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Abstract: Current statistical methods allow the characterization of DNA sequence

variants associated with interpersonal differences in a complex biological response.

However, this process is significantly hindered when some subjects have to drop

out early due to physiological side effects or limited duration. Here, we derive a

pattern-mixture model for detecting functional nucleotide combinations (or hap-

lotypes) responsible for longitudinal responses by making full use of information

from those dropout data. The model was formulated within the maximum like-

lihood context, with the model parameters, haplotype frequencies, and haplotype

effects estimated by implementing the EM and Newton-Raphson algorithms. One

advantage of the model is to generate and address a number of clinically mean-

ingful hypotheses about the genetic control mechanisms of longitudinal responses

and time-to-event processes. By analyzing a pharmacogenomic data set, the model

identified significant haplotype effects on heart rate increases in response to increas-

ing doses of dobutamine. The statistical properties of the model and its usefulness

and utilization were investigated through computer simulation. The new model can

be used to unravel the genetic architecture of interpersonal variation in complex

longitudinal responses with incomplete data and ultimately to materialize the idea

of clinical genomics.
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1. Introduction

Variations in nucleotides at particular locations are called single nucleotide
polymorphisms (SNPs). An example of a SNP is the difference of the DNA
segment AAGGTTA for individual 1 from ATGGTTA for individual 2, where
the second nucleotides from the left end form a polymorphism A/T. The linear
combination of alleles at different SNPs that are transmitted together on the
same chromosomal region is called the haplotype. Many studies, through statis-
tical simulation, show that haplotypes composed of multiple SNPs could better
explain variation in a phenotypic trait than single SNPs (Collins, Guyer, and
Charkravarti (1997); Akey, Jin, and Xiong (2001); Morris and Kaplan (2002);
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Zaykin et al. (2002)). There has also been a vast body of molecular evidence
indicating that haplotypes are associated with many aspects of drug response
(Judson, Stephens, and Windemuth (2000); Bader (2001); Rha et al. (2007)).
However, a direct analysis of association between haplotypes and phenotypes
may be difficult because there is currently no easy way to genotype haplotypes.
For this reason, powerful statistical models for a missing data problem have been
derived to estimate genetic effects and variation due to haplotypes (Liu et al.
(2004); Lin and Zeng (2006); Lin and Huang (2007); Huang, Amos, and Lin
(2007)).

When haplotype analysis is used to study the genetic control of drug re-
sponse, we face two substantial issues characterized by this trait. First, drug
response presents a dynamic process in which the efficacy and toxicity of a med-
ication are functions of drug concentration and time. Second, some patients in
clinical trials drop from the study because of physiological or other unavoidable
reasons. Although a conceptual model, called functional mapping, has been de-
rived to study the genetic architecture of dynamic traits (Ma, Casella, and Wu
(2002); Wu and Lin (2006)), it is still unclear how early dropouts affect our
statistical inference about genetic control. We address the second issue.

To better describe our problem, we start with a pharmacogenetic study. A
group of 163 patients participated in a study in which all people were measured
for heart rate repeatedly after treatment of dobutamine (Figure 1). The patients
received increasing doses of dobutamine, until they achieved a target heart rate
response or predetermined maximum dose. Of these subjects studied, 112 (69%)
completed the tests of heart rate at all the six dose levels; the others dropped
out before the completion of the trial because heart rates at any higher dose level
were beyond their physiological limits. A total of 31 (19%), 15 (9%), and 5 (3%)
subjects dropped out after receiving four, three, and two injections, respectively.
Because the dropouts of these subjects were likely related to the outcome, they
are called non-ignorable dropouts. Existing models for functional mapping are
not sufficient to analyze non-ignorable dropouts.

An effective analysis of non-ignorable dropout data is based on pattern-
mixture models that construct a likelihood on the joint distribution of the com-
plete response and dropout mechanism, and factors the joint likelihood as the
marginal distribution of the mechanism multiplied by the conditional distribu-
tion of the response given the mechanism (Wu and Bailey (1989); Little (1993,
1995)). Pattern-mixture models have now been used in many applications for
which longitudinal non-ignorable missing data are common (Fitzmaurice, Laird,
and Shneyer (2001); Hogan and Laird (1997)). We integrate pattern-mixture
models within the framework of functional mapping through explicit modeling
of the missing data distribution by first identifying different patterns of missing
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Figure 1. The dobutamine drug response experiment data. The curves in
dashed lines are the complete responses covering all dose levels, whereas
the curves in solid lines are the incomplete responses showing nonignorable
dropouts from different dosages.

data and then including parameters in the outcomes model that capture this
effect. Parameter estimation is implemented with the EM and Newton-Raphson
algorithm. We formulate a number of hypotheses tests regarding the genetic con-
trol of longitudinal responses and dropout times. Simulation studies and data
analyses were used to demonstrate the power and usefulness of the model.

2. Model

2.1. Genetic and clinical designs

Suppose a random sample of size N is drawn from a natural human pop-
ulation that is assumed to be at Hardy-Weinberg equilibrium (HWE). For an
illustration of our model, we consider a simple case in which a haplotype is com-
posed of two SNPs, A (with alleles A and a) and B (with alleles B and b). The
capital alleles are symbolized as 1 and the small alleles as 0. There is no technical
difficulty in extending the model to study the effects of haplotypes containing
an arbitrary number of SNPs. The two SNPs considered form four haplotypes
[AB], [Ab], [aB], and [ab], with the haplotype frequencies designated as p11, p10,
p01, and p00, respectively. The four haplotypes derived from the maternal (m)
and paternal parents (p) unite randomly to generate 10 diplotypes [AB][AB],
[AB][Ab], [AB][aB], [AB][ab], [Ab][Ab], [Ab][aB], [Ab][ab] [aB][aB], [aB][ab], and
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[ab][ab]. For an HWE population, the frequency of a diplotype is expressed as the
product of the frequencies of the two haplotypes that constitute the diplotype.

In most practical studies, only genotypes (i.e., combination between alleles at
individual SNPs) are observed because it can be expensive to observe diplotypes.
For the double heterozygote Aa/Bb, there are two possible diplotypes [AB][ab]
and [Ab][aB] that are not directly observable. When a specific haplotype or
diplotype causes variation in drug response, we need to develop a mixture model
for inferencing this effect based on observed genotype data. Let H = [rm1r

m
2][r

p
1r

p
2]

(rm1, r
m
2; r

p
1, r

p
2 = 1, 0) and G = r1r

′
1/r2r

′
2 (r1 ≥ r′1, r2 ≥ r′2 = 1, 0) be a general

two-SNP diplotype and genotype, respectively. For subject i, we use Hi and
Gi to denote its diplotype and genotype. Genotype Gi follows a multinomial
distribution with nine possible genotypes of size nr1r′1/r2r′2

with probabilities ex-
pressed as the product of the frequencies of the two underlying haplotypes. The
likelihood function is as

L(Ωp)=(p2
11)

n11/11(2p11p10)n11/10(p2
10)

n11/00(2p11p01)n10/11(2p11p00+2p10p01)n10/10

(2p10p00)n10/00(p2
01)

n00/11(2p01p00)n00/10(p2
00)

n00/00 , (2.1)

from which the EM algorithm can be employed to obtain the maximum likelihood
estimates (MLEs) of unknown vector Ωp = (p11, p10, p01, p00) (Liu et al. (2004)).

In a pharmacogenetic study, the subjects genotyped are measured for a phar-
macokinetic or pharacodynamic parameter of drug response, repeatedly at mul-
tiple time points or dose levels. Let us use the example shown in Figure 1 to
describe such a longitudinal trial. Let yi = (yi1, . . . , yiTi) be the vector of heart
rates for subject i measured at Ti doses; we use ti = (ti1, . . . , tiTi) to express
subject-specific dose levels. Let Di denote the pre-specified dose at which subject
i drops out based on this subject’s physiological limit. Given its uncertainty, the
maximum dose (Ci) this subject can tolerate is right censored relative to his/her
dropout dose (Di). The indicator of censoring is denoted by ∆i = I(Di ≤ Ci),
zero if Di is censored and one otherwise. The observed dropout dose is expressed
as D̃i = min(Di, Ci), where D̃i has possible values from S = {s1, . . . , sL}. Thus,
the data for subject i consist of longitudinal measures of heart rate and dropout
doses as well as SNP genotypes, denoted as (yi, ti, D̃i, ∆i, Gi).

2.2. Haplotyping a longitudinal trait

Assume that there is a risk haplotype from a pool of haplotypes. This risk
haplotype (R) has a different genetic value for the longitudinal trait studied from
the remaining haplotypes, collectively called the non-risk haplotype (R̄) (Liu et
al. (2004)). The risk and non-risk haplotypes yield three possible composite
diplotypes, RR (coded as 2), RR̄ (coded as 1), and R̄R̄ (coded as 0). Let Qi
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denote the composite diplotype of subject i, thus having Qi = j (j = 2, 1, 0).
According to quantitative genetic theory (Lynch and Walsh (1998)), we define
the vectors of genotypic values for the three composite diplotypes at different
doses as

u2 = u + a,

u1 = u + d,

u0 = u − a,

(2.2)

where u is the mean vector, a is the vector of the dose-dependent additive genetic
effects due to the substitution of a risk haplotype, and d is the vector of the dose-
dependent dominant genetic effects due to the interaction between the risk and
non-risk haplotypes.

The relationship between the observed heart rate vector and genotypic mean
vector of a composite diplotype is described by a regression model,

yi =
2∑

j=0

ξijuj|i + ei, (2.3)

where ξij is 1 if a composite diplotype j is considered for subject i and 0 otherwise,
uj|i is the genotypic mean vector for subject i who carries composite diplotype
j, and ei is the residual error vector (i.e., the accumulative effect of polygenes
and errors) that is independently and identically distributed normal with mean
vector zero and covariance matrix Σi.

In a pharmacodynamic study, we often use a mathematical equation to de-
scribe drug response. For a specific composite diplotype, drug response at dose
tiτ is expressed as

uj|i(tiτ ) = g(tiτ ;Θj), (2.4)

where Θj is the parameters that describe the mathematical equation.
A number of approaches can be used to model the covariance structure of the

measurement process. We use the order one structured antedependence (SAD)
model for the covariance function (Zimmerman and Núñez-Antón (2001)), in
which the dose-dependent variance and covariance are described as

var(yi(tiτ )) =
1 − φ2tiτ

1 − φ2
σ2,

(2.5)

cov(yi(tiτ1), yi(tiτ2)) = φtiτ2−tiτ1
1 − φ2tiτ1

1 − φ2
σ2, for tiτ2 > tiτ1 .

Thus only two parameters, σ2 and φ, are used to model the covariance structure.
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2.3. Conditional distributions

The joint density distribution of (yi, Di, Gi) given Hi and Qi is expressed as

f(yi, Di, Gi|Hi, Qi) = f(Gi|Hi)f(yi, Di|Qi)

= f(Gi|Hi)f(yi|Di, Qi)f(Di|Qi), (2.6)

where f(Gi|Hi) is the multinomial distribution of SNP genotypes from which
to construct the likelihood (2.1), f(yi|Di, Qi) is the conditional distribution of
longitudinal observations given Di and Qi, and f(Di|Qi) is the conditional dis-
tribution of dropout dose given the composite diplotype.

We assume that f(yi|Di, Qi) is multivariate normal with mean vector u(j|i)l =
{g(tiτ ;Θjl)}Ti

τ=1, specific to subject i with composite diplotype j dropping out
at sl, modeled by a set of curve parameters Θjl, and covariance matrix specified
by the SAD model (2.5). We also assume that f(Di|Qi) is multinominal with
possible outcomes from S = {s1, . . . , sL},

f(Di|Qi) =
2∏

j=0

L∏
l=1

π
ζijδil

jl , (2.7)

where ζij = I(Qi = j) and δil = I(Di = sl), πjl = Pr(Di = sl|Qi = j), and∑L
l=1 πjl = 1.

2.4. Complete data likelihood

Let Ωq = ({Θjl}2,L
j=0,l=1, ρ, σ2) denote the quantitative genetic parameter

vector related to haplotype effects and residual (co)variance. The likelihood of
the complete data (yi, Di, Qi) is

Lf (Ωq) =
N∏

i=1

Lf (yi|Di, Qi)Lf (Di|Qi)Lf (Qi)

=
N∏

i=1

L∏
l=1

2∏
j=0

[
(2π)−Ti/2|Σi|−1/2 exp

{
−1

2
(yi − u(j|i)l)Σ

−1
i (yi − u(j|i)l)

′
}

×πjlf(Qi = j)
]ζijδil

.

Let Zo be the generic observed data and E denote the generic conditional expec-
tations conditioned on Zo and current estimated parameters. The conditional
expectation of the complete log-likelihood (omitting the constant term) is

E{lf |Zo} = E

{
log

N∏
i=1

L∏
l=1

2∏
j=0

[
(2π)−Ti/2|Σi|−1/2
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× exp
{
−1

2
(yi − u(j|i)l)Σ

−1
i (yi − u(j|i)l)

′
}

πjlf(Qi = j)
]δilζij

|Zo

}

=
N∑

i=1

L∑
l=1

2∑
j=0

EδilEζij

[
−Ti

2
log(2π) − 1

2
log(|Σi|)

−1
2
(yi − u(j|i)l)Σ

−1
i (yi − u(j|i)l)

′ + log(πjl) + log(f(Qi = j))
]
, (2.8)

where Eδil = E(I(Di = sl)|zoi) and Eζij = E(I(Qi = j)|zoi).
For the subjects whose dropout doses are observed, we have

Eδil = δil, (2.9)

Eζij =Pr(Qi =j|zoi,Ωq =Ω[t]
q )

=

L∑
l=1

f(yi|Di =sl, Qi =j)Pr(Di =sl|Qi =j)Pr(Qi =j)I(Di =sl)

2∑
j=0

L∑
l=1

f(yi|Di =sl, Qi =j)Pr(Di =sl|Qi =j)Pr(Qi =j)I(Di =sl)

=

L∑
l=1

exp
{
−1

2(yi−u(j|i)l)Σ
−1
i (yi−u(j|i)l)′

}
πjlf(Qi =j)I(Di =sl)

2∑
j=0

L∑
l=1

exp
{
−1

2(yi−u(j|i)l)Σ
−1
i (yi−u(j|i)l)′

}
πjlf(Qi =j)I(Di =sl)

. (2.10)

For the subjects for whom dropout doses are right censored, we have

Eδil=Pr(Di =sl|zoi,Ωq =Ω[t]
q )

=

2∑
j=0

f(yi|Di =sl, Qi =j)Pr(Di =sl|Qi =j)Pr(Qi =j)I(sl >D̃i)

L∑
l=1

2∑
j=0

f(yi|Di =sl, Qi =j)Pr(Di =sl|Qi =j)Pr(Qi =j)I(sl >D̃i)

=

2∑
j=0

exp{−1
2(yi−u(j|i)l)Σ

−1
i (yi−u(j|i)l)′}πjlf(Qi =j)I(sl >D̃i)

L∑
l=1

2∑
j=0

exp{−1
2(yi−u(j|i)l)Σ

−1
i (yi−u(j|i)l)′}πjlf(Qi =j)I(sl >D̃i)

, (2.11)

Eζij =Pr(Qi =j|zoi,Ωq =Ω[t]
q )

=

L∑
l=1

f(yi|Di =sl, Qi =j)Pr(Di =sl|Qi =j)Pr(Qi =j)I(sl >D̃i)

2∑
j=0

L∑
l=1

f(yi|Di =sl, Qi =j)Pr(Di =sl|Qi =j)Pr(Qi =j)I(sl >D̃i)
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=

L∑
l=1

exp{−(1/2)(yi−u(j|i)l)Σ
−1
i (yi−u(j|i)l)′}πjlf(Qi =j)I(sl >D̃i)

2∑
j=0

L∑
l=1

exp{−(1/2)(yi−u(j|i)l)Σ
−1
i (yi−u(j|i)l)′}πjlf(Qi =j)I(sl >D̃i)

.(2.12)

2.5. Observed data likelihood

The observed likelihood function, Lo, is constructed within a mixture model
framework. When there is no censoring in dropout doses, we have

Lo(Ωq) = f(y, D)

=
N∏

i=1

2∑
j=0

f(yi|Di, Qi = j)f(Di|Qi = j)f(Qi = j)

=
N∏

i=1

L∏
l=1

[ 2∑
j=0

(2π)−Ti/2|Σi|−1/2

× exp
{
− 1

2
(yi − u(j|i)l)Σ

−1
i (yi − u(j|i)l)

′
}

πjlf(Qi = j)
]δil

. (2.13)

If there is censoring in dropout dose, we have

Lo(Ωq) =
N∏

i=1

 L∑
l=1

2∑
j=0

(2π)−Ti/2|Σi|−1/2 exp
{
−1

2
(yi − u(j|i)l)Σ

−1
i (yi − u(j|i)l)

′
}

f(Di = sl|Ci, ∆i = 0, Qi = j)f(Qi = j)] , (2.14)

where

f(Di = sl|Ci,∆i = 0, Qi = j) = f(Di = sl|Ci, Ci ≤ Di, Qi = j)

=
f(Di = sl|Qi = j)I(Ci < sl)∑

l:{sl>Ci} f(Di = sl|Qi = j)
. (2.15)

2.6. Parameter estimation and variance-covariance of estimated pa-
rameters

An integrative EM and Newton-Raphson algorithm was implemented to es-
timate the unknown parameters Ωq (see the Appendix for details). After the
MLEs of Ωq are obtained, var(Ω̂q) is calculated. Let S(Ωq; zo) and S(Ωq; z)
denote the score vectors of observed and complete data log-likelihood functions,
and B(Ωq; zo) and B(Ωq; z) denote the negatives of the second order derivative
matrices for these two types of likelihood functions, respectively. The observed
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information matrix is B(Ωq; zo), whereas the expected or Fisher information ma-
trix is I(Ωq) = EΩq(B(Ωq; zo)). Asymptotically, the MLEs of parameters, Ω̂q,
are N(Ωq, I

−1(Ωq)). Since I(Ω̂q) and B(Ω̂q; zo) are both consistent estimators
for the Fisher information matrix I(Ωq), the Fisher information matrix and, thus,
the variance of the MLEs can be estimated if I(Ω̂q) or B(Ω̂q; zo) is calculated.

Under regularity conditions, as described in Zacks (1971), that guarantee the
log-likelihood equations can be solved and the Fisher information matrix exists,
Louis (1982) proposed a method for estimating the observed information matrix
of the MLEs as

S(Ωq; zo) = E(S(Ωq; z)|zo),

B(Ωq; zo) = E(B(Ωq; z)|zo) − E(S(Ωq; z)ST (Ωq; z)|zo) + S(Ωq; zo)ST (Ωq; zo).
(2.16)

We have B(Ω̂q; zo) = E(B(Ω̂q; z)|zo) − E(S(Ω̂q; z)ST (Ω̂q; z)|zo) with Ωq = Ω̂q,
since S(Ω̂q; zo) = 0. But this method needs to calculate the conditional expecta-
tion (conditional on the observed data) of the square of the complete data scores
E(S(Ω̂q; z)ST (Ω̂q; z)|zo), which is not easy. A different so-called supplemented
EM algorithm or SEM algorithm was proposed by Meng and Rubin (1993) to
estimate the asymptotic variance-covariance matrices; it can also be used for the
calculations of the sampling errors for the MLEs of the parameters. This method
avoids the calculation of the conditional expectation E(S(Ω̂q; z)ST (Ω̂q; z)|zo),
but needs to calculate the convergence rate of a “forced” EM algorithm.

Another easier method for the estimation of the variance is based on empiri-
cal Fisher information (Hogan and Laird (1997)). The sample covariance matrix
of individual scores Si(Ωq; zoi) is

Î(Ωq; zo) =
N∑

i=1

Si(Ωq; zoi)Si(Ωq; zoi)T − 1
N2

S(Ωq; zo)S(Ωq; zo)T .

This is also a consistent estimator of I(Ωq; zo). Although this method ignores the
likelihood principle and can be applied to independently identically distributed
cases only, it is relatively easy to compute since we need only to know individual
scores. When Fisher or observed information matrices are difficult to compute,
this empirical approach can be used as an alternative.

3. Hypothesis Testing

An optimal risk haplotype is selected from multiple haplotypes based on
a model selection criterion. Thus, the significance of the genetic effect of the
selected risk haplotype presents a multiple testing problem. Tradition approaches
to correcting for multiple comparisons, such as false discovery rate control, can
be used for haplotype discovery.
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A major advantage of our model lies in its flexibility to generate and test a
number of important hypothesis tests about the genetic control of longitudinal
traits. In general, these hypotheses are sorted into the following types.

3.1. Ignorabilility test of dropout

Whether the dropout can be ignored is a first question to address, in order
to better utilize the data. This can be tested by formulating the hypotheses

H0 : Θjl ≡ Θ;πjl ≡ πl,

H1 : Θjl ≡ Θl, πjl ≡ πl,
for j = 2, 1, 0; l = 1, . . . , L. (3.1)

These hypotheses are based on a mean pattern of all subjects studied by assuming
no genetic effects on longitudinal curves and dropouts. Here H0 states that the
dropout is ignorable in terms of longitudinal curves and dropout doses, whereas
H1 states that the dropout is informative, i.e., different patterns of dropout lead
subjects to have different longitudinal curves.

3.2. Genetic tests with ignorable dropout

If the dropout is ignorable, by accepting the H0 of test (3.1), we test the
existence of a significant haplotype effect first on the distribution of dropout
doses, and then on the distribution of longitudinal curves. The genetic effect of
haplotype on the distribution of dropout doses can be tested according to

H0 : Θjl ≡ Θ;πjl ≡ πl,

H1 : Θjl ≡ Θ,
for j = 2, 1, 0; l = 1, . . . , L. (3.2)

If there is a haplotype effect on the distribution of dropout doses, then whether
this haplotype effect impacts longitudinal curves can be tested according to

H0 : Θjl ≡ Θ,

H1 : Θjl ≡ Θj ,
for j = 2, 1, 0; l = 1, . . . , L. (3.3)

If the null hypothesis of test (3.3) is rejected, this suggests that the haplotype
has a pleiotropic effect on dropout times and longitudinal curves.

If there is no haplotype effect on the distribution of dropout doses, then
whether this haplotype effect impacts longitudinal curves can be tested according
to

H0 : Θjl ≡ Θ; πjl ≡ πl,

H1 : Θjl ≡ Θj ;πjl ≡ πl,
for j = 2, 1, 0; l = 1, . . . , L. (3.4)
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3.3. Genetic tests with non-ignorable dropout

If the dropout is non-ignorable, by rejecting the H0 at (3.1), we also need
to test how haplotypes impact longitudinal curves and dropout doses. For the
genetic effect of haplotype on the distribution of dropout doses, we test

H0 : Θjl ≡ Θl;πjl ≡ πl,

H1 : Θjl ≡ Θl,
for j = 2, 1, 0; l = 1, . . . , L. (3.5)

If there is a haplotype effect on the distribution of dropout doses, then
whether this haplotype effect impacts on longitudinal curves can be tested ac-
cording to

H0 : Θjl ≡ Θl,

H1 : at least one of the equalities in H0 does not hold,
for

j = 2, 1, 0;
l = 1, . . . , L.

(3.6)

If there is no haplotype effect on the distribution of dropout doses, then
whether this haplotype effect impacts longitudinal curves can be tested according
to

H0 : Θjl ≡ Θl;πjl ≡ πl,

H1 : Θjl 6= Θl;πjl ≡ πl,
for j = 2, 1, 0; l = 1, . . . , L. (3.7)

For all tests above, test statistics are approximately χ2 with degrees of free-
dom equal to the difference in parameter number between H1 and H0.

4. A Worked Example

4.1. Background and data summary

The usefulness of the new model is validated by analyzing the drug response
example described in the Introduction. β1AR and β2AR are candidate genes
for heart function (Large et al. (1997)). In each of the two genes there are
several polymorphisms common in the population. In a pharmacogenetic study
comprised of 163 men and women, two SNPs at codon 49 with two alleles Ser49
(A) and Gly49 (G) and at codon 389 with two alleles Arg389 (C) and Gly389
(G) within the β1AR gene on chromosome 10, as well as two SNPs at codon 16
with two alleles Arg16 (A) and Gly16 (G) and at codon 27 with two alleles Gln27
(C) and Glu27 (G) within the β2AR gene on chromosome 5, were genotyped. A
highly significant linkage disequilibrium was detected between the two SNPs for
each gene (P < 0.001).

In this study, a drug, called dobutamine, designed to improve heart func-
tion, was injected into patients to investigate their responses in heart rate. The
subjects received increasing doses of dobutamine until they achieved a target
heart rate response or predetermined maximum dose. The dose levels used were
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0 (baseline), 5, 10, 20, 30, and 40 mcg/min, at each of which heart rate was
measured. The time interval of 3 minutes was allowed between two successive
doses for subjects to reach a plateau in response to that dose. Our model is
used to detect if and how haplotype variants within these candidate genes affect
the response of heart rate to dobutamine. By excluding those with incomplete
genetic information, we had 143 subjects involved in our analysis. Some of the
subjects reached the thresholds of their heart rates before the highest dosage.
About 3%, 10%, and 19% subjects dropped out at dose levels 10, 20, and 30,
respectively (Figure 1). Thus, about 32% of the subjects did not complete the
study.

4.2. Data analysis
4.2.1. Emax model

In a drug response experiment, there is a classical sigmoid Emax equation
that can be used to describe the relationship between drug concentration (C)
and drug effect (E):

E = E0 +
EmaxC

H

ECH
50 + CH

, (4.1)

where E0 is the baseline value for the drug response when the drug concentration
is 0, Emax is the asymptotic (limiting) effect, EC50 is the drug concentration
that results in 50% of the maximal effect, and H is the slope parameter that
determines the slope of the concentration-response curve.

4.2.2. Data analysis by traditional functional mapping

We first analyzed the data by functional mapping, using only subjects (98)
who completed the study only; this approach was used in Lin et al. (2007).
Significant haplotype effects on heart rate curves were detected for two SNPs
typed from gene β2AR (p = 0.0402), but not for two SNPs from gene β1AR.
For gene β2AR, haplotype [GG] was detected to be a risk haplotype based on
the likelihoods calculated by assuming that each of the four possible haplotypes,
[AC], [AG], [GC], and [GG], is a risk haplotype. The next analysis was based on
two SNPs from gene β2AR.

We also analyzed all subjects (143) who participated, assuming that dropout
was noninformative. Thus both incompleters and completers were treated equally.
This analysis did not detect any significant risk haplotype (p = 0.0854 for the
largest likelihood under different assumptions of risk haplotype), suggesting that
this treatment reduces the power of gene identification.
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4.2.3. Data analysis by new functional mapping

The new model allows us to jointly model the dropout and longitudinal data.
The conditional density function of the ith subject is expressed as

f(Yi|Di =sl, Qi =j)=(2π)−mi/2|Σi|−1/2 exp{−1
2
(yi−µijl)Σ−1

i (yi−µijl)′}, (4.2)

where

µijl =

E0jl +
Emaxjlt

Hjl

i1

EC
Hjl

50jl + t
Hjl

i1

, . . . , E0jl +
Emaxjlt

Hjl

imi

EC
Hjl

50jl + t
Hjl

imi

 ,

with {E0jl, Emaxjl, and EC50jl, Hjl} being the parameters specific to subject i

with composite diplotype j dropping out at sl.
In the example of Figure 1, the dropout dose set is S = {s1, s2, s3, s4} =

{10, 20, 30, 40} (Figure 1). We assumed that there was no censoring on dropout
doses, ∆i = 1 for i = 1, . . . , N . An exploratory analysis showed that for subjects
who had three or four measurements, one could assume a linear or quadratic
curve, respectively. For subjects who had five or six measurements, an Emax
curve (4.1) was fit.

We used three schemes to jointly model dropout and longitudinal curve data:
Scheme I had four differently modeled dropout patterns; Scheme II had dropouts
at dose levels 10, 20, and 30 modeled in the same way, expressed as Θj1 = Θj2 =
Θj3 (j = 0, 1, 2). These schemes detected haplotype [GG] as an optimal risk
haplotype. Figure 2 shows the composite diplotype-specific response curves of
heart rate to dobutamine under Schemes I (Figure 2A) and II (Figure 2B). The
comparison of AIC values calculated between the two shows that Scheme II with
29 parameters (5980) is a better fit to the data than Scheme I with 50 parameters
(6100). It is observed that composite diplotype [GG][GG] has a similar trend of
heart rate for both the completers and dropouts. For this reason, we posed
an additional constraint by setting composite genotype [GG][GG] equal across
different dropout patterns, that is, Θj1 = Θj2 = Θj3 (j = 0, 1, 2) and Θ2l = Θ24

(l = 1, 2, 3). This model, Scheme III, is better than Scheme II in terms of AIC
values. Also, since Scheme III is nested in Scheme II, we calculated the likelihood
ratio of Scheme III over Scheme II, with a p-value of 0.9122 confirming the choice
of Scheme III.

We will base all the subsequent analyses on Scheme III. With hypothesis test
(3.1), we could test if the dropout was informative under Scheme III. The result-
ing likelihood ratio test statistic is −2(−2902.4 + 2884.1) = 36.6, corresponding
to the p-value of 2.2 × 10−7 for a χ2

4 distribution. This suggests that dropout is
informative and it is crucial to integrate this information into the analysis.

Given that the dropout is non-ignorable, we performed a hypothesis test
based on test (22) to find whether risk haplotype [GG][GG] exerts a significant
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(a) (b)

(c)

Figure 2. The response curves of heart rate to dobutamine for different
composite diplotypes, [GG][GG] (solid), [GG][GG] (dashed), and [GG][GG]
(dashdot), derived from gene β2AR, under model scheme I (A), II (B), and
III (C) (see the text).

effect on dropout doses. It was found that dropout doses do not depend on risk
haplotype [GG] (p = 0.849). A further test for longitudinal curves based on (24)
suggests that risk haplotype [GG][GG] has a significant effect on the response
curve of heart rate to dobutamine (p = 0.0329).

It is not surprising to find that the dropouts respond to dobutamine more
rapidly than the completers, but it is interesting to see that dramatic differences
occur in the pattern of genetic control between the completers and dropouts (Fig-
ure 2C). In the completers, the composite diplotype with double risk haplotypes
are most sensitive in drug response, followed by the composite diplotype with
double non-risk haplotypes, and the composite diplotype with a risk haplotype
and a non-risk haplotype; in the dropouts, the last two composite diplotypes show
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Table 1. Maximum likelihood estimates (MLE) of parameters that define
the model with non-ignorable dropout. Standard errors (STD) of the MLEs
are estimated by Louis’ approach.

Dropout Pattern Composite Diplotype Parameter MLE STD
Dropout Q = 0 E0 78.74 1.2103

Emax 120.33 32.0615
EC50 41.47 12.8841
H 1.66 0.2168

Q = 1 E0 80.49 0.9548
Emax 131.57 57.7866
EC50 36.68 15.4237
H 1.71 0.2545

Q = 2 E0 82.80 1.0628
Emax 72.58 11.3941
EC50 17.55 2.7767
H 2.07 0.2272

Completer Q = 0 E0 78.74 1.2103
Emax 120.33 32.0615
EC50 41.47 12.8841
H 1.66 0.2168

Q = 1 E0 76.18 0.6552
Emax 62.82 10.0181
EC50 29.53 5.0611
H 2.00 0.2841

Q = 2 E0 76.91 0.5506
Emax 59.62 6.9851
EC50 22.73 2.7717
H 2.06 0.2488

Covariance Modeling φ 0.96 0.0131
σ2

e 62.06 1.9352
π1 0.3147 0.0224

a much greater sensitivity than the first one. Table 1 tabulates the MLEs of four
drug response parameters (E0, Emax, EC50, H) for different dropout types and
covariance-structuring parameters under Scheme III. As shown by the estimates
of their standard errors, many parameters can be reasonably well estimated,
except for Emax.
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5. Computer Simulation

5.1. Imulation scenarios

We investigated the statistical behavior of the new model using simulation
studies. We simulated a population at Hardy-Weinberg equilibrium, from which
a random set of samples were genotyped for a panel of SNPs and longitudinal
responses at multiple dosages. We chose two associated SNPs whose haplotype
and genotype frequencies (determined by allele frequencies and linkage disequi-
librium) were used to simulate genotype counts in the sample. According to Liu
et al. (2004), these population genetic parameters can be well estimated with the
likelihood (2.1). For this reason, we did not focus on the estimates of population
genetic parameters in this study.

For each subject, the phenotypic value of a longitudinal trait was simulated
at nine evenly-spaced dose levels T = (0, 5, 10, 15, 20, 25, 30, 35, 40), allowing a
certain proportion of subjects to be dropped out non-ignorably at dose level 25.
Thus, there are two possible patterns, dropouts (at dose level 25) and completers
(at dose level 40), i.e., S = s1, s2 = 25, 40. The longitudinal data for each subject
was simulated from a multivariate normal distribution with a Emax mean curve
and a SAD(1) covariance structure. The simulation included four scenarios,
depending on sample sizes, dropout rates, and heritabilities (a proportion of the
phenotypic variance explained by haplotype effects):

Scenario Sample Size Dropout Rate (%) Heritability
1 200 30 0.1
2 200 70 0.1
3 500 30 0.05
4 500 70 0.05

The data simulated for each scenario was analyzed using only the completers
(Model 1), all the longitudinal data but ignoring dropout times (Model 2), and
using the new model proposed (Model 3).

5.2. Results

For all the four scenarios, the estimates of curve parameters and SAD(1)
parameters from Model 1 had the largest biases, followed by Models 2 and 3
(results not shown). Model 3 was particularly advantageous when the study had a
large dropout rate. Using estimated curve parameter, we estimated the genotypic
values of different composite diplotypes at all dose levels (Table 2). Because
Model 1 ignores the subjects who dropout because of their high sensitivity, it
tend to provide underestimates of drug response.

Also, parameter estimation from Models 2 and 3 was more precise than that
from Model 1. The standard errors of the estimates of genotypic values for all
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Table 2. The biases and standard errors (STD) of the estimates of genotypic
values for three composite diplotypes at different dose levels under simulation
scenario 1: N = 200, heritability of 0.1, and dropout rate of 30%

Dose Levels
Composite Diplotype 0 5 10 15 20 25 30 35 40
j = 0 Model 1 Bias -2.05 -1.84 -3.11 -4.72 -5.94 -6.67 -7.02 -7.12 -7.06

STD 1.15 1.42 1.57 1.67 1.73 1.70 1.65 1.69 1.89
Model 2 Bias 0.04 -0.14 0.16 0.26 0.02 -0.42 -0.95 -1.49 -2.01

STD 1.05 1.18 1.45 1.71 1.91 2.01 2.07 2.16 2.29
Model 3 Bias 0.03 0.07 0.13 0.22 0.20 0.15 0.10 0.10 0.13

STD 0.96 1.12 1.26 1.35 1.38 1.43 1.62 1.97 2.40
j = 1 Model 1 Bias -0.88 -2.26 -3.82 -4.60 -4.81 -4.78 -4.68 -4.58 -4.49

STD 0.73 0.81 1.02 1.07 1.07 1.03 1.00 1.06 1.22
Model 2 Bias 0.02 -0.05 0.15 0.30 0.19 -0.08 -0.40 -0.71 -0.97

STD 0.62 0.81 1.08 1.17 1.17 1.12 1.09 1.13 1.25
Model 3 Bias 0.01 0.03 0.06 0.10 0.11 0.11 0.10 0.09 0.10

STD 0.61 0.71 0.86 0.90 0.90 0.92 1.01 1.18 1.43
j = 2 Model 1 Bias -0.73 -1.61 -2.91 -3.84 -4.36 -4.63 -4.78 -4.87 -4.92

STD 0.97 1.04 1.31 1.41 1.44 1.46 1.42 1.43 1.60
Model 2 Bias 0.04 -0.16 -0.18 -0.07 -0.10 -0.34 -0.72 -1.14 -1.56

STD 0.83 0.97 1.29 1.45 1.53 1.55 1.53 1.57 1.72
Model 3 Bias 0.03 0.04 -0.02 -0.01 0.01 0.01 0.01 0.04 0.10

STD 0.84 0.93 1.11 1.16 1.18 1.23 1.35 1.62 2.07

different composite diplotypes from Model 3 were smaller than those from Model
2 before dose level 6 (at which some subjects dropped out). After dose level 6,
Model 3 showed decreasing precision as compared to Model 2. Thus, although
Model 3 is less biased, it may sacrifice some precision to reduce the bias after the
dropout time.

As expected, all the models displayed increasing precision with increasing
sample size and heritability, but with decreasing precision when dropout rate
increased. The power for detecting significant haplotypes was also analyzed from
simulation studies. Model 3 had slightly greater power than Model 2, but both
had much greater power than Model 1 when the study had a large dropout rate.

6. Discussion

Integrated with genetic information collected by SNPs, functional mapping
can be a useful tool to detect specific genetic variants that affect the dynamic or
longitudinal patterns of outcome variables (Ma, Casella, and Wu (2002)). Func-
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tional mapping has a particular power to study the pharmacogenegtic control of
drug response as shown in Lin et al. (2005) and Lin et al. (2007). Functional map-
ping provides a quantitative framework for testing the interplay between genetic
actions/interactions and the pattern of responses across different times or states.
Results from functional mapping help to elucidate a comprehensive picture of a
network of genetic regulations that determine the formation and progression of
a disease as well as the prospective effects of drugs designed to treat the disease.

In this article, we derived a statistical model for functional mapping of longi-
tudinal responses with non-ignorable dropout, thus broadening the implications
of functional mapping to the practical setting of clinical trials. The new model
was founded on the pattern mixture paradigm that considered non-ignorable
missing-data mechanisms. Pattern-mixture models specify the conditional dis-
tribution of the unobserved measurements given the observed ones in a given
pattern, and have been thought to be potentially useful for modeling incom-
plete longitudinal data (Wu and Bailey (1989); Little (1993, 1995); Fitzmau-
rice, Laird, and Shneyer (2001); Hogan and Laird (1997)). We incorporate the
pattern-mixture model process into a framework of the mixture model for genetic
mapping in which different genotypes present different curves of longitudinal re-
sponses.

The new model can not only detect the existence of specific DNA sequence
variants that regulate longitudinal traits, but it also allows the tests of whether
these haplotypes trigger a pleiotropic effect on longitudinal responses and the
dose at which subjects drop out from the longitudinal study. The model can
be further extended to consider the physiological mechanisms that cause early
dropouts and model interactions between haplotypes from different gene re-
gions and between haplotypes and environments. These modified models will
find an immediate application in pharmacogenetic studies of drug response and
HIV/AIDS studies in which informative dropouts commonly occur.
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Appendix

In this appendix, we describe the EM algorithm for parameter estimation. In
the E step, calculate the generic conditional expectations conditional on Zo and
the current parameter estimates with equations (2.9) and (2.10), or (2.11) and
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(2.12). In the M step, use these estimated expectations to solve the log-likelihood
equations:

∂lo(Ωq)
∂Ωq

= E
[
∂lf (Ωq)

∂Ωq
|Zo

]
,

which are specifically expressed as

∂lo(Ωq)
∂Θj

= E
[
∂lf (Ωq)

∂Θj
|Zo

]
=

N∑
i=1

EδilEζij(yi − u(j|i)l)Σ
−1
i

∂u′
(j|i)l

∂Θj
, (A.1)
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∂lo(Ωq)
∂πql

= E
[
∂lf (Ωq)

∂πjl
|Zo
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=

N∑
i=1

Eζij

[
Eδil

1
πjl

− EδiL
1

πjL

]
, l = 1, . . . , L − 1. (A.4)

To obtain the estimates of Ωq from the observed log-likelihood function
lo(Ωq|Zo), we use the iterative steps of the Newton-Raphson algorithm:

Ω[t+1]
q = Ω[t]

q +
{

V (−1) ∂lo

∂Ωq

}
|
Ωq=Ω

[t]
q

, (A.5)

where

V = −∂2lo(Ωq)
∂Ωq∂Ω′

q

is the negative of the second order derivatives matrix, or the observed information
matrix. In practical Newton Raphson iterations, V is replaced by

V1 = E
[
−∂2lf (Ωq)

∂Ωq∂Ω′
q

|Zo

]
,
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which is always larger than V .
The general Newton-Raphson algorithm converges quickly if appropriate ini-

tial values are selected for the parameters. An efficient procedure uses the results
from the simplex algorithm as initial values.
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