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Abstract: The trimmed mean is well-known for being more robust and for having

better mean square error than the mean when data arise from non-Gaussian distri-

butions with heavy tails. In this paper, we consider the derivatives of the trimmed

mean with respect to the trimming proportion, and investigate some statistical

applications of those derivatives. We develop a diagnostic tool based on the first

derivative of the trimmed mean to determine whether the data is generated from a

symmetric distribution or not. We also propose a test of symmetry of the distribu-

tion based on the first derivative, and demonstrate by theoretical and simulation

studies that it performs better than several other well-known tests of symmetry.

Further we introduce an estimate, based on the second derivative of the trimmed

mean, of the contamination proportion β ∈ (0, 1/2) in the contamination model

F (x) = (1− β)H(x) + βG(x), where H and G are two distributions such that G is

stochastically larger than H. In addition to some theoretical studies, we carry out

a detailed numerical study to show that, in many situations, our proposed estimate

of the contamination proportion outperforms other estimates that are based on the

idea of maximum likelihood estimation in mixture models.

Key words and phrases: Contamination model, Karhunen-Loeve expansion, Pit-

man efficacy, proportion of contamination, test of symmetry, weak convergence of

processes.

1. Introduction

For a random sample x1, . . ., xn, Tukey (1948) introduced the sample α-

trimmed mean

x̄α =
1

n− 2[nα]

n−[nα]∑
i=[nα]+1

x(i),

where α ∈ (0, 1/2), and x(i) is the ith order statistic of the sample. Tukey and

McLaughlin (1963) proposed a trimmed version of the t-statistic using the α-

trimmed mean. In a review paper on adaptive robust procedures, Hogg (1967)

discussed some practical reasons for using the α-trimmed mean. Bickel (1965)

derived the asymptotic distribution of the α-trimmed mean under appropriate

regularity conditions, and Stigler (1973) obtained the same under a weaker setup.
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Jaeckel (1971) proposed an estimate σ̂2α for the asymptotic variance of the α-

trimmed mean and used the value of α that minimizes σ̂2α to construct an adap-

tive version of trimmed mean that was subsequently studied by Hall (1981).

Recently, Dhar and Chaudhuri (2009) has shown that, for a large class of sym-

metric distributions with exponential and polynomial tails, the trimmed mean is

more efficient than the least trimmed squares estimate, which is a robust estimate

of location based on an alternative trimming procedure.

If we assume that the random sample consists of i.i.d. observations from an

absolutely continuous distribution F having density f , the population analogue

of the α-trimmed mean is

θ(α) =
1

(1− 2α)

∫ F−1(1−α)

F−1(α)
xf(x)dx

(see, e.g., Serfling (1980, p.236)). If F happens to be a symmetric distribution

with the center of symmetry µ, it is obvious that θ(α) = µ for all α. When θ(α)

is a continuously differentiable function of α ∈ (0, 1/2),

d

dα
θ(α) =

2

(1− 2α)2

∫ F−1(1−α)

F−1(α)
xf(x)dx− 1

(1−2α)
{F−1(α) + F−1(1−α)} = 0

⇔ θ′(α) :=
1

(1− 2α)

∫ F−1(1−α)

F−1(α)
xf(x)dx− {F−1(α) + F−1(1− α)}

2
= 0

for all α ∈ (0, 1/2). Therefore, one can develop diagnostic tools and tests for the

presence or the absence of symmetry in the distribution based on estimates of

θ′(α). Such estimates are expected to be close to zero when the assumption of

symmetry holds.

Several tests of symmetry have been proposed and studied in the litera-

ture. Mira (1999) proposed and investigated a test for (MeanF −MedianF ) = 0

based on the sample mean and sample median. Though Mira’s test is easy to

implement, the derivation of its asymptotic distribution requires finiteness of the

second moment of the underlying distribution. Csorgo and Heathcote (1987) pro-

posed a test based on the estimate of the characteristic function of F . Ahmad

and Li (1997) proposed a test that compares kernel-based estimates of f(x) and

f(−x). Schuster and Barker (1987) developed a test based on the Kolmogorov-

Smirnov distance between the empirical distribution function F̂n and its sym-

metrized version, and implemented the test using bootstrap techniques. In the

next section, we develop a graphical tool based on the derivative of the α-trimmed

mean to determine whether the data is generated from a symmetric distribution

or not, and propose a new test of symmetry.
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In Section 3, we propose and investigate an estimate of the contamination

proportion β in the model F (x) = (1 − β)H(x) + βG(x) based on the second

derivative of the α-trimmed mean. We show that our estimate, which is nonpara-

metric in nature, outperforms well-known maximum likelihood type estimates for

the contamination proportion in several examples.

2. Detection of Asymmetry Based on α-trimmed Mean

A common way to assess the presence or absence of symmetry in data is

based on the histogram or some other density estimates of the data. However,

the use of those density estimates is justified only when one has a reasonably

large sample. It is not possible to form the class intervals and the frequency

distribution in a sensible way in a small sample, the basic ingredients needed

for construction. Density estimates are often statistically unreliable in small

samples due to their high variability and slow convergence rates. In addition,

the histogram or any other density estimate involves the choice of a smoothing

parameter.

An assessment of symmetry or asymmetry in the data can be done using

θ′(α). Note that a natural estimate of θ′(α) is Tn(α) := x̄α− ({F̂−1
n (α)+ F̂−1

n (1−
α)})/2, where F̂n is the empirical distribution function of F . The following

theorem describes the asymptotic behavior of the process Tn(α) as α varies over

the interval (0, 1/2).

Theorem 1. Suppose the xi’s are i.i.d. with a continuous and positive den-

sity on the entire real line. Then, for any 0 < b1 < b2 < 1/2, the process√
n{Tn(α)−θ′(α)}, where α varies over the interval [b1, b2], converges weakly to a

Gaussian process with zero mean and covariance function limn→∞
√
nE{Tn(α1)−

θ′(α1)}{Tn(α2) − θ′(α2)} = k(α1, α2). For the form of k(α1, α2), see Lemma 1

in Section 5.

Corollary 1. Under the conditions of Theorem 1, for any 0 < b1 < b2 < 1/2 we

have supα∈[b1,b2] |Tn(α)− θ′(α)| = OP (n
−1/2).

It follows from Corollary 1 that if the graph of Tn(α) is roughly constant

around zero, one may conclude that the data is obtained from a symmetric dis-

tribution. Also, using the asymptotic normality of
√
n{Tn(α) − θ′(α)}, for each

fixed α ∈ (0, 1/2), one can calculate the asymptotic p-value for the testing prob-

lem with the null hypothesis H0,α : θ′(α) = 0 against the alternative hypothesis

H1,α : θ′(α) ̸= 0 for each 0 < α < 1/2. This is illustrated in Figures 1 and 2 for

some specific distributions. The symmetry of the generated data is quite visible

in Figure 1, while the asymmetry in the data is clearly indicated in each of the

diagrams in Figure 2.
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Figure 1. The graphs of the averages of Tn(α) and corresponding p-values
(the solid curves) obtained from 50 Monte-Carlo replications of 25 i.i.d. stan-
dard normal observations. The dashed and the dotted dashed curves represent
average ± (std. dev.) and average ± 2(std. dev.) limits, respectively.

2.1. Positive and negative skewness and their detection

Note that in Figure 2, the graphs of Tn(α) lie below the x-axis for almost

all α. This indicates a monotonically decreasing nature of the α-trimmed mean,

when data are generated from the gamma and the mixture normal distributions

(see Figure 3). We now state a result that establishes the monotonically decreas-

ing nature of α-trimmed means for distributions that are asymmetric in some

appropriate sense.

Proposition 1. Suppose that F is a distribution function having continuous

density f with f(F−1(α)) ≥ f(F−1(1−α)) for all α. Then the α-trimmed mean

θ(α) = (1− 2α)−1
∫ F−1(1−α)
F−1(α)

xf(x)dx associated with F is a decreasing function

of α, and θ′(α) ≤ 0 for all α.

The condition f(F−1(α)) ≥ f(F−1(1−α)) for all α can be used as a definition

of positively skewed distributions (see, e.g., van Zwet (1979)). If the graph of

Tn(α) lies below the x-axis, one may conclude that the data are obtained from a

positively skewed distribution.

2.2. A Statistical test for symmetry

We have already seen that θ′(α) = 0 for all α ∈ (0, 1/2) for a symmetric

distribution, and hence one can formulate the problem of testing the hypothesis

of symmetry as follows. For any b1 and b2 such that 0 < b1 < b2 < 1/2, consider

the hypothesis H0 : θ′(α) = 0 for all α ∈ [b1, b2] against H1 : θ′(α) ̸= 0 for some
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Figure 2. The graphs of the averages of Tn(α) and corresponding p-values
(the solid curves) obtained from 50 Monte-Carlo replications of 25 i.i.d. ob-
servations from the gamma distribution with shape parameter = 0.15 and
scale parameter = 1, and the 0.7N(0, 1)+0.3N(5, 1) distribution. The dashed
and the dotted dashed curves represent average ± (std. dev.) and average ±
2(std. dev.) limits, respectively.

α ∈ [b1, b2]. To test H0 against H1, consider Vn := M [
√
n{Tn(·)}], where M :

D([b1, b2]) → [0,∞) is a continuous map on D[b1, b2], the space of real functions

on [b1, b2] that are right continuous and have left-hand limits. Here M is chosen

to satisfy M(ω) = 0 ⇔ ω(α) = 0 for all α ∈ [b1, b2], and for some p ∈ [1,∞],

M(ω) → ∞ whenever ||ω||[b1,b2],p → ∞. We let ||ω||[b1,b2],p = {
∫ b2
b1

|w(α)|pdα}1/p
if p ∈ [1,∞), and ||ω||[b1,b2],∞ = supα∈[b1,b2] |w(α)|.

Theorem 2. Under H0 and the conditions of Theorem 1, for any 0 < b1 <

b2 < 1/2 and α ∈ [b1, b2], Vn = M [
√
n{Tn(·)}] converges weakly to M [Z(·)],
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Figure 3. The graphs of the averages of x̄α obtained from 50 Monte-Carlo
replications of 25 i.i.d. observations from gamma and 0.7N(0, 1)+0.3N(5, 1)
distributions.

where {Z(α) : α ∈ [b1, b2]} is a Gaussian process with zero mean and covariance

function k(α1, α2), (α1, α2 ∈ [b1, b2]), which is as in Theorem 1 and Lemma

1. A test that rejects the null hypothesis H0 when Vn > ξρ, where ξρ is the

(1−ρ)th quantile of the distribution ofM [Z(·)], has asymptotic size ρ (0 < ρ < 1).

Further, such a test is a consistent test in the sense that, under the alternative

hypothesis, the asymptotic power of the test is 1 for appropriate choices of b1 and

b2, depending on the asymmetric distribution.

In our implementation of the test, we have used M [
√
n{Tn(·)}] =∫ b2

b1
n{Tn(α)}2 dα := τn. This choice of M satisfies the conditions stated be-

fore Theorem 2 if we take p = 2.

Theorem 3. Under H0 and the conditions of Theorem 1, τn converges weakly

to
∞∑
i=1

λiWi, where the Wi’s are independent chi-square variables each with one

degree of freedom. Here the λi’s are the eigen-values of the covariance function

k(α1, α2) (α1, α2 ∈ [b1, b2]), which is as in Theorem 1 and Lemma 1.

In practice, τn can be approximated by
∑[nb2]−1

i=[nb1]+1{Tn(i/n)}
2, and we have

shown in Lemma 3 in Section 5 that τn−
∑[nb2]−1

i=[nb1]+1{Tn(i/n)}
2 P→ 0 as n→ ∞. In

order to implement the test, we first estimate the eigen-values λi of the covariance

kernel k(α1, α2) (α1, α2 ∈ [b1, b2]). We have used kernel density estimate based

on standard Gaussian kernel and the adaptive choice of the bandwidth given as a

default in the “ks” package in the statistical software R for f that appears in the

expression of k(α1, α2). Using estimated eigen-values λ̂i, one can generate a finite
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approximation to the sum
∞∑
i=1

λiWi. Finally, one can generate several Monte-

Carlo replications of that finite sum and, depending on the specified level of the

test, choose the critical value of the test as a specific quantile of the empirical

distribution of that sum. In our implementations, we have taken b1 = 0.001,

b2 = 0.499; these choices are based on our experience with computational costs

and the performance of the test.

2.3. Finite sample study

We have carried out a simulation study to compare our proposed test with

some others in terms of their powers and sizes. We considered tests with nominal

levels 5% and 1% and, in order to estimate the power and the level of a test,

we used the proportion of rejection of the null hypothesis of symmetry in several

Monte-Carlo replications. We used 1,000 Monte-Carlo replications with each

replication consisting of a sample of size 50 or 100, and computed the ratio

between the power of our test based on τn (numerator) and that of another

test (denominator). We considered different mixture distributions of the form

(1−β)H+βG, as mentioned in Section 2.1, where H and G are two distribution

functions, and β lies in the closed interval [0, 1/2]. In our investigation, we took

H and G to be N(µ, 1), Cauchy C(µ, 1), and exponential E(µ) distributions with

different location parameters µ. This ensured the inclusion of a wide variety of

symmetric and asymmetric distributions.

In the case of normal mixture distributions, for different values of β, the range

of the ratios between the powers of our test and the powers of the tests considered

by Mira (1999), Csorgo and Heathcote (1987), Schuster and Barker (1987), and

Ahmad and Li (1997) turns out to be 4.53–6.51. For a Cauchy mixture, a normal

and exponential mixture, and a Cauchy and exponential mixture, the ranges of

ratios of powers were 1.02–1.41, 1.01–1.19, and 1.15–1.35, respectively. More

details about the powers of different tests are presented in Figure 6.1 in the

supplementary material.

2.4. Asymptotic efficiency study under contiguous alternatives

In this section, we study the asymptotic power properties of different tests

by deriving their Pitman efficacies under contiguous alternatives. We consider

the contamination model (1 − δ/
√
n)H(x) + δ/

√
nG(x) to form the sequence

of alternative hypotheses, where H is a symmetric distribution and G is any

distribution function that is stochastically larger than H. Thus we test H0 :

F (x) = H(x) vs. Hn : F (x) := Fn(x) = (1 − δ/
√
n)H(x) + (δ/

√
n)G(x) for a

fixed δ > 0.
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Theorem 4. Assume that H and G have continuous and positive densities h

and g, respectively and Eh{g(x)/h(x) − 1}2 < ∞. Then the sequence of al-

ternatives Hn form a contiguous sequence. Let x1, . . . , xn be i.i.d. observa-

tions from F , and ψ(x, t) be a real valued function of x and t, each vary-

ing on some interval on the line such that Eh{ψ(xi, t)}2 < ∞. Assume that

the process
√
n((1/n)

∑n
i=1 ψ(xi, t) − Eh{ψ(xi, t)}) converges weakly to a Gaus-

sian process with zero mean and covariance function k1(t1, t2) = Eh[ψ(xi, t1) −
Eh{ψ(xi, t1)}, ψ(xi, t2)−Eh{ψ(xi, t2)}] under H0 as n→ ∞. Then, under the se-

quence Hn, this process converges weakly to a Gaussian process with the same co-

variance function but with mean function m(t, δ) = δ[Eg{ψ(x, t)}−Eh{ψ(x, t)}].

Under H0, the asymptotic distributions of our test statistic τn, the

test statistic T
(1)
n = supt |(1/n)

∑n
i=1(1{xi≤t} + 1{xi≤2η−t} − 1)/2| of Schus-

ter and Barker (1987), and the test statistic T
(2)
n of Csorgo and Heathcote

(1987) follow from Theorem 1, and results of Arcones and Gine (1991),

and Csorgo and Heathcote (1987), respectively. Under contiguous alterna-

tives Hn, using Theorem 4, one can obtain the asymptotic distributions

of T
(1)
n and T

(2)
n by taking ψ(x, t) = (1{x≤t} + 1{x≤2η−t} − 1)/2 and ψ(x, t) =

[(U(t){sin t(x)} − V (t){cos t(x)})/(t{U2(t) + V 2(t)})], respectively. Further, one
can derive the asymptotic distribution of τn under Hn by using ψ(x, α) =

{H−1(α)1{x≤H−1(α)}+x1{H−1(α)≤x≤H−1(1−α)}+H−1(1−α)1{x≥H−1(1−α)}}/(1−
2α)−(1/2)[(α− 1{x≤H−1(α)})/{h(H−1(α))}+((1−α)−1{x≤H−1(1−α)})/{h(H−1(1

−α))}]. More generally, for the statistic Vn defined before Theorem 2, the asymp-

totic distribution is the same as the distribution of M [Z1(·)], where {Z1(α) : α ∈
[b1, b2]} is the Gaussian process of Table 1. On the other hand, the asymptotic

distribution of Mira’s (1999) test statistic T
(3)
n = 2(mean−median), under H0 as

well as under the sequence Hn, can be established using straightforward applica-

tions of Bahadur’s asymptotic expansion of the sample median (see, e.g., Serfling

(1980)) and Lecam’s third lemma in Hajek and Sidak (1967). These asymptotic

distributions of different test-statistics are summarized in Table 1.

In order to evaluate Pitman efficacies of different tests, we have chosen H

to be N(0, 1), Laplace L(0, 1) and Cauchy C(0, 1) distributions, and G to be

exponential with mean 1, N(µ, 1), L(µ, 1), and C(µ, 1) with µ = 1/2, 1 and 2.

We have taken the asymptotic size of all the tests as 0.05, and their asymptotic

powers were chosen to be 0.1, 0.2, 0.3, . . . , 0.9. The Pitman efficacy (see, e.g.,

Serfling (1980) and Lehmann and Romano (2005)) of our test relative to another

test for varying choices of asymptotic power determined by δ is (δ′/δ)2, where δ

and δ′ are such that the asymptotic power of our test under contiguous alternative

(1− δ/
√
n)H(x)+ (δ/

√
n)G(x) is the same as the asymptotic power of the other

test under the alternative (1− δ′/
√
n)H(x) + (δ′/

√
n)G(x).
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Table 1. Asymptotic distributions of test statistics for different tests. η is
the center of symmetry of H, k(α1, α2) is as defined in Theorem 1, σ2

M =

4σ2
H +

{
h(H−1(1/2))

}−2− (4/h(H−1(1/2)))×{EHx−2
∫H−1(1/2)

−∞ xdH(x)},
σ2
H = V arH(x) and s0, t0, σ, U and V are as defined in Csorgo and Heathcote

(1987).

Test Asymptotic distribution of test statistic under contiguous alternatives

Our test based on τn The distribution of
∫ b2
b1

{Z1(α)}2dα, where Z1(α) is a Gaussian process with mean

function δEG{ψ(x, α)} and covariance kernel k(α1, α2).

Schuster and The distribution of supt∈R |Y (t)|, where Y (t) is a Gaussian process with mean fun-

Barker’s (1987) test ction δ
2{G(t) +G(2η − t) − 1} and covariance kernel k2(s, t) = 1

4 [2 + 2H(min(s, t))].

Mira’s (1999) test Gaussian distribution with mean 2δEG

[{
x−

1/2−1{x≤H−1(1/2)}
h(H−1(1/2))

}]
− 2δEHx

and variance σ2
M .

Csorgo and Heathcot’s Gaussian distribution with mean δ
[

U(t0)EG{sin t0(x)}−V (t0)EG{cos t0(x)}
t0{U2(t0)+V 2(t0)}{σ2(s0)+σ2(t0)−2σ(s0,t0)}

]
−

(1987) test −δ
[

U(s0)EG{sin s0(x)}−V (s0)EG{cos s0(x)}
s0{U2(s0)+V 2(s0)}{σ2(s0)+σ2(t0)−2σ(s0,t0)}

]
and variance 1.

For different values of asymptotic power and µ, the ranges of Pitman effi-

cacies of our test relative to tests studied by Mira (1999), Schuster and Barker

(1987), and Csorgo and Heathcote (1987) are 12.39 − 15.68, 1.99 − 3.20 and

2.28−3.46, respectively, when H = N(0, 1) and G = N(µ, 1). When H = L(0, 1)

and G = L(µ, 1), those ranges turn out to be 16.08 − 20.16, 3.80 − 9.48 and

4.97 − 8.94, respectively. When H = N(0, 1), and G is chosen as exponential

distribution with mean 1, the ranges are 2.99− 4.75, 1.46− 3.31 and 1.61− 3.96,

respectively. For H = C(0, 1) and G = C(η, 1), the ranges for tests considered

by Schuster and Barker (1987) and Csorgo and Heathcote (1987) are 9.05−17.16

and 7.82 − 17.60, respectively. In this last case, we did not consider Mira’s

(1999) test because the sample mean does not have finite moments under the

Cauchy distribution. Thus our test asymptotically outperforms all other tests

considered here under the chosen sequences of contiguous alternatives. Further

details about Pitman efficacies of different tests are presented in Figure 6.2 in

the supplementary material.

2.5. Analysis of data

In this section, we have analyzed three data sets. Detailed information of

the iris and the yeast data is available in http://archive.ics.uci.edu/ml, and

the diabetes data can be obtained from the “mclust” package in the software R.

At 5% level, the tests considered in Section 2.3 rejected the hypothesis of

symmtry for petal widths of Iris setosa and Iris versicolor, for the variable s.s.p.g.

http://archive.ics.uci.edu/ml
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Figure 4. Graphs of Tn(α) for the sepal length of Iris virginica, the sepal
width of Iris versicolor, and the variable gvh of the yeast data. The dashed
and the dotted dashed curves represent average ± (std. dev.) and average
± 2(std. dev.), respectively.

Figure 5. Graphs of p-values for different values of α of the sepal length of
Iris virginica, the sepal width of Iris versicolor, and the variable gvh of the
yeast data.

in the case of normal individuals, and for all three variables in the case of overt
and chemical diabetic individuals. Also, at the 5% level, all tests accepted the
hypothesis of symmetry for sepal length, sepal width, and petal length in the
case of Iris setosa, for sepal width in the case of Iris verginica, for petal length
and petal width in the case of Iris verginica, for sepal length and petal length
in the case of Iris versicolor, and for glucose level and insulin area in the case
of normal individuals. In the case of the yeast data, all tests accepted the null
hypothesis of symmetry at 5% level for all the variables except gvh.

However, at the 5% level, our test rejected the null hypothesis of symmetry
for sepal length in the case of Iris virginica, for the sepal width in the case of Iris
versicolor, and for the variable gvh in the case of the yeast data, while the other
four tests accepted the null hypothesis of symmetry for these three variables. The
graphs of Tn(α) for 0 < α < 1/2 and the corresponding p-values for the sepal
length of Iris virginica, the sepal width of Iris versicolor, and the variable gvh in
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the yeast data are in Figures 4 and 5. It is evident there that the distributions
of these three variables are asymmetric; our test rejects the null hypothesis for
these three variables, while the other tests fail to detect the asymmetry.

3. The Second Derivative of α-trimmed Mean and Estimation of Con-
tamination Proportion

Consider the contamination model F (x) = (1 − β)H(x) + βG(x), where
β ∈ (0, 1/2) and H and G are such that G is stochastically larger than H. For
estimating the location parameter, Huber (1981, pp.74-75) showed that median
achieves the smallest bias among all translation invariant functionals. However,
the bias associated with median is strictly nonzero and depends on the contam-
ination proportion β. Huber also showed that the maximal asymptotic bias and
variance of the α-trimmed mean for data following a β-contaminated asymmet-
ric normal distribution is finite when α ≥ β, and is infinite when α < β. This
indicates the importance of assessing the extent of contamination in the data.

Note the sharp curvature in the graph of the average of α-trimmed mean
when α is close to the contamination proportion 0.3, in Figure 3. Also, in Figure
2, for α close to 0.3, we see a sharp change in the graphs that plot the averages
over several Monte-Carlo simulations of Tn(α) and the p-value. This behavior of
the α-trimmed mean and its derivative motivated us to investigate the behavior
of the second derivative of α-trimmed mean when data are generated from a
contamination model. It is given by

θ′′(α) =
2

1− 2α

[
θ(α)− 1

2
{F−1(α) + F−1(1− α)}

−1

2

{ 1

f(F−1(α))
− 1

f(F−1(1− α))

}]
.

One can use

Sn(α) :=
2

1− 2α

[
x̄α − 1

2
{F̂−1

n (α) + F̂−1
n (1− α)}

−1

2

{ 1

f̂n(F̂
−1
n (α))

− 1

f̂n(F̂
−1
n (1− α))

}]
as a natural estimate of θ′′(α). Here x̄α is the sample α-trimmed mean, F̂n is the
empirical distribution function, and f̂n is some suitable estimate of the density f
as before. In our numerical work, we have estimated f̂n as in the last paragraph
in Section 2.2.

In Figure 6, we have plotted the average of the values of Sn(α), where obser-
vations are obtained from the mixture normal distribution 0.7N(0, 1)+0.3N(5, 1).
There the maxima of Sn(α) is close to β = 0.3. This motivated us to investigate
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Figure 6. The graph of the average of Sn(α) obtained from 50 Monte-Carlo
replications each consisting of 25 i.i.d. observations from the 0.7N(0, 1) +
0.3N(5, 1) distribution.

the behavior of the maxima of θ′′(α). In the discussion following Theorem 5,
we note that the behavior of the maxima of θ′′(α) depends on the overlap be-
tween the distributions H and G, where G is a stochastically larger than H. A
quantitative measure of the overlap between H and G is the common probability
mass ∆H,G between H and G, ∆H,G =

∫ κ
−∞ g(x)dx+

∫∞
κ h(x)dx. Here κ is the

unique intersecting point between h and g, the density functions of H and G,
respectively, if we assume that such a unique point of intersection exists. On the
other hand, if H and G have disjoint supports, we set ∆H,G = 0.

One can find a closed form expression for ∆H,Hϕ
in the case of the model

F (x) = (1− β)H(x) + βHϕ(x), where H has a symmetric unimodal density, ϕ is
a location shift, and Hϕ(x) = H(x− ϕ). It follows that

∆H,Hϕ
=

∫ ϕ/2

−∞
h(x−ϕ)dx+

∫ ∞

ϕ/2
h(x)dx = H(−ϕ

2
)+1−H(

ϕ

2
) = 2

{
1−H(

ϕ

2
)

}
.

In this case, ϕ/2 is the intersecting point of the densities of H(x) and H(x− ϕ).

Theorem 5. Consider the model F (x) = (1 − β)H(x) + βG(x) where β ∈
(0, 1/2), H is any distribution function having a continuous density h, and G
is a stochastically larger than H with continuous density g. Suppose that h
and g are positive on any compact subinterval strictly inside the supports of h
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and g, and limα→0+ h(H
−1(α)) = limα→1− h(H

−1(α)) = limα→0+ g(G
−1(α)) =

limα→1− g(G
−1(α)) = 0. Assume that f(F−1(α)) > f(F−1(1 − α)) for all

α, where f = (1 − β)h + βg is the density function of F . When h is sup-

ported on a compact interval and its support is disjoint from that of g, we have

supα∈[β−γ,β+γ],α̸=β θ
′′(α) = ∞ and supα ̸∈[β−γ,β+γ] θ

′′(α) <∞ for any γ > 0. For

any given H with its density h supported on the entire real line, if G varies in

such a way that infq∈(0,1)
{
G−1(q)−H−1(q)

}
→ ∞, we have θ′′(β) → ∞ while

supα ̸∈[β−γ,β+γ] θ
′′(α) remains bounded above for any γ > 0.

Note that the preceding theorem implies that when ∆H,G is zero or close to

zero and α lies in a small neighborhood of β, θ′′(α) assumes very large values.

On the other hand, θ′′(α) takes relatively smaller values for α lying outside

that neighborhood. Hence, if we obtain a maximizer of an appropriate estimate

of θ′′(α) with respect to α, that maximizer will be close to β for small values

of ∆H,G. This behavior of the maxima of θ′′(α) motivated us to propose the

estimate

β̂ = arg max
α∈[b1,b2]

Sn(α), 0 < b1 < b2 <
1

2
.

Overall, in view of the preceding discussion, for any contamination model of the

form (1−β)H+βG satisfying the conditions stated in Theorem 5, it is expected

that the performance of β̂ will be good when ∆H,G is small. In the following

subsection, we investigate the behavior of β̂ in different location contamination

models with varying choices of ∆H,G.

3.1. A comparison with maximum likelihood estimators

The contamination model described in this section can be viewed as a special

case of mixture models. The estimation of mixing proportion in mixture models

is thoroughly discussed in Everitt and Hand (1981) using maximum likelihood

and related techniques. We have compared the performance of our estimate

with some other estimates of β based on the idea of maximum likelihood, with

∆H,G = 10%, 15%, and 20% for location contamination models involving normal,

Cauchy, and Laplace distributions. Using the relation ∆H,Hϕ
= 2 {1−H(ϕ/2)},

we have considered appropriate values of the location shift ϕ and varying choices

of β ∈ (0, 1/2) in the simulation study.

We simulatedm =1,000 samples from each distribution with sample sizes 100

and 1,000, and calculated mean square error (m.s.e.) = (1/m)
∑m

i=1(bi − β)2 for

different estimates. Here bi is the estimate of β for the ith sample. We computed

the efficiency of our estimate relative to other estimates, where the efficiency of

an estimate E1 relative to another estimate E2 is m.s.e.(E2)/m.s.e.(E1).

In the case of mixtures of normal distributions, for different values of contam-

ination proportion and ∆H,G, the ranges of efficiencies of our estimate relative to
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the estimate based on the E.M. algorithm and the Newton-Raphson method are

1.25–5.01 and 1.31–5.25, respectively. In the case of mixtures of Cauchy distri-

butions, the EM algorithm did not converge in our numerical studies. Here the

range of efficiency of our estimate relative to the estimate based on the Newton-

Raphson method is 0.97–2.52 for different values of contamination proportion and

∆H,G. For the mixtures of Laplace distributions, the Newton-Raphson method

is not feasible as the density functions involved are not differentiable. However,

the EM algorithm can be carried out in this case, and the range of efficiency of

our estimate relative to the estimate based on the E.M. algorithm is 0.96–2.87

for different values of contamination proportion and ∆H,G. The computation of

estimates based on the Newton-Raphson method were done by the “micEcon”

package in the Statistical software R, and we used the R codes given in Horton,

Brown, and Qian (2004, p.353) to compute estimates based on the E.M. algo-

rithm. In all our computations, we used the true values of the parameters to

start the iterations. Detailed results obtained from these finite sample efficiency

studies are in Section 6.1 of the supplementary material.

4. Some Concluding Remarks

The Pitman efficacy of Ahmad and Li’s (1997) test of symmetry based on

kernel density estimate is not mentioned in Section 2.4 because the kernel density

estimates converge at rates slower than the n−1/2, and consequently, the Pitman

efficacy of that test relative to ours is zero.

Our nonparametric estimate of contamination proportion, in Section 3, does

not require iterative computation while other competing estimates available in

the literature are based on the iterative procedures, and the performance of

those estimates depend on the chosen initial values. Moreover, second order

differentiability of the model is required for computing estimates by the Newton-

Raphson method, whereas we need only the existence of the density function.

When an appropriate parametric model holds for the data, the maximum

likelihood estimate of the contamination proportion is
√
n-consistent, asymptot-

ically normal, and its asymptotic variance coincides with the Cramer-Rao lower

bound. So, a natural question is how does the m.s.e. of β̂ compare with the true

Cramer-Rao lower bound for a specified parametric model. We have computed

the efficiency of β̂ relative to the Cramer-Rao lower bound when data follow mix-

tures of normal and Cauchy distributions. The range of those efficiency values

was 0.453–0.871 for sample size 100, and 0.193–0.454 for sample size 1,000.

We close by pointing out that the power and size of our test, and the M.S.E.

of β̂, depend on the choice of the bandwidth. We used different choices. Follow-

ing the suggestion in Ghosh, Chaudhuri, and Sengupta (2006), we took l0.05/3

and l0.95 as the lower and the upper limits of the bandwidths, respectively. Here
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lq is the q ∈ [0, 1]th quantile of the pair-wise differences of the observations in a
given data set. For different choices of bandwidth, the differences between the
maximum power and the power of our test based on an adaptive choice of the
bandwidth was at most 2%. Further details about the powers of the tests for
varying choices of bandwidths can be found in Figure 6.1 in the supplementary
material. We also found that the ranges of efficiencies of our estimate correspond-
ing to the minimum M.S.E. over different choices of bandwidths relative to the
estimate based on adaptive choice of bandwidth were 1.03− 1.07 and 1.01− 1.04
for sample sizes 100 and 1,000, respectively. It appears that the adaptive choice
of the bandwidth used in the construction of β̂ works quite well in this case.

5. Proofs of the Theorems

For Theorem 1, we first need to prove following two lemmas.

Lemma 1. If observations are from an absolutely continuous distribution func-
tion F with a positive and continuous density f on the entire real line, then for
any α1, α2, . . ., αk ∈ (0, 1/2), k > 1, the asymptotic distribution of

√
n(Tn(α1)−

θ′(α1), Tn(α2) − θ′(α2),. . . , Tn(αk) − θ′(αk)) is k-variate normal with zero mean
and a variance-covariance matrix in which the (i, j)th entry (1 ≤ i ≤ j ≤ k) is

k(αi, αj)

=
2
∫ F−1(1−αj)
0 x2f(x)dx+ 2F−1(αj)

∫ F−1(αj)

F−1(αi)
xf(x)dx+ 2αiF

−1(αi)F
−1(αj)

(1− 2αi)(1− 2αj)

+
αiF

−1(αi)

2(1− 2αj)f(F−1(αi))
+

αiF
−1(αj)

2(1− 2αj)f(F−1(1− αi))

+
αiF

−1(αi) +
∫ F−1(αj)

F−1(αi)
xf(x)dx

2(1− 2αi)f(F−1(αj))
+

αi(1− αj)

4f(F−1(αi))f(F−1(αj))

+
αiαj

4f(F−1(αi))f(F−1(1− αj))
+
αiF

−1(αi) +
∫ F−1(1−αj)

F−1(αi)
xf(x)dx

2(1− 2αi)f(F−1(1− αj))

+
αiαj

4f(F−1(1− αi))f(F−1(αj))
+

αi(1− αj)

4f(F−1(1− αi))f(F−1(1− αj))
.

Proof of Lemma 1. Recall that Tn(α) = x̄α−{F̂−1
n (α) + F̂−1

n (1− α)}/2, where
α ∈ (0, 1/2). As given in DasGupta (2008), we have

x̄α − 1

(1− 2α)

∫ F−1(1−α)

F−1(α)
xf(x)dx

=
1

n

n∑
i=1

F−1(α)1{xi≤F−1(α)}+xi1{F−1(α)≤xi≤F−1(1−α)}+F
−1(1−α)1{xi≥F−1(1−α)}

(1− 2α)
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+oP

(
1√
n

)
.

From Serfling (1980), we have

F̂−1
n (α)− F−1(α) =

1

n

n∑
i=1

α− 1{xi≤F−1(α)}

f(F−1(α))
+Rn

where, as n→ ∞, Rn = O(n−3/4(log n)3/4) with probability 1. Using these linear

expansions of α-trimmed mean and quantiles, it is straightforward to see that√
n(Tn(α1)−θ′(α1), . . . , Tn(αk)−θ′(αk)) can be written as a sum of i.i.d. k-variate

random vectors along with a remainder term that goes to zero in probability. By

an application of the C.L.T. and Slutsky’s Theorem, we have the asymptotic

normality of
√
n(Tn(α1) − θ′(α1), . . . , Tn(αk) − θ′(αk)) with zero mean. The

asymptotic variance-covariance matrix as given in the statement of the lemma

can be obtained by a direct algebraic computation.

Lemma 2. Under the assumptions stated in Lemma 1 and for α ∈ [b1, b2], the

stochastic process
√
n{Tn(α)− θ′(α)} is tight, where 0 < b1 < b2 < 1/2.

Proof of Lemma 2. First, for any distribution function F and α ∈ (0, 1/2), we

set F−1(α) = infx{x : F (x) ≥ α} and F−1(1 − α) = supx{x : F (x) < (1 − α)}
so that F−1(α) and F−1(1 − α) both become right continuous function of α ∈
(0, 1/2) and have left-hand limits. It follows from the definitions of x̄α, F

−1(α),

and F−1(1 − α) that the process Tn(α) for α ∈ [b1, b2] lies in D[b1, b2] for each

n ≥ 1, where D[b1, b2] is the space of real functions on [b1, b2] that are right

continuous and have left-hand limits (see Billingsley (1999, p.121)). In order to

prove the tightness of Tn(α), one needs to verify the two conditions stated in

Theorem 13.2 in Billingsley (1999, p.139). It follows from Theorem 3.1 in Bickel

(1967) that for α ∈ [b1, b2], where 0 < b1 < b2 < 1/2, and under the conditions

stated in Lemma 1, the standardized quantile process converges weakly to a

Gaussian process. This implies that the processes
√
n{F̂−1

n (α) − F−1(α)} and√
n{F̂−1

n (1 − α) − F−1(1 − α)} are tight for α ∈ [b1, b2] and, consequently, the

quantile processes that we need to deal with here satisfy Conditions 1 and 2

in Theorem 13.2 in Billingsley (1999, p.139). Next, we try to establish the

tightness of the α-trimmed mean process. For the α-trimmed mean process,

Condition 2 in Theorem 13.2, related to the oscillation of the stochastic process,

follows from Theorem A.1 in Leger and Romano (1990, pp.311-312) considering

F̂n and F instead of Ĝn and Fn, respectively. Condition 1 in Theorem 13.2,

related to the uniform boundedness of the process, holds for the α-trimmed mean

process because the α-trimmed mean is the average of certain quantiles. Note

that we are using the fact that quantile processes satisfy the condition of uniform
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boundedness for α ∈ [b1, b2]. Consequently, the α-trimmed mean process is tight,

and the process Tn(α) is also tight for α ∈ [b1, b2] and 0 < b1 < b2 < 1/2. This

completes the proof of the lemma.

Proof of Theorem 1. It follows from Lemmas 1 and 2 that any finite-dimen-

sional distribution of the stochastic process
√
n{Tn(α) − θ′(α)} is multivariate

normal, and the process satisfies the tightness condition. Therefore,
√
n{Tn(α)−

θ′(α)} converges weakly to a Gaussian process in view of Theorem 13.1 in Billings-

ley (1999, p.139).

Proof of Corollary 1. Since
√
n{Tn(α)− θ′(α)} is tight in the space D[b1, b2]

equipped with the supremum norm, it follows from Condition 1 in Theorem 13.2

that, for every 0 < η < 1 and for any 0 < b1 < b2 < 1/2, there exists a constant

M(η, b1, b2) > 0 such that P [supα∈[b1,b2]
√
n|Tn(α)−θ′(α)| ≤M(η, b1, b2)] > 1−η.

This implies that supα∈[b1,b2] |Tn(α) − θ′(α)| = OP (n
−1/2) and completes the

proof.

Proof of Proposition 1. The α-trimmed mean θ(α) = (1−2α)−1 ∫ F−1(1−α)
F−1(α)

xf(x)dx is a decreasing function of α if

d

dα
θ(α) ≤ 0⇔ 1

(1− 2α)

∫ F−1(1−α)

F−1(α)
xf(x)dx ≤ F−1(α) + F−1(1− α)

2

⇔ lim
N→∞

j=N∑
j=1

1

N

F−1(αj)+F
1(1−αj)

2
≤ F−1(α)+F−1(1−α)

2
, (5.1)

where (α1, α2, . . ., αN ) is an equally spaced partition of (α, 1 − α). The last

implication follows from the convergence of Riemann sum to the Riemann inte-

gral. In order to prove (5.1), it is enough to show that for any j = 1, . . . , N ,

(F−1(αj) + F−1(1− αj))/2 is smaller than (F−1(α) + F−1(1− α))/2. So, it is

sufficient to prove that (F−1(α) + F−1(1− α))/2 is a decreasing function of α,

i.e.,

d

dα

F−1(α) + F−1(1− α)

2
≤ 0 ⇔ f(F−1(α)) ≥ f(F−1(1− α)).

This completes the proof of the proposition.

Proof of Theorem 2. In view of the weak convergence of the process
√
n{Tn(α)

−θ′(α)} for α ∈ [b1, b2] and the continuity of M , it is obvious that the test has

asymptotic size ρ.

Recall now from Theorem 1 that for α ∈ [b1, b2], the process
√
n{Tn(α) −

θ′(α)} converges weakly to a Gaussian process. Consequently, ||
√
n{Tn(α) −

θ′(α)}||[b1,b2],p = OP (1) for any b1, b2 ∈ (0, 1/2) and p ∈ [1,∞]. Further,
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in view of the continuity θ′, there exist b1, b2 ∈ (0, 1/2) under H1 such that
||θ′||[b1,b2],p > 0 for any p ∈ [1,∞]. These facts imply that for every C1 > 0,
limn→∞ PH1 [||

√
n{Tn(α)}||[b1,b2],p > C1] = 1. Hence, we have limn→∞ PH1 [M

[
√
n{Tn(α)}] > ξρ] = 1 in view of the condition imposed on M .

Proof of Theorem 3. It follows from Theorem 1 that for α ∈ [b1, b2],
√
n{Tn(α)

−θ′(α)} converges weakly to a Gaussian process with zero mean and covariance
function k(α1, α2). Here k(α1, α2) is a non-negative kernel and, from its expres-
sion in Lemma 1, that it is a continuous function of α1 and α2. Let the ei(α)’s
and the λi’s be the eigen-functions and the eigen-values of the kernel k(α1, α2),
respectively. From the Karhunen-Loeve expansion (see, e.g., Loeve (1978)) of the
weak limit of the process

√
n{Tn(α)− θ′(α)}, this process converges in distribu-

tion to the process
∞∑
i=1

Ziei(α), where the Zi’s are independent random variables

such that Zi has N(0, λi) distribution. Using the continuity of the integral func-
tional on D[b1, b2] equipped with the supremum norm and the orthonormality of

the ei(α)’s, under H0, when θ′(α) = 0 for all α ∈ [b1, b2], τn =
∫ b2
b1
n{Tn(α)}2

converges weakly to
∞∑
i=1

λiWi, where Wi is as defined in the statement of the

theorem. This completes the proof.

Lemma 3. Let τ∗n =
∑[nb2]−1

i=[nb1]+1{Tn(i/n)}
2. Then, τn − τ∗n converges to zero in

probability.

Proof of Lemma 3. Note that∫ b2

b1

n{Tn(α)}2dα =

∫ b2

b1

n

{
x̄α − F̂−1

n (α) + F̂−1
n (1− α)

2

}2

dα.

In other words, it is enough to show that

n

∫ b2

b1

{F̂−1
n (α)}2dα−

[nb2]−1∑
i=[nb1]+1

{
F̂−1
n (

i

n
)

}2
P→ 0,

n

∫ b2

b1

{F̂−1
n (1− α)}2dα−

[nb2]−1∑
i=[nb1]+1

{
F̂−1
n (1− i

n
)

}2
P→ 0

and ∫ b2

b1

{x̄α}2dα−
[nb2]−1∑

i=[nb1]+1

x̄2i/n
P→ 0.

Note that

[nb2]−1∑
i=[nb1]+1

{
F̂−1
n (

i

n
)

}2

=
[
x2([nb1]+1) + . . .+ x2([nb2]−1)

]
,
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and

n

∫ b2

b1

{F̂−1
n (α)}2dα = n

[∫ ([nb1]+1)/n

b1

{F̂−1
n (α)}2dα+

∫ ([nb1]+2)/n

([nb1]+1)/n
{F̂−1

n (α)}2dα

+· · ·+
∫ [nb2]/n

([nb2]−1)/n
{F̂−1

n (α)}2dα]+
∫ b2

([nb2]−1)/n
{F̂−1

n (α)}2dα

]

=
[
x2[nb1]+1 + . . .+ x2([nb2]−1)

]
+ x2([nb2]){b2 −

[nb2]

n
}.

Hence,

n

∫ b2

b1

{F̂−1
n (α)}2dα−

[nb2]−1∑
i=[nb1]+1

{
F̂−1
n (

i

n
)

}2

= x2([nb2])

(
b2 −

[nb2]

n

)
P→ 0

using the facts that (b2 − [nb2]/n) → 0 and x([nb2]) = OP (1) as n → ∞. The
proofs of

n

∫ b2

b1

{F̂−1
n (1− α)}2dα−

[nb2]−1∑
i=[nb1]+1

{
F̂−1
n (1− i

n
)

}2
P→ 0

and ∫ b2

b1

{x̄α}2dα−
[nb2]−1∑

i=[nb1]+1

x̄2i/n
P→ 0

follow from algebraic computations. This completes the proof of the lemma.

Proof of Theorem 4. In order to establish contiguity of the sequence of den-
sities associated with Hn, it is enough to show that the log likelihood ratio Ln is
asymptotically normal with mean −σ2/2 and variance σ2 (see Hajek and Sidak
(1967, p.204)). Suppose that fn(xi) is the density function of Fn(xi). The likeli-
hood ratio for testing H0 against Hn is

Ln =

n∑
i=1

log
fn(xi)

h(xi)
=

n∑
i=1

log
(1− δ/

√
n)h(xi) + δ/

√
ng(xi)

h(xi)

=
n∑

i=1

log

[
1 +

δ√
n

{
g(xi)

h(xi)
− 1

}]

=
δ√
n

n∑
i=1

{
g(xi)

h(xi)
− 1

}
− δ2

2n

n∑
i=1

{
g(xi)

h(xi)
− 1

}2

+Rn

= δ
√
n
1

n

n∑
i=1

ki −
δ2

2
× 1

n

n∑
i=1

k2i +Rn (here ki =
g(xi)
h(xi)

− 1). (5.2)
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Since Eh {g(x)/h(x)− 1}2 < ∞, we have Rn
p→ 0 as n → ∞. Further,

using straightforward applications of the C.L.T. and W.L.L.N., it follows that

the first term in (5.2) is asymptotically normal with mean zero and variance

δ2var(ki) = δ2σ2, and the second term in (5.2) converges in probability to

−(δ2/2)σ2. So, by Slutsky’s Theorem, Ln is asymptotically normally distributed

with mean −(δ2/2)σ2 and variance δ2σ2. This ensures the contiguity of the

sequence of densities associated with Hn using Hajek and Sidak (1967, p.204).

We consider t1, . . . , tk ∈ R. Under H0, one can establish that the joint dis-

tribution of
√
n((1/n)

∑n
i=1 ψ(xi, t1) − Eh{ψ(xi, t1)}, . . . , (1/n)

∑n
i=1 ψ(xi, tk) −

Eh{ψ(xi, tk)}, Ln) is asymptotically multivariate Gaussian using the C.L.T. and

the expansion of log likelihood ratio Ln (given in (5.2) above). Note that for

any p = 1, . . . , k, the asymptotic covariance between
√
n((1/n)

∑n
i=1 ψ(xi, tp) −

Eh{ψ(xi, tp)}) and
√
nLn is

m(tp, δ) = Eh

[
1√
n

n∑
i=1

ψ(xi, tp)×
δ√
n

n∑
i=1

{
g(xi)

h(xi)
− 1

}]

=
δ

n
Eh

[
n∑

i=1

ψ(xi, tp)×
{
g(xi)

h(xi)
− 1

}]
(since Eh

{
g(x)
h(x) − 1

}
= 0)

= δ[Eg{ψ(x, tp)} − Eh{ψ(x, tp)}].

Now, by a straightforward application of Hajek and Sidak (1967, p.208)

one can establish that, under contiguous alternatives,
√
n((1/n)

∑n
i=1 ψ(xi, t1)−

Eh{ψ(xi, t1)}, . . . , (1/n)
∑n

i=1 ψ(xi, tk) − Eh{ψ(xi, tk)}) is asymptotically k-di-

mensional multivariate normal with mean having pth componentm(tp, δ) and k×
k-dimensional covariance matrix k1(t1, t2), which is as defined in the statement of

the theorem. Further, the process
√
n((1/n)

∑n
i=1 ψ(xi, t)−Eh{ψ(xi, t)}) satisfies

tightness condition under contiguous alternatives in view of the fact that it is

tight under H0. The tightness under H0 follows from the fact that the process√
n((1/n)

∑n
i=1 ψ(xi, t) − Eh{ψ(xi, t)}) converges weakly to a Gaussian process

underH0, which is assumed in the theorem. So, underHn,
√
n((1/n)

∑n
i=1ψ(xi, t)

−Eh{ψ(xi, t)}) converges to a Gaussian process with mean function m(t, δ) and

covariance kernel k1(t1, t2). This completes the proof.

Proof of Theorem 5. We first consider the case, when H is supported on a

compact interval and H and G have disjoint supports. Recall that

θ′′(α) =
2

1− 2α

[
1

1− 2α

∫ F−1(1−α)

F−1(α)
xf(x)dx− 1

2
{F−1(α) + F−1(1− α)}

− 1

2

{
1

f(F−1(α))
− 1

f(F−1(1− α))

}]
.
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It follows from the proof of Proposition 1 that, under the skewness condition

f(F−1(α)) > f(F−1(1− α)),[
1

1− 2α

∫ F−1(1−α)

F−1(α)
xf(x)dx− 1

2
{F−1(α) + F−1(1− α)}

]
is bounded above for all α ∈ [b1, b2]. So, in order to prove Theorem 5 it is enough

to investigate the behavior of

N(α) := −1

2

[
1

f(F−1(α))
− 1

f(F−1(1− α))

]
,

where α ∈ [b1, b2] and 0 < b1 < b2 < 1/2.

If y1 = F−1(α) and α < (1− β), then y1 is located inside the support of H

as G is stochastically larger than H and they have disjoint supports. In other

words,

(1− β)H(y1) = α⇔ y1 = H−1

(
α

(1− β)

)
.

If α > (1− β), y1 is located inside the support of G and, in that case,

F−1(α) = y1 ⇔ (1− β)H(y1) + βG(y1) = α

⇔ (1− β) + βG(y1) = α (since H(y1) = 1)

⇔ y1 = G−1

(
α− (1− β)

β

)
.

If α = (1−β), then F−1(α) can be defined as any point that lies between H−1(1)

and G−1(0).

Next, whenH and G have disjoint supports, we show that supα∈[β−γ,β+γ],α̸=β

N(α) = ∞ and supα ̸∈[β−γ,β+γ]N(α) <∞ for any γ > 0. We have

lim
α→β+

N(α) = lim
α→β+

−1

2

[
1

(1− β)h(F−1(α)) + βg(F−1(α))

− 1

(1− β)h(F−1(1− α)) + βg(F−1(1− α))

]
= ∞

(since F−1(α) = H−1(α/(1−β)) if α < (1−β), h(H−1(x)) → 0 and g(H−1(x)) →
0 as x→ 1−). In the same way,

lim
α→β−

N(α) = lim
α→β−

−1

2

[
1

(1− β)h(F−1(α)) + βg(F−1(α))

− 1

(1− β)h(F−1(1− α)) + βg(F−1(1− α))

]
= ∞
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(since F−1(α) = G−1((α− (1− β))/β) if α > (1 − β), h(G−1(x)) → 0 and
g(G−1(x)) = 0 as x → 0+). Hence, limα→β N(α) = ∞. This implies that
supβ−γ≤α≤β+γ,α ̸=β N(α) = ∞.

Next, we try to investigate N(α) when α < β−γ or α > β+γ for any γ > 0.
If α > β + γ, we have

N(α) = −1

2

[
1

(1− β)h(H−1(α/(1− β))) + βg(H−1(α/(1− β)))

− 1

(1− β)h(H−1((1− α)/(1− β))) + βg(H−1((1− α)/(1− β)))

]
.

The last expression is bounded as h and g are continuous and positive on any
compact subinterval strictly inside the supports of h and g. For α < β − γ,

N(α) = −1

2

[
1

(1− β)h(H−1(α/(1− β))) + βg(H−1(α/(1− β)))

− 1

(1− β)h(G−1((β − α)/β)) + βg(G−1((β − α)/β))

]
.

Again, the last expression is bounded as h and g are continuous and positive on
any compact subinterval strictly inside the supports of h and g. This completes
the proof in the case when H is supported on compact interval, and H and G
have disjoint supports.

Next we consider the case in which H is supported on the entire real line and
G varies in such a way that G >st H and infq∈(0,1){G−1(q)−H−1(q)} → ∞. As
in the case of disjoint supports for H and G, it is enough to investigate the term
N(α) = −[1/f(F−1(α))− 1/f(F−1(1− α))]/2 that appears in the expression of
θ′′(α).

Suppose that supα>β+δ θ
′′(α) is not bounded above as G varies satisfy-

ing the conditions stated above. There must exist a sequence of distributions
Gn >st H and a sequence of positive real numbers 1/2 > αn > β + δ such that
infq∈(0,1){G−1

n (q) − H−1(q)} → ∞ and θ′′n(αn) → ∞ as n → ∞. Let yn be the
αnth quantile of Fn = (1− β)H + βGn, i.e., yn = F−1

n (αn). We have

F−1
n (αn) = yn ⇔ (1−β)H(yn)+βGn(yn) = αn

⇔ (1−β)H(yn)+βH(yn−zyn) = αn (zyn>0 as Gn >st H). (5.3)

Note that zyn → ∞ as n → ∞ for any yn since infq∈(0,1){G−1
n (q) −H−1(q)} →

∞ as n → ∞. If θ′′n(αn) → ∞ (and hence, Nn(α) = −[1/fn(F
−1
n (α)) −

1/fn(F
−1
n (1−α))]/2 → ∞) as n→ ∞, then we must have either yn=F

−1
n (αn)→

±∞ and yn−zyn → ±∞, or un := F−1
n (1− αn) → ±∞ and un − zun → ±∞ as

n→ ∞. This follows from the expression

Nn(αn) = −1

2

[
1

(1− β)h(yn) + βh(yn−zyn)
− 1

(1− β)h(un) + βh(un−zun)

]
,
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and the fact that h is positive and continuous on any compact subinterval within

its support. If yn → −∞ and zyn → ∞, we have yn − zyn → −∞ because

zyn → ∞. Now, using yn → −∞ and yn − zyn → −∞ in (5.3), we have αn → 0

as n → ∞, which contradicts the fact that αn > β + δ for all n. If yn → ∞
and zyn → ∞, then yn − zyn may be bounded or unbounded. In that case, we

again need to consider several distinct possibilities, as either yn − zyn remains

bounded as n→ ∞, or we can extract a subsequence along which yn−zyn → ±∞
as n → ∞. Using yn → ∞ and yn − zyn → ∞ in (5.3), we have αn → 1, which

contradicts αn < 1/2 for all n. Lastly, if yn → ∞ while yn − zyn either remains

bounded or tend to −∞ as n → ∞, then it follows from (5.3) that for all n

sufficiently large, αn > 1/2, in view of the fact that (1 − β) > 1/2, and this is

again a contradiction. Combining all these, it follows that the sequence yn must

remain bounded as n → ∞. In a similar way, one can show that un remains

bounded as n→ ∞ using the equation

(1− β)H(un) + βH(un − zun) = (1− αn), (5.4)

where zun satisfies Gn(un) = H(un−zun), and hence zun → ∞ as n→ ∞ in view

of the condition infq∈(0,1){G−1
n (q) − H−1(q)} → ∞ as n → ∞. This completes

the proof of boundedness of supα>β+γ Nn(α) as n→ ∞.

Next, assume that supα<β−γ θ
′′
n(α) is not bounded above. As before, there

must exist a sequence of distributions Gn >st H and a sequence of positive real

numbers 1/2 > αn > β + γ satisfying the conditions as stated in the preceding

paragraph. Once again, if θ′′(αn) → ∞ as n→ ∞, it follows from the preceding

expression of Nn(αn) that, as n → ∞, either yn → ±∞ and yn − zyn → ±∞,

or we have un → ±∞ and un − zun → ±∞. Now, arguing as before, and using

(4), one can show that un − zun remains bounded as n→ ∞. Since h is positive

and continuous on any compact subinterval of its support, we can conclude that

supα<β−γ Nn(α) remains bounded as n→ ∞.

We look to the case α = β. Here also, let Gn be a sequence of distributions

satisfying Gn >st H and infq∈(0,1){G−1
n (q) − H−1(q)} → ∞ as n → ∞. Let

vn := F−1
n (1− β) and wn := F−1

n (β). Hence, we have

(1− β)H(vn) + βH(vn − zvn) = (1− β), (5.5)

where zvn satisfies Gn(vn) = H(vn − zvn), and consequently, zvn → ∞ as n→ ∞
in view of the condition infq∈(0,1){G−1

n (q)−H−1(q)} → ∞ as n → ∞. Now, we

try to show that (5.5) is satisfied only when vn → ∞ and vn − zvn → −∞ as

n → ∞. If vn → −∞ and vn − zvn → −∞ as n → ∞ in (5.5), then we have

β = 1, which contradicts β < 1/2. On the other hand, if vn is bounded and

vn − zvn → −∞ as n → ∞, then (5.5) along with the fact that H is supported

on the entire real line implies that the left hand side of (5.5) is strictly smaller
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than (1− β) for all n sufficiently large, which is also a contradiction. If both vn
and vn − zvn tend to ∞ as n → ∞, it follows from (5.5) that β = 0, which is

not possible. Further, if we consider the possibility that vn → ∞ and vn − zvn
remains bounded as n → ∞ in (5.5), then {(1 − β) − (1 − β)H(vn)} tends to

zero as n→ ∞ while βH(vn − zvn) remains bounded away from zero as n→ ∞,

which leads to a contradiction in view of (5.5). Combining these facts, (5.5) is

satisfied only if vn → ∞ and vn − zvn → −∞ as n→ ∞. Consequently, we must

have

Nn(β) =

[
1

(1− β)h(wn) + βh(wn − zwn)
− 1

(1− β)h(vn) + βh(vn − zvn)

]
→ ∞

as n→ ∞, since h(x) → 0 as x→ ±∞. This completes the proof of the theorem.
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