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Abstract: The estimation of a monotone trend that has been obscured by stationary

fluctuations is considered and illustrated by global temperature anomalies. At an

interior point, the rescaled isotonic estimators are shown to converge in distribution

to Chernoff’s distribution under minimal conditions on the stationary errors; and

two modifications for estimating the value at an end point are compared. The

asymptotic results are shown to hold conditionally given the starting values and, so,

allow some relaxation of the stationarity assumption. The quality of the implicit

approximations is assessed by simulation and found to be quite good for several

models.
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1. Introduction

Consider a time series that consists of a nondecreasing trend observed with
stationary fluctuations, say

yk = µk + Xk, k = 1, 2, . . . , (1.1)

where −∞ < µ1 ≤ µ2 ≤ · · · and . . . X−1, X0, X1, . . . is a strictly stationary
sequence with mean 0 and finite variance. The global temperature anomalies
in Example 1 provide a particular example. Others are provided by the sizes of
animal or plant populations following an environmental insult. If a segment of the
series is observed, say y1, . . . , yn, then isotonic methods suggest themselves for
estimating the µk nonparametrically. The isotonic estimators may be described
as

µ̃k = max
i≤k

min
k≤j≤n

yi + · · · + yj

j − i + 1
. (1.2)

Alternatively, letting bxc denote the greatest integer less than or equal to x ∈ R,
Yn the cumulative sum diagram,

Yn(t) =
y1 + · · · + ybntc

n
,
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Figure 1. Global Temperature Anomalies, 1850-1999.

and Ỹn its greatest convex minorant, µ̃k = Ỹ
′
n(k/n), the left hand derivative of Ỹn

evaluated at t = k/n. See Chapter 1 of Robertson, Wright, and Dykstra (1988)
for background on isotonic estimation.

Example 1. Annual global temperature anomalies from 1850-1999 are shown in
Figure 1 with the isotonic estimator of trend superimposed.

In view of the spiking problem, described below, the modest increase at the
very beginning is not impressive, and global warming does not appear to have
begun until about 1915. This impression is refined by a formal confidence bound
in Section 2.

With the global warming data, there is special interest in estimating µn, the
current temperature anomaly, and there isotonic methods encounter the spiking
problem, described in Section 7.2 of Robertson, Wright, and Dykstra (1988) for
the closely related problem of estimating a monotone density. Briefly, the esti-
mators are simply too big (small) at the the right (left) end point. We consider
two methods for correcting this problem, the penalized estimators of Woodroofe
and Sun (1993) and the boundary corrected estimator of Kulikov and Lopuhaä
(2006), both introduced for monotone densities. The former estimates µn by

µ̂p,n = max
i≤n

yi + · · · + yn

n − i + 1 + λn
,

where λn > 0 is smoothing parameter, and the latter by µ̂b,n = µ̃mn , where
mn < n is another smoothing parameter.
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The main results of this paper obtain the asymptotic distributions of esti-
mation errors, properly normalized, for the estimators described above. One of
these results is well known for monotone regression with i.i.d. errors, and ana-
logues of the others are known for monotone density estimation. Interest here is
in extending these results to allow for dependence. Others have been interested
in this question recently—notably Anevski and Hössjer (2006) and Dedecker,
Merlevède, and Peligrad (2009). Our results go beyond theirs in two ways. We
consider the boundary case, estimating µn, and our results hold conditionally
given the starting values. The asymptotic distribution of the boundary corrected
estimator in (3.12) is new. The conditional convergence is important because
it allows observation to begin at a random time–that is, to replace y1, . . . , yn in
(1.1) by yτ+1, . . . , yτ+n, where τ is a random variable. The size of an animal
population following an environmental insult, for example, starts at a random
time. In addition, our conditions are weaker than those of Anevski and Hössjer
(2006). Instead of the strong mixing condition, called (A9) in their paper, we
use the condition (2.1) below, introduced in Maxwell and Woodroofe (2000) and
further developed in Peligrad and Utev (2005). One objective of this paper is
to show by example how recent results on the central limit question for sums
of stationary processes can be used to weaken mixing conditions in statistical
applications. Condition (2.1) is, in fact, nearly necessary for the conditional
convergence, as explained in Section 2 below. Our conditions are not strictly
comparable to those of Dedecker, Merlevède, and Peligrad (2009) who require a
linear structure, but allow a more general class of limits. A preliminary version
of this material appeared in Zhao (2008).

The main results are stated and proved in Section 3 and then illustrated by
simulations and further consideration of Example 1 in Section 4. Section 2 con-
tains some background material. Global temperature anomalies are reconsidered
in Sections 2 and 4.

2. Preliminaries

A maximal inequality and conditional convergence. The main results of Peligrad
and Utev (2005) are an important technical tool. To state them, let . . . X−1, X0,
X1, . . . be a strictly stationary and ergodic sequence with mean 0 and finite
variance; let S0 = 0, Sn = X1 + · · · + Xn, Fn = σ{. . . , Xn−1, Xn}, and

Bn(t) =
1√
n

Sbntc

for 0 ≤ t ≤ 1; let B denote a standard Brownian motion. Both B and Bn are
regarded as random elements with values in D[0, 1] endowed with the Skorohod
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topology, Billingsley (1968, Chap. 3),. Let ‖ · ‖ denote the norm in L2(P ),
‖Y ‖ =

√
E(Y 2). It is shown in Peligrad and Utev (2005) that if

∞∑
n=1

n−3/2‖E(Sn|F0)‖ < ∞, (2.1)

then

Γ :=
∞∑

k=0

2−k/2‖E(S2k |F0)‖ < ∞,

E

[
max
k≤n

S2
k

]
≤ 6

[
E(X2

1 ) + Γ
]
n; (2.2)

also,

σ2 = lim
n→∞

1
n

E(S2
n) (2.3)

exists, and Bn converges in distribution to σB. In fact, a stronger conclusion
is possible. It will be shown that the conditional distributions of Bn given F0

converge in probability to the distribution of σB. It is shown in Maxwell and
Woodroofe (2000) that (2.1) is almost necessary (within a logarithmic term of
necessity) for convergence of the conditional distributions in the following sense:
if (2.3) holds and the conditional distribution of Sn/

√
n given F0 converges

in probability to the normal distribution with mean 0 and variance σ2, then
‖E(Sn|F0)‖ = o(

√
n).

Properties of weak convergence—for example, the Continuous Mapping The-
orem and Slutzky’s Theorem, extend easily to the convergence of conditional dis-
tributions. We illustrate with Slutzky’s Theorem, Billingsley (1968). Let (X , d)
denote a complete separable metric space, and let ρ be a metric that metrizes
weak convergence of probability distributions on the Borel sets of X , for example
the metric (2.4) below. Next, let Xn, Yn, n = 1, 2, . . ., be random elements as-
suming values in X ; suppose that Xn and Yn are defined on the same probability
space (Ωn,An, Pn) say; let Ao

n ⊆ An be sub sigma algebras; let µn and νn be
regular conditional distributions for Xn and Yn given Ao

n. If ρ(µ, µn) → 0 in
probability and d(Xn, Yn) → 0 in probability, then ρ(µ, νn) → 0 in probability.
The assertion can be easily proved from the usual statement of Slutzky’s The-
orem, for example, Billingsley (1968, p.25), by considering subsequences which
converge to ∞ so rapidly that ρ(µ, µn) → 0 and d(Xn, Yn) → 0 w.p.1 along the
subsequence.

There is a convenient choice of ρ. Write ‖g‖Lip = supx |g(x)|+supx 6=y |g(x)−
g(y)|/d(x, y) for bounded Lipschitz continuous functions g, and let

ρ(µ, ν) = sup
‖g‖Lip≤1

∣∣∣∣∫
X

gdµ −
∫
X

gdν

∣∣∣∣ (2.4)
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for probability distributions µ and ν on the Borel sets of X . Then ρ metrizes
convergence in distribution (Dudley (2002, Thm. 11.3.3)). Here is a useful feature
of ρ. Let An,1 ⊆ An,2 be sub sigma algebras of An and let µn,1 and µn,2 be
regular conditional distributions for Xn given An,1 and An,2. Then ρ(µ, µn,1) ≤
E[ρ(µ, µn,2)|An,1] and, therefore,

E[ρ(µ, µn,1)] ≤ E[ρ(µ, µn,2)]. (2.5)

One more bit of preparation: if . . . X−1, X0, X1, . . . is any stationary se-
quence for which E(X2

n) < ∞, then X2
n/n → 0 a.s. by an easy application of the

Borel-Cantelli Lemmas, or the Ergodic Theorem, Petersen (1989), page 30; thus,
Xn/

√
n → 0 a.s.

If γ > 0, and m ≥ 0 is an integer, let

Xm,γ(t) =
Sm+bγtc − Sm

√
γ

(2.6)

for t ≥ −m/γ; and let Xa,b
m,γ = Xm,γ |[a, b] denote the restriction of Xm,γ to an

interval [a, b]. Thus Bn = X0,1
0,n. Let W denote a standard two-sided Brownian

motion. Both Xa,b
m,γ and Wa,b = W|[a, b] are regarded as elements of D[a, b].

Proposition 1. Suppose that (2.1) holds. Let mn ≥ 0 be integers, let 0 <

γn → ∞, and let −∞ < a < b < ∞. If either a ≥ 0 or γn/mn → 0, then
the conditional distribution of Xa,b

mn,γn given F0 converges in probability to the
distribution of σWa,b.

Proof. For fixed a and b, write Xn = Xa,b
mn,γn . Let Hn denote a regular conditional

distribution for Xn given F0 and H the distribution of σWa,b. Then it is necessary
to show that ρ[H,Hn] → 0 in probability.

If a ≥ 0, it suffices to consider the case a = 0, since then the convergence of
X0,b

mn,γn implies that of Xa,b
mn,γn . It also suffices to consider the case mn = 0. To

see why, suppose that the result is known for mn = 0 and let Ho
n be a regular

conditional distribution for X0,b
0,γn

given F0, so that limn→∞ E[ρ(H,Ho
n)] = 0.

Next, let H∗
n be a regular conditional distribution for Xn given Fmn . Then

E[ρ(H,Hn)] ≤ E[ρ(H,H∗
n)] by (2.5), and E[ρ(H,H∗

n)] = E[ρ(H,Ho
n)] since the

process is stationary. So, limn→∞ E[ρ(H,Hn)] = 0, as required.
So consider the case that mn = 0 and a = 0. From Maxwell and Woodroofe

(2000) there is a martingale Mn with stationary increments and a sequence {Rn}
for which ‖Rn‖/

√
n → 0, and Sn = Mn + Rn w.p.1 for all n. Let

Mn(t) =
1

√
γn

Mbγntc and Rn(t) =
1

√
γn

Rbγntc
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for 0 ≤ t ≤ b. Then clearly Xn = Mn + Rn and Rn(t) → 0 in probability for each
fixed 0 ≤ t ≤ b. Let Kn denote a regular conditional distribution for Mn given
F0. Then ρ(H,Kn) → 0 with probability one by the functional version of the
Martingale Central Limit Theorem, applied conditionally; see, for example, Hall
and Heyde (1980, Sec. 4), From Peligrad and Utev (2005) the (unconditional)
distributions of Xn are tight. So, the (unconditional) distributions of Rn are tight
and, therefore, max0≤t≤b |Rn(t)| → 0 in probability. The special case follows from
the conditional version of Slutzky’s Theorem.

Suppose now that γn/mn → 0 and a < 0. Then, as above we may suppose
b > 0. Let m∗

n = mn + bγnac and let n be so large that m∗
n > 0. Then

Xn(t) = X0,b−a
m∗

n,γn
(t − a) − X0,b−a

m∗
n,γn

(−a) + εn(t)

for a ≤ t ≤ b, where

max
a≤t≤b

|εn(t)| ≤ 2 max
mn+γna−1≤k≤mn+γnb+1

|Xk|√
γn

→ 0

in probability. So, it suffices to show that the conditional distribution of X∗
n :=

X0,b−a
m∗

n,γn
given F0 converges to the distribution of σW in D[0, b − a]. Let Ho be

the distribution of σW in D[0, b − a], Ho
n the RCD for X0,b−a

0,γn
given F0, H∗

n a
RCD for X∗

n given F0, and H∗∗
n a RCD for X∗

n given Fm∗
n
. Then, as above,

E [ρ(Ho,H∗
n)] ≤ E [ρ(Ho,H∗∗

n )] = E [ρ(Ho,Ho
n)] → 0

by (2.5), stationarity, and the special case.

Example 2. (Global Temperatures Revisited). Wu, Woodroofe, and Mentz
(2001) tested the hypothesis µk = c for all k using a likelihood ratio test and
found a highly significant result, well beyond the range of their tables. The same
conclusion is reached using an analog of Hartigan and Hartigan (1985) Dip test.
For variety and simplicity, we use a dip-like test in what follows. For testing
µk = c for all k, the latter uses the test statistic Dn = sup0≤t≤1

√
n|Ỹn(t) −

Ỹn(1)t| = − inf0≤t≤1[Yn(t) − ȳnt], where ȳn = (y1 + · · · + yn)/n. A similar test
may be used to test the hypothesis Hk

0 that µj = c for j ≤ k, or equivalently
that φ is constant on the interval [0, k/n] for any 1 < k < n. Thus, let

Dk
n = − inf

0≤j≤k

[
1√
k

j∑
i=1

(yi − ȳk)

]

and consider the test that rejects Hk
0 for large values of Dk

n. If k = kn ∼ qn,
where 0 < q < 1, then limn→∞ P [Dk

n > λ] = e−2λ2
by a simple application of
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Proposition 1, and an asymptotic level-α test is to reject if

Dk
n >

√
1
2

log
(

1
α

)
.

For α = 0.05, the hypothesis is accepted for k ≤ 75 and rejected for larger values
of k. So, 1925 is an asymptotic lower confidence bound for the start of global
warming.

Relation to strong mixing. The condition (2.1) may be compared with mixing
conditions. Let Gn = σ{Xn, Xn+1, . . .} and recall that the strong mixing coeffi-
cients are defined by

αn = sup
A∈F0,B∈Gn

|P (A ∩ B) − P (A)P (B)|.

Then the condition of Anevski and Hössjer (2006) may be stated: for some ε > 0,

E(X4
1 ) < ∞ and

∞∑
n=1

α1/2−ε
n < ∞. (A9)

Proposition 2. If (A9) holds, then (2.1) holds.

Proof. First write

‖E(Sn|F0)‖ = sup
Y

E [E(Sn|F0)Y ] = sup
Y

E[SnY ],

where the supremum is taken over all F0-measurable functions Y for which ‖Y ‖ ≤
1. By standard mixing inequalities, e.g., Corollary A.2 of Hall and Heyde (1980),
Appendix III,

|E(SnY )| ≤
n∑

k=1

|E(XkY )| ≤
n∑

k=1

8‖Xk‖4‖Y ‖2α
1/4
k ≤ 8‖X0‖4

n∑
k=1

α
1/4
k

for F0-measurable function Y with ‖Y ‖2 ≤ 1, where ‖ · ‖p denotes the norm in
Lp. So, ‖E(Sn|F0)‖ ≤ 8‖X0‖4

∑n
k=1 α

1/4
k and

∞∑
n=1

n−3/2‖E(Sn|F0)‖ ≤ 24‖X0‖4

∞∑
k=1

1√
k
α

1/4
k .

Now let ε be as in (A9). Take max{1, 2 − 4ε} < q < 2, and let p = q/(q − 1).
Then p > 2, and the right hand side of last line is at most

24‖X0‖4

[ ∞∑
k=1

(
1
k

)p/2
]1/p [ ∞∑

k=1

α
q/4
k

]1/q

,
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Figure 2. Global Temperature Anomalies.

which is finite.

Figure 2 shows the autocorrelation plot of the residual global temperature
anomalies. This is consistent with a low order autoregressive model for which
(2.1) is easily verified. By way of contrast, a low order autoregressive process need
not be strongly mixing. (The Bernoulli shift process in Maxwell and Woodroofe
(2000) provides an example.)

3. Asymptotic Distributions

The LSE’s. Throughout this section, we suppose that the trend µk changes
gradually in the sense that

µk = φ

(
k

n

)
, (3.1)

where φ is a continuous, nondecreasing function on [0, 1]. Thus, µk depends on
n as well as k, but the dependence on n will be suppressed in the notation. Let

Φn(t) =
1
n

bntc∑
j=1

φ

(
j

n

)
,

Φ(t) =
∫ t

0
φ(s)ds, and φ̃n(t) = Ỹ ′

n(t),

the left hand derivative of the greatest convex minorant of Yn, for 0 ≤ t ≤ 1.
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Then µ̃k = φ̃n(k/n) and

sup
0≤t≤1

|Φn(t) − Φ(t)| = O

(
1
n

)
.

A sequence {tn} ⊂ (0, 1) is called regular if either tn → t0 ∈ (0, 1) as n → ∞,
or tn → 1 and n1/3(1−tn) → ` ∈ (0,∞]. The first theorem obtains the asymptotic
distribution of

Ξn = n1/3[φ̃n(tn) − φ(tn)] (3.2)

for regular sequences {tn}. Observe that if φ is continuously differentiable near
t0, then the asymptotic distribution, if any, is unchanged if tn is replaced by
[ntn]/n.

Let W be a standard two-sided Brownian motion as in Section 2,

Z(s) = σW(s) +
1
2
φ′(t0)s2 (3.3)

for s ∈ R, and

Zn(s) = n2/3
[
Yn(tn + n−1/3s) − Yn(tn) − φ(tn)n−1/3s

]
(3.4)

for s ∈ In := [−n1/3tn, n1/3(1 − tn)]. Then Ξn = Z̃′
n(0), the left hand derivative

of the greatest convex minorant of Zn at s = 0.
Let f |J denote the restriction of a function f to a subset J of its domain.

Proposition 3. Suppose that (2.1) and (3.1) hold, that φ is continuously dif-
ferentiable near t0 ∈ (0, 1], and that φ′(t0) > 0. Let tn → t0 be regular and
0 < ` = limn→∞ n1/3(1 − tn) ≤ ∞. Then for −∞ < a < b < `, the conditional
distributions of Zn|[a, b] given F0 converge in D[a, b] to the (unconditional) dis-
tribution of Z|[a, b].

Proof. To begin, write

Zn(s) = Ψn(s) + Wn(s) + Rn(s), (3.5)

where

Ψn(s) = n2/3
[
Φ(tn + n−1/3s) − Φ(tn) − φ(tn)n−1/3s

]
,

Wn(s) = n
1
6

[
Bn(tn + n−1/3s) − Bn(tn)

]
,

and
Rn(s) = n2/3

[
(Φn − Φ)(tn + n−1/3s) − (Φn − Φ)(tn)

]
.
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It is clear that sups∈In
|Rn(s)| ≤ 2n2/3 sup0≤t≤1 |Φn(t) − Φ(t)| = O(n−1/3) → 0

as n → ∞, and that

lim
n→∞

Ψn(s) =
1
2
φ′(t0)s2

uniformly on compactas. So, it suffices to show that the conditional distribution
of Wn|[a, b] given F0 converges in probability to the distribution of σW|[a, b]
in D[a, b] for all compact subintervals [a, b] ⊆ (−∞, `]; this follows easily from
Proposition 1. To see how, let mn = bntnc, γn = n2/3, and observe that

Wn(s) =
[
Smn+bγnsc − Smn√

γn

]
+ ε′n(s) = Xa,b

mn,γn
(s) + ε′n(s),

where maxa≤s≤b |ε′n(s)| → 0 in probability.

Unfortunately, Ξn is not quite a continuous functional of Zn. Two lemmas
are needed to obtain its limiting distribution. The first is simply a restatement of
Lemmas 5.1 and 5.2 of Wang and Woodroofe (2007). If f : I → R is a bounded
function and J ⊆ I is a subinterval, let GJf denote the greatest convex minorant
of f |J .

Lemma 1. Let f be a bounded piecewise continuous function on a closed interval
I and [a1, a2] ⊆ [b1, b2] ⊆ I. If

f

(
ai + bi

2

)
<

GIf(ai) + GIf(bi)
2

, i = 1, 2,

then GIf = G[b1,b2]f on [a1, a2].

Lemma 2. With the notations and conditions of Proposition 3, sups∈In
[|Wn(s)|−

εmin(s2, |s|)] is stochastically bounded for any ε > 0.

Proof. Let I+
n = [0, n1/3(1 − tn)] and I−n = [−n1/3tn, 0]. It will be shown

that sups∈I+
n
|Wn(s)| − ε min(s2, |s|) is stochastically bounded, the treatment of

sups∈I−n
[|Wn(s)| −εmin(s2, |s|)] being similar. Let mn(s) = bntn +n2/3sc−bntnc

for s ∈ I+
n and observe that n2/3s − 1 ≤ mn(s) ≤ n2/3s. Then

P

[
sup
s∈I+

n

|Wn(s)| − ε min(s2, |s|) > c

]
= P

[
sup
s∈I+

n

|Smn(s)|
n1/3

− εmin(s2, |s|) > c

]

for fixed n ≥ 1 and c > 0. If c ≥ 2, the term on the right is at most

P

[
max

m≤n2/3
|Sm| > n1/3c

]
+ P

[
max

n2/3≤m≤n
|Sm| − n−1/3εm >

1
2
n1/3c

]
. (3.6)



MONOTONE TREND 369

Then, using the maximal inequality (2.2), it follows that (3.6) is majorized by

P

[
max

m≤n2/3
|Sm| >

1
2
n1/3c

]
+

∞∑
k=1

P

[
max

m≤2kn2/3
|Sm| >

1
2

(
c + ε2k

)
n1/3

]

≤ 24
[
‖X1‖2 + Γ

] ∞∑
k=0

2k

[c + ε(2k − 1)]2
,

which is independent of n, and approaches 0 as c → ∞.

Proposition 4. If the assumptions of Proposition 3 hold with ` = ∞, then for
any compact interval [a1, a2] ⊆ R and any ε > 0, there is a compact interval
[b1, b2] ⊇ [a1, a2] such that

P
[
Z̃n = G[b1,b2]Zn on [a1, a2]

]
≥ 1 − ε ≤ P

[
GRZ = G[b1,b2]Z on [a1, a2]

]
(3.7)

for all large n.

Proof. Observe that Ψn is convex in (3.5), and let γ = 1
2φ′(t0). Then there are

n0 ≥ 1 and δ > 0 for which n0 > 1/δ3 and

9
5
γ ≤ φ′(t) ≤ 11

5
γ

whenever |t− tn| ≤ δ and n ≥ n0. It then follows from a Taylor series expansion
and convexity that for n ≥ n0

9
10

γs2 ≤ Ψn(s) ≤ 11
10

γs2

for |s| ≤ δn1/3 and

Ψn(s) ≥ 9
10

γ min
(
s2, |s|

)
(3.8)

for all s ∈ In. Given ε, there is a c such that for all large n,

P

[
|Wn(s)| + |Rn(s)| ≤ 1

10
γ min(s2, |s|) + c for all s ∈ In

]
≥ 1 − ε (3.9)

by Lemma 2. Let Bn be the event defined on the left side of (3.9). Then Bn

implies Zn(s) ≥ 8Ψn(s)/9− c for all s ∈ In and, therefore, Z̃n(s) ≥ 8Ψn(s)/9− c

for all s ∈ In, since Ψn is convex. Let [a1, a2] be as in the statement of the
proposition; let b2 > max{0, a2} be so large that

γ
[
a2

2 + b2
2 − 6a2b2

]
> 20c;
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let n > n0 be so large that a2, b2 ∈ In and max{|a2|, |b2|} ≤ δn1/3. Then Bn

implies

2Zn

(
a2 + b2

2

)
−

[
Z̃n(a2) + Z̃n(b2)

]
≤ 12

5
γ

(
a2 + b2

2

)2

− 4
5
γ

[
a2

2 + b2
2

]
+ 4c

= −γ

5
[
a2

2 + b2
2 − 6a2b2

]
+ 4c,

which is negative by the choice of b2. Similarly, for large n, Bn implies the
existence of b1 < a1 for which 2Zn[(1/2)(a1 + b1)] < Z̃n(a1) + Z̃n(b1). The left
side of (3.7) then follows from Lemma 1; the right hand inequality is similar, but
simpler.

Theorem 1. If the assumptions of Proposition 3 hold, then the conditional dis-
tributions of (GInZn)|J given F0 converge in probability to the distribution of
(G(−∞,`)Z)|J for every compact interval J ⊆ (−∞, `), and the conditional distri-
butions of Ξn given F0 converge in probability to the distribution of [G(−∞,`)Z]′(0).

Proof. We first consider the case ` = ∞. If J is any compact interval and ε > 0,
then there is a compact K such that

P [GInZn = GKZn on J ] ≥ 1 − ε ≤ P [GRZ = GKZ on J ] (3.10)

for all large n. Let H and Ho denote the distributions of (GRZ)|J and (GKZ)|J ,
and let Hn and Ho

n denote regular conditional distributions for (GInZn)|J and
(GKZn)|J given F0. Recalling ρ as defined in (2.4) with X = D(J), then
E[ρ(Ho,Ho

n)] → 0 by the Continuous Mapping Theorem since the conditional
distribution of Zn|K converges to the distribution of Z|K. It follows that

E[ρ(H,Hn)] ≤ ρ(H,Ho) + E[ρ(Ho,Ho
n)] + E[ρ(Ho

n,Hn)] ≤ 3ε

for sufficiently large n, since ρ(H,Ho) ≤ ε and ρ(Ho
n,Hn) ≤ ε with probability

one, by Proposition 4.
Now suppose ` < ∞, and consider J = [a1, a2] ⊆ (−∞, `]. Following

the proof of Proposition 4, there is b1 < a1 for which (3.10) holds with K =
[b1, n

1/3(1− tn)] for all large n, then the rest of the argument is similar as above.
The second assertion of the theorem is an immediate consequence of the Contin-
uous Mapping Theorem.

The next corollary gives the asymptotic distributions of rescaled estimation
at an interior point in (3.11) and for the boundary estimator µ̂b,n = µ̃mn in (3.12)
if mn = n − n2/3`, where 0 < ` < ∞.
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Corollary 1. Suppose that the assumptions of Proposition 3 hold and let κ =
[(1/2)σ2φ′(t)]1/3. If t ∈ (0, 1), then

n1/3

(
φ̃n(t) − φ(t)

κ

)
⇒ 2 arg min

−∞<s<∞

[
W(s) + s2

]
; (3.11)

and, if 0 < ` < ∞,

n1/3
[
φ̃n(1 − `n−1/3) − φ(1)

]
⇒

[
G(−∞,`]

(
σW(s) +

1
2
φ′(1)s2

)]′
(0) − `φ′(1).

(3.12)

Proof. The convergence follows directly from Theorem 1 since the left side
of (3.11), for example, is simply Ξn/κ by taking tn ≡ t. That [GRZ]′(0) =
2κ argmins[W(s) +s2] in distribution follows from rescaling properties of Brow-
nian motion.

The penalized LSE. Now consider the penalized LSE. Clearly,

µ̂p,n − µn = max
1≤k≤n

yn−k+1 + · · · + yn − (λn + k)µn

k + λn
.

The numerator here may be written as

yn−k+1+· · ·+yn−(λn+k)µn = n1/3

[
Wp,n

(
k

n2/3

)
− ∆n

(
k

n2/3

)
− n−1/3λnµn

]
,

where

Wp,n(t) = n−1/3

bn2/3tc∑
j=1

Xn−j+1,

and

∆n(t) = n−1/3

bn2/3tc∑
j=1

(µn − µn−j+1).

It is clear that the conditional distribution of Wp,n converges to the distribution of
σW in D[0, a] for all 0 < a < ∞. If (3.1) holds and φ is continuously differentiable
near 1, then

lim
n→∞

∆n(t) =
1
2
φ′(1)t2

uniformly on compact subintervals of [0,∞); if φ′(1) > 0, then there is an η > 0
for which ∆n(t) ≥ 2ηt2 for all 6n−2/3 ≤ t ≤ n1/3 and n ≥ 6. Suppose now that
λn = αn1/3 for some 0 < α < ∞ and let

Zp,n(t) =
Wp,n(t) − ∆n(t) − αφ(1)

t + α/n1/3

for 0 ≤ t ≤ n1/3. Then n1/3(µ̂p,n − µn) = maxn−2/3≤t≤n1/3 Zp,n(t).
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Theorem 2. Suppose that (2.1) and (3.1) hold, that φ is continuously differen-
tiable near 1, and that φ(1)φ′(1) > 0. Then

n1/3(µ̂p,n − µn) ⇒ sup
0<t<∞

Zp,∞(t), (3.13)

where, for 0 < t < ∞,

Zp,∞(t) =
σW(t) − αφ(1) − φ′(1)t2/2

t
.

Proof. Clearly, Zp,n ⇒ Zp,∞ in D(K) for all compact subintervals K ⊆ (0,∞).
So, it suffices to show that for every ε ∈ (0, 1) there is a δ > 0 for which

P

[
sup

n−2/3<t<n1/3

Zp,n(t) = sup
δ<t<δ−1

Zp,n(t)

]
≥ 1 − ε

for all large n; for this it suffices to show that for every ε ∈ (0, 1), there is a δ > 0
for which

P

[
sup

n−2/3<t<δ

Zp,n(t) > −1
ε

]
+ P

[
sup

δ−1≤t≤n1/3

Zp,n(t) > −1
ε

]
≤ ε (3.14)

for all large n. The first term on the left side of (3.14) is easy. If δ < αε/2, then

P

[
sup

n−2/3<t<δ

Zp,n(t) > −1
ε

]
≤ P

[
sup

0≤t≤δ
Wp,n(t) >

1
2
α

]
,

which is less than ε/2 for all large n if δ is sufficiently small, since Wp,n ⇒ σW in
D[0, 1] and P [sup0≤t≤δ W(t) > α/2] = 2[1 − Φ(α/(2

√
δ)]. For the second, recall

that there is an η > 0 for which ∆n(t) ≥ 2ηt2 for all t ≤ n1/3, and consider
δ < εη and n > [εφ(1)]−3. Then

P

[
sup

δ−1<t≤n1/3

Zp,n(t) > −1
ε

]
= P

[
Wp,n(t) > ∆n(t) − t

ε
, for some t ∈ [

1
δ
, n1/3]

]
≤ P

[
Sn − Sn−j > η

(
j2

n

)
for some j ∈ [

1
δ
n2/3, n]

]
.

Let m = bδ−1n2/3c. Then by stationarity, the last term is at most

∞∑
k=1

P

[
max

j≤m2k
Sj >

ηm222k−2

n

]
≤ 6

[
‖X0‖2 + Γ

] ∞∑
k=1

n2

η2m323k−4

≤ 96
[
‖X0‖2 + Γ

] δ3

η2
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for large n, and this may be made less than ε/2 by taking δ sufficiently small.

Remark. Let c = [(1/2)σ−4φ′(1)]1/3φ(1)α. Then, from simple rescaling prop-
erties of Brownian motion, the right side of (3.13) has the same distribution as

κ

[
sup

0<t<∞

W(t) − c − t2

t

]
= κUc, say. (3.15)

Similarly, letting b = [φ′(1)/(2σ)]2/3`, the right side of (3.12) has the same dis-
tribution as

κ

{
sup

−∞<s<0
inf

0<t<b

[W(t) − W(s)] + (t2 − s2)
t − s

− 2b

}
= κTb say. (3.16)

In applications, it is important to choose the right smoothing parameters,
α and `. We content ourselves with first choosing b and c to minimize E[T 2

b ]
and E[U2

c ], and then solving for α and ` by plugging in consistent estimates of
φ(1), φ′(1), and σ into the equations for b and c given above. The minimizing
values of b∗ and c∗ will be given in Section 4 by simulation. Below we consider
estimating σ2 and φ′(t) for t ∈ (0, 1].

Nuissance Parameters. The asymptotic distributions in Corollary 1 and Theo-
rem 2 depend on the unknowns φ′(t), and σ2, and consistent estimations of these
quantities are of interest. That φ̃n(t) is a consistent estimator of φ(t) follows
from Theorem 1. Consistent estimators of σ2 are supplied by

σ̂2
n = γ̂n(0) + 2

∑
k≤

√
n

(
1 − k√

n

)
γ̂n(k),

where

γ̂n(k) =
1
n

n−k∑
j=1

(yj − µ̃j)(yj+k − µ̃j+k).

See Wu, Woodroofe, and Mentz (2001) for the details. It is also possible to consis-
tently estimate φ′(t). Let ε1, ε2, . . . be a positive sequence for which limn→∞ εn =
0 and limn→∞ n1/3εn = ∞.

Corollary 2. Suppose that φ is continuously differentiable near t0 ∈ (0, 1] and
let tn, n = 1, 2, . . ., be a regular sequence for which tn → t0. Then

φ̃n(tn) − φ̃n(tn − εn)
εn

→ φ′(t0) (3.17)

in probability as n → ∞.
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Table 1. φ(t) = t2.

ρ = 0.5 ρ = 0.9

t0 t0
p ± 1/3 1/2 2/3 min max 1/3 1/2 2/3 min max

0.025 0.0016 0.0142 0.0181 0.0225 0.0142 0.0225 0.0219 0.0104 0.0119 0.0102 0.0219

0.050 0.0022 0.0341 0.0406 0.0448 0.0323 0.0448 0.0443 0.0275 0.0303 0.0262 0.0443

0.100 0.0030 0.0773 0.0898 0.0939 0.0762 0.0950 0.0878 0.0676 0.0734 0.0673 0.0878

0.200 0.0040 0.1725 0.1907 0.1892 0.1717 0.1920 0.1808 0.1631 0.1660 0.1584 0.1808

0.250 0.0043 0.2231 0.2373 0.2398 0.2219 0.2440 0.2271 0.2140 0.2193 0.2067 0.2271

0.300 0.0046 0.2745 0.2906 0.2892 0.2706 0.2951 0.2761 0.2643 0.2723 0.2563 0.2761

0.400 0.0049 0.3781 0.3864 0.3902 0.3762 0.3962 0.3719 0.3683 0.3827 0.3581 0.3827

0.500 0.0050 0.4834 0.4915 0.4930 0.4786 0.4963 0.4738 0.4718 0.4925 0.4673 0.4929

0.600 0.0049 0.5908 0.5921 0.5962 0.5826 0.5990 0.5769 0.5805 0.5955 0.5729 0.6002

0.700 0.0046 0.6957 0.6893 0.6986 0.6852 0.6997 0.6765 0.6847 0.7068 0.6765 0.7068

0.750 0.0043 0.7448 0.7381 0.7470 0.7381 0.7521 0.7271 0.7400 0.7579 0.7271 0.7591

0.800 0.0040 0.7943 0.7942 0.7977 0.7889 0.8021 0.7818 0.7924 0.8087 0.7811 0.8121

0.900 0.0030 0.8947 0.8985 0.9014 0.8888 0.9021 0.8863 0.8980 0.9050 0.8863 0.9093

0.950 0.0022 0.9455 0.9491 0.9508 0.9442 0.9532 0.9383 0.9502 0.9556 0.9382 0.9556

0.975 0.0016 0.9709 0.9746 0.9763 0.9709 0.9781 0.9663 0.9759 0.9801 0.9660 0.9801

Note. Columns three, four, and five show the empirical distribution function of Ξn/κ at the

pth percentile of Chernoff’s distribution for t0 = 1/3, 1/2, and 2/3 in Tables 1 and 3 and

t0 = 0.6, 0.75, and 0.9 in Table 2. The value of p is in column one, and column two lists the

standard errors of the simulations. Columns six and seven list the minimum and maximum of

the empirical distribution function over 1/3 ≤ t0 ≤ 2/3. Columns eight through twelve provide

the same information for ρ = 0.9

Proof. The difference between the left side of (3.17) and φ′(t0) is at most∣∣∣∣∣ φ̃n(tn) − φ(tn)
εn

∣∣∣∣∣ +

∣∣∣∣∣ φ̃n(tn − εn) − φ(tn − εn)
εn

∣∣∣∣∣ +
∣∣∣∣φ(tn − εn) − φ(tn)

εn
− φ′(t0)

∣∣∣∣ .

The first two terms in the display approach zero in probability by applying The-
orem 1 to the regular sequences {tn} and {tn − εn}, and so does the third since
φ was assumed to be continuously differentiable near t0.

4. Simulations

Simulations were conducted to assess the accuracy of the approximation
implicit in (3.11). Several things affect this, including the nature of the process
. . . X−1, X0, X1, . . ., the function φ, the choice of t0, and the sample size. For the
fluctuations, we considered an autoregressive process Xk = ρXk−1 + εk, where
. . . ε−1, ε0, ε1, . . . are i.i.d. normally distributed random variables with mean 0. In
Tables 1, 2, and 3, we considered two values of ρ, ρ = 0.5 and 0.9, representing
moderate and strong dependence, three φ’s, φ(t) = t2, (t−0.5)+ = max(0, t−0.5),
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Table 2. φ(t) = (t − 0.5)+.

ρ = 0.5 ρ = 0.9

t0 t0
p ± 0.6 0.75 0.9 min max 0.6 0.75 0.9 min max

0.025 0.0016 0.0091 0.0232 0.0232 0.0091 0.0264 0.0033 0.0102 0.0151 0.0033 0.0155

0.050 0.0022 0.0278 0.0483 0.0475 0.0278 0.0505 0.0087 0.0269 0.0357 0.0087 0.0370

0.100 0.0030 0.0783 0.0990 0.0958 0.0783 0.1007 0.0310 0.0703 0.0820 0.0310 0.0820

0.200 0.0040 0.1820 0.1973 0.1959 0.1820 0.2014 0.1065 0.1644 0.1772 0.1065 0.1809

0.250 0.0043 0.2391 0.2436 0.2472 0.2391 0.2503 0.1543 0.2194 0.2255 0.1543 0.2316

0.300 0.0046 0.2923 0.2921 0.2977 0.2909 0.3025 0.2073 0.2735 0.2677 0.2073 0.2829

0.400 0.0049 0.3979 0.3942 0.4021 0.3925 0.4058 0.3164 0.3843 0.3651 0.3164 0.3894

0.500 0.0050 0.5029 0.4960 0.5007 0.4945 0.5082 0.4390 0.4932 0.4644 0.4390 0.4938

0.600 0.0049 0.6038 0.5996 0.6004 0.5944 0.6093 0.5652 0.5970 0.5622 0.5622 0.6004

0.700 0.0046 0.7049 0.7015 0.7048 0.6962 0.7140 0.6839 0.7013 0.6606 0.6606 0.7050

0.750 0.0043 0.7550 0.7526 0.7548 0.7461 0.7657 0.7424 0.7503 0.7099 0.7099 0.7565

0.800 0.0040 0.8067 0.8072 0.8018 0.7991 0.8133 0.7985 0.8015 0.7608 0.7608 0.8116

0.900 0.0030 0.9050 0.9121 0.9000 0.8989 0.9124 0.9092 0.9049 0.8655 0.8646 0.9114

0.950 0.0022 0.9530 0.9568 0.9503 0.9495 0.9576 0.9587 0.9521 0.9246 0.9241 0.9589

0.975 0.0016 0.9753 0.9775 0.9743 0.9728 0.9803 0.9805 0.9748 0.9553 0.9553 0.9816

See note to Table 1.

Table 3. φ(t) =
√

t.

ρ = 0.5 ρ = 0.9

t0 t0
p ± 1/3 1/2 2/3 min max 1/3 1/2 2/3 min max

0.025 0.0016 0.0392 0.0130 0.0046 0.0046 0.0392 0.0444 0.0155 0.0040 0.0040 0.0444

0.050 0.0022 0.0695 0.0309 0.0151 0.0146 0.0695 0.0758 0.0328 0.0138 0.0138 0.0758

0.100 0.0030 0.1259 0.0770 0.0456 0.0456 0.1259 0.1292 0.0731 0.0422 0.0422 0.1292

0.200 0.0040 0.2270 0.1759 0.1354 0.1346 0.2270 0.2291 0.1742 0.1371 0.1371 0.2291

0.250 0.0043 0.2709 0.2284 0.1909 0.1892 0.2716 0.2771 0.2209 0.1907 0.1907 0.2780

0.300 0.0046 0.3193 0.2840 0.2496 0.2478 0.3219 0.3288 0.2819 0.2484 0.2484 0.3288

0.400 0.0049 0.4176 0.3925 0.3772 0.3759 0.4211 0.4263 0.3940 0.3723 0.3723 0.4271

0.500 0.0050 0.5088 0.5037 0.5060 0.5021 0.5194 0.5216 0.5146 0.5039 0.5028 0.5217

0.600 0.0049 0.6071 0.6154 0.6375 0.6050 0.6375 0.6111 0.6261 0.6296 0.6111 0.6343

0.700 0.0046 0.6979 0.7291 0.7581 0.6979 0.7620 0.7048 0.7386 0.7633 0.7048 0.7633

0.750 0.0043 0.7478 0.7831 0.8180 0.7478 0.8180 0.7532 0.7890 0.8198 0.7532 0.8198

0.800 0.0040 0.7966 0.8334 0.8730 0.7966 0.8734 0.8052 0.8421 0.8717 0.8052 0.8717

0.900 0.0030 0.8881 0.9312 0.9595 0.8881 0.9599 0.9029 0.9360 0.9584 0.9029 0.9584

0.950 0.0022 0.9424 0.9741 0.9869 0.9424 0.9875 0.9480 0.9759 0.9839 0.9480 0.9850

0.975 0.0016 0.9686 0.9897 0.9966 0.9686 0.9970 0.9728 0.9909 0.9948 0.9728 0.9948

See note to Table 1.

and
√

t, and three values of t0, t0 = 1/3, 1/2, and 2/3 in Tables 1 and 3 and
t0 = 0.6, 0.75, and 0.9 in Table 2. In each case the variance of . . . ε−1, ε0, ε1, . . .
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Table 4. The Boundary Corrected Estimator.

φ = t2 (t − 1
2 )+

√
t

z n = ∞ ρ = 0 ρ = 0.5 ρ = 0.9 ρ = 0 ρ = 0.5 ρ = 0.9 ρ = 0 ρ = 0.5 ρ = 0.9
0.5 0.284 0.248 0.304 0.238 0.268 0.293 0.257 0.260 0.279 0.242
1.0 0.532 0.478 0.558 0.477 0.506 0.548 0.511 0.503 0.533 0.481
1.5 0.728 0.682 0.765 0.706 0.712 0.747 0.732 0.704 0.732 0.706
2.0 0.866 0.834 0.898 0.870 0.857 0.884 0.886 0.854 0.868 0.861
2.5 0.945 0.927 0.966 0.960 0.942 0.954 0.962 0.941 0.951 0.951
3.0 0.978 0.976 0.992 0.992 0.983 0.986 0.992 0.981 0.985 0.988

MSE 1.790 2.022 1.501 1.772 1.842 1.630 1.658 1.866 1.718 1.829

Table 5. The Penalized Estimator.

φ = t2 (t − 1
2 )+

√
t

z n = ∞ ρ = 0 ρ = 0.5 ρ = 0.9 ρ = 0 ρ = 0.5 ρ = 0.9 ρ = 0 ρ = 0.5 ρ = 0.9
0.5 0.265 0.267 0.238 0.141 0.274 0.257 0.175 0.266 0.242 0.194
1.0 0.511 0.529 0.477 0.364 0.521 0.511 0.413 0.507 0.481 0.405
1.5 0.706 0.739 0.706 0.648 0.737 0.732 0.685 0.713 0.706 0.637
2.0 0.853 0.885 0.870 0.869 0.886 0.886 0.876 0.863 0.861 0.824
2.5 0.940 0.959 0.950 0.968 0.960 0.963 0.970 0.945 0.951 0.939
3.0 0.989 0.989 0.992 0.996 0.990 0.992 0.995 0.984 0.987 0.984

MSE 1.923 1.648 1.772 1.983 1.647 1.658 1.853 1.820 1.829 2.149

Notes. Monte Carlo estimates of the distribution function of scaled estimation errors for the

boundary and penalized estimators are reported in the first six rows of Tables 4 and 5; the last

row lists a Monte Carlo estimate of the mean squared error.

was chosen to make
√

E[X2
k ] = 0.10. The sample size was n = 150. In many

ways, these choices are consistent with the global warming example, especially
in Table 2. For each choice of these values 10, 000 time series were generated and
the empirical distribution function of Ξn/κ was computed at selected percentiles
of Chernoff’s distribution; the latter are available in Groeneboom and Wellner
(2001).

In Table 1, the agreement between the empirical distribution function and
the limiting distribution seems generally better in the right tail than the left
where the empirical is consistently less than the limiting distribution. In Table
2, the agreement is very good for t0 = 0.75 and 0.9 and also for t0 = 0.6 except for
the left tail. In Table 3, the empirical distribution of the absolute value appears
to be stochastically smaller than the corresponding limit in all but two columns
(t0 = 1/3). In all tables the difference between moderate and strong dependence
is modest, suggesting that the effect of dependence is adequately captured in the
calculation of σ.

Next consider the boundary estimators µ̂b,n and µ̂p,n. To use (or even sim-
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ulate) them, the smoothing parameters mn and λn must be specified. By (3.12)
and (3.13), the expected squares of the asymptotic distributions of µ̂b,n and µ̂p,n

are κ2E(T 2
b ) and κ2E(U2

c ), where Tb and Uc are as in (3.16) and (3.15). From
simulations these are minimized by b∗ ≈ 0.31 and c∗ ≈ 0.61. So,

α∗ =
1

φ(1)

[
2σ4

φ′(1)

]1/3

c∗ and `∗ =
[

2σ

φ′(1)

]2/3

b∗

are suggested as asymptotically optimal choices in (3.15) and (3.16). These
depend on parameters, but can be estimated as explained in the last part of
Section 3. From the same simulations, the minimized values are E(T 2

b∗) ≈ 1.79
and E(U2

c∗) ≈ 1.92 and, so, the boundary corrected estimator appears to be more
efficient by about 5% asymptotically.

The asymptotic distributions of the normalized boundary corrected and pe-
nalized estimators do not agree well with the values for n = 150, especially for
ρ = 0.9. However, the distributions of the absolute values when n = 150 are
much closer to the asymptotic values; in most cases, the asymptotic values are
at most the finite sample values or insignificantly larger. The MSE comparisons
do not produce a clear winner: when ρ = 0, the boundary corrected estimator
has a larger MSE; for ρ = 0.9, the penalized estimator has the larger MSE. The
smoothing parameter for the boundary corrected estimator is easier to interpret,
however: µ̂b,n = µ̃mn is the least squares estimator of µmn . The use of µ̂b,n is
illustrated in the following example.

Example 3. (Global Temperature Anomalies). Letting tn = 140/150 and εn =
15/150 in (3.17) yields φ̂′

1 = 2.1567. Using this value together with σ̂ = 0.1248
from Wu, Woodroofe, and Mentz (2001) then yields m̂n = 148 (to the nearest
integer) as an estimate of the asymptotically optimal mn and µ̂b,n = 0.4700. The
choices of tn and εn in (3.17) were arbitrary, but the final estimate is not highly
sensitive to these. The estimate was unchanged when tn was changed to any
of 130/150, . . . , 145/150, or when εn was changed to 0.2. With this data, the
boundary corrected estimator is not doing much correcting. This is appropriate,
since there is no evidence of spiking.
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