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Abstract: This paper considers generalized linear quantile regression for competing

risks data when the failure type may be missing. Two estimation procedures for

the regression coefficients, including an inverse probability weighted complete-case

estimator and an augmented inverse probability weighted estimator, are discussed

under the assumption that the failure type is missing at random. The proposed

estimation procedures utilize supplemental auxiliary variables for predicting the

missing failure type and for informing its distribution. The asymptotic properties

of the two estimators are derived and their asymptotic efficiencies are compared.

We show that the augmented estimator is more efficient and possesses a double

robustness property against misspecification of either the model for missingness

or for the failure type. The asymptotic covariances are estimated using the local

functional linearity of the estimating functions. The finite sample performance of

the proposed estimation procedures are evaluated through a simulation study. The

methods are applied to analyze the ‘Mashi’ trial data for investigating the effect

of formula- versus breast-feeding plus extended infant zidovudine prophylaxis on

HIV-related death of infants born to HIV-infected mothers in Botswana.
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1. Introduction

This paper was motivated by the need to analyze the ‘Mashi’ trial data

(mashi means milk in Setswana) for examining the effect of formula- versus

breast-feeding plus extended infant zidovudine prophylaxis on HIV-related death

of infants born to HIV-infected mothers in Botswana (Thior et al. (2006)).

Whereas studies including the Mashi trial have shown that formula-feeding in-

creases the overall risk of death while breast-feeding increases the risk of trans-

mitting HIV (Dunn et al. (1992); Beaudry, Dufour, and Marcoux (1995)), the

effect of feeding strategy on death due to HIV infection is unknown. Accord-

ingly, it is of interest to assess the treatment effect on HIV-related death, with
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HIV-unrelated death considered as a competing risk. This analysis provides ad-

ditional insight over the analysis of all-cause death by addressing whether the

known beneficial effect of formula-feeding to prevent HIV infection leads to a

beneficial effect to reduce mortality of HIV infected infants.

Of the 111 live-born infants who died in the Mashi trial, the cause of death

is known for 50 and missing for 61. It is well-known that the analysis of only

cases with complete information may lead to inefficient and/or biased estimates.

To account for the missingness, a number of methods have been developed to

estimate the covariate effects under different survival models for the cause-specific

hazard functions, for instance the proportional hazards model (Goetghebeur and

Ryan (1995), Lu and Tsiatis (2001)), the linear transformation model (Gao and

Tsiatis (2005)) and the additive hazard model (Lu and Liang (2008)), among

others.

In this paper, we consider a quantile regression model (Koenker and Bassett

(1978)) that is a valuable complement to the Cox proportional hazards model

(Cox (1972)) and the accelerated failure time model (Buckley and James (1979);

Koul, Susarla, and Van Ryzin (1981)). Quantile regression allows the covariate

effects to vary at different tails of the event time distribution. Such important

heterogeneity in the population may be overlooked by using the Cox model or

the accelerated failure time model. General quantile regression methods in sur-

vival analysis are developed under the assumption that censoring is independent

of failure time; see Ying, Jung, and Wei (1995), Bang and Tsiatis (2002), Port-

noy (2003), Neocleous, Vanden Branden, and Portnoy (2006), Peng and Huang

(2008), Wang and Wang (2009), among others.

Most relevant to this work, Peng and Fine (2009) studied the quantile for

the cumulative incidence function, which is the distribution of the time to failure

due to a particular cause of interest. However, their method does not account

for missingness of failure cause. Its application based on the complete-cases may

be invalid and misleading because of the high percentage of missing causes of

death in the Mashi data. We consider generalized linear quantile regression for

competing risks data when causes of failure may be missing. Two estimation

procedures are discussed under the assumption that the failure cause is missing

at random (Rubin (1976)). The first, following the idea of Horvitz and Thomp-

son (1952), uses inverse probability weighting (IPW) of complete-cases, which

leverages auxiliary predictors of whether cause of failure is observed. The second

approach, adapting the theory of Robins, Rotnitzky, and Zhao (1994), augments

the IPW complete-case estimator with auxiliary predictors of the cause of failure

of interest.

This work fits in the general area of competing risks failure time analysis,

wherein subjects are followed over time and may fail from one of many causes.
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The competing risks failure time can be represented by the minimum of the la-

tent failure times, each of which is defined as the time to failure from a particular

cause in the absence of all other competing risks. The existing quantile regression

methods could be applied within this framework by considering quantile regres-

sion of the latent failure time for a particular cause while treating other latent

failure times as censoring and by assuming mutual independence of the latent fail-

ure times (Tsiatis (1975)). This independence mutual assumption is untestable

and is often dubious (because we expect positive correlation of the latent failure

times), however, and Peng and Fine (2009), took a different approach that avoids

this assumption. In particular, they studied the cumulative incidence function,

which is the distribution of the time to failure due to a particular cause in the

presence of the other competing risks. This approach evaluates “crude” effects on

the cause-specific cumulative incidence, and hence caution is needed in the inter-

pretation of the results (Prentice et al. (1978)). This is the dominant approach

for assessing competing risks data given the fundamental non-identifiability of

the latent failure times, and the methods developed here take this approach.

The rest of the paper is organized as follows. Two procedures for estimating

the regression coefficients are proposed in Section 2. The asymptotic properties

of these estimators are derived and their asymptotic efficiencies are compared

in Section 3. Procedures for estimating the asymptotic covariances are given in

Section 4. The finite-sample performance of the proposed estimation procedures

are evaluated in Section 5 through a simulation study. The methods are applied

to the Mashi data in Section 6 for investigating the effect of formula- versus

breast-feeding plus extended infant zidovudine prophylaxis on HIV-related death

of infants. All proofs are in Appendix.

2. Estimation Procedures

2.1. Model descriptions and assumptions

Let T be the survival time of interest. Due to censoring, we only observe

(X, δ), where X = min(T,C), δ = I(T ≤ C) and C is the censoring variable.

Let J denote the failure type associated with the uncensored failure time T . The

J is meaningless and undefined if T is censored. For convenience we let Z be

the (p + 1)-dimensional concomitant variable including 1 as its first component

corresponding to an intercept. A typical right-censored competing risks data set

consists of independent and identically distributed (i.i.d.) copies (Xi, δi, δiJi, Zi),

i = 1, . . . , n, of (X, δ, δJ, Z).

We consider J = 1 as the failure type of interest and set J = 2 for all other

failure types. The type-1 cumulative incidence function is F1(t|Z) = P (T ≤
t, J = 1|Z), which represents the conditional probability of observing a type-1

failure by time t given the covariate Z. The τth type-1 conditional quantile given
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Z = z is defined as F−1
1 (τ |z) = inf{t : F1(t|z) ≥ τ}. Let ν be the end of follow-up

time and satisfying the condition C1 given in the Appendix. For identifiability,
we require that τ ≤ τ0 where τ0 = infz P (T ≤ ν, J = 1 | z). For τ ∈ [τL, τU ] with
0 < τL ≤ τU < τ0, the τth generalized linear quantile regression is

F−1
1 (τ |z) = g{zTβ(τ)}, (2.1)

where g(·) is a known monotone link function and β(τ) is a (p+ 1)-dimensional
coefficient vector depending on τ .

To help with understanding model (2.1) and the interpretation of β(τ), we
consider the following scenario. Suppose Zi = (1, Zi,1), where Zi,1 is the indicator
of gender for subject i, say Zi,1 = 1 for male and Zi,1 = 0 for female, and Ti is the
time (age in years) to death. Suppose β(τ) = (β0(τ), β1(τ)), with β0(τ) = 70 and
β1(τ) = −5 at τ = 0.3. Thus, conditional on gender, the age by which 30% of
the population dies of type-1 failure is 70−5Zi,1 under the identity link function.
That is, 30% of females die from type-1 failure before age 70 and 30% of males
die from type-1 failure before age 65. The gender effect is 5 years – the age at
which 30% of individuals die from type-1 failure is 5 years sooner for males than
for females.

Let G(t|Zi) = P (Ci ≥ t|Zi) and let Ĝ(t|Zi) be a semiparametric or nonpara-
metric consistent estimator of G(t|Zi). Peng and Huang (2008) proposed the
following estimating equation for β(τ) based on fully observed competing risks
data {Xi, Zi, δi, δiJi, i = 1 . . . , n}:

Sn(b, τ) =
n∑
i=1

Zi

[
I{Ti ≤ g(ZTi b), Ji = 1}δi

Ĝ(Ti|Zi)
− τ

]
= 0. (2.2)

In this paper we consider the quantile regression (2.1) based on the compet-
ing risks data with possibly missing failure type. Let Ri be the complete-case
indicator: Ri = 1 either if δi = 0 or if δi = 1 and Ji is observed; and Ri = 0 oth-
erwise. Auxiliary variables Ai may be helpful for predicting the missing failure
type. Since the failure type is defined only for those who are observed to fail,
only supplemental information for the observed failures are potentially useful for
predicting missingness and for informing about the distribution of the failure
type. As such, we denote available auxiliaries by δiAi.

We assume the censoring time Ci is conditionally independent of (Ti, Ji) given
Zi. We also assume the failure type Ji is missing at random (Rubin (1976)); that
is, given δi = 1 and Wi = (Ti, Zi, Ai), the probability that the failure type Ji is
missing depends only on the observedWi, not on the value of Ji; this assumption
is expressed as

MAR : r(Wi) ≡ P (Ri = 1|Ji, δi = 1,Wi) = P (Ri = 1|δi = 1,Wi).
(2.3)
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Let π(Qi) = P (Ri = 1|Qi), where Qi = (Wi, δi). Then

π(Qi) = δir(Wi) + (1− δi). (2.4)

The observed data can be summarized as Oi = {Xi, Zi, δi, Ri, RiδiJi, δiAi}, i =
1 . . . , n. We assume that Oi’s are independent and identically distributed.

2.2. Inverse probability weighted estimator

First, following the idea of Horvitz and Thompson (1952), we propose a
procedure for estimating β(τ) that uses inverse probability weighting (IPW) of
complete-cases. We consider a parametric model r(Wi, ψ) for r(Wi) = P (Ri =
1|δi = 1,Wi), where ψ is an unknown vector of finite-dimensional parameters.
For example, r(Wi, ψ) may be a logistic regression model with log[r(Wi, ψ)/{1−
r(Wi, ψ)}] = W T

i ψ. The parameter ψ can be estimated by ψ̂, the maximizer of
the observed-data likelihood

n∏
i=1

{r(Wi, ψ)}RiI(δi=1){1− r(Wi, ψ)}1−Ri . (2.5)

Therefore, we can estimate π(Qi, ψ) by π̂(Qi) = π(Qi, ψ̂) = δir̂(Wi) + (1 − δi)
where r̂(Wi) = r(Wi, ψ̂).

Modifying (2.2) to accommodate missing failure types leads to the IPW
estimating equation for β(τ):

S1,n(b, τ) = n−1/2
n∑
i=1

Zi

[
Ri

π(Qi, ψ̂)

I{g−1(Ti) ≤ ZTi b, Ji = 1}δi
Ĝ(Ti|Zi)

− τ

]
= 0. (2.6)

We can write S1,n(b, τ) = n−1/2
∑n

i=1 Zi
[
I{g−1(Ti) ≤ ZTi b}ϑ̂1,i−τ

]
, where ϑ̂1,i =

RiδiI(Ji = 1)/{π̂(Qi)Ĝ(Ti|Zi)}. We refer to the solution of (2.6) as the IPW
estimator, denoted by β̂I(τ).

2.3. Augmented inverse probability weighted estimator

Because the IPW estimator obtained by solving (2.6) uses data from complete
cases only, it is inefficient, and it is asymptotically consistent only if the missing-
ness probability π(Wi, ψ) is correctly modeled. Adapting the theory of Robins,
Rotnitzky, and Zhao (1994) to gain more efficiency and robustness against the
misspecification of π(Wi, ψ), we propose an improved estimation procedure that
augments the IPW complete-case estimator with auxiliary predictors of the fail-
ure type of interest.

Let ρ(Wi) = P (Ji = 1|δi = 1,Wi). The missing at random assumption (2.3)
implies that Ji is independent of Ri given Qi:

ρ(Wi) = P (Ji = 1|Ri = 1, δi = 1,Wi). (2.7)
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Let ρ(Wi, ϕ) be a parametric model for ρ(Wi), where ϕ is a vector of unknown

parameters. From (2.7), it follows that ρ(Wi) can be estimated from the complete

cases with Ri = 1 and δi = 1. The maximum likelihood estimator of ϕ, ϕ̂, can

be obtained by maximizing the likelihood

n∏
i=1

{ρ(Wi, ϕ)}RiδiI(Ji=1){1− ρ(Wi, ϕ)}RiδiI(Ji ̸=1). (2.8)

Denote ρ(Wi, ϕ̂) by ρ̂(Wi). We consider the augmented IPW estimating equation

for β(τ):

S2,n(b, τ) = 0, (2.9)

where

S2,n(b, τ) = n−1/2
n∑
i=1

Zi

([
Ri

π̂(Qi)

I{g−1(Ti) ≤ ZTi b, Ji = 1}δi
Ĝ(Ti|Zi)

+

{
1− Ri

π̂(Qi)

}
I{g−1(Ti) ≤ ZTi b}δi

Ĝ(Ti|Zi)
ρ̂(Wi)

]
− τ

)
.

Let ϑ̂2,i = RiδiI(Ji = 1)/{π̂(Qi)Ĝ(Ti|Zi)}+ δi
[
1−{π̂(Qi)}−1Ri

]
ρ̂(Wi)/Ĝ(Ti|Zi).

Then S2,n(b, τ) = n−1/2
∑n

i=1 Zi
[
I{g−1(Ti) ≤ ZTi b}ϑ̂2,i − τ

]
. The solution to the

augmented IPW estimating equation (2.9) is referred to as the AIPW estimator

and denoted by β̂A(τ).

Replacing the estimates Ĝ(·), π̂(·), and ρ̂(·) in the estimating function S2,n
(b, τ) by their estimandsG(·), π(·), and ρ(·), we have E[S2,n{β(τ), τ}] = 0 if MAR

holds and if one of the parametric models, r(Wi, ψ) and ρ(Wi, ψ), is correctly

specified. In fact, under MAR (2.3) and consequently (2.7), E[S2,n{β(τ), τ}] =
E (E [S2,n {β(τ), τ} |Qi, Ji]) = 0 if r(Wi, ψ) is correctly specified, and E[S2,n
{β(τ), τ}] = E (E [S2,n {β(τ), τ} |Qi, δi = 1]) = 0 if ρ(Wi, ψ) is correctly speci-

fied. This leads to the double robustness property of the AIPW estimator that

β̂A(τ) is consistent for β(τ) provided that at least one of r̂(·) and ρ̂(·) is a con-

sistent estimator for r(·) and ρ(·). The missing at random assumption MAR is

essential for r(Wi) and ρ(Wi) to be identifiable. Violation of MAR may result

in inconsistent estimation of both r(·) and ρ(·), and thus render both the IPW

and AIPW estimators inconsistent. This property is further demonstrated in our

simulation study in Section 5.

The augmented estimating equation (2.9) follows the ideas of Robins, Rot-

nitzky, and Zhao (1994) for efficient augmentation, whereas (Xi, δi, δiJi, Zi) is

considered as the full data and the full data estimating equation is (2.2), as given

by Peng and Fine (2009). It is interesting to note that Peng and Fine’s estimating
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equation (2.2) is, in turn, based on the inverse probability weighting for censoring

of the estimating equation for the full data (Ti, Ji, Zi), while the observed data in

their case is (Xi, δi, δiJi, Zi). It would be desirable to improve the efficiency of the

Peng and Fine (2009) estimator with augmentation. By Robins, Rotnitzky, and

Zhao (1994), the efficient augmentation of (2.2) requires the estimation of the

conditional expectation E[I{g−1(Ti) ≤ ZTi b, Ji = 1}|Xi, δi, δiJi, Zi], which is un-

obtainable since the conditional distribution of (Ti, Ji = 1) given (Ci, δi = 0, Zi)

is not identifiable based on the observed competing risks data. Its implemen-

tation would require some untestable and perhaps unreasonable/conflicting as-

sumptions, such as independence of (Ti, Ji = 1) and (Ci, δi = 0) given Zi.

The numerical procedure for solving equation (2.9) is equivalent to locating

the minimizer of the function:

U2,n(b, τ) =

n∑
i=1

ϑ̂2,i

∣∣∣g−1(Xi)−ZTi b
∣∣∣+∣∣∣M+

n∑
i=1

ϑ̂2,iZ
T
i b

∣∣∣+∣∣∣M−
n∑
i=1

2τZTi b
∣∣∣, (2.10)

whereM is a large positive number. Equivalency is due to the fact that U2,n(b, τ)

is a convex function in b and its derivative is 2n1/2S2,n(b, τ) when M exceeds

|
∑n

i=1 ϑ̂2,iZ
T
i b| and |

∑n
i=1 2τZ

T
i b| for all b within the compact parameter set

of β(τ). Under (2.1), ZTi β(τ) = g−1{F−1
1 (τ |Zi)}. It is necessary that ZTi b ≤

max1≤i≤n |g−1(Xi)| holds for all i for some parameter vector b for β(τ)

to be identifiable. Hence |
∑n

i=1 ϑ̂2,iZ
T
i b| ≤

∑n
i=1 |ϑ̂2,i|max1≤i≤n |g−1(Xi)|

and |
∑n

i=1 2τZ
T
i b| ≤ 2nτ max1≤i≤n |g−1(Xi)|. We further notice that |ϑ̂2,i| ≤

3/{π̂(Qi)Ĝ(Ti|Zi)}. For most practical applications, where the missingness prob-

abilities are less than 0.9 and fewer than 90% of subjects are censored, it is rea-

sonable to assume that
∑n

i=1 3/{π̂(Qi) Ĝ(Ti|Zi)} ≤ 300n. Then it suffices to

take M ≥ 300nmax1≤i≤n |g−1(Xi)|. One can use a number greater than 300 in

the lower bound for M in more extreme situations. Similarly, the estimating

equation (2.6) can be solved by minimizing (2.10) with ϑ̂2,i replaced by ϑ̂1,i, and

the same choice of M can be used in the minimization.

3. Asymptotic Properties

Throughout the rest of the paper, we assume the censoring distribution does

not depend on the covariates, i.e., G(t|Zi) = G(t), and use the Kaplan-Meier

estimator Ĝ(t) to estimate G(t). The independence assumption for Ci and Zi can

be relaxed, in which case the conditional Kaplan-Meier estimator (Beran (1981))

can be used to estimate G(t|Zi), and the asymptotic distributions for β̂I(τ) and

β̂A(τ) need to be modified to accommodate the additional variations. This section

derives the uniform consistency and weak convergence of the proposed estimators

β̂I(τ) and β̂A(τ), for τ over the interval [τL, τU ], under the conditions C1–C5
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given in the Appendix. It also compares the asymptotic efficiency of the two

estimators.

Under C5, n1/2(ψ̂−ψ) and n1/2(ϕ̂−ϕ) are asymptotically linear with influence

functions ηi and ζi, respectively, such that

n1/2(ψ̂ − ψ) = n−1/2
n∑
i=1

ηi + op(1), (3.1)

n1/2(ϕ̂− ϕ) = n−1/2
n∑
i=1

ζi + op(1), (3.2)

where {(ηi, ζi), i = 1, . . . , n} are i.i.d. random variables with Eηi = 0 and

Eζi = 0. Under the logistic regression model for r(Wi, ψ), we can write ηi =

I−1
ψ π′ψ(Qi, ψ)δi{Ri − πi(Qi)}/[πi(Qi){1 − πi(Qi)}], where Iψ is the asymptotic

information matrix of the likelihood function (2.5).

Let NG
i (t) = I(Xi ≤ t, δi = 0), Yi(t) = I(Xi ≥ t), y(t) = P (Xi ≥ t) and

MG
i (t) = NG

i (t)−
∫ t
0 Yi(s)λ

G(s) ds, where λG(t) is the hazard function for the cen-

soring variable C. Let w1(b, t) = E[ZiYi(t)I{Xi ≤ g(ZTi b)}ϑ1,i]y−1(t), w2(b) =

−E(Zi{π′ψ(Qi, ψ)}T {π(Qi)}−1 I[Xi ≤ g{ZTi b}]ϑ1,i). Under MAR and the inde-

pendent censoring assumption, it is easy to see that w2(b) = −E(Zi{π′ψ(Qi, ψ)}T
{π(Qi)}−1ρ(Wi)I[Ti ≤ g{ZTi b}]). Let a1,i(τ) = Zi

(
I[Xi ≤ g{ZTi β(τ)}]ϑ1,i − τ

)
,

a2,i(τ) = Zi
(
I[Xi ≤ g{ZTi β(τ)}]ϑ2,i−τ

)
, bi(τ) =

∫∞
0 w1(β(τ), s) dM

G
i (s), ci(τ) =

w2(β(τ))ηi, and ei(τ) = ZiI[Xi ≤ g{ZTi β(τ)}] δi{G(Ti)}−1
[
1 − Ri{π(Qi)}−1

]
ρ(Wi). Define ξ1,i(τ) = a1,i(τ) + bi(τ) + ci(τ) and ξ2,i(τ) = a2,i(τ) + bi(τ). Let

β(τ) be the true regression coefficient at τ .

Theorem 1. Under C1−C5, given in the Appendix, we have limn→∞ supτ∈[τL,τU ]

∥β̂I(τ) − β(τ)∥ = 0 and limn→∞ supτ∈[τL,τU ] ∥β̂A(τ) − β(τ)∥ = 0 in probability,

where ∥ · ∥ is the Euclidean norm.

We show in the Appendix that the asymptotic approximations hold for the

IPW estimator and the AIPW estimator uniformly in τ ∈ [τL, τU ] in probability:

n1/2{β̂I(τ)− β(τ)} = n−1/2
n∑
i=1

[
A{β(τ)}

]−1
ξ1,i(τ) + op(1), (3.3)

n1/2{β̂A(τ)− β(τ)} = n−1/2
n∑
i=1

[
A{β(τ)}

]−1
ξ2,i(τ) + op(1), (3.4)

where A{β(τ)} = E(Z⊗2
i f1[g{ZTi β(τ)}|Zi]) and f1(t|z) = ∂F1(t|z)/∂t. The ap-

proximations (3.3) and (3.4) lead to the following asymptotic results.
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Theorem 2. Under C1−C5, given in the Appendix, we have

(i) both n1/2{β̂I(τ)−β(τ)} and n1/2{β̂A(τ)−β(τ)} converge weakly to mean zero

Guassian processes with covariance matrices Φ1(τ
′, τ)=

[
A{β(τ ′)}

]−1
Σ1(τ

′,

τ)
[
A{β(τ)}

]−1
and Φ2(τ

′, τ) =
[
A{β(τ ′)}

]−1
Σ2(τ

′, τ)
[
A{β(τ)}

]−1
for τ, τ ′

∈ [τL, τU ], respectively, where Σ1(τ
′, τ) = E{ξ1,i(τ ′)ξT1,i(τ)} and Σ2(τ

′, τ) =

E{ξ2,i(τ ′) ξT2,i(τ)};

(ii) the AIPW estimator β̂A(τ) is more efficient than the IPW estimator β̂I(τ)

with Σ1(τ
′, τ) ≥ Σ2(τ

′, τ).

4. Estimation of the Covariance Matrices

In quantile regression, the estimating functions are not smooth and the

asymptotic covariances for the estimators of the regression coefficients involve a

subdensity function, which poses difficulties for the estimation of the covariances.

Huang (2002) proposed a novel variance estimation procedure for a calibration

regression model using the local functional linearity of the estimating functions.

Peng and Fine (2009) generalized this technique to the competing risks setting.

Our estimators of the asymptotic covariances are constructed following the ex-

position of Peng and Fine (2009).

First we derive an estimator for Σ1(τ, τ). It is shown in the Appendix that

E[ξ1,i(τ
′){ξ1,i(τ)}T ]

= E{a1,i(τ ′)aT1,i(τ)} − E{bi(τ ′)bTi (τ)} − w2{β(τ ′)}I−1
ψ [w2{β(τ)}]T . (4.1)

Let (Îψ)
−1 be the estimator of the variance of ψ̂ and let ŵ2{β̂I(τ)} = −n−1

∑n
i=1

Zi{π′ψ(Qi, ψ̂)}T {π̂(Qi)}−1 I[Xi ≤ g{ZTi β̂I(τ)}]ϑ̂1,i. Based on (4.1), Σ1(τ, τ) can

be consistently estimated by

Σ̂1(τ, τ) = n−1
n∑
i=1

Z⊗2
i

(
ϑ̂1,iI[Xi ≤ g{ZTi β̂I(τ)}]− τ

)2

−n−1
n∑
i=1

(1− δi)

(∑n
j=1 ZjI[Xi ≤ Xj ≤ g{ZTj β̂I(τ)}]ϑ̂1,j∑n

j=1 I(Xj ≥ Xi)

)⊗2

(4.2)

−ŵ2{β̂I(τ)}(Îψ)−1[ŵ2{β̂I(τ)}]T .

Next, since ξ2,i(τ) = a2,i(τ) + bi(τ), with similar arguments to the proof of

(4.1) we obtain

E[ξ2,i(τ
′){ξ2,i(τ)}T ] = E{a2,i(τ ′)aT2,i(τ)} − E{bi(τ ′)bTi (τ)}. (4.3)
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Thus Σ2(τ, τ) can be consistently estimated by

Σ̂2(τ, τ) = n−1
n∑
i=1

Z⊗2
i

(
ϑ̂2,iI[Xi ≤ g{ZTi β̂I(τ)}]− τ

)2

−n−1
n∑
i=1

(1− δi)

(∑n
j=1 ZjI[Xi ≤ Xj ≤ g{ZTj β̂I(τ)}]ϑ̂2,j∑n

j=1 I(Xj ≥ Xi)

)⊗2

. (4.4)

The estimation of the covariance Φ1(τ
′, τ) of n1/2{β̂I(τ ′) − β(τ ′)} and

n1/2{β̂I(τ)− β(τ)} is outlined as follows.

1. Find a symmetric and nonsingular (p+1)×(p+1) matrix En(τ) ≡ {en,1(τ), . . . ,
en,p+1(τ)} such that Σ̂1(τ, τ) = {En(τ)}2.

2. Calculate Dn(τ) =
(
[S1,n{en,1(τ), τ}]−1 − β̂I(τ), . . . , [S1,n{en,p+1(τ), τ}]−1 −

β̂I(τ)
)
, where {S1,n(e, τ)}−1 is the solution to S1,n(b, τ) − e = 0. Similar to

(2.6) in Section 2.2, S1,n(b, τ)− e = 0 can be solved by minimizing

U3,n(b, τ) =

n∑
i=1

ϑ̂1,i

∣∣∣g−1(Xi)− ZTi b
∣∣∣+ ∣∣∣M +

n∑
i=1

ϑ̂2,iZ
T
i b

∣∣∣+ ∣∣∣M −
n∑
i=1

2τZTi b
∣∣∣

+
∣∣∣M − 2n1/2eT b

∣∣∣.
3. Estimate Φ1(τ

′, τ) by Φ̂1(τ
′, τ)=nDn(τ

′){En(τ ′)}−1Σ̂1(τ
′, τ){En(τ)}−1Dn(τ).

In the special case of τ ′ = τ , Φ̂1(τ, τ) = n{Dn(τ)}⊗2.

The estimation of the covariance Φ2(τ
′, τ) of n1/2{β̂A(τ ′)−β(τ ′)} and n1/2{β̂A(τ)

−β(τ)} follows the same procedure as above by replacing Σ̂1(τ
′, τ) with Σ̂2(τ

′, τ)

and S1,n(e, τ) with S2,n(e, τ). The proof of the consistency of the variance esti-

mators is similar to that in Peng and Fine (2009), and thus is omitted.

5. Simulation Study

5.1. Assessment of estimation under correctly specified models

The simulation study examines finite-sample performance of the IPW esti-

mator and the AIPW estimator, along with the omniscient estimator (Omni) that

assumes complete knowledge of Ji for uncensored failure times, and the complete-

case estimator (CC) that deletes observations with missing causes. The Omni

and CC estimators are computed via Peng and Fine’s (2009).

Let Zi = (1, Zi,1, Zi,2), where Zi,1 is a uniform random variable on (0, 1)

and Zi,2 is Bernoulli with probability of success equal to 0.5. The failure type

Ji takes values of 1 and 2 with P (Ji = 1|Zi) = p0I(Zi,2 = 0) + p1I(Zi,2 = 1).

The failure time Ti follows the conditional distributions P (Ti < t|Ji = 1, Zi) =
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Φ(log t−γTZi) and P (Ti < t|J = 2, Zi) = Φ(log t−αTZi), where Φ(·) denotes the
cumulative distribution function of N(0, 1), γ = (γ0, γ1, γ2), and α = (α0, α1, α2).

With this set-up, the underlying τth conditional quantile of Ti is

logF−1
1 (τ |Zi) = inf {t : P (log Ti < t, Ji = 1|Zi) ≥ τ}

= β0(τ) + β1(τ)Zi,1 + β2(τ)Zi,2, (5.1)

where β0(τ) = γ0 + Φ−1 (τ/p0) , β1(τ) = γ1, and β2(τ) = γ2 + Φ−1(τ/p1) −
Φ−1(τ/p0). The covariate Zi,2 has a varying effect on the cumulative incidence

quantiles across different quantile levels, whereas Zi,1 has a constant effect.

Let the censoring time Ci follow a uniform distribution on (0, 8). We gen-

erated the missing failure type indicator Ri from the logistic model: r(Wi) =

P (Ri = 1|δi = 1,Wi) = exp(W T
i ψ)/{1 + exp(W T

i ψ)}, where Wi = (1, Zi,1, Zi,2,

Xi, Ai)
T , Xi = min(Ti, Ci), and Ai is a univariate auxiliary variable. The values

ψ = (1,−0.9,−1, 2, 0)T and ψ = (1,−1.4,−1.5, 1, 0)T correspond to 20% and

40% missing failure types, respectively. Here we chose not to include Ai in the

missingness model so that we could compare the IPW and AIPW estimators

under different degrees of association between Ai and Ji, holding the degree of

missingness fixed at the same rate. This set-up suggests that a stronger associa-

tion between Ai and Ji yields a more efficient AIPW estimator under the same

level of missingness.

We consider three different levels of association between Ai and Ji, which

correspond to three different choices of ρ(Wi) for the AIPW estimator. In Case

1, the auxiliary variable Ai is independent of failure type Ji given Zi. For Cases

2 and 3, we let

P (Ai = 1|Ji = 1, Zi) = θ, P (Ai = 2|Ji = 1, Zi) = 1− θ,

P (Ai = 2|Ji = 2, Zi) = θ, P (Ai = 1|Ji = 2, Zi) = 1− θ,

where 0 ≤ θ ≤ 1. Case 2 corresponds to θ = 0.8 and Case 3 corresponds to

θ = 0.95. A larger value of θ indicates stronger positive association between

Ai and Ji given Zi. This model set-up results in a logistic regression model for

ρ(Wi) with logit{ρ(Wi)} = ϕ0 +ϕ1Zi,1 +ϕ2Zi2 +ϕ3Ai. For Case 1, ϕ1 = ϕ3 = 0,

ϕ0 = log{p0/(1 − p0)} and ϕ2 = log [p1(1− p0)/ {p0(1− p1)}] . For Cases 2 and

3, ϕ0 = 3 log{θ/(1 − θ)}, ϕ1 = 0, ϕ2 = log[p1(1 − p0)/{p0(1 − p1)}] and ϕ3 =

2 log{(1− θ)/θ}.
We set p0 = 0.8, p1 = 0.6, γ = (0, 0.5,−0.5)T , and α = (0, 0,−0.5)T . Under

this setting, on average 55% of the subjects fail from type-1 failure, 25% fail from

type-2 failure, and the remaining 20% are right-censored. The performances of

the four estimators, Omni, CC, IPW and AIPW, for β(τ) at τ = 0.2 and 0.4

with sample sizes n = 200 and n = 500 and two missing-causes percentages
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Table 1. The average bias (Bias), empirical standard deviation (EmpSD),
mean estimated standard deviation (EstSD), and empirical coverage proba-
bility (CovP) of 95% confidence intervals at τ = 0.2, based on 500 simulated
data sets with 20% missing causes.

Bias×103 EmpSD×103 EstSD×103 CovP×102

Method β0 β1 β2 β0 β1 β2 β0 β1 β2 β0 β1 β2
n = 200

Omni 5 -24 10 274 438 245 304 486 277 92.4 92.0 92.6
CC 68 71 184 288 477 265 301 490 296 91.0 90.8 87.8
IPW -9 -5 21 337 575 307 341 574 334 92.0 90.0 93.6
AIPW(Case 1) -8 0 24 316 531 281 334 547 314 91.0 90.4 92.6
AIPW(Case 2) -10 -2 22 297 497 269 308 521 297 92.2 93.0 94.6
AIPW(Case 3) -1 -21 17 284 461 246 303 499 280 91.6 91.4 94.2

n = 500
Omni 7 -7 2 173 278 156 170 293 166 91.8 93.4 93.6
CC 83 64 163 184 297 165 178 293 174 87.0 91.2 79.8
IPW -2 8 -5 196 338 192 207 347 203 91.6 91.2 92.0
AIPW(Case 1) 4 0 1 188 314 182 198 333 189 92.6 93.2 91.2
AIPW(Case 2) 2 3 2 181 304 171 194 314 182 93.8 93.2 93.4
AIPW(Case 3) 4 1 5 178 285 162 178 290 171 91.0 92.0 93.0

are summarized in Tables 1−4. The tables report the bias, empirical standard

deviation, mean estimated standard deviation, and empirical coverage probability

of 95% Wald-type confidence intervals based on 500 simulated data sets.

Note that the choices of ρ(Wi) do not change the IPW estimator. The CC

estimator had substantial bias for all scenarios. The IPW and AIPW estimators

performed comparably to the Omni estimator with very small biases. In addition,

the estimated standard deviations matched very well with the empirical ones, and

the 95% confidence intervals had reasonable coverage probabilities, except for the

CC estimator.

For the analysis of Mashi data presented in the next section, small values of

τ = 0.005, 0.01, and 0.02 were considered due to small percentages of HIV-related

and HIV-unrelated deaths. Furthermore, the Mashi analysis had a larger sample

size. To mimic Mashi, additional simulations at τ = 0.01 with n = 1200 were

conducted. The results, reported in Table S.1 of the Supplementary Material,

show that the biases of the AIPW estimator remain small under 20% and 40%

of missing causes. The biases of the IPW estimator are also small under 20% of

missing causes. At 40% of missing causes, the biases of the IPW estimator are

large compared to those for the AIPW estimator, but these biases for the slope

coefficients are still smaller than those of the CC estimator.

Table 5 shows the Pitman relative efficiencies (ratios of variances) for the

IPW and AIPW estimators with respect to the Omni estimator. By incorporating
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Table 2. The average bias (Bias), empirical standard deviation (EmpSD),
mean estimated standard deviation (EstSD), and empirical coverage proba-
bility (CovP) of 95% confidence intervals at τ = 0.4, based on 500 simulated
data sets with 20% missing causes.

Bias×103 EmpSD×103 EstSD×103 CovP×102

Method β0 β1 β2 β0 β1 β2 β0 β1 β2 β0 β1 β2
n = 200

Omni 6 15 8 307 514 308 343 566 338 92.4 93.2 93.6
CC 77 28 148 313 538 334 345 565 351 92.0 93.4 91.4
IPW -7 32 25 358 630 356 374 639 398 90.6 92.8 94.0
AIPW(Case 1) -4 28 34 341 599 354 372 640 397 92.2 94.0 93.4
AIPW(Case 2) -3 22 30 332 572 349 351 587 370 92.6 92.6 92.8
AIPW(Case 3) 5 13 13 315 532 321 334 557 342 92.0 94.8 94.6

n = 500
Omni 11 -20 18 199 323 193 196 326 199 91.8 93.0 94.2
CC 88 -13 141 198 322 193 196 337 210 89.0 93.2 89.0
IPW 4 -4 15 218 363 217 218 363 230 91.0 91.6 94.8
AIPW(Case 1) 8 -15 20 214 353 220 221 363 224 91.0 94.6 93.8
AIPW(Case 2) 6 -9 18 208 344 207 213 357 213 92.2 95.0 94.2
AIPW(Case 3) 10 -17 19 205 335 196 204 334 206 92.4 94.2 95.0

Table 3. The average bias (Bias), empirical standard deviation (EmpSD),
mean estimated standard deviation (EstSD), and empirical coverage proba-
bility (CovP) of 95% confidence intervals at τ = 0.2, based on 500 simulated
data sets with 40% missing causes.

Bias×103 EmpSD×103 EstSD×103 CovP×102

Method β0 β1 β2 β0 β1 β2 β0 β1 β2 β0 β1 β2
n = 200

Omni 5 -24 10 274 438 245 304 486 277 92.4 92.0 92.6
CC 42 226 346 316 551 360 362 606 370 92.2 91.0 79.0
IPW -51 45 66 430 768 436 450 779 425 89.6 91.0 89.2
AIPW(Case 1) 2 -18 35 363 628 371 381 632 363 91.2 92.4 90.8
AIPW(Case 2) 2 -16 32 338 575 330 343 548 328 91.0 90.8 93.0
AIPW(Case 3) 3 -16 12 286 477 265 309 502 293 91.8 92.8 93.4

n = 500
Omni 7 -7 2 173 278 156 170 293 166 91.8 93.4 93.6
CC 46 239 325 204 348 212 209 357 221 90.8 86.6 69.4
IPW 1 7 9 256 467 257 266 473 263 93.4 92.4 91.0
AIPW(Case 1) -1 0 19 221 399 224 222 388 222 92.8 91.2 92.2
AIPW(Case 2) 6 -13 10 207 365 202 213 354 204 92.2 93.4 91.0
AIPW(Case 3) 5 -5 10 176 294 169 187 303 173 92.6 94.0 92.6

information from the missing failure types, AIPW improved efficiency over IPW,

with greater improvement when there was a stronger association between the
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Table 4. The average bias (Bias), empirical standard deviation (EmpSD),
mean estimated standard deviation (EstSD), and empirical coverage proba-
bility (CovP) of 95% confidence intervals at τ = 0.4, based on 500 simulated
data sets with 40% missing causes.

Bias×103 EmpSD×103 EstSD×103 CovP×102

Method β0 β1 β2 β0 β1 β2 β0 β1 β2 β0 β1 β2
n = 200

Omni 6 15 8 307 514 308 343 566 338 92.4 93.2 93.6
CC 43 211 395 347 612 432 388 671 492 91.6 90.6 84.4
IPW -13 57 49 467 840 543 489 866 593 93.8 94.4 93.4
AIPW(Case 1) 22 -4 52 420 766 505 438 786 508 94.6 95.0 93.0
AIPW(Case 2) 15 -4 24 394 667 416 402 676 435 93.0 93.4 92.8
AIPW(Case 3) -1 11 19 338 539 364 341 594 354 92.0 95.4 91.8

n = 500
Omni 11 -20 18 199 323 193 196 326 199 91.8 93.0 94.2
CC 53 174 389 212 367 264 227 382 274 91.4 90.8 72.8
IPW 0 14 26 267 494 310 276 494 322 92.2 92.0 93.8
AIPW(Case 1) 3 -4 42 245 443 284 254 450 293 94.4 95.6 93.8
AIPW(Case 2) 11 -21 33 234 410 257 237 413 269 92.6 93.8 95.4
AIPW(Case 3) 8 -19 27 207 352 212 212 355 218 92.2 94.2 95.0

Table 5. Pitman relative efficiencies of the IPW and AIPW estimators with
respect to the Omni estimator based on 500 simulated data sets. The max-
imum standard error of the relative efficiencies is 0.07. MP stands for the
missingness proportion of failure causes.

IPW AIPW(Case 1) AIPW(Case 2) AIPW(Case 3)
n β0 β1 β2 β0 β1 β2 β0 β1 β2 β0 β1 β2

MP=20%, τ = 0.2
200 0.66 0.58 0.64 0.75 0.68 0.76 0.85 0.78 0.83 0.93 0.90 0.99
500 0.78 0.68 0.66 0.85 0.79 0.74 0.91 0.84 0.84 0.95 0.95 0.93

MP=20%, τ = 0.4
200 0.74 0.67 0.75 0.81 0.74 0.76 0.86 0.81 0.78 0.95 0.93 0.92
500 0.83 0.79 0.79 0.87 0.84 0.76 0.91 0.88 0.86 0.94 0.93 0.96

MP=40%, τ = 0.2
200 0.41 0.33 0.32 0.57 0.49 0.44 0.65 0.58 0.55 0.92 0.84 0.85
500 0.46 0.36 0.37 0.62 0.49 0.49 0.70 0.58 0.60 0.97 0.90 0.85

MP=40%, τ = 0.4
200 0.43 0.37 0.32 0.53 0.45 0.37 0.61 0.59 0.55 0.83 0.91 0.72
500 0.56 0.43 0.39 0.66 0.53 0.46 0.72 0.62 0.56 0.92 0.84 0.82

auxiliary variable Ai and Ji. For Case 3 with n = 500, the efficiencies of AIPW

were comparable to those of the Omni estimator.
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5.2. On robustness of estimation

To assess how sensitive the proposed methods are to model misspecifica-

tions for r(Wi) and/or ρ(Wi), and to violations of the missing at random as-

sumption, we consider four additional cases, namely, Cases 4-7. In Case 4,

instead of a logistic model we generated the missing failure type indicator Ri
from the probit model: r(Wi) = Φ(W T

i ψ), where ψ = (1,−0.9,−1.4, 2, 0)T and

Wi = (1, Zi,1, Zi,2, Xi, Ai)
T ; whereas both the IPW and AIPW estimators still

use logistic regression to estimate r(Wi), and excluding Xi from Wi. Case 5

has the same design as Case 2, and Case 6 has the same design as Case 4.

In both Cases 5 and 6, ρ(Wi) is estimated by excluding the important vari-

able Ai in the logistic regression. Therefore, r(Wi) is misspecified in Case 4,

ρ(Wi) is misspecified in Case 5, and both models are misspecified in Case 6.

In Case 7, we generated the missing failure type indicator Ri from the logistic

model: P (Ri = 1|δi = 1, Ji,W
T
i ) = exp(W T

i ψ−Ji)/{1+exp(W T
i ψ−Ji)}, where

Wi = (1, Zi,1, Zi,2, Xi, Ai)
T and ψ = (2.5,−0.9,−1, 2, 0)T . Since the probability

of missingness depends on the unobserved failure type Ji, the missing at random

assumption is violated in Case 7. In all four cases, the missing-cause proportion

is 20%.

Table 6 reports the bias, empirical standard deviation, mean estimated stan-

dard deviation, and empirical coverage probability of 95% Wald-type confidence

intervals for the Omni, CC, IPW, and AIPW estimators based on 500 simulated

data sets for Cases 4-7 at τ = 0.2 and with n = 500. The presentations of the

summaries for different τ values are given in Figures S.1-6 of the Supplementary

Material. When r(Wi) was misspecified, the IPW estimator performed similar

to the CC estimator, both having large biases for estimating β2(τ). As expected

from its double robustness property, the AIPW estimator performed well in Cases

4-5 when one of the two models for r(Wi) and ρ(Wi) was misspecified. Since the

IPW estimator does not utilize ρ(Wi), there is no misspecification for the IPW

estimator under Case 5. When both models were misspecified in Case 6, the

AIPW estimator had slightly larger biases than in Case 4, but still outperformed

the CC estimator, in particular, for β1(τ) and β2(τ). Since both the IPW and

AIPW estimators are developed based on the MAR assumption, it is no sur-

prise that the IPW and AIPW estimators showed no improvement over the CC

estimator in Case 7.

6. Analysis of the Mashi data

The Mashi trial investigated the effect of formula- versus breast-feeding plus

extended infant zidovudine prophylaxis among HIV-infected expecting mothers

in Botswana (Thior et al. (2006)). Five-hundred and ninety-one women were

randomized to formula feeding from birth plus 1 month of infant zidovudine (FF),
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Table 6. Method robustness. The average bias (Bias), empirical standard
deviation (EmpSD), mean estimated standard deviation (EstSD), and em-
pirical coverage probability (CovP) of 95% confidence intervals at τ = 0.2
with n = 500, based on 500 simulated data sets with 20% missing causes.

Bias×103 EmpSD×103 EstSD×103 CovP×102

Method β0 β1 β2 β0 β1 β2 β0 β1 β2 β0 β1 β2
Case 4: r(w) is misspecified

Omni 4 1 3 169 275 161 177 291 166 92.8 92.0 93.8
CC 10 92 333 166 274 157 169 281 162 92.8 91.2 50.0
IPW 18 73 294 171 278 159 170 286 160 92.2 91.2 54.2
AIPW 26 -51 -34 173 284 160 176 281 166 92.4 90.6 93.6

Case 5: ρ(w) is misspecified
Omni 7 -7 2 173 278 156 170 293 166 91.8 93.4 93.6
CC 83 64 163 184 297 165 178 293 174 87.0 91.2 79.8
IPW -2 8 -5 196 338 192 207 347 203 91.6 91.2 92.0
AIPW 6 -5 -3 188 315 179 193 334 193 91.6 93.0 93.4

Case 6: both r(w) and ρ(w) are misspecified
Omni 4 1 3 169 275 161 177 291 166 92.8 92.0 93.8
CC 10 92 333 166 274 157 169 281 162 92.8 91.2 50.0
IPW 18 73 294 171 278 159 170 286 160 92.2 91.2 54.2
AIPW 35 -72 -46 173 287 162 175 285 167 92.8 91.6 92.6

Case 7: missing-at-random assumption is violated
Omni 7 -7 2 173 278 156 170 293 166 91.8 93.4 93.6
CC 45 33 58 179 293 162 179 297 171 91.8 93.6 91.4
IPW -5 -41 -95 191 328 179 196 331 188 91.0 90.4 89.6
AIPW -7 -42 -85 180 300 167 184 295 170 92.0 91.2 89.4

and 588 women were randomized to breast-feeding from birth plus 6 months of

infant zidovudine (BF+AZT). Live first-born infants were followed for 18-months

for occurrence of the two primary endpoints, HIV infection and death. HIV-PCR

tests were administered at visits at birth and at monthly ages of 1, 2, 3, 4, 5, 6, 7,

9, 12, 18 (with little missing data). The primary objectives assessed the treatment

effect on these endpoints separately, as well as on the composite endpoint defined

as the first event of HIV infection or death. A secondary objective was to assess

the treatment effect on death due to HIV infection, which we refer to as HIV-

related death. We apply the methods above to assess F−1
1 (τ |z) with J = 1

HIV-related death and J = 2 HIV-unrelated death.

We take a death to be HIV-related if either (1) the study clinicians deemed

the death HIV-1 related (n = 4 deaths), or (2) the infant had at least one

positive test result from the PCR assay used to test for HIV infection prior to

death (n = 24 deaths). In addition, we take a death to be HIV-unrelated if the

study clinician deemed the death unrelated to HIV/AIDS (n = 22 deaths). Of

the 111 live-born infants who died, the cause of death is known in 50 cases and
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missing for 61.

Considering 20 covariates of the babies or their mothers, we used logistic

regression and all-subsets model selection (with criterion Mallow’s Cp) to select

a model for predicting among cases whether J was observed. The model included

the following variables (estimated regression coefficient): the infant had birth-

weight < 2.5 kilograms (1.21); the randomization assignment of mom/baby to

receive Placebo/Placebo was switched to Placebo/Nevirapine part-way during

the trial due to a DSMB recommendation (-1.27); the infant had AZT toxicity

(1.43); log 10 plasma viral load level of the mom at delivery (0.98); and the baby

was hospitalized with a serious adverse event (-1.20). Using the same model selec-

tion strategy for analyzing cases with known death-cause, the following variables

were included in the model for predicting J = 1: the infant received HAART

(2.42), and log 10 plasma viral load level of the mom at delivery (1.70).

For assessing the treatment effect of BF+AZT versus FF we used the identity

link function. The covariate of interest is Z = c(1, Z1), where Z1 is 1 for mother-

infant pairs assigned BF+AZT and 0 for FF. The estimation of the quantile is

invariant to the link function in this particular case, but the estimated values of

the coefficients β0(τ) and β1(τ) can be different for different link functions. With

the identity link, β1(τ) represents the treatment effect on the τth type-1 quantile.

LetX be the survival time in days. According to the above logistic regressions, we

letW include the variables that proved informative for P (R = 1|δ = 1,W ) and/or

for the probability of HIV-related death P (J = 1|δ = 1,W ). We considered the

subset of data with complete covariate information, that includes 1123 live-born

infants (of the 1193 total), among whom 107 died and 49 died with known cause

of death (28 are HIV-related). Based on the data, about 2.5% of infants died

while known to be HIV infected (J = 1), and 54.2% of the infants who died had

missing death cause.

We performed the quantile regression at τ = 0.005, 0.01, 0.02 and 0.03. The

analysis at τ = 0.005 is interesting because it concerns early death and there

were many early deaths in the data set. Table 7 summarizes the analysis re-

sults using the IPW and AIPW methods. From Table 7, by the AIPW method,

the p-values for testing the treatment effect at τ = (0.005, 0.01, 0.02, 0.03) were

(0.138, 0.042, 0.062, 0.52), respectively. The results indicate that BF+AZT had

some positive effect in postponing/reducing HIV-related deaths compared to

FF at the quantiles corresponding to τ = 0.01 and 0.02. Using the AIPW

method, the HIV-related death rate reached 1% by 184 days for those assigned

to BF+AZT, while it reached 1% by 64 days for those assigned FF. In addition, it

reached 2% by 276 days for BF+AZT and 113 days for FF. This analysis suggests

that it takes longer for the BF+AZT group to reach the same percentage of HIV-

related deaths than the FF group, by 120–163 days. The estimated treatment
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Table 7. Analysis of the Mashi data with the IPW and AIPW methods.

IPW AIPW Rel. Efficiency
Coef Est. S.E. p-value Coef Est. S.E. p-value IPW vs AIPW

τ = 0.005
Intercept 52.0 19.2 0.007 37.0 22.1 0.09 1.32
Treatment 38.0 61.7 0.54 102.0 68.8 0.14 1.24

τ = 0.01
Intercept 64.0 31.4 0.04 64.0 33.6 0.06 1.15
Treatment 66.0 108.9 0.54 120.0 59.1 0.04 0.29

τ = 0.02
Intercept 94.0 113.0 0.41 113.0 95.9 0.24 0.72
Treatment 182.0 107.3 0.09 163.0 87.5 0.06 0.66

τ = 0.03
Intercept 207.0 164.5 0.21 214.0 147.0 0.15 0.80
Treatment 91.0 186.7 0.63 84.0 132.1 0.52 0.50

effect using the AIPW estimator decreased at τ = 0.03, and the standard error

increased because of the small number of deaths after the 0.03 quantile. The

estimated treatment effect was also small at τ = 0.005. The IPW method did

not identify a significant treatment effect at any of the quantile levels evaluated.

This is attributed to the limited number of deaths and the high percentage of

unknown death causes among those who died, and the AIPW method was able to

recover some of the lost information by modeling the probability of HIV-related

death under the missing at random assumption (2.3). The large differences in

the IPW and AIPW estimation of the treatment effect at τ = 0.005 and 0.01 in

Table 7 reflect the fact that the IPW estimation is not numerically stable.

The difference in the performances of the AIPW and IPW estimators for

the Mashi data analysis is consistent with what we observed in the simulation

study. That is, the AIPW estimator shows large efficiency gain over the IPW

estimator when Ai and Ji are strongly correlated, and is still more efficient than

the IPW estimator even when Ai and Ji are independent. We infer that both the

efficiency of the AIPW method and the informativeness of the auxiliary variables

for HIV-related death contributed to the efficiency gain.

We stress that the quantile regression based on the cumulative incidence

function studies the “crude” effect on the time to HIV-related death in the pres-

ence of other competing risks, i.e., HIV-unrelated death. This analysis is di-

rectly interpretable and relevant. However, it should not be used to infer the

“net effect”; this would require strong untestable assumptions and/or sensitivity

analysis.
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In conclusion, this analysis provides additional insights over the primary

study results that showed that infants assigned to formula-feed (FF) had a higher

rate of all-cause mortality by 7 months of age than infants assigned BF+AZT,

but a lower rate of HIV infection (Thior et al. (2006)). Prior to the current

analysis, a beneficial effect of either BF+AZT or FF on HIV-related death was

plausible: for BF+AZT because breast-feeding decreases the general early death

rate; for FF because, by decreasing the rate of early HIV infection, it reduces

the number of infants that could potentially die from HIV. The analysis here

supports that the beneficial effect of formula-feeding to reduce HIV infections

is overwhelmed by the stronger deleterious effect of formula-feeding to increase

early deaths in HIV-infected infants. These results support breast-feeding plus

antiretroviral prophylaxis during the first several months of life for infants born

to HIV-infected mothers in Botswana.
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Appendix

The following regularity conditions are assumed in Sections 3 and 4.

C1. There exists ν > 0 such that P (C = ν) > 0 and P (C > ν) = 0.

C2. Z is uniformly bounded with supi ∥Zi∥ <∞.

C3. For 0 < τL ≤ τU < τ0 = infz P (T ≤ ν, J = 1 | z), β(τ) is Lipschitz

continuous for τ ∈ [τL, τU ], and f1(t | z) is bounded in t and z, where

f1(t | z) = ∂F1(t | z)/∂t.

C4. For some ρ0 > 0 and c0 > 0, infb∈B(ρ0) eigminA(b) ≥ c0, where B(ρ) =

{b ∈ Rp+1 : infτ∈[τL,τU ] ∥b − β(τ)∥ ≤ ρ}, A(b) = E[Z⊗2f1{g(ZT b)|Z}],
eigminA(b) is the minimum of the eigenvalues of A(b), and u⊗2 = uuT .

C5. π(Q,ψ) and ρ(Q,ϕ) are twice differentiable with respect to ψ and ϕ, re-

spectively; π(Q,ψ) ≥ α > 0; π′ψ(Q) = dπ(Q,ψ)/dψ is uniformly bounded;

both ρ(W,ϕ) and ρ′ϕ(W ) = dρ(Q,ϕ)/dϕ are uniformly bounded.
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The first four conditions are similar to those of Peng and Fine (2009). The

condition C5 requires that the probability of non-missingness be bounded away

from zero, as well as other boundedness conditions that are needed to establish

weak convergence of the empirical processes.

Proof of Theorem 1. Let Sn(b, τ) = n−1/2
∑n

i=1 Zi
[
I{g−1(Ti) ≤ ZTi b}ϑ̂i −

τ
]
. The following proof of the consistency holds for both the estimators that

are the roots of Sn(b, τ) by taking ϑ̂i = ϑ̂1,i for the IPW estimator and ϑ̂i =

ϑ̂2,i for AIPW estimator. Let ϑ1,i = RiδiI(Ji = 1){π(Qi)G(Ti)}−1 and ϑ2,i =

RiδiI(Ji = 1){π(Qi)G(Ti)}−1 +
[
1 − {π(Qi)}−1Ri

]
δiρ(Wi) {G(Ti)}−1. We use

ϑi = ϑ1,i for the IPW estimator and ϑi = ϑ2,i for the AIPW estimator. For

brevity, supb and supτ denote the supremum taken over b ∈ Rp+1 and τ ∈ [τL, τU ],

respectively.

Let SGn (b, τ) = n−1/2
∑n

i=1 Zi
[
I{g−1(Ti) ≤ ZTi b}ϑi − τ

]
and µ(b, τ) =

E(Zi[F1{g(ZTi b)| Zi} − τ ]). Under the missing at random assumption (2.3) and

the conditional independence between (Ti, Ji) and Ci given Zi, E{n−1/2SGn (b, τ)}
= E[E{n−1/2SGn (b, τ)|Qi, Ji}] = µ(b, τ).

By Condition C1 and C5, for every r > 0, we have, supt<ν |Ĝ(t) − G(t)| =
op(n

−1/2+r), |ψ̂−ψ| = op(n
−1/2+r) and |ϕ̂−ϕ| = op(n

−1/2+r). This, coupled with

C2 and C5, implies that supτ,b ∥n−1/2{Sn(b, τ)−SGn (b, τ)}∥ = op(n
−1/2+r). It fol-

lows from arguments similar to those of Peng and Fine (2009) that supτ,b ∥n−1/2

SGn (b, τ) − µ(b, τ)∥ = op(1), and thus supτ,b ∥n−1/2Sn(b, τ) − µ(b, τ)∥ = op(1).

This, together with µ{β(τ), τ} = 0, implies the uniform consistency of both

β̂I(τ) and β̂A(τ) under C4.

Proof of Theorem 2. Let β̂(τ) be the root of Sn(b, τ). First we show that

Sn{β(τ), τ} converges weakly to a mean zero Gaussian process and derive its

asymptotic covariance matrix. Note that

Sn{β(τ), τ} = n−1/2
n∑
i=1

Zi
[
I{g−1(Ti) ≤ ZTi β(τ)}ϑi − τ

]
+n−1/2

n∑
i=1

ZiI{g−1(Ti) ≤ ZTi β(τ)}(ϑ̂i − ϑi). (A.1)

The asymptotic approximation for (A.1) is obtained below for the IPW and

AIPW estimators, respectively.

For the IPW estimator, ϑ̂i and ϑi of (A.1) correspond to ϑ̂1,i and ϑ1,i, re-

spectively, and β̂(τ) = β̂I(τ). Let δ
∗
i = RiδiI(Ji = 1). We have

ϑ̂1,i − ϑ1,i = −

{
Ĝ(Xi)−G(Xi)

Ĝ(Xi)G(Xi)π(Qi)
+

π̂(Qi)− π(Qi)

π̂(Qi)π(Qi)Ĝ(Xi)

}
δ∗i . (A.2)
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From Pepe (1991),

sup
t∈[0,ν)

∥n1/2{Ĝ(t)−G(t)}+ n−1/2G(t)

n∑
j=1

∫ t

0
y−1(s)dMG

j (s)∥ P−→0, (A.3)

where MG
j (·) and y(·) are defined in Section 3 just before Theorem 1.

By (3.1),

n1/2{π̂(Qi)− π(Qi)} = n−1/2{π′ψ(Qi, ψ)}T
n∑
j=1

ηj + op(1). (A.4)

By (A.2), (A.3) and (A.4), the second term of (A.1) is

n−1/2
n∑
i=1

ZiI{g−1(Ti) ≤ ZTi β(τ)}δ∗i

×
[
{Ĝ(Xi)π(Qi)}−1n−1

n∑
j=1

∫ Xi

0
y−1(s) dMG

j (s)

−{π̂(Qi)π(Qi)Ĝ(Xi)}−1n−1{π′ψ(Qi, ψ)}T
n∑
j=1

ηj

]
+ op(1).

Writing
∫ Xi

0 y−1(s)dMG
j (s) =

∫∞
0 Yi(s)y

−1(s)dMG
j (s) and changing the order of

the summations, the above is

n−1/2
n∑
j=1

∫ ∞

0

(
n−1

n∑
i=1

ZiI{g−1(Ti) ≤ ZTi β(τ)}δ∗i {Ĝ(Xi)π(Qi)}−1Yi(s)y
−1(s)

)

dMG
j (s)− n−1/2

n∑
j=1

(
n−1

n∑
i=1

ZiI{g−1(Ti) ≤ ZTi β(τ)}δ∗i {π̂(Qi)π(Qi)Ĝ(Xi)}−1

{π′ψ(Qi, ψ)}T
)
ηj . (A.5)

Let F =
{
ZiI{Xi ≤ g(ZTi b)}δ∗i {π(Qi)G(Xi)}−1Yi(t); for b ∈ Rp+1, t ∈ [0, ν)}.

The function class F is Donsker, and thus Glivenko-Cantelli (van der Vaart

and Wellner (1996)) because the class of indicator functions is Donsker, and Zi,

{π(Qi)G(Xi)}−1 and δ∗i are uniformly bounded. It follows from the Glivenko-

Cantelli Theorem that n−1
∑n

i=1 ZiYi(t){π(Qi)G(Xi)}−1I{Xi ≤ g(ZTi b)}δ∗i y−1(t)
P−→E[ZiI{Xi ≤ g(ZTi b)}δ∗i {π(Qi)G(Xi)}−1Yi(t)]y

−1(t), uniformly in both b ∈
Rp+1 and t ∈ [0, ν). The limit is w1(b, t), defined in Section 3 just before Theo-

rem 1, under MAR and the independent censoring assumption. Since Ĝ(Xi) =
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G(Xi) + Op(n
−1/2) and π̂(Qi) = π(Qi) + Op(n

−1/2) uniformly in i ∈ {1, . . . n},
n−1

∑n
i=1 ZiI{g−1(Ti) ≤ ZTi β(τ)}δ∗i {Ĝ(Xi)π(Qi)}−1Yi(t)y

−1(t)
P−→w1{β(τ), t}

uniformly in τ ∈ [τL, τU ] and t ∈ [0, ν).

Similarly, −n−1
∑n

i=1 ZiI{g−1(Ti) ≤ ZTi β(τ)}δ∗i {π̂(Qi)π(Qi)Ĝ(Xi)}−1{π′ψ
(Qi, ψ)}T

P−→w2{β(τ)} uniformly in τ ∈ [τL, τU ], where w2(b) is defined in Section

3 just before Theorem 1.

By (A.1) and (A.5), the next asymptotic equivalence follows by applying

Lemma 2 of Gilbert, McKeague, and Sun (2008) to (A.5):

Sn{β(τ), τ} = n−1/2
n∑
i=1

ξ1,i(τ) + op(1). (A.6)

uniformly in τ ∈ [τL, τU ], where ξ1,i(τ) = a1,i(τ)+ bi(τ)+ ci(τ), and a1,i(τ), bi(τ)

and ci(τ) are defined in Section 3 just before Theorem 1.

For the AIPW estimator, ϑ̂i and ϑi of (A.1) correspond to ϑ̂2,i and ϑ2,i,

respectively, and β̂(τ) = β̂A(τ). Then ϑ̂2,i − ϑ2,i is

ϑ̂1,i − ϑ1,i +
δi

Ĝ(Xi)

{
1− Ri

π̂(Qi)

}
ρ̂(Wi)−

δi
G(Xi)

{
1− Ri

π(Qi)

}
ρ(Wi)

= ϑ̂1,i − ϑ1,i +

{
δi

Ĝ(Xi)
− δi
G(Xi)

}{
1− Ri

π̂(Qi)

}
ρ̂(Wi)

+
δi

G(Xi)

{
Ri

π(Qi)
− Ri
π̂(Qi)

}
ρ̂(Wi) +

δi
G(Xi)

{
1− Ri

π(Qi)

}
{ρ̂(Wi)− ρ(Wi)} .

Now, we apply the decompositions (A.3), (A.4), and (3.2), and plug them into

(A.1). By the Glivenko-Cantelli Theorem, we can show that

n−1
n∑
i=1

δiZiYi(t){G(Xi)}−1I{Xi ≤ g(ZTi b)}{1−Riπ
−1(Qi)}ρ(Wi)y

−1(t)
P−→0,

n−1
n∑
i=1

δiZiρ
′
ϕ(Wi, ϕ){G(Xi)}−1I{Xi ≤ g(ZTi b)}{1−Riπ

−1(Qi)}
P−→0,

n−1
n∑
i=1

δiRiZiπ
′
ψ(Qi, ψ){π2(Qi)G(Xi)}−1ρ(Wi)I{Xi ≤ g(ZTi b)}

P−→w3(b),

uniformly in both b ∈ Rp+1 and t ∈ [0, ν), where w3(b) = E[δiZiπ
′
ψ(Qi, ψ)

{π(Qi)G(Xi)}−1ρ(Wi)I{Xi ≤ g(ZTi b)}]. It is easy to see that w3(b) = −w2(b).

Using similar techniques as for the IPW estimator, we obtain

Sn{β(τ), τ} = n−1/2
n∑
i=1

ξ2,i(τ) + op(1). (A.7)
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uniformly in τ ∈ [τL, τU ] in probability, where ξ2,i(τ) = a2,i(τ) + bi(τ) and

a2,i(τ) = Zi
(
I[Xi ≤ g{ZTi β(τ)}]ϑ2,i − τ

)
.

We have derived the asymptotic approximations of Sn{β(τ), τ} in (A.6) and

(A.7) for the IPW estimator and AIPW estimator, respectively. It is obvious that

the function class {ci(τ), τ ∈ [τL, τU ]} is Donsker. Applying the similar arguments

for F , the function classes {a1,i(τ), τ ∈ [τL, τU ]} and {a2,i(τ), τ ∈ [τL, τU ]} are

Donsker by the Lipschitz continuity of β(·) implied by C3, and by using the fact

that the Donsker Property is preserved under the Lipschitz transformation. It is

not difficult to show that
∫∞
0 w1(b, s) dM

G
i (s) is Lipschitz in b. Hence the function

class {bi(τ), τ ∈ [τL, τU ]} is Donsker. The Donsker property is preserved under

addition. As a result, Sn{β(τ), τ} converges weakly to a mean zero Guassian

process with covariance matrix Σ1(τ
′, τ) = E{ξ1,i(τ ′) ξT1,i(τ)} by (A.6) for the

IPW estimator, and it converges weakly to a mean zero Guassian process with

covariance matrix Σ2(τ
′, τ) = E{ξ2,i(τ ′)ξT2,i(τ)} by (A.7) for the AIPW estimator,

for τ, τ ′ ∈ [τL, τU ].

Next, simple algebraic manipulations show that Sn{β̂(τ), τ}−Sn{β(τ), τ} =

(I) + (II), where

(I) = n−1/2
n∑
i=1

Ziϑi
(
I[Xi ≤ g{Ziβ̂(τ)}]− I[Xi ≤ g{Ziβ(τ)}]

)
,

(II) = n−1/2
n∑
i=1

Zi(ϑ̂i − ϑi)
(
I[Xi ≤ g{Ziβ̂(τ)}]− I[Xi ≤ g{Ziβ(τ)}]

)
.

From Lemma 1 of Peng and Fine (2009) and the uniform consistency of β̂(τ),

it follows that the difference between (I) and n1/2[µ{β̂(τ), τ} − µ{β(τ), τ}] con-
verges to zero uniformly in τ ∈ [τL, τU ] in probability. By the first order Taylor

expansion of ϑ̂i around ϑi, (3.1), (3.2), (A.3) and applying Lemma 1 of Peng and

Fine (2009), we can show that (II) = o(1) uniformly in τ ∈ [τL, τU ] in probabil-

ity. Taylor expansions of µ(b, τ) around b = β(τ), along with the fact that β̂(τ)

uniformly converges to β(τ), gives that

Sn{β̂(τ), τ} − Sn{β(τ), τ} = [A{β(τ)}+ ϵn(τ)] · n1/2{β̂(τ)− β(τ)}+ op(1),

where supτ ∥ϵn(τ)∥
P−→0. Given Sn{β̂(τ), τ} = op(n

−1/2), this further implies

that

n1/2{β̂(τ)− β(τ)} = −[A{β(τ)}]−1Sn{β(τ), τ}+ ϵ∗n(τ),

where supτ ∥ϵ∗n(τ)∥
P−→0. The asymptotic approximations (3.3) and (3.4) for the

IPW estimator and the AIPW estimator follow from (A.6) and (A.7), respec-

tively. Hence, n1/2{β̂(τ) − β(τ)} converges weakly to a mean zero Guassian
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process with covariance matrix Φ1(τ
′, τ) =

[
A{β(τ ′)}

]−1
Σ1(τ

′, τ)
[
A{β(τ)}

]−1

for the IPW estimator and Φ2(τ
′, τ) =

[
A{β(τ ′)}

]−1
Σ2(τ

′, τ)
[
A{β(τ)}

]−1
for

the AIPW estimator.

Finally, we show that the AIPW estimator is more efficient than the IPW
estimator by showing that Σ2(τ

′, τ) ≤ Σ1(τ
′, τ). Note that a2,i(τ) = a1,i(τ) +

ei(τ) and ξ1,i(τ) = ξ2,i(τ) + {ci(τ) − ei(τ)}, where ei(τ) is defined in Section 3
just before Theorem 1. By (A.6) and (A.7), it suffices to show E[ξ2,i(τ

′){ci(τ)−
ei(τ)}T ] = 0.

Under MAR, Ri and Ji are conditionally independent given Qi, we have

E{a2,i(τ ′)cTi (τ)}

= E

(
Riδiρ(Wi)

π(Qi)G(Xi)
ZiI[Xi ≤ g{ZTi β(τ ′)}]ηTi

)
wT2 {β(τ)}

−E
(
{Ri − π(Qi)}δiρ(Wi)

π(Qi)G(Xi)
ZiI[Xi ≤ g{ZTi β(τ ′)}]ηTi

)
wT2 {β(τ)},

which equals zero by E(ηi | Qi) = 0. By E(ηi|Qi) = 0, we also have E{bi(τ ′)cTi (τ)}
= 0. Therefore E{ξ2,i(τ ′)cTi (τ)} = 0. Similarly, E{ξ2,i(τ ′)eTi (τ)} = 0. Hence
E{ξ1,i(τ ′)ξT1,i(τ)} = E{ξ2,i(τ ′)ξT2,i(τ)}+ E[{ci(τ ′)− ei(τ

′)}{ci(τ)− ei(τ)}T ].

Proof of (4.1). Let fi = Zi
[
I{g−1(Ti) ≤ ZTi β(τ)}

]
ϑ1,i. Under the MAR

assumption, Ri and Ji are conditionally independent given Qi, and we have

E{a1,i(τ ′)bTi (τ)} = −E
(
fi

∫ ∞

0
[w1{β(τ), s}]TλG(s)Yi(s) ds

)
= −

∫ ∞

0
w1{β(τ ′), s}[w1{β(τ), s}]T y(s)λG(s) ds

= −E{bi(τ ′)bTi (τ)},

E{a1,i(τ ′)cTi (τ)} = E

(
ϑ1,iZiI[Xi ≤ g{ZTi β(τ ′)}]ηTi

)
wT2 (β(τ))

= E

(
Riδiρ(Wi)

π(Qi)G(Xi)
ZiI[Xi ≤ g{ZTi β(τ ′)}]ηTi

)
wT2 (β(τ))

= −w2{β(τ ′)}I−1
ψ [w2{β(τ)}]T ,

where the last equation is obtained by the definition of ηi following (3.1). It is easy
to see that E{bi(τ ′)cTi (τ)} = 0 and E{ci(τ ′)cTi (τ)} = w2{β(τ ′)}I−1

ψ [w2{β(τ)}]T

since E(ηiη
T
i ) = I−1

ψ . It follows that

E[ξ1,i(τ
′){ξ1,i(τ)}T ]

= E[{a1,i(τ ′) + bi(τ
′)}{a1,i(τ) + bi(τ)}T ]− w2{β(τ ′)}I−1

ψ [w2{β(τ)}]T

= E{a1,i(τ ′)aT1,i(τ)} − E{bi(τ ′)bTi (τ)} − w2{β(τ ′)}I−1
ψ [w2{β(τ)}]T .
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