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Abstract: Given assumptions about shape and smoothness, a density is estimated

non-parametrically using regression splines. Examples of shapes include decreasing,

decreasing and convex, and unimodal with known mode. A least-squares criterion

is used, so that the estimate is obtained with a single projection onto a convex

cone. The convergence rates for the estimators are derived. For the case of un-

known mode, a plug-in estimator may be used. If the mode estimator converges fast

enough, the rate of the plug-in estimator is the same as for the known-mode esti-

mator. Simulations show that, for small samples, the proposed estimators compare

well with competing estimators.

Key words and phrases: Decreasing density, unimodal density, shape restrictions,

cone projection, weighted least squares.

1. Introduction and Background

Density estimation using shape assumptions has long been of interest. The

maximum likelihood estimator (MLE) for a non-increasing density was proposed

by Grenander (1956): it is a step function with jumps allowed only at the ob-

servations; computation is straight-forward using the pooled adjacent violators

algorithm (PAVA). It is known that the MLE is consistent on intervals not con-

taining the mode (Prakasa Rao (1969)), but there is a spiking problem at the

mode, where the estimator is too large. A maximum likelihood estimate using

a penalty term for the value at the mode was proposed by Woodroofe and Sun

(1993), who showed that the penalized MLE is consistent everywhere. The pe-

nalized MLE is also a step function, and can be computed using PAVA after the

observations are slightly shifted.

The discontinuities of these estimators may be thought unsatisfactory if a

smoothness assumption is warranted. Bickel and Fan (1996) considered the linear

spline decreasing density estimator, with knots at the observations. The PAVA

algorithm is again used, with observations shifted to be at the midpoints of the

original observations. The estimator is continuous but there are still flat spots,

and this version is again inconsistent at the mode. A consistent linear spline
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decreasing density estimator was proposed by Meyer and Woodroofe (2004); the

estimator is forced to be concave on an interval containing the mode. If the

concave assumption is known to be valid over a given interval, then this estimator

requires no user-defined penalty or smoothing parameter. Otherwise, the interval

of concavity can be used as a penalty device and is allowed to go to zero as n

increases.

The decreasing and convex density estimator was considered by Groene-

boom, Jongbloed, and Wellner (2001) and Balabdaoui and Wellner (2010). This

piecewise linear estimator has a tendency to spike at the mode. Balabdaoui

(2007) gave a consistent estimate of the value of the density and its derivative at

the mode, based on the values near the mode.

Maximum likelihood estimation of a unimodal density with known mode

can be accomplished using two decreasing estimators on either side of the mode.

For the unknown mode case, the maximum likelihood estimator does not exist

because the likelihood is unbounded if the mode is allowed to vary. A plug-

in estimator may be used (Bickel and Fan (1996)), or the alternative unimodal

estimator of Meyer (2001) in which both sides are estimated at once using a

partial ordering. If the density is log-concave then it is unimodal, so log-concavity

might be a useful surrogate for unimodality. In the case of unknown mode,

the log-concave estimator has the advantage of not having to specify the mode,

but if the mode is known to be zero, for example, this cannot be specified.

Recent work on log-concave density estimation was done by Pal, Woodroofe

and Meyer (2007), Rufibach (2007), and Dümbgen and Rufibach (2009, 2011).

Such standard unimodal densities as normal, Beta, and Gamma densities are

log-concave; however, a mixture of normal random variables is not in general

log-concave, nor are heavy-tailed densities such as the Cauchy or t(2).

Several smoothed unimodal estimators have been proposed using kernel ideas.

Fougères (1997) proposed an estimator that attains unimodality by a “rearrange-

ment” of the kernel estimator. Eggermont and LaRiccia (2000) considered the

derivative of the least concave majorant of the distribution function for a kernel

estimator. Mammen et al. (2001) proposed a two-step estimator that projects

the unconstrained estimator onto the constraint set. Hall and Huang (2002) ad-

justed the kernel weights to obtain a unimodal version. Hall and Kang (2005)

proposed an estimator using “data sharpening,” in which the observations are

moved the “least amount” necessary so that the kernel estimator is unimodal.

Dümbgen and Rufibach (2009) specify a smoothed version of their log-concave

density estimator.

In this paper, smoothed shape-restricted density estimators are proposed for

decreasing, unimodal, and convex densities. They are constructed using regres-

sion splines, so that the fit is a linear combination of smooth basis functions.
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Figure 1. Monthly stock returns data from General Electric. Left: the
standard kernel (dashed) and the Fougères rearrangement (solid). Right:
the smoothed log-concave estimate (dashed) and the proposed unimodal
spline estimate (solid).

They have the advantage of being parsimonious in the sense that the number of

basis functions is small compared with the sample size n, but they are flexible

enough to capture a wide variety of density forms. The least-squares criterion

proposed by Groeneboom, Jongbloed, and Wellner (2001) is minimized over the

set of linear combinations of basis functions, with the coefficients constrained

to capture the shape assumptions. The estimator is obtained by a weighted

projection onto a convex cone, and hence is computationally straightforward.

Examples of estimates of a unimodal density with mode at zero are shown

in Figure 1, where a histogram of n = 300 months of stock returns from General

Electric is shown. The data were downloaded from http://finance.yahoo.com.

On the left is the standard kernel (dashed) estimate, with default bandwidth as

chosen by the R function density. The Fougères rearrangement with mode zero

is the solid curve, with bandwidth 80% of the default for the the kernel. The spu-

rious bumps in the kernel estimate (typical for “heavy tailed” data) are smoothed

out by the rearrangement, but the estimate is discontinuous at the mode, and

its derivative is discontinuous at points where the rearrangement diverges from

the original kernel estimate. On the right the proposed estimator (solid) is com-

pared with the log-concave estimator provided by the R function logConDens

(using the default parameters). Log-concavity is never a good assumption for

“heavy-tailed” data.

In the next section, the sets of spline basis functions for the three shape

assumptions are specified. The algorithm for the density estimator is presented

in Section 3. In Section 4, results for convergence rates of the estimators are

presented. Simulations results presented in Section 5 show that the estimators

compare favorably to some established estimators for small to moderate-sized

samples.

http://finance.yahoo.com
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2. Regression Spline Basis Functions

Ramsay (1988) introduced monotone regression splines for least-squares re-

gression and extensions. The spline basis functions are smooth monotone piece-

wise polynomials so that linear combinations of these basis functions, constrained

to have non-negative coefficients, are again monotone. Meyer (2008) extended

the method to other shape restrictions and showed that the estimator can be

formulated as a projection onto a polyhedral convex cone, where the edges of the

cone are the basis vectors. Here we provide basis functions for the decreasing, de-

creasing and convex, and unimodal density estimation. For the decreasing cases,

the shape restrictions hold if and only if the linear combination of basis func-

tions has non-negative coefficients; for the unimodal case an equality constraint

is added to ensure continuity at the mode.

2.1. Decreasing case

Consider the estimation of a decreasing function on [0,M0], and define knots

0 = t0 < t1 < · · · < tk < tk+1 = M0. For quadratic splines, the m = k + 3 basis

functions are

δj(x) =



1 for 0 ≤ x < tj−1,

1− (x−tj−1)
2

(tj+1−tj−1)(tj−tj−1)
for tj−1 ≤ x < tj ,

(tj+1−x)2

(tj+1−tj)(tj+1−tj−1)
for tj ≤ x < tj+1,

0 for x ≥ tj+1,

j = 1, . . . , k, plus

δk+1(x) =

{
(t1−x)2

(t1−t0)2
for t0 ≤ x < t1,

0 for x ≥ t1,

δk+2(x) =


1 for 0 ≤ x < tk,

1− (x−tk)
2

(tk+1−tk)2
for xj−1 ≤ x < xj ,

0 for x ≥ tk+1,

and δk+3(x) ≡ 1. These span the space of piecewise quadratic functions on

[0, tk+1]. Because at each knot, there is only one basis function with non-zero

derivative, and there is only one basis function that is non-zero at tk+1, a lin-

ear combination is non-negative and non-increasing if and only if the coefficients

are non-negative. Note that cubic basis functions are not suitable for monotone

constraints, because there does not exist a set of linear constraints on the coeffi-

cients that is necessary and sufficient for monotonicity. The piece-wise quadratic

non-increasing basis functions are shown in Figure 2(a) for k = 6 knots, marked
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(a) (b) (c)

Figure 2. (a) The basis functions for the decreasing density estimator, with
the values for the basis vectors indicated by the dots; the knots are marked
by “X.” (b) Decreasing and convex basis. (c) The least-squares decreasing
(dashed) and decreasing convex (dark) density estimates for a sample of size
n = 50 from the density shown as the dotted curve, with the data marked
as vertical ticks.

with the symbol “X” on the plot. Given a random sample of points in [0,M0],

we define basis vectors in which the elements of a basis vector consist of the basis

functions evaluated at the values of a random sample. For a sample of size n = 50

from an exponential density, the basis vector values are shown in Figure 2(a) as

the dots on the curves.

2.2. Decreasing and convex case

Cubic splines may be used for the estimation of a decreasing and convex

function. Let cj = (tj−1 − tj+1)/2 and dj = (t2j+1 − t2j−1 + tj(tj+1 − tj−1))/6 for

j = 1, . . . , k. Then the m = k + 4 basis functions are

δj(x) =



cjx+ dj for 0 ≤ x < tj−1,

(x−tj−1)
3

6(tj−tj−1)
+ cjx+ dj for tj−1 ≤ x < tj ,

(tj+1−x)3

6(tj+1−tj)
for tj ≤ x < tj+1,

0 for x ≥ tj+1,

for j = 1, . . . , k, and

δk+1(x) =

{
(t1 − x)3 for 0 ≤ x < t1,

0 for x ≥ t1,

δk+2(x) =


ck+2x+ dk+2 for 0 ≤ x < tk,

(x−tk)
3

6(tk+1−tk)
+ ck+2x+ dk+2 for tk ≤ x < tk+1,

0 for x ≥ tk+2,
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where ck+2 = (tk−tk+1)/2 and dk+2 = (2t2k+1−t2k−tktk+1)/6. Finally, δk+3(x) =

tk+1 − x and δk+4(x) = 1. The functions δj , j = 1, . . . ,m, span the space of

piecewise cubic spline functions. At each knot, there is only one basis function

with positive second derivative and, further, there is only one basis function that

is nonzero at tk+2, and one basis function with nonzero slope at tk+2. Hence, a

linear combination is positive, decreasing, and convex if and only if the coefficients

are non-negative. The piece-wise cubic decreasing and convex basis functions are

shown in Figure 2(b), for the knots marked with “X.” The values of the basis

vectors (using the data generated for plot (c)) are marked with small circles.

2.3. Unimodal case

For estimation of a unimodal function with known mode, we place k1 interior

knots to the left of the mode, and k2 interior knots to the right of the mode.

The mode itself is a knot, and the exterior knots encompass the domain of the

function, so there are m = k1 + k2 + 3 knots in all. Without loss of generality,

we assume the mode is at the origin. We start with the basis functions for the

monotone case, excluding the basis function that has negative slope at the origin.

To the right of the mode, take δ1, . . . , δk2+2 to be the monotone basis functions

on those k2 interior knots. Let δk2+3, . . . , δk1+k2+4 be the decreasing monotone

basis functions defined on the k2 interior knots to the left of the mode, where the

formulas for the functions are modified to be increasing. The basis functions are

shown in Figure 3 for k1 = k2 = 3, where the right-side basis functions are shown

in plot (a) and the left side basis functions in plot (b). The knots are marked

along the bottom with “∧” characters.

Because the maximum of each basis function is one and each has slope zero

at the mode, a single inequality constraint ensures continuity of the linear com-

bination and its derivative at the mode. Letting m = k1 + k2 + 4, a function

f(x) =
∑m

i=1 bjδj(x) is unimodal and continuous with continuous first derivative

over the range of knots if and only if bj ≥ 0 for j = 1, . . . ,m and the equality

constraint
∑k2+2

j=1 bj =
∑k1+k2+4

j=k2+3 bj holds. Let v = (−1, . . . ,−1,+1, . . . ,+1)′,

where the number of negative elements of v is k2 +2 and the number of positive

elements is k1 + 2. The set of the constraints on the vector b can be written as

b ≥ 0 and v′b = 0. This forms a convex polyhedral cone contained in an m− 1

dimensional subspace of IRm.

The coefficient vector b for the unimodal case can be written as Wϕ, where

the columns of the m× (m− 1) matrix W span the linear subspace of IRm that

is orthogonal to v. The set {
ϕ ∈ IRm−1 : Wϕ ≥ 0

}
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(a) (b) (c)

Figure 3. Plots (a) and (b) show the basis functions for unimodal density
estimation. The estimated density in (c) uses the sample indicated by the
tick marks, generated from the density shown as the dashed curve. The
knots are marked with “∧.”

is a polyhedral convex cone in IRm−1, and can be written as{
ϕ ∈ IRm−1 : ϕ =

M∑
j=1

clσj , for cj ≥ 0, j = 1, . . . ,M
}
,

where σ1, . . . ,σM are the “edges” of the cone. These vectors can be found
using Proposition 1 of Meyer (1999), where it is shown that the number M is
typically larger than m, for the case of more constraints than dimensions. Here
M = (k1 + 2)(k2 + 2) and the cone of allowed coefficient vectors for the basis
functions has edges bl = Wσl, l = 1, . . . ,M . The linear combination

∑m
j=1 bjδj

is unimodal and continuous with continuous first derivative if and only if the
coefficients are in the cone

C =
{
b ∈ IRm : b =

M∑
i=1

albl, for a1, . . . , aM ≥ 0
}
. (2.1)

3. Least-squares Criterion for Spline Estimator

Groeneboom, Jongbloed, and Wellner (2001) used the following criterion to
estimate a convex density based on a random sample. The functional to minimize
is

ψ(f) =

∫ ∞

0
f(x)2dx− 2

∫ ∞

0
f(x)dFn(x), (3.1)

where Fn is the empirical cumulative distribution function. The intuition for this
criterion function comes from its equivalence to the expression∫ ∞

0
(f(x)− fn(x))

2dx,
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where fn is the “empirical density function” whose integral is Fn. If we mini-
mize (3.1) over decreasing densities with no smoothness assumptions, we get the
Grenander estimator (Groeneboom, Jongbloed, and Wellner (2001)).

Using the appropriate basis functions defined in the last section, consider
estimators in the form f̂(x) =

∑m
i=1 bjδj(x), noting that f̂ will satisfy the shape

assumption if and only if the coefficient vector is contained in a polyhedral convex
cone. For the decreasing cases, the cone is simply b ≥ 0, but in the unimodal
case it is given by (2.1). Let ∆ be the n×m matrix with columns containing the
basis vectors defined by the knots and the observed x-values, so that ∆ij = δj(xi).
Then (3.1) can be written as

b′Hb− 2c′b, (3.2)

where

Hjl =

∫ ∞

0
δj(x)δl(x)dx

and c = ∆′1/n. A cone projection algorithm is used to minimize (3.2) over C,
where C is the non-negative orthant of IRm for the decreasing and decreasing
convex cases, and (2.1) for the unimodal case. Code for cone projection and for
estimation methods in this paper, written in the R programming language, can
be found at www.stat.colostate.edu/~meyer/denspline.htm.

If
∫∞
0 δj(x)dx = rj for j = 1, . . . ,m, then the area constraint is satisfied if

r′b = 1. Using a Lagrange multiplier, we have the criterion function

ψλ(b) = b′Hb− 2(c+
λr

2
)′b.

For the unconstrained solution b̃ = H−1(c+ λr/2), it is easy to see that λ = 0,
because r coincides with the last row of H, and hence a′H−1c = cm = 1. For
the constrained solution, the value of λ may be adjusted so that r′b̂ = 1.

An example of a decreasing density estimate is shown as the dashed curve in
Figure 2(c), using a sample of size n = 50 from an exponential density, shown as
the dotted curve. The data are indicated by the tick marks along the bottom of
the plot, and the knots are marked with “X.” The solid curve is the decreasing
and convex density estimate for the same data and the same knots. An example
of a unimodal estimate is shown in Figure 3(c), using a sample of size n = 50
from the density shown as the dotted curve. The knots and basis functions used
to construct the estimator are shown in plots (a) and (b).

4. Rates of Convergence

For functions on an interval I, define the norms

∥ g ∥2=
∫
I
g(x)2dx; and ∥ g ∥∞= max

x∈I
|g(x)|. (4.1)

www.stat.colostate.edu/~meyer/denspline.htm
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Let G be the linear space spanned by spline functions δ1(x), . . . , δm(x) defined

on I, and let x1, . . . , xn be a random sample from a density f that satisfies a

shape assumption and has support in I. Let f̃ be the unconstrained least-squares

spline density estimator, and let f̂ be the corresponding constrained estimator.

We obtain the rate of convergence of ∥ f̂ − f ∥2 by determining the rate of

∥ f̃ − f ∥2 and showing that the former is at least as fast. We give the details

for the decreasing density estimator with mode at the origin; the convex and

unimodal with known mode cases follow similarly. The necessary assumptions

for the decreasing case are the following.

A1. There is an 0 < M0 <∞ such that f(x) = 0 for x /∈ [0,M0].

A2. The true density f is twice continuously differentiable on (0,M0).

A3. There is an 0 < M1 <∞ such that −M1 ≤ f ′(x) ≤ 0 on (0,M0).

A4. Knots are defined in [0,M0] according to a scheme that has “bounded mesh

ratio,” i.e., the ratio of the largest inter-knot interval to the smallest is

bounded for diverging n.

Theorem 1. Under A1−A4, if the number of knots is O(n1/(2p+3)), then ∥
f̂ − f ∥= OP (n

−(p+1)/(2p+3)), where p is the degree of the spline.

The proof is given in the Appendix. Some results from Huang (1998) and Huang

and Stone (2002) are used. Huang (1998) derived rates of convergence for esti-

mators that are least-squares projections onto a linear space G, with application

to the functional ANOVA model. For data {(Xi, Yi)}, i = 1, . . . , n and bounded

functions µ(x) = E(Y |X = x) and σ2(x) = var(Y |X = x), Huang defined µ̂(x)

to be the least-squares projection of the vector Y onto G. The function µ̄ is

the the projection of µ onto G, the approximation error is ∥ µ̄ − µ ∥, and the

estimation error is ∥ µ̂ − µ̄ ∥. Under some conditions on the smoothness of µ,

the distribution of the Xi, and knots having bounded mesh ratio, the rate is

∥ µ̂−µ ∥= OP (n
−(p+1)/(2p+3)) if the number of knots is O(n1/(2p+3)). Huang and

Stone (2002) considered extended linear modeling with polynomial splines for

models in which the log-likelihood is concave. The function η is to be estimated

based on a random variable with density depending on η. The maximum likeli-

hood spline estimator is shown to have the convergence rate OP (n
−(p+1)/(2p+3))

in the L2 norm, with the same assumptions on the knots. Details about how

these results are used to obtain the convergence rates for the least-squares spline

density estimates are given in the Appendix.

4.1. Unimodal estimator with unknown mode

Suppose the true mode m is unknown, but we estimate the mode using m̂

where |m̂ −m| = O(n−3/7). Without loss of generality, suppose m = 0, and let
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G be the space of splines defined for the known-mode case. For clarity we label

the knots t−k1−1, . . . , t−1, 0, t1, . . . , tk2+1. As n increases, we assume that the

knots have bounded mesh ratio with k1, k2 = O(n1/7), so that with probability

approaching one, m̂ ∈ (t−1, t1). Let Gm be the space of splines defined on knots

t−k1−1, . . . , t−1, m̂, t1, . . . , tk2+1, and let f̂m be the minimizer of ψ(g;x) on Gm.

Suppose δ∗j , j = 1, . . . ,m are the basis functions for Gm, while δj , j =

1, . . . ,m are the basis functions for G. Define f∗(x) =
∑m

j=1 b̂jδ
∗, where f̂(x) =∑m

j=1 b̂jδj ; that is, f
∗ is to have the same coefficients as f̂ . Then f∗(x) is identical

to f̂(x) except on (t−2, t2). Using the definitions of the basis functions defined

in Section 2 and the convergence rate of m̂, it is straightforward to show that

∥ f̂ − f∗ ∥= O(n−3/7). This gives ∥ f̄ − f∗ ∥= O(n−3/7), so using the convexity

argument at the end of the approximation error rate derivation (see Appendix)

and ψ(f̂m;x) ≤ ψ(f∗,x), we have ∥ f̂m − f ∥= O(n−3/7). Therefore, the plug-in

estimator has the same convergence rate as the estimator with known mode m,

if the mode estimator converges at a rate such that m̂−m = O(n−3/7).

If the unimodal density can be assumed to be symmetric, then the median as

an estimator of the mode has m̂−m = O(n−1/2). Otherwise, Eddy (1980) gives

mode estimates using polynomial kernel density estimation that have sufficiently

fast convergence.

4.2. Case of infinite support

Suppose the support of the decreasing density f is [0,∞). The support for

the constrained spline estimator f̂ must span the data and may be taken to be

[0, an); for example, an = x(n)(1 + ξ), where x(n) is the largest observation and

ξ > 0. Then the length of the support for the estimator is random and increasing

to infinity. If the knots are chosen to be at equal data quantiles, the bounded mesh

ratio is attained. However, for increasing support, there is no constant c such that

∥ g− f ∥≤ c ∥ g− f ∥∞, even if g and f are restricted to be decreasing densities.

The convergence rate for the finite support case is not attained, but if the support

does not increase too quickly, a slightly slower rate may be attained. For example,

suppose an = Op(log(n)). Then it can be shown that ρn = Op(k
−(p+1) log(n)),

and the approximation error is Op(n
−(p+1)/(2p+3) log(n)3/2).

5. Simulations

5.1. Knot choices

The piecewise-constant monotone density estimator and the piecewise-linear

convex or log-concave estimators do not require user-defined parameters, but

smooth non-parametric density estimation typically requires a choice of band-

width, or number and position of knots. These choices can be user-defined or
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data-driven, “automatic” choices. Imposing shape restrictions disallows the “wig-

gling” associated with over-fitting, and in general constrained estimators are more

robust to these parameters than unconstrained estimators. Hence the bandwidth

can be chosen to be smaller for decreasing or unimodal kernel density estimation

(Fougères (1997)), and a larger number of knots can be chosen for the spline

estimator, without introducing extra modes. However, for an excessive number

of knots, the decreasing density estimator approaches that of the unsmoothed

monotone MLE, and the convex decreasing estimator begins to look like the

piecewise linear solution. The asymptotically optimal number of knots, on the

order of n1/7, does not help much in choosing the number and placement of knots

for small to moderate-sized samples.

For density estimation with known finite support, the knots should be chosen

to span the support in some “even” manner. If the knots are placed at equal

data quantiles, there may be large gaps if the density is large over some range

and small elsewhere. If the knots are evenly spaced, there may be knot intervals

containing too large a fraction of the observations. Data-driven compromises that

seems to work nicely in practice are as follows. The first method is to choose an

initial number of knots k0 spaced equally in the support. Then add more knots

where the data are “thickest,” until there are at most 2n/(k0 − 1) observations

in any knot interval. If k0 is of the optimal order, then the final number of

knots is as well. Alternatively, the knots can initially be spaced in equal data

quantiles, with large gaps filled in with extra knots. For estimation of a density

with unknown support, the exterior knots should be chosen to span the data, or

to span an a-priori range of “reasonable” values for the phenomenon. Then the

interior knots can be filled in according to one of these schemes.

5.2. Comparison with other methods

We compare the shape-restricted regression spline estimators with other es-

timators in the literature, for a grid of evenly spaced points g1, . . . , gng spanning

the knot range, using

SMSE =
[ 1

Nng

N∑
j=1

ng∑
i=1

(
f̂j(gi)− f(gi)

)2 ]1/2
and N = 10, 000. We first compare the decreasing and decreasing-convex regres-

sion spline estimator with the Fougères kernel rearrangement, the decreasing lin-

ear spline estimator of Meyer and Woodroofe (2004) with concave interval at the

mode, and an unsmoothed, “constraints-only” decreasing convex least-squares

estimator similar to the Groeneboom, Jongbloed, and Wellner (2001) estimator.
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This constraints-only estimator differs slightly from theirs because the changes in

slope are forced to be at sample points instead of between sample points; it can be

obtained using the methods proposed in this paper, where the n basis functions

are δ1(x) = 1, δi(x) = (1 − x/xi)+, i = 2, . . . , n, where (·)+ = max(·, 0), with
coefficients constrained to be non-negative. For the Fougères rearrangement we

start with a standard kernel estimator (given by the R function density), trun-

cated to the positive reals and scaled to have unit area. As recommended by that

author, the bandwidth is chosen to be 0.8h, where h = 1.06Sn−1/5 for sample

standard deviation S. For the Meyer-Woodroofe estimator, the length of the

concave interval is the recommended n−3/5. For the regression spline estimators

we chose the initial numbers of knots to be k0 = 5, 6, and 7 for n = 50, 100, and

200, respectively. The grid used for the SMSE calculation was the same for each

estimator, ng = 1, 000 equally spaced points in the interval [0, tk+1], where tk+1

was chosen so that the support of the spline estimator was the same as that for

the default kernel used to construct the Fougères estimator.

The four underlying densities are the linear decreasing density f(x) = 2(1−x)
on (0, 1), the standard exponential, the half-normal, and a mixture of half-

normals that is three-quarters standard normal and one-quarter mean-zero nor-

mal with standard deviation 10. Results in Table 1 show that for the half-normal,

the Fougères estimator has the smallest SMSE values, with the difference decreas-

ing with increasing n. For the mixture of half-normals, the decreasing spline has

the smallest SMSE values, and for the exponential density, the convex decreasing

spline estimator “wins.” For the linear density, the Fougères rearrangement does

better for the smallest sample size, and the convex decreasing does best for the

largest size. The constraints-only convex estimator tends to have large SMSE

because of the spiking problem at the mode, where the estimator is too large.

The number in parentheses is the SMSE for the portion of the interval starting

at x(4), the fourth-smallest observed value.

The unimodal regression spline density estimator is compared with the stan-

dard kernel obtained through the R function density with default bandwidth

h, the Fougères unimodal kernel rearrangement with bandwidth 0.8h, and the

log-concave density estimate as coded in logConDens, with default parameters.

For the regression spline estimators we chose the initial numbers of knots to be

k0 = 6, 6, and 8 for n = 50, 100, and 200, respectively. The support for the esti-

mate is chosen to be the range of x-values provided by the R function density,

and the supports for the four estimators are identical. The three underlying den-

sities are standard normal, a normal mixture with 75% N(0, 1) and 25% N(0, 10),

and a beta density with parameters α = 6 and β = 2. Results in Table 2 show

that the regression spline estimator (UMRS) has smallest SMSE for the normal
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Table 1. Comparison of SMSE in decreasing density estimation methods.
The decreasing regression spline (DRS) and the convex decreasing (CDRS)
are compared with the decreasing kernel of Fougères (FDK), the linear spline
estimate with concave interval at the mode (CONC), and the least-squares
decreasing convex “constraints only” density estimator (CLIN).

n f DRS CDRS FDK CONC CLIN
50 linear 0.220 0.202 0.173 0.271 0.600 (0.268)
100 linear 0.175 0.150 0.149 0.213 0.540 (0.208)
200 linear 0.139 0.108 0.130 0.171 0.322 (0.164)
50 exp 0.069 0.064 0.078 0.099 0.546 (0.120)
100 exp 0.051 0.046 0.066 0.069 0.224 (0.098)
200 exp 0.038 0.033 0.055 0.051 0.220 (0.078)
50 halfnorm 0.084 — 0.072 0.131 —
100 halfnorm 0.063 — 0.058 0.089 —
200 halfnorm 0.047 — 0.048 0.064 —
50 normmix 0.027 — 0.038 0.045 —
100 normmix 0.020 — 0.029 0.030 —
200 normmix 0.015 — 0.022 0.022 —

mixture, and does not do as well for the standard normal or the beta density

for the smaller sample sizes. The log-concave density is best when the true den-

sity is log-concave, but for the normal mixture (which is not log-concave), it is

substantially worse than its competitors. Examples of the estimates are shown

in Figure 4 for a sample of size n = 100 from the Beta(6,2) density, where the

tick marks along the bottom indicate the sample and the dotted curves show the

true density. A clump of observations to the left of the mode is reflected in the

standard kernel (solid curve, plot (a)); the Fougères rearrangement (dot-dash)

is not smooth. The regression spline estimate (solid curve) and the log-concave

estimate (dashed) are shown in plot (b).

6. Discussion

The constrained spline density estimator is a straightforward method for ob-

taining smooth density estimates that satisfy a-priori assumptions about shape.

Convergence rates in the L2 norm of OP (n
−3/7) for the decreasing and unimodal

cases and OP (n
−4/9) for the decreasing and convex case are attained. These are

superior to rates attained by competing estimators. The unsmoothed decreas-

ing estimator attains the rate n−1/3 and the unsmoothed convex decreasing and

log-concave estimators attain the rate n−2/5. The various modifications of the

standard kernel estimator attain the rate n−2/5 of the unmodified kernel estima-

tor.

The estimate is obtained through a single projection onto a polyhedral con-

vex cone of relatively small dimension. The 10,000 decreasing density estimates
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(a) (b)

Figure 4. Density estimates for n = 100 independent observations (shown as
ticks) from a Beta(6,2) density (dotted curves). (a) Solid is unconstrained
kernel, dot-dash is Fougères rearrangement. (b) Dashed is log-concave esti-
mate, solid is unimodal spline estimate with knots marked as “X.”

Table 2. Comparison of SMSE in unimodal density estimation with known
mode. The unimodal spline (UMRS) is compared with the standard kernel
(KERN), the unimodal kernel of Fougères (FUM), and the smoothed log-
concave density estimator.

n f UMRS KERN FUM log-conc
50 N(0,1) 0.044 0.041 0.041 0.038
100 N(0,1) 0.032 0.031 0.031 0.028
200 N(0,1) 0.024 0.023 0.024 0.022
50 normmix 0.017 0.017 0.017 0.049
100 normmix 0.011 0.012 0.012 0.046
200 normmix 0.0078 0.0086 0.0088 0.044
50 Beta(6,2) 0.293 0.285 0.275 0.250
100 Beta(6,2) 0.225 0.221 0.216 0.187
200 Beta(6,2) 0.168 0.171 0.168 0.156

with n = 200 for the simulations were accomplished in just over four minutes

on a Mac Powerbook with 3.06 GHz Intel processor and 4 GB of RAM. The

computational speed makes it suitable for inclusion in iterative computations,

such as in problems involving estimation of an error density in regression.
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Appendix: Convergence Rate Proofs

The criterion function for a candidate density h defined on [0,M0] is

ψ(h;x) =

∫ M0

0
h(x)2dx− 2

n

n∑
i=1

h(xi). (A.1)

It is easy to see that ψ is strictly convex in h in the sense that, for any x,

ψ[αh1 + (1− α)h2;x] < αψ(h1;x) + (1− α)ψ(h2;x)

for α ∈ (0, 1) and distinct h1 and h2. Here, we consider h1 and h2 to be distinct

if
∫M0

0 [h1(x)− h2(x)]
2dx > 0.

For the space G of spline functions on [0,M0], let ρn = infg∈G ∥ g − f ∥∞.

Huang (1998) showed that by properties of polynomial splines and under as-

sumptions (A2) and (A4), ρn = O(k
−(p+1)
n ), where p is the degree of the spline,

kn is the number of knots. Let f̃ minimize ψ(·;x) over G. We derive the con-

vergence rate for f̃ to f by considering approximation error and estimation error

separately. Consider q1 < · · · < qn, the quantiles of the density f so that the

cdf F (qi) = i/n, and take q0 = 0. Let f̄ minimize ψ(·; q) over G, then take the

approximation error to be ∥ f̄ − f ∥, and the estimation error to be ∥ f̃ − f̄ ∥.
Clearly, the error ∥ f̃ − f ∥ is not larger than the sum of the estimation and

approximation errors.

Let fs minimize ψ(·; q) over the set of decreasing densities. Then for x ∈
(qi−1, qi],

fs(x) =
1

n(qi − qi−1)
. (A.2)

To see this, consider any decreasing density h, and

d

dα
ψ[αh+ (1− α)fs; q]

=
d

dα

{∫ M0

0
[αh(x) + (1− α)fs(x)]

2 dx− 2

n

n∑
i=1

[αh(qi) + (1− α)fs(qi)]

}

= 2

∫ M0

0
[αh(x) + (1− α)fs(x)] [h(x)− fs(x)] dx− 2

n

n∑
i=1

[h(qi)− fs(qi)] .
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Setting α = 0 and plugging in (A.2) for fs, we have

1

2

d

dα
ψ[αh+ (1− α)fs; q]|α=0

=

n∑
i=1

∫ qi

qi−1

1

n(qi−qi−1)

[
h(x)− 1

n(qi−qi−1)

]
dx− 1

n

n∑
i=1

[
h(qi)−

1

n(qi−qi−1)

]

=
1

n

n∑
i=1

[h(ci)− h(qi)] (A.3)

for some ci where qi−1 ≤ ci ≤ qi, i = 1, . . . , n, by the Mean Value Theorem. If

h is decreasing, this is positive for h ̸= fs, showing that the criterion function

increases from fs along any direction toward another decreasing density. To

see that fs(x) − f(x) = O(1/n) for x ∈ [0,M0], note that by the continuity

properties of f (A2), f(qi−1)−f(qi) = O(1/n) and for x ∈ (qi−1, qi], f(x), fs(x) ∈
[f(qi), f(qi−1)] (A3). Then ∥ fs − f ∥= O(1/n). Now we show that f̄ must be

close to fs.

The second derivative of ψ[αh1 + (1 − α)h2;x] with respect to α does not

depend on the values of x:

d2

dα2
ψ[αh1 + (1− α)h2;x] = 2

∫ M0

0
[h1(x)− h2(x)]

2 dx = 2 ∥ h1 − h2 ∥2 . (A.4)

Integration by parts gives an expression for the difference in the criterion function

for fs and an arbitrary function g, in terms of the distance between the fs and

g:

ψ(g; q)− ψ(fs; q) =

∫ 1

0

d

dα
ψ[αg + (1− α)fs; q]dα

=
d

dα
ψ[αg + (1− α)fs; q]|α=0

+

∫ 1

0
(1− α)

d2

dα2
ψ[αg + (1− α)fs; q]dα

=
2

n

n∑
i=1

[g(ci)− g(qi)]+ ∥ g − fs ∥2

for some ci ∈ [qi−1, qi], i = 1, . . . , n, by (A.3) and (A.4).

The expression
∑n

i=1[g(ci) − g(qi)] is less than the total variation of g, so

that

∥ g − fs ∥2 −
2M3

n
≤ ψ(g; q)− ψ(fs; q) ≤∥ g − fs ∥2 +

2M3

n

for g with total variation at most M3. Also, ∥ g− fs ∥≤∥ g− f ∥ + ∥ f − fs ∥ so

that, for large enough n, there is an M2 such that ∥ g−fs ∥2≤∥ g−f ∥2 +M2/n.
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By compactness of G, there is a g∗ ∈ G such that ∥ g∗ − f ∥∞= ρn; then

ψ(g∗; q)− ψ(fs; q) ≤M0ρ
2
n +

M2

n
+

2M3

n

because A1 implies that ∥ · ∥≤ M
1/2
0 ∥ · ∥∞. Fix η > 0 and consider g ∈ G such

that ∥ g − fs ∥= (M
1/2
0 + η)ρn. Then

ψ(g; q)− ψ(fs; q) ≥ (M
1/2
0 + η)2ρ2n − 2M3

n

so for large enough n, ψ(g; q) > ψ(g∗; q) when ∥ g − f ∥= (M
1/2
0 + η)ρn. If f̄

minimizes ψ(·; q) over G, then ψ(f̄ ; q) < ψ(g∗; q) and by convexity of ψ we must

have ∥ f̄ − fs ∥≤ (M
1/2
0 + η)ρn. Using ∥ f̄ − f ∥≤∥ f̄ − fs ∥ + ∥ f − fs ∥ we have

that ∥ f̄ − f ∥= O(ρn). This is the approximation error.

For the estimation error, first we need to show

sup
g∈G

∣∣ d
dαψ(f̄ + αg;x)|α=0

∣∣
∥ g ∥

= Op

((m
n

)1/2
)
. (A.5)

For g ∈ G,

d

dα
ψ(f̄+αg;x)|α=0 =

d

dα

{∫ M0

0

[
f̄(x)+αg(x)

]2
dx− 2

n

n∑
i=1

[
f̄(xi)+αg(xi)

] }
α=0

= 2

{∫ M0

0
f̄(x)g(x)dx− 1

n

n∑
i=1

g(xi)

}

= 2

m∑
i=1

bj

{∫ M0

0
f̄(x)δj(x)dx− 1

n

n∑
i=1

δj(xi)

}

= 2

m∑
i=1

bjaj ,

where the last equality defines aj . Then

sup
g∈G

∣∣ d
dαψ(f̄ + αg)|α=0

∣∣
∥ g ∥

= sup
b∈IRm

2a′b

[b′Hb]1/2
= 2

[
a′H−1a

]1/2
.

If we show that aj = OP (n
−1/2) for each j = 1, . . . ,m, then (A.5) follows.

Starting with

aj =

∫ M0

0

[
f̄(x)− f(x)

]
δj(x)dx+

∫ M0

0
f(x)δj(x)dx− 1

n

n∑
i=1

δj(xi),
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we have that the second two terms are Op(n
−1/2) by the Central Limit Theorem.

To show that the first term is O(n−1/2), let ψ1(g) = ψ(g; q) and let ψ2(g) =∥
g ∥2 −2

∫M0

0 f(x)g(x)dx. Let ḡ minimize ψ2 (and hence ∥ g − f ∥2) over G, and
recall that f̄ minimizes ψ1 over G. Integration by parts gives

ψ(g;x)− ψ(f̄ ;x) =
d

dα
ψ
(
f̄ + α(g − f̄);x

)
|α=0

+

∫ 1

0
(1− α)

d2

dα2
ψ
(
f̄ + α(g − f̄);x

)
dα

=
d

dα
ψ
(
f̄ + α(g − f̄);x

)
|α=0 +

1

2
∥ f̄ − g ∥2, (A.6)

so that (plugging in q for x and noting f̄ minimizes ψ(·; q) in G),

ψ1(ḡ)− ψ1(f̄) =
1

2
∥ f̄ − ḡ ∥2,

and ψ2(ḡ)− ψ2(f̄) is negative. For any g ∈ G,

1

2
(ψ2(g)− ψ1(g)) =

∫ M0

0
f(x)g(x)dx− 1

n

n∑
i=1

g(qi),

and it is straight-forward to show that ψ2(g)− ψ1(g) = O(1/n) for g with total

variation less than M3. Writing

[ψ1(ḡ)− ψ2(ḡ)]−
[
ψ1(f̄)− ψ2(f̄)

]
=

1

2
∥ f̄ − ḡ ∥2 +

[
ψ2(f̄)− ψ2(ḡ)

]
,

note that the left hand side is O(1/n) and the second term on the right hand

side is positive. Therefore, ∥ f̄ − ḡ ∥2= O(1/n). The first term in aj is∫ M0

0

[
f̄(x)− f(x)

]
δj(x)dx

=

∫ M0

0

[
f̄(x)− ḡ(x)

]
δj(x)dx+

∫ M0

0
[ḡ(x)− f(x)] δj(x)dx.

The second term is zero by definition of ḡ and the first term is O(n−1/2) by the

boundedness of δj . Then (A.5) follows.

By (A.5), we can choose a constant K large enough so that with probability

approaching one,∣∣∣∣ ddαψ (
f̄ + α(g − f̄);x

)
|α=0

∣∣∣∣ ≤ K1/2
(m
n

)1/2
∥ f̄ − g ∥
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and, by (A.6),

1

2
∥ f̄ − g ∥2 −K1/2

(m
n

)1/2
∥ f̄ − g ∥ ≤ ψ(g;x)− ψ(f̄ ;x)

≤ 1

2
∥ f̄ − g ∥2 +K1/2

(m
n

)1/2
∥ f̄ − g ∥ .

Consider g ∈ G where ∥ f̄ − g ∥2= 4Km/n. For such a g, we have ψ(g;x) >

ψ(f̄ ;x) so, by convexity of ψ, we must have ∥ f̄ − g ∥2≤ 4Km/n whenever

ψ(g;x) < ψ(f̄ ;x). Because f̃ minimizes ψ(g;x) over G, we have that the estima-

tion error is ∥ f̄ − f̃ ∥2= Op(m/n). To minimize the error ∥ f̃ − f ∥, we set the

estimation and approximation errors equal and recall that m is k plus a small

integer, to get the optimal k = O(n1/(2p+3)) and ∥ f̃ − f ∥= Op(n
−(p+1)/(2p+3)).

Finally, we consider f̂(x) =
∑m

i=1 b̂jδj(x), which minimizes ψ(·;x) over b ∈ C,
where C = {b ∈ IRm : b ≥ 0} for the decreasing cases and C is defined as in (2.1).

Define b̄ by f̄ =
∑m

i=1 b̄jδj(x) where f̄ minimizes ψ(·, q) over G. We assume

that f satisfies the shape assumption and b̄ ∈ C. The necessary and sufficient

conditions for b̂ to minimize ψ(b) = b′Hb− 2c′b over b ∈ C are

(Hb̂− c)′b̂ = 0 and (Hb̂− c)′b ≥ 0, for all b ∈ C;

the conditions for the unconstrained b̃ are simply (Hb̃−c)′b = 0 for all b ∈ IRm.

Then we have

(b̃− b̄)′H(b̃− b̄)

= (b̃− b̂)′H(b̃− b̂) + (b̂− b̄)′H(b̂− b̄) + 2(b̃− b̂)′H(b̂− b̄),

so that

(b̃− b̄)′H(b̃− b̄)− (b̂− b̄)′H(b̂− b̄)

= (b̃− b̂)′H(b̃− b̂) + 2(Hb̃− c)′(b̂− b̄)− 2(Hb̂− c)′(b̂− b̄).

According to the conditions on b̃ and b̂, the second term on the right is zero and

the third term is positive. The first term is positive becauseH is positive-definite,

so

(b̃− b̄)′H(b̃− b̄) ≥ (b̂− b̄)′H(b̂− b̄)

or ∥ f̂−f̄ ∥2≤∥ f̃−f̄ ∥2. Hence the estimation error is smaller for the constrained

estimator, and the approximation errors are the same. Thus, the convergence rate

for the constrained spline density estimator is at most that for the unconstrained

spline density estimator.
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Ramsay, J. O. (1988). Monotone regression splines in action. Statistical Science 3, 425-461.

Rufibach, K. (2007). Computing maximum likelihood estimators of a long-concave density func-

tion. J. Statist. Comput. Simulation 77, 561-574.



SHAPE-RESTRICTED DENSITY ESTIMATION 701

Woodroofe, M. and Sun, J. (1993). A penalized maximum likelihood estimate of f(0+) when f

is non-increasing. Statist. Sinica 3, 501-515.

Department of Statistics, Colorado State University, 212 Statistics Building, Fort Collins, CO

80523-1877, USA.

E-mail: meyer@stat.colostate.edu

(Received December 2010; accepted June 2011)

meyer@stat.colostate.edu

	1. Introduction and Background
	2. Regression Spline Basis Functions
	2.1. Decreasing case
	2.2. Decreasing and convex case
	2.3. Unimodal case

	3. Least-squares Criterion for Spline Estimator
	4. Rates of Convergence
	4.1. Unimodal estimator with unknown mode
	4.2. Case of infinite support

	5. Simulations
	5.1. Knot choices
	5.2. Comparison with other methods

	6. Discussion
	Appendix: Convergence Rate Proofs

