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Abstract: We propose a new hierarchical clustering method for high dimension,

low sample size (HDLSS) data. The method utilizes the fact that each individ-

ual data vector accounts for exactly one dimension in the subspace generated by

HDLSS data. The linkage that is used for measuring the distance between clus-

ters is the orthogonal distance between affine subspaces generated by each cluster.

The ideal implementation would be to consider all possible binary splits of the

data and choose the one that maximizes the distance in between. Since this is not

computationally feasible in general, we use the singular value decomposition for

its approximation. We provide theoretical justification of the method by studying

high dimensional asymptotics. Also we obtain the probability distribution of the

distance measure under the null hypothesis of no split, which we use to propose a

criterion for determining the number of clusters. Simulation and data analysis with

microarray data show competitive clustering performance of the proposed method.
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data, maximal data piling, singular value decomposition

1. Introduction

Clustering high dimension, low sample size (HDLSS) data is an important

task in many application areas (Datta and Datta (2003); Loewenstein et al.

(2008)), especially in the area of microarray gene expression data analysis. Pan

(2006), Pan and Shen (2007), and Wang and Zhu (2008) take a model-based ap-

proach, focusing on dimension reduction via feature selection. The singular value

decomposition is also popular in high dimensional clustering (Liu et al. (2003);

Wall and Dyck, and Brettin (2001); Wall, Rechtsteiner, and Rocha (2003)), es-

pecially for the bi-clustering analysis that clusters both genes and samples.

A main interest in clustering is how to measure the distance between clusters.

Some classical measures include single, complete, average, and centroid linkage

to name a few. However, approaches based on the pairwise L2 distance between

data vectors, such as single and complete linkage methods, do not work well

in HDLSS due to the fact that all observations are far apart from each other

(Beyer et al. (1999); Hinneburg, Aggarwal, and Keim (2000)). In particular,

it is known that minimum and maximum pairwise distances are approximately
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Figure 1. Illustration of the MDP distance between two clusters of size two.
Note that the two subspaces are not intersecting in the 3-d space. DMDP

is the orthogonal distance between the affine subspaces (lines) generated by
the data vectors in each cluster.

indistinguishable when the dimension of the data is much larger than the sample

size (Steinbach, Ertoz, and Kumar (2003)).

In this paper we consider a distance measure that can only be defined for

HDLSS data. Assume that there are N data vectors in Rd with d > N and

that the data are non-degenerate in the sense that they generate a subspace of

dimension N . Since each data vector accounts for exactly one dimension in the

subspace, each cluster generates a subspace with the dimension equal to the size

of the cluster. This fact leads us to consider a distance that measures how far

these subspaces are from each other. Thus we propose to use the orthogonal

distance between affine subspaces generated by each cluster. Figure 1 illustrates

this distance, denoted by DMDP, when two clusters have two data points each.

We call it the maximal data piling (MDP) distance since it is also the distance

between projections by the MDP direction vector (Ahn and Marron (2010)) that

is explained in detail in Section 2.1.

In Section 2.2, we propose a hierarchical clustering algorithm based on the

MDP distance. The proposed algorithm begins with a single cluster containing

all observations and makes successive splits. Ideally we wish to search the entire

space of possible binary splits and choose the split yielding the largest MDP

distance. A direct implementation of this idea is not practical for a decent size of

N , as the size of the search space is 2N−1−1. Thus we suggest an approximating

algorithm using the singular value decomposition (SVD) that effectively reduces

the search space.

Asymptotic studies related to HDLSS data involve the dimension d tending

to infinity. In Section 3.1 we investigate the large-d asymptotic properties of the

MDP distance and the proposed clustering algorithm. Employing the HDLSS

geometric representation by Hall, Marron, and Neeman (2005) and Ahn et al.
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(2007), we show that the MDP distance is maximized at the true split and that

the SVD and MDP are equivalent in the large-d limit.

It is a key component in clustering analysis to determine the number of

clusters. AIC or BIC types of measures are common choices for model-based

methods. In HDLSS clustering Liu et al. (2008) proposed a method with which

one can calculate an empirical p-value for the significance of a binary split. We

propose a testing procedure for the significance of a split in Section 3.2 that

is based on the probability distribution of the MDP distance under the null

hypothesis of no split.

A simulation study to investigate the performance of the proposed method is

presented in Section 4. Section 5 applies the proposed method to five microarray

data examples. Section 6 ends the paper with a discussion.

2. Maximal Data Piling Clustering

2.1. Maximal data piling direction vector

In this section we introduce maximal data piling in the binary discrimination

setting where the labels are known. Suppose that we have a Class +1 sample

x1, . . . ,xm and a Class−1 sample y1, . . . ,yn in Rd and that d ≥ N−1 = m+n−1.

Also assume that the data vectors are linearly independent. Then there exist

infinitely many direction vectors onto which the data vectors project to only

two distinct values, one for each class. Ahn and Marron (2010) showed that

there exists a unique direction vector that is optimal among these in the sense

that it produces the largest distance between the projections. They named it

the maximal data piling (MDP) direction vector since it maximizes not only the

amount of data piling but also the distance between the piling sites. See Marron,

Todd, and Ahn (2007) and Ahn and Marron (2010) for detailed discussions on

the data piling phenomenon in HDLSS discrimination.

In what follows we introduce the mathematical formulation of the MDP. Let

X(d×m) = [x1, . . . ,xm] and Y(d×n) = [y1, . . . ,yn] be data matrices for each class.

We center each row and let Xc and Yc denote their mean-subtracted centered

version. Also let C(d×N) = [Xc,Yc] denote the horizontal concatenation of the

two matrices. Let w = x̄− ȳ denote the group mean difference vector and let A†

be the Moore–Penrose generalized inverse of a matrix A. Note that P = CC† is

the projection matrix to the column space of C.

Consider the following optimization problem: find v that maximizes (v′w)2

subject to C′v = 0 and ∥v∥ = 1. The solution is given by the projection of w

onto the orthogonal complement of the column space of C,

vMDP ∝ (Id −P)w, (2.1)
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where Id is the d-dimensional identity matrix. Note that vMDP has a specific

position in the data space. Since both w and the column vectors of C are

in the subspace generated by globally centered data, vMDP lies in that (N − 1)-

dimensional subspace while being orthogonal to the (N−2)-dimensional subspace

generated by the class-wise centered data vectors.

The distance between the projections of Class +1 and Class −1 data vectors,

the MDP distance, is

DMDP = |w′vMDP| =
w′(Id −P)w

∥(Id −P)w∥
= ∥(Id −P)w∥1/2, (2.2)

where ∥ · ∥ is the L2 norm. An equivalent formula to (2.1) is

vMDP ∝ Z′†ℓ0, (2.3)

where Z is the centered data matrix obtained by subtracting the overall mean

from the whole data matrix [X,Y], and ℓ0 = [1′m,−1′n]
′ is the N -vector of class

labels. The MDP distance derived from (2.3) is

DMDP =
2

∥Z′†ℓ0∥
, (2.4)

which is equivalent to (2.2). See Ahn and Marron (2010) for the derivation of

the formulas.

2.2. Clustering with the maximal data piling distance

Given a data set with unknown class membership, the MDP clustering finds

successive binary splits, each of which creates two clusters in such a way that the

affine subspaces generated by them are as far away from each other as possible.

At each split the optimization problem is to maximize the MDP distance DMDP

in (2.4) over all possible choices of the label vector.

Before introducing the clustering algorithm, we demonstrate that DMDP is an

appropriate measure for clustering, via simulation. We generated two clusters of

size five from d-variate normal distributions with identity covariance where d =

100, 500, 1,000, 2,500, 5,000. The underlying means of the two clusters were set

apart by .25
√
d. We ignored the cluster membership, made all possible 5-5 splits,

and calculated three distance measures for each split: the MDP distance, min-

imum pairwise distance between clusters (single linkage), and average pairwise

distance (average linkage). Figure 2 depicts the proportion of times out of 1,000

repetitions that the distance from the true split is the largest among all splits,

i.e., the true clusters are found by the distance measure in question. The MDP

distance is the most effective among the three distance measures, especially when

the dimension is large.
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Figure 2. Comparison of the MDP distance with single and average linkages.
Proportion of correct identification of the true clusters is shown. The MDP
distance is the most efficient, especially for large dimensions.

This result implies that measures based on Euclidean distances between in-
dividual data points can be unstable for HDLSS data, as shown by Beyer et al.
(1999). However, the MDP distance DMDP depends on the affine subspaces gen-
erated by the data in a cluster, rather than specific locations of individual points.
Later, in Theorem 1, we identify the condition under which a large-d asymptotic
optimality of DMDP is achieved.

With a slight abuse of notation, suppose that we have a cluster C with N
observations split at a certain stage of hierarchical clustering. Then we look
for the label vector ℓ = (ℓ1, . . . , ℓN )′, where ℓi ∈ {−1,+1}, that maximizes (2.4).
Ideally we wish to search the space L = {−1,+1}N \{−1}N \{+1}N exhaustively;
however, this is computationally infeasible unless N is very small, say less than
10.

In order to circumvent heavy computation, we propose a heuristic for obtain-
ing an approximate solution to the problem. We allow the labels to be continuous
so that the modified task is to find ℓ̂ ∈ RN that minimizes ∥Z′†ℓ̂∥ where ∥ℓ̂∥ = 1.
Let the singular value decomposition of Z be Z = U(d×N)S(N×N)V

′
(N×N), where

S = diag{s1, . . . , sN−1, 0}. Then the optimization problem is

min
ˆℓ∈RN ,∥ˆℓ∥=1

ℓ̂
′
VS−2V′ℓ̂,

which is equivalent to
max

ˆℓ∈RN ,∥ˆℓ∥=1

ℓ̂
′
VS2V′ℓ̂.

It is clear that the solution for ℓ̂ is the first right singular vector of Z, or the
first eigenvector of Z′Z. Denoting the vector by v1 = (v1, . . . , vN )′, we sort the
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entries vi, i = 1, . . . , N , so vj1 ≥ · · · ≥ vjN . Then we search for the largest

gap, say between vjk and vjk+1
, at which we split the current cluster C into

two with one containing the j1, . . . , jkth observations and the other containing

the jk+1, . . . , jN th observations. Theorem 2 in Section 3.1 provides a theoretical

justification for this approximation and identifies the condition under which v1

is asymptotically equivalent to the true label vector ℓ0. The simulated example

for Figure 4 also provides empirical evidence for the approximation.

Of practical concern, the final algorithm implements some fine adjustments

to the basic prototype procedure explained in the previous paragraph. First we

consider the possibility that subsequent eigenvectors are more informative than

the first, especially when there are more than two clusters in the data. Therefore

we propose to look at the first T ≥ 2 eigenvectors, locate the largest gap in the

sorted entries of each vector, and then choose the split corresponding to the gap

that induces the largest MDP distance.

In order to see the effect of different choices of T , we ran the simulation in

Section 4 with different T = 1, 2, and 3. In all simulation settings, the effect was

minimal and hardly changed the mean error rates. It is always recommended

to use a larger value of T since it yields a better chance to find the split with

the largest MDP distance. In practice, a guessed number of clusters prior to the

analysis can be a reasonable upper bound. One might look at sizes of eigenvalues

to determine T , for example using a scree plot or a pre-determined proportion

explained by the first few eigenvalues. We used T = 2 for the data examples in

Section 5.

The second adjustment is to set a minimum size of a cluster. Due to outliers

or the sparse nature of HDLSS data, the largest gap sometimes happens to be

at the end of the sorted entries, which produces too small a cluster. This can be

prevented by putting a constraint on the minimum size of a cluster, say at G.

One may try several different values of G and choose the cluster solution with the

best interpretation. Empirically we found that G = 5 works quite well, thus we

use it for simulation and the data examples in this paper. Figure 3 summarizes

the proposed algorithm.

The successive splitting process can be stopped according to some criterion,

such as when (1) a pre-determined number of clusters is reached, (2) a produced

cluster is too small, or (3) a current cluster is too small to divide. We can also

evaluate the statistical significance of a split via hypothesis testing, as introduced

in Section 3.2. These stopping rules are optional because the decision to discon-

tinue the tree making process should depend on a specific problem. Also one

may want to build a large clustering tree and prune it afterward.
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Summary
Make successive binary splits in the following way. See Section 3.2 for a stopping rule
based on hypothesis testing or the last paragraph of Section 2.2 for user-specified crite-
ria. In order to find an optimal split of a current cluster of size N , obtain the first T
eigenvectors of Z′Z where Z is d×N mean-centered data matrix, denoted by v1, . . . ,vT .
For t = 1, . . . , T ,

1. Discard the largest G and the smallest G elements of vt.

2. Find the largest gap between the sorted elements of vt.

3. Calculate the MDP distance for the split induced by the largest gap.

Choose the split that has the largest MDP distance.

Figure 3. Algorithm of the proposed method

3. Theoretical Properties

3.1. High dimensional asymptotics

In this section the optimality of the MDP method is established by utiliz-

ing the asymptotic geometric representation of HDLSS data by Hall, Marron,

and Neeman (2005) and Ahn et al. (2007). These papers established the rep-

resentation under different distributional settings, and later Jung and Marron

(2009) did it in a unified framework. In this section we use the conditions in

Hall, Marron, and Neeman (2005) since it is easier to discuss the geometry in

their setting. Suppose that at a given stage of hierarchical clustering we have

N = m+ n data vectors from two underlying clusters. Let X(d) = (X1, . . . , Xd)
′

and Y (d) = (Y1, . . . , Yd)
′ denote the d-variate random vectors for the two clusters,

respectively. Hereafter we suppress the use of (d) to simplify notation. Assume

that their population structures satisfy the following conditions in Hall, Marron,

and Neeman (2005) as d tends to infinity. Note that the condition (e) from Jung

and Marron (2009) controls the degree of dependence among variables and mod-

ifies the original condition in Hall, Marron, and Neeman (2005) slightly so that

it does not depend on the order of the variable entries.

(a) The fourth moments of the entries of the data vectors are uniformly bounded.

(b) d−1
∑d

j=1Var (Xj) −→ σ2.

(c) d−1
∑d

j=1Var (Yj) −→ τ2.

(d) d−1
∑d

j=1{E(Yj)− E (Xj)}2 −→ µ2.

(e) There exists a permutation of the entries of the data vectors such that the

sequence of the variables are ρ-mixing for functions that are dominated by

quadratics.
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Then, as d tends to infinity, the data vectors approximately form anN -polyhedron

while each cluster forms a regular simplex with m and n vertices, denoted by X
and Y respectively. The length of an edge connecting data vectors in X (or

Y) is approximately
√
2σ (or

√
2τ) after scaling by

√
d. The length of an edge

connecting data vectors from different clusters is
√

σ2 + τ2 + µ2 after scaling by√
d.

Theorems 1 and 2 together show that, as d tends to infinity, the proposed

hierarchical clustering method finds the optimal split if the underlying means

of the two clusters are reasonably well separated compared to the within-cluster

variation. Theorem 1 states that the MDP distance for the true split is the largest

among all possible splits. Theorem 2 states that the first right singular vector

v1 of Z is approximately equivalent to the true label vector ℓ0. Even though the

theorems imply that there are only two classes at each split, based on empirical

evidence we conjecture that at each split the data have, approximately, one

cluster at each node. These asymptotic results are consistent with our empirical

findings in Figure 4. The proofs of the theorems are given in the Appendix.

Theorem 1. Assume (a)−(e) are satisfied and that the minimum size of a cluster

is set at G ≤ min{m,n}. Also suppose that

µ2
0 := µ2 +

σ2

m
+

τ2

n
> max

{
m+G

mG
σ2,

n+G

nG
τ2
}
. (3.1)

Then, in the large-d limit where the HDLSS geometric representation holds, the

MDP distance (2.4) is maximized when ℓ0 = [1′m,−1′n]
′ is the true label vector.

If u1 is the first left singular vector of Z, Theorem 2 states that u1 and vMDP

are approximately equivalent under milder conditions than those for Theorem 1.

Theorem 2. Suppose assumptions (a)−(e) are satisfied and that

µ2
0 >

(
1

m
+

1

n

)
max{σ2, τ2}. (3.2)

Then, in the large-d limit where the HDLSS geometric representation holds, u1

is equal to vMDP which, in turn, implies that v1, the first right singular vector, is

equivalent to the true label vector ℓ0.

In what follows we provide a justification of the SVD approximation to MDP

via a simulation study. Two clusters of size five were generated from d-variate

spherical Gaussian distributions. We set σ2 = 2, τ2 = 1, and µ = 0.3, 0.4, 0.5, 0.6

in the conditions (b)−(d) in Section 3.1. Figure 4 depicts the angle between u1

and vMDP for d = 102, . . . , 105. Note that in this setting the condition (3.2) in

Theorem 2 suggests that µ2 > (1/5 + 1/5) × 2 − 2/5 − 1/5 = 0.2 = (0.4472)2.
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Figure 4. Angle between the first left singular vector u1 and the MDP
direction vector vMDP for Gaussian data when σ2 = 2, τ2 = 1,m = n = 5.

It can be seen that as d increases u1 and vMDP become close to each other when

(3.2) is satisfied, but otherwise become nearly orthogonal.

An intuitive interpretation of the conditions (3.1) and (3.2) is provided as

follows. Set σ2 = τ2 = 1, m = 2, and n = 1. Note that the two conditions are

equivalent under this particular setting. Suppose that we consider all possible

2-1 splits of the three data points. In the HDLSS limit, the three data vectors

form a triangle. We focus on the lengths of the edges of the triangle, with lengths

divided by
√
d. The edge connecting the data points in Class +1 has length

√
2

and the edge connecting data points from different classes has length
√

µ2 + 2.

Theorems 1 and 2 state that the proposed method finds the optimal split if

µ2
0 = µ2 + 1/2 + 1 > 3/2, i.e., µ2 > 0. Geometrically, this indicates that if the

triangle forms an isosceles triangle with the shortest side being the line connecting

the two data points from Class +1, the direction of the highest altitude aligns

with vMDP and also with u1.

It is worth noting that in general the condition (3.1) for Theorem 1 is stricter

than the condition (3.2) for Theorem 2, while the two conditions are equivalent

when k = m = n. This is because in Theorem 2 we have already determined

the labels and thus essentially deal with a classification problem, not clustering.

Unsupervised learning problems, such as clustering, need stricter conditions to

ensure good performance than supervised learning such as classification.

In the proof of Theorem 2 in the Appendix, we establish that D2
MDP

/d ap-

proaches µ2
0 = µ2+σ2/m+τ2/n as d tends to infinity. Thus DMDP is an increasing

function of the distance between classes and within-class variation, while it is a

decreasing function of the sample size. In the next subsection, we investigate the
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Figure 5. (a) First 300 population eigenvalues for the fourth simulation
setting. (b) Empirical cumulative distribution function of the p-values under
the four simulation settings.

behavior of DMDP for an arbitrary dimension by studying its probability distri-

bution.

3.2. Distribution of the MDP distance and a stopping criterion

At each step of hierarchical clustering, one important question is whether to

continue the procedure or not. To this end it is useful to evaluate the significance

of a split under the null hypothesis that there is only one underlying cluster. The

following theorem shows that D2
MDP

follows a chi-square distribution under the

null hypothesis if the data are Gaussian. Note that this theorem also implies that

D2
MDP

/d converges to σ2/m+ τ2/n in probability as d → ∞, which is consistent

with the discussion in the previous paragraph when µ2 = 0.

Theorem 3. Suppose there are m (n) data vectors from Class +1 (−1) and that

the underlying distributions are Nd(0, σ
2Id) and Nd(0, τ

2Id), respectively. Then,

D2
MDP

between the two classes is (σ2/m + τ2/n)χ2
df , where df = rank(Id − P) =

d−N + 2.

In what follows we develop a hypothesis test for the significance of a split

based on Theorem 3. Suppose that we test whether two clusters of sizes m and n

have the same underlying mean. The hypotheses are H0 : µ
2 = 0 vs. H1 : µ

2 > 0,

where µ is from the condition (d). We suggest the following testing procedure.

Step 1. Calculate D2
MDP

based on the given two-cluster assignment.

Step 2. Estimate the within-class variances, σ2 and τ2, by σ̂2 = mean{σ̂2
j }dj=1

and τ̂2 = mean{τ̂2j }dj=1, where σ̂2
j and τ̂2j are the sample variances of Xj

and Yj , respectively.
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Step 3. Calculate the p-value for D2
MDP

by computing

P

[(
σ̂2

m
+

τ̂2

n

)
χ2
d−N+2 > D2

MDP

]
.

Applicability of this stopping criterion to more general settings is investigated

in a simulation study. For d = 500,m = 20, n = 15, two class samples were

generated from the same multivariate Gaussian distribution with mean zero.

We used four covariance matrices Σj = RΛjR
′, j = 1, . . . , 4, where R is an

orthogonal matrix whose (l, k)th element is
√

2/(d+ 1) sin(lkπ/(d+1)). The first

three had Λj = diag{λ1, . . . , λd} = diag{dαj , 1, . . . , 1} where α1 = 0, α2 = .3, and

α3 = .6; the fourth was chosen to mimic the eigenvalue pattern often observed in

data examples. Figure 5(a) displays the first 300 largest eigenvalues ofΣ4; Figure

5(b) displays the empirical cumulative distribution function of p-values obtained

under the four settings from 100 repetitions. As expected in the spherical case

(α = 0), the p-values followed a uniform distribution. A fair amount of deviation

from sphericity (α = .3) did not yield a severe change in the distribution of p-

values. Larger deviation from sphericity (α = .6) or more realistic situation such

as the fourth model tended to make p-values higher.

This simulation study suggests that the testing procedure is conservative in

the sense that it tends to prevent one from falsely declaring two clusters to be

different. The simulation also implies that it is possible to underestimate the

number of clusters using the current testing procedure. In order to avoid the

possible underestimation problem, one may also employ a testing procedure such

as SigClust of Liu et al. (2008). SigClust may have a higher power for detect-

ing clustering structure for correlated data, even though it assumes Gaussian

distributions with the same covariance matrix for each cluster. On the other

hand, when two clusters are suspected to have unequal variances but with mild

correlations between variables, the proposed test can give a good approximate

p-value. We also note that the theoretical justification of the SigClust procedure

was done asymptotically as d → ∞, while the proposed test is exact under the

assumptions in Theorem 3.

4. Simulation Study

Clustering performance of the proposed method in four different HDLSS set-

tings was investigated. As competitors we chose the sparse K-means clustering

(SK-means) of Witten and Tibshirani (2010) with variable selection property,

Ward’s hierarchical clustering method (Ward (1963)), a model-based clustering

method (Mclust) of Fraley and Raftery (2002), and the pivoted QR decomposi-

tion method (p-QR) of Zha et al. (2001); the last of these we discuss in detail in

Section 6.
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Table 1. Results of simulation study. Average clustering errors are shown
with standard errors in parentheses.

Setting d µ SK-means Ward Mclust p-QR MDP

I

1000

0.6 0.1841 (0.0155) 0.0938 (0.0074) 0.0935 (0.0069) 0.3179 (0.0101) 0.0278 (0.0040)

0.8 0.0341 (0.0088) 0.0138 (0.0013) 0.0118 (0.0012) 0.3161 (0.0134) 0.0001 (0.0001)

1 0 (0) 0.0013 (0.0003) 0.0003 (0.0002) 0.3125 (0.0144) 0 (0)

2000

0.6 0.3403 (0.0108) 0.2618 (0.0145) 0.2618 (0.0145) 0.3377 (0.0080) 0.1109 (0.0106)

0.8 0.0407 (0.0089) 0.0317 (0.0020) 0.0317 (0.0020) 0.2980 (0.0120) 0.0048 (0.0011)

1 0.0041 (0.0030) 0.0076 (0.0007) 0.0075 (0.0007) 0.2891 (0.0145) 0 (0)

II

1000

0.6 0.0271 (0.0076) 0.1360 (0.0042) 0.1298 (0.0044) 0.3740 (0.0073) 0.0375 (0.0036)

0.8 0.0004 (0.0002) 0.0287 (0.0016) 0.0138 (0.0015) 0.3513 (0.0074) 0.0009 (0.0003)

1 0 (0) 0.0040 (0.0007) 0.0003 (0.0002) 0.3385 (0.0072) 0 (0)

2000

0.6 0.0905 (0.0131) 0.2670 (0.0088) 0.2670 (0.0088) 0.3735 (0.0086) 0.1568 (0.0107)

0.8 0.0003 (0.0002) 0.0737 (0.0035) 0.0725 (0.0035) 0.3369 (0.0089) 0.0042 (0.0007)

1 0 (0) 0.0129 (0.0011) 0.0087 (0.0009) 0.3178 (0.0093) 0 (0)

III

1000

0.2 0.4232 (0.0102) 0.3913 (0.0076) 0.4088 (0.0070) 0.3358 (0.0092) 0.2129 (0.0116)

0.25 0.4018 (0.0134) 0.3927 (0.0080) 0.4073 (0.0069) 0.2853 (0.0110) 0.0945 (0.0148)

0.3 0.3571 (0.0167) 0.3830 (0.0081) 0.4042 (0.0071) 0.3033 (0.0131) 0.0277 (0.0102)

2000

0.2 0.3829 (0.0149) 0.3901 (0.0077) 0.3968 (0.0077) 0.3011 (0.0114) 0.1146 (0.0151)

0.25 0.2697 (0.0198) 0.3935 (0.0078) 0.4007 (0.0075) 0.3018 (0.0140) 0.0401 (0.0121)

0.3 0.1728 (0.0189) 0.3681 (0.0093) 0.3869 (0.0088) 0.3013 (0.0152) 0.0042 (0.0042)

III

1000

0.2 0.5185 (0.0098) 0.5637 (0.0043) 0.5661 (0.0042) 0.3897 (0.0077) 0.3736 (0.0102)

0.25 0.4415 (0.0123) 0.5274 (0.0064) 0.5339 (0.0065) 0.3543 (0.0077) 0.2013 (0.0121)

0.3 0.3332 (0.0129) 0.4354 (0.0096) 0.4455 (0.0092) 0.3373 (0.0079) 0.0506 (0.0111)

2000

0.2 0.3766 (0.0120) 0.5005 (0.0072) 0.5016 (0.0072) 0.3535 (0.0072) 0.2440 (0.0153)

0.25 0.2402 (0.0109) 0.3650 (0.0089) 0.3680 (0.0088) 0.3271 (0.0077) 0.0282 (0.0077)

0.3 0.1760 (0.0134) 0.2780 (0.0115) 0.2789 (0.0116) 0.3179 (0.0083) 0.0395 (0.0099)

In each setting we took d =1,000 and 2,000, among which only 150 are rel-

evant to the clustering task. The first setting is from Wang and Zhu (2008),

and the others were designed so that the task becomes gradually more challeng-

ing. Each setting was repeated 100 times. In order to make a straightforward

comparison, the number of clusters was fixed at the true value for each method.

1. Setting I - Two clusters with identity covariance

The first 150 variables were independently from N (0, 1) for the first cluster

and N (µ, 1) for the second cluster, where µ = 0.6, 0.8, 1. The remaining

variables were independently N(0, 1) for both clusters. The two clusters were

of size 85 and 15, respectively.

2. Setting II - Three clusters with identity covariance

The first 150 variables were N (0, 1) for the first cluster; for the second cluster,

the first 75 variables were N (µ, 1) and the next 75 were N(−µ, 1); for the

third cluster, the 150 informative variables were N (µ, 1), µ = 0.6, 0.8, 1. The

noninformative variables were independentlyN(0, 1) for all three clusters. The

sizes of the three clusters were 50, 30, and 20, respectively.



THE MAXIMAL DATA PILING DISTANCE 455

3. Setting III - Two clusters with correlated variables

This is similar to Setting I, but informative variables are correlated. The

first 150 variables were N150(0,Σ) for the first cluster and N150(γ,Σ) for

the other, with diagonal entries 1 and off-diagonal entries 0.5. The mean

vector γ = d1/2µu where u was the randomly selected eigenvector of Σ and

µ = 0.2, 0.25, 0.3. The two clusters were of size 85 and 15, respectively.

4. Setting IV - Three clusters with correlated variables

This is similar to Setting II. The first 150 informative variables wereN150(0,Σ)

for the first cluster, N150(γ1,Σ) for the second, and N150(γ2,Σ) for the third.

Σ was the same as in Setting 3, γ1 = d1/2µu1, and γ2 = d1/2µu2, where u1

and u2 were the randomly selected eigenvectors of Σ and µ = 0.2, 0.25, 0.3.

The sizes of the three clusters were 50, 30, and 20, respectively.

Table 1 displays the average error rates and their standard errors. The clus-

tering error was determined by first finding the maximal correspondence between

the true cluster labels and permutations of the estimated cluster labels. Then us-

ing that permutation, the error rate was calculated as the proportion of instances

that were incorrectly assigned.

We can see that the MDP method performs significantly better than other

methods in almost all settings. Note that in Settings I and II all methods are

worse for d =2,000 than for d =1,000 when the clusters are not far apart.

The sparse K-means performed significantly worse in Setting I when µ was

small, while in Setting II it was the best. Ward, Mclust, and p-QR performed

poorly in all settings, and the former two were especially poor in Settings III and

IV with correlated variables.

In Settings III and IV, the distance parameter µ controls the difficulty of the

clustering, thus we expect that as µ increases, the error rates should decrease for

a reasonable clustering method. The MDP method improved as µ went from .2

to .3, however, the improvement by other methods was minimal. The advantage

of the MDP method in the presence of correlated variables has been also noted

by Ahn and Marron (2010) for the classification problem.

5. Application to Cancer Microarray Data

Five microarray data sets are used to investigate the performance of the

MDP clustering method. The first data set is the lung cancer data in Liu et al.

(2008). Detailed description of this data set can be found in Bhattacharjee et al.

(2001). We use the preprocessed version of the data for the analysis, see Liu et al.

(2008) for details on the preprocessing. The preprocessed data set contains 2530

genes from 56 subjects from four clusters: 20 pulmonary carcinoid (Carcinoid),
13 colon cancer metastasis (Colon), 17 normal lung (Normal), and 6 small cell

carcinoma samples (SmallCell).
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Figure 6. Tree diagram of binary splits of the lung cancer data by the MDP
method. The MDP distance of each split is also shown.

Table 2. Clustering results of four microarray gene expression data sets.

N d no. clusters SK-means Ward Mclust p-QR MDP
Colon 62 2,000 2 12 30 31 25 15
Breast 49 7,129 2 22 22 N/A 23 18
Prostate 102 6,033 2 41 44 N/A 40 41
Lymphoma 62 4,026 3 1 1 N/A 18 0

This data set is not too challenging in terms of finding the four underlying

clusters. The number of misclustered subjects by the methods that were com-

pared in Section 4 are all either 0 or 1. Figure 6 displays the order of the splits by

the MDP method. First Carcinoid is separated from the rest, then Normal, and

finally Colon and SmallCell are separated. We note that this order is consistent

with the order of the p-values for the significance of a split in Liu et al. (2008). It

is worth mentioning that the order of splits in Liu et al. (2008) is not determined

statistically, but provided by biologists.

We also compared the proposed method with other methods in four microar-

ray gene expression data sets: Colon cancer data from Alon et al. (1999), Breast

cancer data from West et al. (2001), Prostate and Lymphoma data from Dettling

(2004). Table 2 displays the sample size, dimension, and the number of clusters

in each data set, and also reports the number of misclustered observations. As

in the simulation in Section 4 we fixed the number of clusters for each algorithm

in order to make the comparison easier. The model-based Mclust method can be

implemented for only the Colon data due to the high dimensionality of the other

three data sets. The MDP clustering method shows competitive performance

among the compared methods.
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For all data examples analyzed here, we tested the significance of a split

using the testing procedure proposed in Section 3.2 The p-values are all virtually

zero, which indicates strong evidence for the existence of the clusters.

6. Discussion

It is a common belief that analyzing HDLSS data is more restrictive than

low dimensional data. In particular, many traditional multivariate methods in

textbooks cannot be directly applied due to the singularity of the covariance

matrix. In this work we take a positive stand on the HDLSS problem by viewing

the excess of variables as a blessing. Specifically, we make good use of the fact

that there are enough dimensions in the data so that the orthogonal distance

between affine subspaces of clusters becomes a meaningful measure.

The SVD approximation has also been used for K-means clustering by Zha

et al. (2001), as a reviewer pointed out. Both our approach and theirs is based on

the fact that the PCA directions provide good approximation to the data matrix.

However, we found that the two approaches are essentially quite different. They

approximate the label vector via pivoted QR decomposition of the first K-PCA

direction vectors collectively, whereas we justify the approximation of the label

vector based on the individual PCA direction vector. Moreover, they assume

that the Gram matrix of the full data is well-approximated by the partitioned

within-class Gram matrices. With our notation in the 2-class settings, this means

that

[
X′

Y′

]
[XY] ≈

[
X′X 0

0 Y′Y

]
. This assumption might be reasonable in some

situations, especially in lower dimensional applications. We believe that this

assumption is not reasonable for most HDLSS data, as their method did not

provide a reasonable solution in a small simulation with a simple HDLSS data

set that is not shown here.

There are a few future research directions to pursue. For example, instead

of a divisive algorithm one can explore an agglomerative approach when con-

structing the dendrogram. A possible difficulty of this approach might be the

computational burden since each step, a merging in this case, involves many

calculations of the MDP distance. Nevertheless, comparing the current divisive

algorithm with the agglomerative one may shed light on the stability of the MDP

linkage method.

Another future direction is the partition-based approach, as a reviewer sug-

gested. The multi-class version of MDP subspace is a natural starting point.

One can do an exhaustive search for the c-cluster solution that has the largest

distance between c projected piling points. Implementing this idea effectively is

not straightforward as there are many possible allocations, and SVD might not

work in this case for reducing the search space.
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One can allow the underlying distribution to be invariant under any orthog-

onal transformation (Kelker (1970)). This allows some dependence between the

variables. Theorem 13 in Kelker (1970) provides results for the quadratic forms

of a spherical distribution, analogous to Cochran’s theorem for the normal dis-

tribution. If a spherical distribution is assumed for Theorem 3, the χ2 changes

accordingly to the distribution that essentially corresponds to the sum of ν in-

dependent squares of standardized variables. Identifying the distribution of the

MDP distance in more general settings is proposed as a future work.
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Appendix

Proof of Theorem 1. In this proof we use 1 and 2 as the class labels for

convenience. In the HDLSS geometrical limit, the data vectors from Class 1 and

Class 2 form two simplices, denoted X and Y. Assume that the respective sample

sizes are m and n. Since only the relative locations of the data vectors are of

interest for our purposes, we can express the data matrices for X and Y, after

scaling by
√
d, as the following:

X′ =

 σ


1− 1

m − 1
m · · · − 1

m

− 1
m 1− 1

m · · · − 1
m

...
...

. . .
...

− 1
m − 1

m · · · 1− 1
m




δX · · · δX

...
...

...
...

...
...

δX · · · δX




0 · · · 0
...

...
...

...
...

...

0 · · · 0


 ,

Y′ =




0 · · · 0
...

...
...

...
...

...

0 · · · 0




−δY · · · −δY

...
...

...
...

...
...

−δY · · · −δY

 τ


1− 1

n − 1
n · · · − 1

n

− 1
n 1− 1

n · · · − 1
n

...
...

. . .
...

− 1
n − 1

n · · · 1− 1
n


 ,

where

δX =
n

N

µ0√
d−N

and δY =
m

N

µ0√
d−N

.

Here X′ is partitioned into m × m,m × n, and m × (d − N) sub-matrices, and

Y′ is partitioned into n × (d − N), n × m, and n × n sub-matrices. Note that

this formulation ensures the same roles of σ2, τ2, and µ2
0 as in the geometric

representation in Section 3.1.
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Since the minimum size of a cluster is k, the space for label vectors is

Lk = {1, 2}N \
k−1∪
i=0

{{1}N−i, {2}i} \
k−1∪
i=0

{{1}i, {2}N−i}.

Then for each label vector ℓ ∈ Lk, we consider the corresponding split of the

data and calculate the MDP distance. Let w = (w1, . . . , wd)
′ be a d-dimensional

unit vector for data projection. Let W1 =
∑m

i=1wi, W2 =
∑d−n

i=m+1wi, and

W3 =
∑d

i=d−n+1wi. The projections of data vectors for X are σ(wj −m−1W1)+

δXW2, j = 1, . . . ,m, and the projected data for Y are τ(wj −n−1W3)− δYW2, j =

d− n+ 1, . . . , d. Let Iij be the collection of indices of samples that are actually

from Class i, but classified into Class j using the label ℓ for i, j = 1, 2. For

example, if all but the last one from Class 1 are classified into Class 1, then

I11 = {1, . . . ,m − 1} and I12 = {m}. Furthermore, let J2i denote the shifted

index set of I2i, J2i = d − I2i + 1 for i = 1, 2. Now the piling conditions of the

projected data can be written as

σ(wi −
1

m
W1) + δXW2 = τ(wj −

1

n
W3)− δYW2 ≡ c, i ∈ I11, j ∈ J21, (A.1)

σ(wi −
1

m
W1) + δXW2 = τ(wj −

1

n
W3)− δYW2 ≡ c∗, i ∈ I12, j ∈ J22, (A.2)

for some constants c and c∗. These imply that

τ(q − r) = σ(p− s), (A.3)

where wi = p, i ∈ I11, wi = s, i ∈ I12, wj = q, j ∈ J21, and wj = r, j ∈ J22. Thus

the piling constraints can be simplified as

τ(q − r)(
n22

n
− n12

m
) = (δX + δY)W2, (A.4)

where n1j = |I1j |, n2j = |J2j |. The second step is to maximize the distance

between the two piling sites (A.1) and (A.2),

max{τ(q − 1

n
W3)− δYW2 − τ(r − 1

n
W3) + δYW2}2 = max τ2(q − r)2,

subject to the unit length condition

n11p
2 + n12s

2 + (d−N)u2 + n21q
2 + n22r

2 = 1 (A.5)

and (A.4), where u = wj , j = m+1, . . . , d−n+1. The corresponding Lagrangian

is

L = τ2(q − r)2 − λ1{τ(q − r)(
n22

n
− n12

m
)− (δX + δY)W2}

−λ2{n11p
2 + n12s

2 + (d−N)u2 + n21q
2 + n22r

2 − 1},
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where λ1 and λ2 are positive Lagrangian multipliers. Solving ∂L/∂q = 0 and

∂L/∂r = 0 gives

∂L

∂q
= 2τ2(q − r)− λ1τ(

n22

n
− n12

m
)− 2λ2n21q = 0,

∂L

∂r
= −2τ2(q − r) + λ1τ(

n22

n
− n12

m
)− 2λ2n22r = 0.

This requires that n21q = −n22r. Similarly, ∂L/∂p = 0 and ∂L/∂s = 0 yield

n11p = −n12s. Together with (A.3), we can express p, q, and s in terms of r as

q = −n22

n21
r, p = − τ

σ

n

m

n12

n21
r, and s =

τ

σ

n

m

n11

n21
r.

By plugging these into (A.4), we can also express u in terms of r as

u =
τ

µ0

n

n21

(n12

m
− n22

n

) r√
d−N

.

Finally, from (A.5), we get

r2 =

{
τ2

σ2

n2

n2
21

n11n12

m
+

τ2

µ2
0

n2

n2
21

(
n12

m
− n22

n21
)2 +

n22n

n21

}−1

,

and the maximized distance is

D2
MDP

(ℓ) = µ2
0

{
µ2
0

σ2

n11n12

m
+

µ2
0

τ2
n21n22

n
+ (

n12

m
− n22

n
)2
}−1

. (A.6)

If ℓ = [1′m,−1′n]
′ is the true label vector, we have (n11, n12, n21, n22) = (m, 0, 0, n),

and the MDP distance becomes µ2
0. In order to prove that D2

MDP
(ℓ) ≤ µ2

0, ∀ℓ ∈ Lk,

it suffices to show that the multiplication factor in (A.6) is at most one for all

possible choices of label vectors. Let

f(x, y) =
µ2
0

σ2

x(m− x)

m
+

µ2
0

τ2
(n− y)y

n
+

(
1− x

m
− y

n

)2
,

where (x, y) ∈ Sk, the convex hull containing legitimate values of (n11, n22). Then

the inverse of the multiplication factor in (A.6) can be viewed as a function f

evaluated at (x, y) = (n11, n22). Note that the pairs of (n11, n22) that produce a

cluster of size less than a preset value k are excluded from Sk. Notice that, as

shown in Figure 7(a), for a fixed x (or y), f is a quadratic concave function of

y (or x). Furthermore, along the diagonal, {(x, y) : y − x = k′} for a fixed k′, it

can be checked that f(x, y) = f(x, x+ k′) is also a quadratic concave function of

x. Thus, the minimum can occur only at the one of the six corner points of Sk:

(0, 0), (0, n− k), (k, n), (m,n), (m, k), and (m− k, 0),
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Figure 7. (a) Inverse of multiplication factor in (A.6). (b) the convex hull
Sk containing legitimate values of (n11, n22). Minimum is achieved at one of
the six corner points of Sk.

shown in Figure 7(b).

Both (0, 0) and (m,n) yield the factor of one as these correspond to true

classification in the sense that all the Class 1 samples are separated from the

Class 2 samples. Both (0, n − k) and (m, k) imply that k samples from Class

2 are separated from the rest of the samples and yield the multiplication factor

kn−1{(n − k)µ2
0τ

−2 + kn−1}. Similarly, (k, n) and (m − k, 0) represent that k

samples from Class 1 are classified differently from the rest and yield the factor

km−1{(m− k)µ2
0σ

−2 + km−1}. It can be easily checked that if

µ2
0 > max

{
n+ k

nk
τ2,

m+ k

mk
σ2

}
,

then f(x, y) ≥ 1, ∀(x, y) ∈ Sk, with the minimum of one achieved at (m,n) (or

(0, 0)), and this completes the proof.

Proof of Theorem 2. Assume the same representation of the data matrices

as in the proof of Theorem 1, and let w be a projection vector as in the proof

of Theorem 1. The optimization conditions for MDP are that the projection of

the data vectors in X (Y) is the projection of their mean vector, and that the

distance between the mean projections from each class is maximized. The piling

constraint requires that

w1 = · · · = wm, wd−n+1 = · · · = wd. (A.7)

The maximal distance criterion needs the maximization ofD2
MDP

= {(δX+δY)W2}2.
Thus the MDP optimization is to maximize W 2

2 subject to (A.7). The solution

to this problem is wj = 0, j = 1, . . . ,m, d − n + 1, . . . , d, wj = (d −N)−1/2, j =
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m + 1, . . . , d − n, since ∥w∥2 = 1. Note that this solution indicates that D2
MDP

converges to µ2
0 in probability as d → ∞.

As for the optimization for the principal component analysis (PCA), let

S1 =
∑m

j=1w
2
j , S2 =

∑d−n
j=m+1w

2
j , and S3 =

∑d
j=d−n+1w

2
j . Then the PCA

optimization is to maximize

G(w) = σ2(S1 −
1

m
W 2

1 ) + τ2(S3 −
1

n
W 2

3 ) + (mδ2
X
+ nδ2

Y
)W 2

2 .

The Lagrangian of this problem is

L = σ2(S1 −
1

m
W 2

1 ) + τ2(S3 −
1

n
W 2

3 ) + (mδ2
X
+ nδ2

Y
)W 2

2 − λ(S1 + S2 + S3 − 1),

where λ > 0 is the Lagrange multiplier. Solving ∂L/∂wj = 0, j = 1, . . . , d, gives

(σ2 − λ)wj −
σ2

m
W1 = 0, j = 1, . . . ,m,

(τ2 − λ)wj −
τ2

n
W3 = 0, j = d− n+ 1, . . . , d,

W1 = W3 = 0,

{(d−N)(mδ2
X
+ nδ2

Y
)− λ}W2 = 0.

If λ = (d−N)(mδ2
X
+ nδ2

Y
), then wj = 0, j = 1, . . . ,m, d− n+ 1, . . . , d, and the

objective function G(w) is maximized at wj = (d − N)−1/2, j = m + 1, . . . , d −
n, which is the solution from the MDP optimization. This solution yields the

maximum of G = (mδ2
X
+nδ2

Y
)(d−N) = (1/m+1/n)−1µ2

0. If λ = σ2 (or τ2), then

it is straightforward to see that the maximum value of G is σ2 (or τ2). Thus,

under the assumption in the theorem that µ2
0 > (1/m + 1/n)max(σ2, τ2), the

MDP solution is the same as PCA.

Note that since vMDP produces dichotomous projections, the projected data

Z′vMDP can be considered as a label vector, denoted by ℓ̃. Because we have

established u1 = vMDP above, we have v1 = s−1
1 Z′u1 = s−1

1 Z′vMDP = s−1
1 ℓ̃, where

s1 is the first singular value. In other words, v1 is a dichotomous label vector.

Proof of Theorem 3. It suffices to show that w′Pw has a c2χ2
N−2 distri-

bution with c2 = (σ2/m + τ2/n). Note that Cochran’s theorem is not readily

applicable since the projection operator P depends on the data. Instead we

directly show that the distribution of the quadratic form depends on C only

through its rank, N − 2. There exists a d × d orthogonal matrix Q such that

P = Q′ΛQ where Λ is a diagonal matrix. Note that P is symmetric and idem-

potent, and thus all the diagonal entries of Λ are either zero or one and the

multiplicity of one is rank(P) = N − 2. We complete the proof by noting that

w′Pw = w′Q′QPQ′Qw = (Qw)′Λ(Qw), and Qw is Nd(0, c
2Id).
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