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Appendix

Define

M(a,G) =

OF [sf{t1,ab(t1),G}] OF [sf{t;, ab(t;),G}]
Oa Y fole} ’
Ala,G) = M(a,G)M™*(a,G),

“i(tj’a7G) - Si{tj7ab(tj)7G} - qQ(avtj) /tj hil(s) {dI(Y; <s, D= O) - I(Yl = S)dAG’(S)}

—00

+/_°° G71(s) /_S =t (w) {dI(Y; < v, D; = 0) — I(Y; > v)dAg(v)} dgij(a, s),

om {Xz, ab(tj)}
80tb(tj)

qij(o,s) = E < I't;+m{X;,ab(t;)} < min(s,Y})]) )

wlaty) = (1-7)G) B [I(Yith)am{Xi’ab(tj)}y

6ab(tj)
T
/’Li(aaG) = {NiT(tlaOZ’G)v"'wu;r(tJ’aaG)} )

where h(s) = E(Y1 > s), Ag is the cumulative hazard function of the censoring process.

Proof of Theorem 1: Without loss of generosity, we assume in this proof that p = 1. The results

hold for any finite p. Let t = (t1,%2,...,t;) be a set of times used to construct the estimating

equations, then the estimating equations can be written as
n
Sn(ab(t),G) =) fi(ab(t),G) =0.
i=1

We first consider the situation where G is known. Let

ui(a, ao) == fz(ab(t), G) - fi(aob(t), G) — Efz(ab(t), G)
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To show the consistency defined in (4), we first establish the following uniform consistency,

n

sup 1> 0" ui(e, a)|| = o(n'/?k)/?), (A1)
la—awll<B(kn/n)t/2 321

for any B > 0, and any ||77|| = 1. Based on Lemmas 2.1 and 3.3 of He and Shao (2000), the sufficient

conditions for (A.1) are

(C1) max; SUP|jq—aq||< B(k, /)12 1Ui(e, o) | = O(k7 /n)

(C2) There exist 0 < ¢ < 2,0 < s < 2 such that max;<, F'Sup|jq,_a,|<allfile1b(t),G) —
filagb(t),G) — Efi(a1b(t),G) + Ef;(azb(t),G)|| < ncd?®, for all 0 < d < 1.

In what follows, we show that Conditions (C1) and (C2) are satisfied under Assumptions
A1, A2 and A4. To show condition (C1), we note that under Assumption A2, the quantile
function m(x, 3) and its first derivative with respect to 3, denoted as m(x, 3), satisfy the Lipschitz

conditions. That is, there exist constants K7 and K5, such that
max sup im (@i, B1(t), G) — m(zi, B2(1), G)| < Kq[B1(t) — B2(1)]-
max sup Im(@s, B1(t), G) — m(zi, B2(1), G)| < Ko[B1(t) — B2(1)]-
We first bound ||u;(c, ao)||? by

lui(ex, o) |* < || (fiab(t),G) — fi(aob(t), G)) |* + || Efi(ab(t), G)|.

Let My = max; supgy)eq \%&3“”

, then, for any two coefficient functions, 3,(t) and B3,(t), we

have

)8m(xi,ﬁl(t)) IY; > t + m(xi, B1(1)]  Om(zi, Bo(t)) I[Y; >t + m(zs, By(t))] ‘
9B, (1) G[t +m(xz, By (1))] 0B, (t) G[t 4 m(x;, By(1))]
lé’m(wuﬁl(t)) {I[Yi > t+m(xi, B1(t)]  I[Yi >t +m(x,By(t))] }

9B4(t) Gt +m(z;, B1(1))] Gt +m(zi, Bo(1))]
4 {0m($iaﬂl(t)) _Om(xi, Byo() | I[Yi >t +m(wi,ﬂ2(t))]‘
9B, (t) 0B, (1) G[t + m(x;i, Bo(1))]
M {IHYZ- —t —m(z, Bo(t))| < [m(wy, B1(t)) — m(zy, By(1))]]
G(T)
+H G+ m(wi, By (1)) — Gt + m(zi, Bo(1)))]}

+EK[|B1(t) — B (M| GH(T)
M {IHE —t —m(zi, By(t))| < [m(ws, By (1) — m(wi, Ba(1))l]
! G(T)

(1Ci =t = m(zi, Bo ()| < [m(xi, B1(t)) — m(wi, Bo(t))]]
G(T)

+|GTHE A+ m(xi, By (1)) — Gt + m(i, Ba (1)}
+Ka[|B1(t) — By ()| G™H(T)
= Op([IB1(t) = B2(D)]]) (A.2)

IN

IN

1
+



Varying-Coefficient Quantile Residual Life Model 3

In the above derivation, we used the Lipschitz conditions to obtain the two inequality, and used
condition (A4) to bound the probability of the indicator function being 1. Similarly, we can show
that

8 75 a P 1 }/;, =
{rim ) S SO = — o -l (43)
Combining (A.2) and (A.3), we have
max||s;(81(1), G) — si(B2(t), G)|| = Op([|81(£) — B2 (D)) (A.4)
Following the similar arguments, we could show that
OEs; ,G) 0Es; .G
|2 LC) OB C) — 018, ) - By(0) (A5)
The above equations (A.4) and (A.5) further imply that
max sup I (fi(ab(t),G) — fi(awb(t),G)) ||
" lle—aol|[<B(kn/n)'/?
L 0Bsi(t;, ab(t;),G
< mp awpS PERGREEOR (1, abit). 6) sl eqb(), O bl
a—op||< n/M 1/2 j=1
L (0Es;i(t;,ab(t;),G)  OEsi(tj,aob(t;),G)
g ||a—ao||iL;I()kn/n)1/2 | ; { dab(t;) - dab(t;) }

xsi(tj, cob(t;), G)b(t;)|?
= Op(ki/”)-

The last equality holds due to the fact that ||b(t)||* = O(1) for all ¢ by construction, and J = O(ky,).
We denote

J . .
[i(Bo(),6) =" <3E[sz{gé f&gt), Gl

j=1
as the estimating function evaluated at true coefficient B,(¢). Then, for any ¢, Ef;(8y(t),G) = 0.
We have

) si{t5, Bo(t), GIb(;)

max sup IEfi(eb(t), G)*
b la—aol|<B(kn/n)/?
= max sup |Efi(ab(t),G) — Efi(B(t), G)|I> = O(k2/n) + O(k, > +1)

v |la—a||<B(kn/n)1/2

Combining the equations above, condition (C1) is satisfied provided that k,? ™! = O(k2 /n).

Following the similar arguments for (A.4) and (A.5), with some derivations, we can show that,

max  sup  [[Esi(t, cab(t), G) — Esi(t, azb(t), G|
b lar—as|<d
< maxE  sup  |[|si(t, a1b(t), G) — si(t, azb(t), G

' lor—ex2|<d

Cd[b()]], (A.6)

IN



4 YANYUAN MA AND YING WEI

where C = M1 K1{sup,c[o,7) OG1(t)/0t+G~H(T) sup, fy,(y)}+(2—7)G~HT)K,. Combining (A.6)
with the facts that J = O(k,), and s;(-) and its first derivative are bounded away from infinity,
Condition (C2) is satisfied. The uniform expansion (A.1) is hence proved.

Let

Es;i(t,B, G
D(t) = 8{%1‘3&(@50@),@}
0Bo(t) ’

we further note that
Dy = irtlfD(t) > 0.

This is because by Assumption Ag, B,(t) is the unique solution to E(S,(8(t))) = 0 for all ¢, hence

the objective function is convex. Note that

Efi(ab(t),G)
Esi(tj, ab(t;), G)

M-

Es;(t,ab(t), G)b(t;)

= 8ab(t]~)
J o ME&(Q’,,B (tj)vG)

_ Z{ {2t — ’ }(ab(tj)ﬂo(t))-i'O(ab(tj)Bo(t)z)}b(tj)‘
j=1

Let a = ag + B(k,/n)?n", ||n]| = 1, and k;?"*t1 = o(k2 /n), we obtain

Efi((a0 + Blka/n)"/*n")b(1). G)
2 9By (t;)

)} B(kn/n)"*n"b(t;) + 0((kn/n)1/2)} b(;),
hence

0" Efi((ao + Blka/n)'/*n") B(kn/n)"? (" D(t;)) + kno((kn/n)'/?). (A7)

IIM&

The uniform expansion (A.1), together with (A.7), imply that
ZnTm{ao + B(kn/n)"/ 2" }b(t), G)

= Zn filewb(t), +ZnTEfz {0 + B(ka/n)'?n")}b(t), G) + o(n'/?ky/?)

=1
J
> ZﬁTfi(aob(t)a G)+nY_ DoB(kn/n)"(n"b(t;))* + nkno((kn/n)"/?) + o(n'/k}/?)
- o
n J
= Y 0" filab(t),G) + DoBn' k)2 " (nb(t)))? + o(n' k). (A.8)

j=1
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We now show that the dominant term in (A.8) is the second term. We only need to compare the
first two terms. Let My = max; sup, OES;(t, B(t),G)/0B(t). Under Assumption A5, we have

dEs;(t;, aob(t;), Q) 2

ZEM (aob(t), Q)| < ZEZ

si(tj, cb(t;), G)b(t;)

i=1  j=1 dagb(t5)
2
- S PP OV i, i), G
i=1 j=1
= O(nkd).

The inequality above implies that ||3°1, fi(cob(t), G)|| = Op(nY/ 253/ 2), which is much smaller
than the second term in (A.8). The second term in (A.8) is positive, therefore, the probability for
the left side of (A.8) larger than 0 tends to 1, i.e.

Prob( Hlllllflzn fillao + Blkn/n)2n¥b(t),G) > 0) — 1

Following Gsorgo and Horvath (1983), for all ¢ > 0, the Kaplan-Meier estimates is uniformly
consistent with sup, |G(t) — G(t)| = o(n~'/2t€), a.s. Under assumption A6, using G* to denote a

quantity between G and CAJ, we have

ZnTm{ao T Blka/n) )b (t), )
i=1

«@ n 1/2 *)
i=1

— zn:ani({ao + B(k”/n)1/2n}b(t),G) +op(nk:nn_1/2+€)
i=1

= > 0" fil{ao + Blkn/n)*n}b(t), G) + 0p(n'/2knnc).
=1

For sufficiently small €, the dominant term of the above expression is the first term. Hence we have
Prob( inf Zanz {a0 + B(kn/n)"*n}b(t),G) > 0) — (A.9)
ul

Since ¢ is the minimizer of (3), (A.9) further implies that there exists a local minimizer &, such
that

l& — xo||* = Ok /).



6 YANYUAN MA AND YING WEI

Proof of Theorem 2: The uniform consistency established in Theorem 1 and the uniform consis-

tency of G allow us to expand the estimating equation at «q, G.

n2s,{@b(t), GO}

—1/20E5n{cob(t), G(t)}

(@ = ag) + 0p(kn)

dayg
_1/222 ( {tj,o;)b( i)y G}] +Op(n—1/2+€)> si{tj, aob(t;), G}
=1 j=1
i=1 j=1

X {Si{tj, Oéob(tj), @} — Si{tj, aob(tj), G}]

+”1/22n:i (aE [$7{t5.200(1). G 0B [s7 {1, a0blt;), GY] ot /2+E))

Oa Oa
xsi{t;, agb(t;), G}

_120ES{aob(t), Gt 9} (& — ag) 4+ n1/? {t],aob(m CH tt aob(t).C)
5n Zz;jzl 75, X0 7/
n J OF sTt~,abt-,@ N
+n 23N [ 1 a: ) }} [Si{tﬁaob(tj)aG} - Si{tjaaob(tj)aG}] + 0p(kn)
i=1 j=1
71/26ES {aob( ) G( )}(a—a +n71/2 {tjaaob(tj) G}}S{t « b(t) G}
5 0 ;; 75 &0 7)s

+n_1/2zz {tyaaob(ty) G} [sz{t],aob( ), G} — si{tj,aob(tj),G}] + 0p(kfA.10)

i=1 j=1

as long as J = O(k,) = o(n'/?>7¢). We can expand the following term

w23 [Si{tj, aob(t;), G} — si{t;, agb(t;), G}}

i=1

Z@m{Xz, agb(t

i)}
8{a0b } I [Y'Z > tj + m{le aob(tj)}]

nl/? _ 1 B 1
G[t‘ —i—m{Xi,aob(t-)}] G[tj +m{Xiva0b(tj)}]

R om{X;, aob(t;)} a2l 1o 1
(1 Z P anb(l)] I(Y; > t;) {é(tj) G(tj)}. (A.11)

We first check the first term in (A.11). Following Fleming and Harrington (1991, Corollary 3.2.1),
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We can use a martingale integral representation to obtain

—n'%{G(s) — G(s)}/G(s)
s T V2 {dI(Y; < v, Di = 0) — I(Y; > v)dAc(v)}
/ —12” I(Y > )

_ / p! ‘I/QZ{dl Y, < v, Di = 0) — I(Y; > v)dAc(v)} + op(1),

where Ag(+) is the cumulative hazard function for the censoring process. Thus, we can write the
first term in (A.11) as

/_ T G(s) /_ ’ h*@)mlﬂi{dnm <0, Dy = 0) = I(Y; = v)dAq(v) tdan; (a0, s) + op(1).

i=1
Let

om{X;,ab(t;)}
dab(t;)

87’)1 {Xi, ab(tj)}
dab(t))

() = F | Ity < min(s, v} = | 1t < )| 1 < 5),

similar derivation can show that the second term in (A.11) can be written as

—(1-7 / G(s / hil(v)nfl/an:{dI(Yi <v,D;=0)—I(Y; > v)dAg(v)}das;(ag, s)
=1
+o,(1)

— —(-np | 2Rt < vy Gy

X /tj h*l(v)n*/?i:{df(n <wv,D; =0) = I(Y; > v)dAg(v)} + 0,(1)
o i=1

= —qz(an,t)) /tj h™H V2 {dI(Y; < v, Di = 0) = I(Y; = v)dAg(v)} + op(1).
> i=1

Thus, continue from (A.10), we have

0 — —1/28ES {040;;( ),G(t)} (@ — ap) i {twO‘Ob( G}] n—1/2jzl

[si{tj,aob(tj),(;} + /_ G(s)"! / W W)LY < v, Dy = 0) — I(Y; > v)dAc(v) e (ao, s)

— 00

—q2(, t5) /tj hil(v){dI(Yi <v,D;=0)-I1(Y; > v)dAg(v)}] + 7
1/28E5 {aob(t), G(t)}

st {t; ,agb(t ),G}]
90, (@—ag) +n~ 1/222 g . pi(ts, 20, G) +

i=1 j=1

= A(aﬂvG) /2(Oé - O[()) +M C!Q, 1/ Z,ul a07 +Tn7
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where ||7,|| = 0p(ky). Thus, we have
n'?nT(@ — ag) = —n" Alao, G) "' M(ag, G)n UQZM (a0, G) + op(1)

for any n € R* ||n|| = 1, where 0,(1) is a scalar that goes to zero in probability when n — oco.
The results thus follow. L]

Proof of Theorem 3: In the scope of this proof, we define

qQij(B;,s) = E [((9,8%)[ {tj +m (X,L-,,Bj) < min(s,Yi)}

omxio)}

oB;

@(8;.t;) = (1-7)G()'E {I(Yz‘ > 1)

The uniform consistency established in Theorem 1 certainly also applies to a single [3]- by treating
B, as a special case of o where we take k;,, = 1 basis function b(¢) = 1. The uniform consistency of

G further allows us to expand the estimating equation at 3, G

0 = n_l/zzsi(tjv Bgv @)
=1

aEsz(taﬁaé) = - -
— nl/zﬁ(ﬁj_ﬁj)""” V2D silts B, G)
j =1

+n71/2z {Si(tjngjaé) — 54(ty, B, G)} + op(1)

_ 1/2%(@ - B;) + n_l/QZSi(tjaﬁjaG)

087} =1
+n—1/2; {si(tj,gj, Q) — si(t;, B;, G)} +0,(1). (A.12)
We can expand the following term
n—wi {5:(t1,8,,0) — sit;,8,,G)
Zn:am;;fﬁ I{Y; > tj + m(X;, B;)} n'/? 0 +$(Xi,5j)} e +77’t(Xiaﬁj)}
_11"1 ama);j Bi) Y > t,)nl/? {@é]) _ G(ltj) } , (A.13)

We first check the first term in (A.13). Following Fleming and Harrington (1991, Corollary 3.2.1),
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We can use a martingale integral representation to obtain

—n'?{G(s) - G(s)}/G(s)
V2 (dI(Y; < 0, Di = 0) — I(Y; > v)dAg(v)}
/—oo TL_IZ?:II(Y; Z 'U)

= / h_l(v)n_l/Qi{dI(Yi <v,D; =0) — I(Y; > v)dAg(v)} + 0,(1),
- i=1

where Ag(+) is the cumulative hazard function for the censoring process. Thus, we can write the
first term in (A.13) as

/ T G / Ch T ) V23 {dI(Y; < 0, Ds = 0) — I(Y > v)dAa(v)}dass (B, 5) + op(1).
—oo —o0 i=1
Let
. om (Xi76j> . N om {Xz‘u@j}
qgj(,Bj,s) =F 7TI {tj < mm(s,Yi)} =F 7Tl(tj <Y;) I(t] < s),

similar derivation can show that the second term in (A.13) can be written as

=) [T G [ h e Y Y < 0D = 0) — 13 = v)dhao) s (85,5
- > i=1
Jr010(1)
om(X;, 3; _
= —-(1-1nE Eaf@gTﬁ])I(tj <Y) | G(t)™

X /tj h-l(u)n—l/zi{dl(m <, D; =0) - I(Y; > v)dAg(v)} + 0,(1)

o0 i=1

= —qz(,@j,tj) /tj ]fl(u)n*l/zZ{dl(Yi <v,D;=0)—I(Y; > v)dAg(v)} + op(1).
—o0 i=1

Thus, continue from (A.12), we have

0Es;(t;,B:,G) . _ n
0 = WA By = B Y
J =1

[si(tj,,Bj,G) + /_00 G(s)™? /s A=t () {dI(Y; < v,D; = 0) — I1(Y; > v)dAg(v) tdai;(8;, s)

—0o0
t.

—q2(B;, 1) / "W (0){dI(Y; < v, D = 0) — I(Y; > v)dAc(v)} | +0,(1)

—00

= M3, - 8;) + ”71/22”"(’53”[31’ ) + op(1),
=1
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where M is the jth block diagonal of M. Ensembling the above equation for j = 1,...,J, multiple
nTCM from the left yields

0 = nfen'2{(Bt)",....B1tNT) — (B(t)",....B(t)")}"
+n_1/277TCM_1Z(Vi(t17 617 G)Ta ceey Vi(tla 617 G)T)T

=1

= n"n'2(@-a) +n 2T MTYY (it 81, G)T vt B, G)T)T,

i=1
which directly yields the result. L]

Estimation of cov{u(ag,G)}

For any value t, we make the approximation

n -1 n
dAc(t) = {ZI(Yi>t)} d{ZI(Yiq,Di:O)},
=1

i=1

. L1 - Om{ X, ab(t; . -
qij(a,t) = nt Z m{ 85 ( ])}I[tj + m{X;,ab(t;)} < min(t,Y;)].
i=1

We then obtain

/t 1 (v) {dI(Yi <v,D;=0)—-I(Y; > U)dKG(U)}

= WY1 — D)I(Y; < t) —n_lzh (V) (1 = Dp)I{Y}, < min(t, Y;)},
dalj(a t)

I Z om {Xz,ab( )}[ [t; + m{X;,ab(t;)} <YildI [t; + m{X;,ab(t;)} < 1].

Combine the above two results, we have

/_Z G1(s) / R w) {dI(Y; < v.D; = 0) — 1% > v)dR(v) } deigj (e )

—0o0

= Gty + m{ X @b(t)))] (1 (V) (1~ DOIIY; < t; + m{X;, @bi(t;)}]

nt Z h=2(Yy)(1 — D)1 (Y} < min [t; + m{X;,ab(t;)}, 1@-]))

< . Z om {Xz,ab(tj)}”tj +m{X;,ab(t;)} < Yi]> :

Since
ti ~
fi(t;,6,G) = si{t;,ab(t;),G} — dalant;) / hL(s) {dm@ <s,Di=0)—I(Y; > s)dAG(s)}
+/ é-l(s)/ W) {dI(Yi < v, D; = 0) = I(Y; > v)dRa(v) } daiy (. s),

inserting the above results, we obtain (9). U



