
ψ=ψ∗

])

= E

(∂ log
∑L

l=1 πlϕl(εi, αl)

∂ψ

)(
∂ log

∑L
l=1 πlϕl(εi, αl)

∂ψ

)T ∣∣∣
ψ=ψ∗

 < ∞.

By the Central Limit Theorem, we then have
√
N

[
(1/N)∂ℓ(ψ)/∂ψ

∣∣∣
ψ=ψ∗

]
=

Op(1). Therefore,
√
N(ψ̂ −ψ∗) = Op(1).

Appendix D

Proof of Theorem 4. Because g(εi) =
∑L

l=1 π
0
l ϕl(εi, α

0
l ), we have

(π∗
l , α

∗
l )

L
l=1 = arg min

(πl,αl)
KL

(
L∑
l=1

π0
l ϕl(εi, α

0
l ),

L∑
l=1

πlϕl(εi, αl)

)
By Jensen’s inequality, it is obvious that

(π0
l , α

0
l )

L
l=1 = arg min

(πl,αl)

∫ [
log

∑L
l=1 π

0
l ϕl(εi, α

0
l )dεi∑L

l=1 πlϕl(εi, αl)

][
L∑
l=1

π0
l ϕl(εi, α

0
l )

]
dεi

= arg min
(πl,αl)

KL

(
L∑
l=1

π0
l ϕl(εi, α

0
l ),

L∑
l=1

πlϕl(εi, αl)

)
.
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Because KL(g(εi),
∑L

l=1πlϕl(εi, αl)) has its unique minimum at ψ∗=(π∗
l , α

∗
l )

L
l=1,

Theorem 4 is established.

Appendix E

Proof of Theorem 5. From (2.5), we know that β̂M is the solution to the

estimating equation
∑N

i=1 Ui{β,M(ψ̂(β))} = 0.

(i) We first prove the consistency of β̂M (β̂M P→ β0) by induction. It is obvious

that β̂0 P→ β0 for m = 0. Under the assumption that β̂m P→ β0, we prove

β̂m+1 P→ β0.

By the algorithm 2-4 steps, we have
∑N

i=1 Ui{β̂m+1,M(ψ̂(β̂m))} = 0. The

Taylor expansion of β at β0 gives

0 =
1

N

N∑
i=1

Ui{β̂m+1,M(ψ̂(β̂m))}

=
1

N

N∑
i=1

Ui{β0,M(ψ̂(β̂m))}+ 1

N

N∑
i=1

∂Ui{β,M(ψ̂(β̂m))}
∂β

∣∣∣β=β̃m+1(β̂
m+1 − β0)

= S1 + S2(β̂
m+1 − β0), (E.1)

where

S1 =
1

N

N∑
i=1

Ui{β0,M(ψ̂(β̂m))} and S2 =
1

N

N∑
i=1

∂Ui{β,M(ψ̂(β̂m))}
∂β

∣∣∣β=β̃m+1 ,

with β̃m+1 as a point on the segment connecting β̂m+1 and β0.

Lemma E.1. Under conditions of Theorem 5, we have S1 = AN + [B∗
N + op(1)]

(β̂m −β0), where AN = (1/N)
∑N

i=1 Ui{β0,M(ψ̂(β0))} and B∗
N =

(
(1/N)

∑N
i=1

∂Ui{β0,M(ψ̂(β))}/∂β
)
β=β0

.

Proof of Lemma E.1. Taylor expansion of β at β0 gives

S1 =

N∑
i=1

Ui{β0,M(ψ̂(β0))}+

(
1

N

N∑
i=1

∂Ui{β0,M(ψ̂(β))}
∂β

)
β=β0

(β̂m − β0)

+Rm
N (β̂m − β0)

=AN + [B∗
N +Rm

N ](β̂m − β0),

where Rm
N = (β̂m − β0)

τ

(
(1/N)

∑N
i=1 ∂

2Ui{β,M(ψ̂(β))}/∂β∂βτ
∣∣∣
β=β̃m

)
with

β̃m as a point on the segment connecting β̂m and β0. Next, we prove Rm
N = op(1).
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It is obvious that β̃m P→ β0. Furthermore, since [∂2Ui{β,M(ψ̂(β))}/∂β∂βτ ]

is continuous at β0 with probability one and E[supβ∈N ∂2Ui{β,M(ψ̂(β))}/∂β∂βτ ]

< ∞, it follows from Lemma 2 that (1/N)
∑N

i=1 ∂
2Ui{β,M(ψ̂(β))}/∂β∂βτ

∣∣∣
β=β̃m

P→ E[∂2Ui{β0,M(ψ̂(β0))}/∂β∂βτ ]. Hence, Rm
N = (β̂m − β0)

τ
(
(1/N)

∑N
i=1

∂2Ui{β,M(ψ̂(β))}/∂β∂βτ
∣∣∣
β=β̃m

)
= op(1). Proof of Lemma E.1 is then com-

pleted.

Lemma E.2. Under the conditions of Theorem 5,
√
NAN

d→ N(0, limN→∞(1/N)∑N
i=1Gi).

Proof. For a given β, the Taylor expansion at ψ∗ gives

√
NAN =N−1/2

N∑
i=1

Ui{β,M(ψ̂(β))}

=N−1/2
N∑
i=1

Ui{β,M(ψ∗(β))}

+

[
N−1

N∑
i=1

∂Ui{β,M(ψ̂)}
∂ψ̂

] [√
N(ψ̂(β)−ψ∗(β))

]
+RN

= CN +DNEN +RN , (E.2)

where

RN =N−1/2
√
N(ψ̂(β)−ψ∗(β))τ

( 1

N

N∑
i=1

∂2Ui{β,M(ψ)}
∂ψ∂ψτ

∣∣∣
ψ=ψ̃

)√
N(ψ̂(β)−ψ∗(β))

for some ψ̃(β) on the segment connecting ψ̂(β) and ψ∗(β).

We prove a) EN = Op(1) and RN = op(1) for given β. When β equals the

true value β0, we further prove b)DN = op(1), and c) the asymptotic distribution

of CN is N(0, limN→∞(1/N)
∑N

i=1Gi).

(a) From Theorem 3, we have EN =
√
N(ψ̂(β)−ψ∗(β)) = Op(1) for given β. It

is obvious that ψ̃(β)
a.s.→ ψ∗(β). Furthermore, since

[
∂2Ui(β,M(ψ))/∂ψ∂ψτ

]
is

continuous atψ∗ with probability one and E
[
supψ∈N ∂2Ui{β,M(ψ)}/∂ψ∂ψτ

]
<

∞, it follows from Lemma 2 that

1

N

N∑
i=1

∂2Ui{β,M(ψ)}
∂ψ∂ψτ

∣∣∣
ψ=ψ̃

P→ E

[
∂2Ui{β,M(ψ)}

∂ψ∂ψτ

∣∣∣
ψ=ψ∗

]
.

Therefore RN = N−1/2Op(1)Op(1)Op(1) = op(1).
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(b)By the Law of Large Numbers, we have

DN =
1

N

N∑
i=1

∂Ui{β0,M(ψ̂(β0))}
∂ψ̂

=
1

N

N∑
i=1

Di
τA

−1/2
i

∂M−1(ψ̂(β0))

∂ψ̂
A

−1/2
i (yi − µi)

→ a.s.E[Di
τA

−1/2
i

∂M−1(ψ∗)

∂ψ
A

−1/2
i (yi − µi)] = 0.

(c) By the Central Limit Theorem, since E[Ui{β0,M(ψ∗)}] = E[Dτ
i A

−1/2
i (R∗)−1

A
−1/2
i (yi − µi)] = 0 and V ar(N−1

∑N
i=1 Ui{β0,M(ψ∗)}) = (1/N)

∑N
i=1Gi, it

follows that the asymptotic distribution of CN is N(0, limN→∞(1/N)
∑N

i=1Gi).

Following (a), (b), (c), and E.2, by Slutsky’s theorem the asymptotic distri-

bution of
√
NAN = N−1/2

∑N
i=1 Ui{β0,M(ψ̂(β0))} is N(0, limN→∞(1/N)

∑N
i=1

Gi). The proof of Lemma E.2 is complete.

Lemma E.3. Under the conditions of Theorem 5, BN
P→ limN→∞(1/N)

∑N
i=1Hi.

Proof. By (b), DN = (1/N)
∑N

i=1
∂Ui{β0,M(ψ̂(β0))}

∂ψ̂
= op(1) . Since |∂ψ̂/∂β| ≤

H(Y,β), we have

B∗
N =

[
1

N

N∑
i=1

∂Ui{β0,M(ψ̂(β0))}
∂ψ̂

][
∂ψ̂

∂β

]
= DNOp(1) = op(1).

By the chain rule, we have

∂Ui{β,M(ψ̂(β))}
∂β

=
∂Ui{β,M(ψ̂)}

∂β
+

[
∂Ui{β,M(ψ̂)}

∂ψ̂

][
∂ψ̂

∂β

]
.

It is easy to see that

BN =
1

N

N∑
i=1

∂Ui{β0,M(ψ̂(β0))}
∂β

=
1

N

N∑
i=1

∂Ui{β,M(ψ̂(β0))}
∂β

∣∣∣
β=β0

+

[
1

N

N∑
i=1

∂Ui{β0,M(ψ̂(β0))}
∂ψ̂

][
∂ψ̂

∂β

]

=
1

N

N∑
i=1

∂Ui{β,M(ψ̂(β0))}
∂β

∣∣∣
β=β0

+ op(1)
P→ lim

N→∞

1

N

N∑
i=1

Hi.

Lemma E.4. Under the conditions of Theorem 5, β̂m P→ β0 as N → ∞, and so

β̂m+1 P→ β0 as N → ∞.
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Proof. By (E.1), we have (β̂m+1 − β0) = −S−1
2 S1. By Slutsky’s theorem, the

proof that S1 = op(1) follows from (E.2), β̂m P→ β0, Lemma E.2, and Lemma

E.3.

Since ψ̂(β̂m)− ψ̂(β0) =
[
∂ψ̂/∂β

]
β=β̃m

(β̂m −β0) = Op(1)op(1) = op(1) and

|ψ̂(β0)−ψ∗(β0)| = op(1), we have

|ψ̂(β̂m)−ψ∗(β0)| ≤ |ψ̂(β̂m)− ψ̂(β0)|+ |ψ̂(β0)−ψ∗(β0)| = op(1).

Therefore, there is a neighborhoodN of ψ∗ such that ψ̂(β̂m) is contained inN for

sufficiently large N . Then, since
[
(1/N)

∑N
i=1 ∂Ui{β,M(ψ)}/∂β

]−1
is bounded

inN with probability one, we have S−1
2 =

[
(1/N)

∑N
i=1 ∂Ui{β,M(ψ̂(β̂m))}/∂β

]−1

= Op(1). Thus β̂
m+1 P→ β0 as N → ∞.

(ii) We prove the asymptotic normality of β̂M .

Lemma E.5. Under the conditions of Theorem 5,
√
N(β̂M − β0) = [−BN + op(1)]

−1
√
NAN . (E.3)

Proof of Lemma E.5. Taylor expansion of β at β0 gives

0 =N−1/2
N∑
i=1

Ui{β̂M ,M(ψ̂(β̂M ))}

=N−1/2
N∑
i=1

Ui{β0,M(ψ̂(β0))}+

(
1

N

N∑
i=1

∂Ui{β0,M(ψ̂(β0))}
∂β

)
√
N(β̂M−β0)

+R∗
N

√
N(β̂M − β0)

=
√
NAN + [BN +R∗

N ]
√
N(β̂M − β0),

where R∗
N = (β̂M − β0)

τ

(
(1/N)

∑N
i=1 ∂

2Ui{β,M(ψ̂(β))}/∂β∂βτ
∣∣∣
β=β̃

)
with β̃

as a point on the segment connecting β̂M and β0. We prove R∗
N = op(1).

It is obvious that β̃
P→ β0. Furthermore, since [∂2Ui{β,M(ψ̂(β))}/∂β∂βτ ] is

continuous at β0 with probability one and E[supβ∈N ∂2Ui{β,M(ψ̂(β))}/∂β∂βτ ]

< ∞, it follows from Lemma 2 that (1/N)
∑N

i=1 ∂
2Ui{β,M(ψ̂(β))}/∂β∂βτ

∣∣∣
β=β̃

P→ E[∂2Ui{β0,M(ψ̂(β0))}/∂β∂βτ ]. Hence, R∗
N = (β̂M − β0)

τ ((1/N)
∑N

i=1

∂2Ui{β,M(ψ̂(β))}/∂β∂βτ
∣∣∣
β=β̃

) = op(1). Proof of Lemma E.5 is then com-

pleted.

By Slutsky’s theorem, the proof for the asymptotic normality of β̂M follows

from (E.3), Lemma E.2, and Lemma E.3.
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