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Abstract: We consider a class of semiparametric GARCH models with additive

autoregressive components linked together by a dynamic coefficient. We propose

estimators for the additive components and the dynamic coefficient based on spline

smoothing. The estimation procedure involves only a small number of least squares

operations, thus it is computationally efficient. Under regularity conditions, the

proposed estimator of the parameter is root-n consistent and asymptotically nor-

mal. A simultaneous confidence band for the nonparametric component is proposed

by an efficient one-step spline backfitting. The performance of our method is evalu-

ated by various simulated processes and a financial return series. For the empirical

financial return series, we find further statistical evidence of the asymmetric news

impact function.
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volatility.

1. Introduction

Forecasting financial market volatility is important in applications such as
portfolio selection, asset management, pricing of primary and derivative assets.
Consider a time series {Yt}∞t=1 of the form Yt = σtξt, where the {ξt}∞t=1’s are i.i.d
with mean 0 and variance 1, and

{
σ2

t

}∞
t=1

denotes the conditional volatility se-
ries. Engle (1982) introduced autoregressive heteroskedastic (ARCH) models for
conditional volatility as a quadratic function of past observations. For example,
an ARCH model of order q is defined as

σ2
t = γ + α1Y

2
t−1 + · · · + αqY

2
t−q, γ > 0, αi ≥ 0, i = 1, . . . , q.

Research on financial volatility models has grown tremendously since then, for
example, the generalized autoregressive conditional heteroscedasticity (GARCH)
models. The most popular version of the GARCH models is the GARCH(1, 1)
model of Bollerslev (1986):

σ2
t = γ0 + α0Y

2
t−1 + β0σ

2
t−1, γ0 > 0, α0, β0 ≥ 0,
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or equivalently σ2
t = β0σ

2
t−1 + m0(Yt−1), where m0(y) ≡ α0y

2 + γ is the “news
impact curve”.

The quadratic form of the function m0(·) had been questioned by many. For
example, Glosten, Jaganathan, and Runkle (1993) proposed the GJR model

σ2
t = γ0 + α0Y

2
t−1 + δ0Y

2
t−1I(Yt−1 < 0) + β0σ

2
t−1

with m0(y) ≡ γ + αy2 + δy2I (y < 0), allowing different “leverages” of good and
bad news on m0. For this reason, recent studies have introduced non/semi-
parametric (G)ARCH models to increase the flexibility of the class of models;
see for example, Pagan and Schwert (1990), Engle and Ng (1993), Masry and
Tjøstheim (1995), Härdle and Tsybakov (1997), Hafner (1998), Härdle, Tsy-
bakov, and Yang (1998), Bühlmann and McNeil (2002), Linton and Mammen
(2005), and Yang (2006). These models generalize and outperform the paramet-
ric GARCH models when applied to data with many lagged variables. However,
smoothing high dimensional and strongly correlated time series data still presents
great challenges in both computation and theory.

As an alternative, additive models (Stone (1985)) overcome these difficulties
while keeping the flexibility of the models. Yang, Härdle, and Nielsen (1999) ana-
lyzed a multiplicative form of volatility using nonparametric smoothing. Carroll,
Härdle, and Mammen (2002) and Yang (2002) proposed a truncated version of
the nonparametric GARCH model with a finite number of lags J :

σ2
t =

J∑
j=1

βj−1
0 m0(Yt−j), β0 ∈ [β1, β2] . (1.1)

However, for small J , this may not capture the persistence of volatility for many
time series; see Linton and Mammen (2005) and Yang (2006).

In this paper, we re-examine model (1.1) based on a data-driven lag selection
procedure. Most of the existing methods rely on marginal integration kernel
smoothing (Linton and Nielsen (1995)) or iterative approaches such as backfitting
(Hastie and Tibshirani (1990)). The marginal integration can be computationally
expensive if the selected number of lags J or sample size n is large, and it requires
O(n3) operations (Hengartner and Sperlich (2005)). Moreover, n is required to
be larger than 10, 000 for convergence when smoothing 10-dimensional data, so
it is not routinely used in practice despite good theoretical properties. Widely
used R/Splus packages gam and mgcv, based on backfitting with splines, provide
convenient implementation in practice but lack theoretical justifications except
for some special cases in Opsomer and Ruppert (1997).

Our goal is to develop a simple but flexible semiparametric method with a
well-justified theory and a fast algorithm to implement the method in practice.



EFFICIENT SEMIPARAMETRIC GARCH MODELING 251

This is done by approximating the nonparametric components with polynomial
splines. The use of spline smoothing goes back to Stone (1985), who first obtained
the rate of convergence of the spline estimates for generalized additive models.
In volatility studies, Engle and Ng (1993) employed linear spline smoothing to
estimate the news impact function, without pursuing asymptotic results.

Our approach allows for formal derivation of the asymptotic properties of
the proposed estimators. We establish the

√
n-consistency and the asymptotic

normality for the parameter estimator, and L2 convergence rate for the functional
component. To examine the validity of certain forms of the volatility models, we
provide a simultaneous confidence band for the news impact curve using the
one-step spline-backfitted spline estimator in Song and Yang (2010).

The rest of the paper is organized as follows. Section 2 gives details of the
model specification, proposed methods of estimation, and presents the asymptotic
results. In addition, we discuss some alternative methods and the practical issue
of lag selection. In Section 3 we describe a spline confidence band for the news
impact curve. In Section 4 we report our findings in an extensive simulation
study. An application to a financial return data is given in Section 5. Most of
the technical proofs are contained in the Appendix.

2. The Method
2.1. Semiparametric GARCH models with additive autoregressive

structure

Consider a stationary time series {Yt}T
t=1, with Yt = σtξt, t = 1, . . . , T . We

rewrite model (1.1) as the additive autoregressive model

Y 2
t = c +

J∑
j=1

mj(Yt−j) + εt, εt = σ2
t

(
ξ2
t − 1

)
, (2.1)

where the component functions m1(·), . . . ,mJ(·) are linked by a scalar parameter
β0 such that mj(y) = βj−1

0 m1(y) for j ≥ 2. Define the least squares risk function
R(β) over [β1,β2] as

R(β) = E

[ J∑
j=1

{
mj(Yt) − βj−1m1(Yt)

}2
]
. (2.2)

Since R(β) =
∑J

j=1{(β
j−1
0 −βj−1)2}E{m1(Yt)2} is a convex function with respect

to β, β0 is the unique minimizer of R(β) over [β1,β2]. For identifiability, the
component functions in (2.1) satisfy E {mj (Yt)} = 0, j = 1, . . . , J .

Our intent is to estimate the news impact function m1 and the dynamic
coefficient parameter β0. To reach this goal, first we employ the polynomial
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spline smoothing to obtain the estimates m̂j(·) of the additive components mj(·)
without taking into account the parametric link of the components, then we
estimate the dynamic coefficient β0 by using the link restriction between the
additive components m̂j(·) (j = 1, . . . , J). For simplicity of notation, call the
above approach the spline additive GARCH (GARCH-ADD) approach.

We only consider the estimation of mj(·) based on all bounded measurable
function on compact interval [a, b] , where a, b are some fixed constants. When
facing data, one can use fixed truncation to satisfy this condition. Let Sn be
the space of polynomial splines on [a, b] of degree p ≥ 1. We introduce a knot
sequence with N interior knots,

u−p = · · · = u−1 = u0 = a < u1 < · · · < uN < b = uN+1 = · · · = uN+p+1,

where N ≡ Nn increases when sample size n increases, with precise order as
given in Assumption (A5). The spline of degree p for the jth variable is denoted
as {bj,k}N

k=−p (de Boor (2001)). Then Sn consists of functions g(·) satisfying
(i) g(·) is a polynomial of degree p on each of the subintervals Ik = [uk, uk+1),
k = 0, . . . , N − 1, IN = [uN , b]; (ii) for p ≥ 2, g(·) is p − 1 time continuously
differentiable on [a, b].

Equally-spaced knots are used here for simplicity, while adaptively choosing
the locations of the knots could have been done for data analysis. Let h =
(b− a)/(N + 1) be the distance between neighboring knots. Take the space G =
G[a, b] of additive splines as the linear space spanned by the basis {1, bj,k(yj), j =
1, . . . , J, k = −p, . . . , N}. Let (λ̂′

0, λ̂
′
1,−p, . . . , λ̂

′
J,N )T be the solutions of the least

squares problem(
λ̂′

0, λ̂
′
1,−p, . . . , λ̂

′
J,N

)T
= argmin

R1+J(N+p)

T∑
t=J+1

{
Y 2

t − λ0 −
J∑

j=1

N∑
k=−p

λj,kbj,k (Yt−j)
}2

.

Let n = T − J . Let ĉ = n−1
∑T

t=J+1 Y 2
t , which is a

√
n-consistent estimator of c

by the Central Limit Theorem. The centered spline estimator of each component
function is

m̂j (y) =
N∑

k=−p

λ̂j,kbj,k (y) − 1
n

T∑
t=J+1

N∑
k=−p

λ̂j,kbj,k (Yt−j) , 1 ≤ j ≤ J. (2.3)

To estimate the parameter β0, we regress {m̂2(Yt)}T
t=J+1 on {m̂1(Yt)}T

t=J+1 and
solve the least squares

∑T
t=J+1 {m̂2(Yt) − βm̂1(Yt)}2. The performance is im-

proved by averaging over the deviation squares from all the components, so we
define the sample least squares criterion

R̂ (β) =
1
n

T∑
t=J+1

J∑
j=1

{
m̂j(Yt) − βj−1m̂1(Yt)

}2
, (2.4)



EFFICIENT SEMIPARAMETRIC GARCH MODELING 253

and the minimizer of (2.4) β̂ is the GARCH-ADD estimator of the dynamic
coefficient.

2.2. Asymptotic properties of the GARCH-ADD estimators

For our theoretical results, we enforce the following technical assumptions.

(A1) The data-generating process {Yt, t > 0} is strictly stationary and α-mixing
with exponentially decaying mixing coefficients α (k) ≤ K0e

−λ0k for some
positive constants K0 and λ0. The α-mixing coefficients for {Yt}T

t=1 is

α (k) = sup
B∈σ{Ys,s≤t},C∈σ{Ys,s≥t+k}

|P (B ∩ C) − P (B) P (C)| , k ≥ 1.

(A2) Function m1 is a pth degree continuously differentiable function on [a, b] .
(A3) For any t, t′ = 1, . . . , T, t 6= t′, the joint density f (yt, yt′) of (Yt, Yt′) is con-

tinuous, and 0 < cf ≤ inf(yt,yt′ )∈[a,b]2 f (yt, yt′) ≤ sup(yt,yt′ )∈[a,b]2 f (yt, yt′) ≤
Cf < ∞.

(A4) ξt satisfies E(ξt|Ft−1) = 0, E(ξ2
t |Ft−1) = 1, and E(|ξt|5+δ|Ft−1) < Mδ for

some δ > 0 and a finite positive Mδ.
(A5) The number of interior knots of the spline basis functions with degree p > 1

is such that : cNn1/(2p) log n ≤ N ≤ CNn1/2/ log3 n, for some positive
constants cNand CN .

Remark 1. Assumption (A1) is standard in time series literature; see Linton and
Mammen (2005), Wang and Yang (2007). Assumption (A2) is very relaxed here
when compared with the marginal integration method; see Linton and Nielsen
(1995). Assumption (A3) only requires that the pairwise joint density be bounded
away from 0 and ∞; thus it is a much weaker assumption than Assumption
(iv) in Carroll, Härdle, and Mammen (2002) and Assumption (c) of Huang and
Yang (2004) that require the boundedness of the joint density of the J variables.
Assumption (A4) is comparable with Assumption (vi) in Carroll, Härdle, and
Mammen (2002). Assumption (A5) gives the order of the number of interior
knots.

We now describe our asymptotic results for the parameter in Theorems 1
and 2; the consistency result for the nonparametric news impact curve is given
in the Appendix.

Theorem 1. Under Assumptions (A1)−(A5), as n → ∞, β̂ −→ β0 a.s..

Theorem 2. Under Assumptions (A1)−(A5), as n → ∞,
√

n(β̂ − β0) has an
asymptotic normal distribution with mean 0 and variance D−2

∑
t Cov(V0, Vt),

where Vt = εtH(β0,m1(Yt)), H(β0,m1(Yt)) is given in (A.9) in the Appendix,
and D =

∑J
j=2(j − 1)2β2j−4

0 E
[
m2

1(Yt)
]
.
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As an added refinement, considering that the additive components are linked,
we define

m̂∗
1 (y) =

∑J
j=1 β̂(j−1)m̂j (y)∑J

j=1 β̂2(j−1)
. (2.5)

As discussed in Carroll, Härdle, and Mammen (2002), the asymptotic variance
of {m̂∗

1 (y) − m1 (y)} is smaller than that of {β̂−(j−1)m̂j (y) − m1 (y)} for all j.
We show, in the Appendix, that m̂∗

1 (y) has the same convergence rate as m̂1 (y).

2.3. The alternatives

There is a host of possible alternative methods for estimating the GARCH
models nonparametrically, for example, a referee has suggested that one can im-
prove the efficiency of the estimators by taking the advantage of the structure
of model (1.1). Let σ2

t (β,m) =
∑J

j=1 βj−1m (Yt−j), and let β0 and m0 be de-
fined as the minimizers of the population least squares (LS) criterion function
E

{
Y 2

t − σ2
t (β,m)

}2, or be the minimizers of the negative likelihood (NL) crite-
rion function E

[
log

(
σ2

t (β,m)
)

+ Y 2
t /σ2

t (β,m)
]2. Similar to the method in Sec-

tion 2.1, we approximate m(·) by polynomial splines. Thus the empirical version
of the LS or NL problem is

∑T
t=J+1

{
Y 2

t − σ̂2
t (β, λ)

}2 or
∑T

t=J+1[log{σ̂2
t (β, λ)}+

Y 2
t /[σ̂2

t (β, λ)]], where λ = {λ1−p, . . . , λN} and σ̂2
t (β, λ) =

∑J
j=1

∑N
k=1−p βj−1λk

bk(Yt−j).
The minimizer of β based on the LS or NL criterion is the estimator of β

denoted by GARCH-LS and GARCH-NL, respectively. We have not investigated
their asymptotic properties due to some technical challenges, but the numerical
performance of these two estimators has been studied in a comprehensive Monte
Carlo study; see Section 4.

2.4. Selection of knots and lags

An important aspect of regression splines is the choice of the knots: splines
with few knots are generally smoother than splines with many knots; increasing
the knots usually improves the fit of the spline function to the data. The number
of knots used in our simulation is N = [c1n

1/(2p) log(n)] + c2, where [a] denotes
the integer part of a, and c1 and c2 are positive constants. As pointed out in
Wang and Yang (2007), there is no optimal method for selecting (c1, c2). In our
simulation, the simple choice c1 = c2 = 1 works well, so these are set as default
values.

For all modeling approaches, we need to determine the number of lags J . For
the GARCH-ADD approach we adopt the consistent BIC lag selection method
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for non-linear additive autoregressive models (Huang and Yang (2004)), where

BIC(J) = log
[ 1
n

T∑
t=J+1

{Y 2
t − ĉ −

J∑
j=1

m̂j (Yt−j)}2
]

+
log log(n)

n
{1 + J(N + p + 1)} .

Numerical results on knots and lags selection are reported in Section 4.

3. Confidence Band for the News Impact Curve

In this section, we introduce a simultaneous confidence band for the news
impact curve. For the nonlinear additive autoregressive models, Song and Yang
(2010) proposed a two-step spline smoothing method to estimate each additive
component: the first spline smoothing does a quick initial estimation of the addi-
tive components and removes all except the one of interest; the second smooth-
ing is then applied to the cleaned univariate data to refine the estimator of each
component with asymptotically oracle efficiency. They established an asymptotic
100(1 − α)% conservative confidence band

m̂j (y) ± 2σ̂j (y) {log (N + 1)}1/2 QN (α) , (3.1)

where m̂j is the spline-backfitted spline estimator, σ̂j is the estimator of the
standard deviation function of m̂j , and QN (α) is an inflation factor; see Song
and Yang (2010).

When constructing the confidence band in (3.1), one needs additional smooth-
ing steps to estimate the functions σ̂j in (3.1); this may make the results less
accurate, see Song and Yang (2009). Here we propose a bootstrap version of
(3.1) similar to Song and Yang (2009). The following is a detailed procedure for
constructing the simultaneous confidence band. Denote a predetermined large
integer by nB. By default nB is 500.

Step 1. Pre-estimate mj by its centered pilot estimator m̂j , j = 1, . . . , J , through
an under-smoothed spline smoothing procedure with N1 knots.

Step 2. Construct the pseudo-response Ŵt = Y 2
t − ĉ −

∑J
j=2 m̂j (Yt−j), and ap-

proximate m1 by linear spline smoothing with N2 knots based on {Ŵt, Yt−1}T
t=J+1.

Define the estimator m̆1 (·) = arg ming(·)∈Sn

∑T
t=J+1{Ŵt−g (Yt−1)}2, and denote

residual ε̂t = Ŵt − m̆1(Yt−1).

Step 3. Let {δt,b}1≤b≤nB

J+1≤t≤T be i.i.d. mean 0 and variance 1 samples of the discrete
distribution δt,b = (1 ±

√
5)/2 with probability (5 ±

√
5)/10.
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Step 4. For any 1 ≤ b ≤ nB, define the b-th wild bootstrap sample Ŵ ∗
t,b =

m̆1 (Yt−1) + δt,bε̂t, J + 1 ≤ t ≤ T . Then the bootstrap estimator of m1 (y)
is m̆1

(b) (y) =
∑N2

k=−1 ϕ̂
(b)
k Bk (y), where (ϕ̂(b)

−1, ϕ̂
(b)
2 , . . . , ϕ̂

(b)
N2

)T are the estimated
spline coefficients.

Step 5. Denote by Lα/2 (y) and Uα/2 (y), respectively, the lower and upper

100(1 − α/2)% quantiles of the set {m̆(b)
1 (y)}nB

b=1. The wild bootstrap 100(1 −
α)% pointwise confidence interval for function value m1 (y) at the point y is{
Lα/2 (y) , Uα/2 (y)

}
.

Step 6. According to Song and Yang (2010), when localized at any point y, the
uniform confidence band in (3.1) is wider than the pointwise confidence interval
in Huang (2003) by a common factor Fα = 2z−1

1−α/2 {log (N2 + 1)}1/2 QN (α).
We take the 100(1 − α)% wild bootstrap confidence band for m1 (y) to be[
m̆1 (y) +

{
Lα/2 (y) − m̆1 (y)

}
Fα, m̆1 (y) +

{
Uα/2 (y) − m̆1 (y)

}
Fα

]
.

Remark 3. Song and Yang (2010) proposed to use N1 ∼ n2/5 log n knots for
the initial spline estimation in Step 1, and N2 ∼ n1/5 knots for the backfit-
ting spline in estimation Step 2. In our simulation, N1 and N2 for the spline
estimation are calculated as N1 = min

{
[c1n

2/5 log(n)] + c2, [n/4 − 1] /J
}

and
N2 =

[
c3n

1/5 log(n)
]
+ c4, with tuning constants c1 = 1, c2 = 1, c3 = 0.5, c4 = 1

by default.

4. Simulation

We carried out some simulations to illustrate the finite-sample behavior of
the proposed estimators of Section 2. We compared the performance of the
GARCH-ADD, GARCH-LS and GARCH-NL estimators with the GARCH(1,1)
and GJR(1,1) estimators.

We generated time series Yt = σtξt with the noise sequence {ξt}T
t=1 i.i.d

standard normal random variables. The volatility
{
σ2

t

}T

t=1
was from the models

A : σ2
t = 0.10 + 0.20Y 2

t−1 + 0.75σ2
t−1,

B : σ2
t = 0.05 + 0.20Y 2

t−1 + 0.05Y 2
t−1I (Yt−1 < 0) + 0.75σ2

t−1,

C : σ2
t = 1 − 0.90 exp(−2Y 2

t−1) + 0.70σ2
t−1,

where the news impact curve in model A is symmetric, and a switching asymme-
try has been built into model B. Model C involves exponential curves; a similar
model has been studied by Carroll, Härdle, and Mammen (2002) and Bühlmann
and McNeil (2002).

We first considered time series from models A, B and C with Jmodel = 5.
For T = 500, 1,000, 2,000 and 3,000, we generated 200 replications for the three
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processes of size T+1,000; the first 1,000 observations were discarded to make
sure the time series close to strictly stationary. We truncated each time series
according to its 2.5th and 97.5th percentile. For these truncated time series, we
estimated the parameter β0 and the news impact curve m1 by cubic splines; the
number of lags, J , was selected according to the BIC described in Section 2.4;
the minimization of R̂ (β) was based on a grid search of 100 points around the
true value.

The 3rd to the 5th columns in Table 1 provide the sample mean (MEAN),
standard deviation (STD), and mean squared error (MSE) of β̂ based on the
GARCH-ADD, GARCH-LS, and GARCH-NL methods. As we expected, when
the sample size increased, the parameter β0 was more accurately estimated, with
smaller MSE, confirmative to the conclusions of Theorem 1. As one referee
expected, the GARCH-LS and GARCH-NL estimators provided more accurate
estimation in some cases, especially for Model C. We did not see any obvious
advantage to using these model structures for Models A and B. The mean and
median of the selected number of lags Jfit are reported in the last column of Table
1, and one sees that Jfit is close to Jmodel = 5 for moderately large sample size.
For the news impact curve estimation we tried both m̂1 in (2.3) and m̂∗

1 in (2.5),
and the refined m̂∗

1 performed slightly better, as we expected. The 6th column
in Table 1 shows the average MSEs (AMSE) in [−2.0, 2.0]Jfit for m̂∗

1.
To illustrate the finite-sample behavior of our confidence bands, we calcu-

lated the percentage of coverage of the true news impact function by the con-
fidence bands for the three models. Two nominal confidence levels 0.99 and
0.95 were considered. We carried out 500 replications and, for each replication,
500 bootstrap samples were generated for the bootstrap band. Table 2 contains
the Monte Carlo coverage probabilities of the proposed bands. One can see the
coverage rate gets close to the nominal level for all three models as sample size
increases.

We also carried out simulations allowing model misspecification, and we
generated time series from models A and B with Jmodel = ∞. Recall that for
Jmodel = ∞, process A is a GARCH(1,1) process, so clearly GARCH(1,1) is the
preferred estimator in this case. For process B, GJR(1,1) is the desired model. It
is thus interesting to see how much efficiency, if any, is lost by using the proposed
nonparametric methods with some selected number of lags; see the results in
Table 3. For T =1,000, the nonparametric methods lost a small amount of
efficiency relative to the parametric ones, but that effect decreased as the sample
size increased for both processes A and B. Overall, we see that the GARCH-ADD
worked quite well though β0 was no longer the true parameter. One explanation
is that the selected number of lags based on our method is usually also large
when J model = ∞.
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Table 1. Monto Carlo performance results based on 200 replications
(Jmodel = 5). The values outside and inside the parentheses are the results
based on the fitted Jfit and the oracle Joracle = 5.

Size Estimator
Parametric Nonparametric Jfit

component component mean(median)

MEAN STD MSE AMSE

A

500 GARCH-ADD 0.68(0.63) 0.17(0.14) 0.035(0.033) 0.026(0.025) 3.7(3)

GARCH-LS 0.81(0.78) 0.15(0.15) 0.027(0.024) 0.034(0.031) 5.8(5)

GARCH-NL 0.80(0.79) 0.16(0.15) 0.027(0.024) 0.033(0.032) 5.8(5)

1000 GARCH-ADD 0.74(0.70) 0.14(0.11) 0.019(0.017) 0.016(0.017) 3.9(4)

GARCH-LS 0.80(0.80) 0.11(0.10) 0.014(0.013) 0.025(0.024) 6.2(6)

GARCH-NL 0.80(0.82) 0.11(0.10) 0.015(0.016) 0.025(0.026) 6.1(5)

2000 GARCH-ADD 0.75(0.73) 0.10(0.08) 0.009(0.008) 0.011(0.012) 4.1(4)

GARCH-LS 0.78(0.80) 0.08(0.08) 0.008(0.008) 0.017(0.017) 6.2(5)

GARCH-NL 0.79(0.81) 0.08(0.08) 0.008(0.010) 0.018(0.019) 6.2(5)

3000 GARCH-ADD 0.77(0.75) 0.07(0.07) 0.005(0.004) 0.011(0.011) 4.6(5)

GARCH-LS 0.78(0.80) 0.08(0.07) 0.007(0.007) 0.015(0.015) 6.3(5)

GARCH-NL 0.79(0.81) 0.08(0.06) 0.008(0.008) 0.015(0.016) 6.2(5)

B

500 GARCH-ADD 0.73(0.71) 0.15(0.14) 0.022(0.022) 0.413(0.348) 5.1(5)

GARCH-LS 0.81(0.80) 0.13(0.13) 0.021(0.019) 0.173(0.170) 6.0(5)

GARCH-NL 0.81(0.82) 0.12(0.11) 0.019(0.016) 0.175(0.145) 5.9(5)

1000 GARCH-ADD 0.77(0.77) 0.10(0.10) 0.011(0.010) 0.177(0.163) 5.5(5)

GARCH-LS 0.81(0.81) 0.10(0.09) 0.013(0.012) 0.100(0.108) 6.1(5)

GARCH-NL 0.80(0.83) 0.09(0.07) 0.011(0.011) 0.095(0.089) 6.1(5)

2000 GARCH-ADD 0.77(0.78) 0.08(0.07) 0.006(0.006) 0.118(0.116) 5.4(5)

GARCH-LS 0.79(0.81) 0.08(0.07) 0.008(0.008) 0.079(0.088) 6.4(5)

GARCH-NL 0.79(0.82) 0.07(0.05) 0.007(0.008) 0.074(0.076) 6.3(5)

3000 GARCH-ADD 0.78(0.79) 0.06(0.06) 0.005(0.005) 0.093(0.098) 5.6(5)

GARCH-LS 0.79(0.81) 0.07(0.06) 0.007(0.007) 0.075(0.082) 6.2(5)

GARCH-NL 0.79(0.82) 0.06(0.04) 0.006(0.007) 0.069(0.072) 6.3(5)

C

500 GARCH-ADD 0.57(0.55) 0.16(0.12) 0.042(0.036) 0.179(0.079) 2.7(2)

GARCH-LS 0.79(0.72) 0.18(0.18) 0.040(0.031) 0.106(0.085) 5.3(5)

GARCH-NL 0.76(0.71) 0.19(0.19) 0.038(0.034) 0.102(0.083) 5.3(5)

1000 GARCH-ADD 0.60(0.58) 0.16(0.11) 0.036(0.029) 0.147(0.055) 2.6(2)

GARCH-LS 0.75(0.71) 0.15(0.13) 0.026(0.018) 0.075(0.057) 5.7(5)

GARCH-NL 0.73(0.71) 0.15(0.14) 0.024(0.020) 0.069(0.057) 5.6(5)

2000 GARCH-ADD 0.64(0.61) 0.13(0.09) 0.021(0.016) 0.107(0.033) 2.7(2)

GARCH-LS 0.73(0.71) 0.10(0.04) 0.011(0.010) 0.044(0.038) 5.8(5)

GARCH-NL 0.72(0.71) 0.11(0.05) 0.013(0.012) 0.046(0.040) 5.8(5)

3000 GARCH-ADD 0.67(0.64) 0.11(0.07) 0.013(0.009) 0.069(0.020) 2.9(3)

GARCH-LS 0.71(0.70) 0.09(0.08) 0.007(0.006) 0.030(0.027) 6.2(5)

GARCH-NL 0.71(0.71) 0.09(0.08) 0.008(0.007) 0.033(0.030) 6.2(5)
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Table 2. Coverage probabilities from 500 replications.

Sample Size Model A Model B Model C
95% 99% 95% 99% 95% 99%

500 0.982 0.998 0.924 0.982 0.904 0.982
1000 0.970 0.996 0.962 0.990 0.848 0.950
2000 0.982 0.996 0.956 0.984 0.868 0.934
3000 0.976 0.996 0.932 0.986 0.892 0.954

Table 3. Monto Carlo performance results based on 200 replications (Jmodel = ∞).

Size Estimator Parametric component Nonparametric component Time (secs)
MEAN STD MSE AMSE

A 1000 GARCH(1,1) 0.77 0.04 0.002 0.008 1.3
GJR(1,1) 0.77 0.04 0.002 0.008 7.4
GARCH-ADD 0.71 0.10 0.012 0.016 2.6
GARCH-LS 0.81 0.06 0.008 0.030 11.1
GARCH-NL 0.82 0.06 0.008 0.031 11.2

2000 GARCH(1,1) 0.77 0.03 0.001 0.006 6.2
GJR(1,1) 0.77 0.03 0.001 0.006 12.9
GARCH-ADD 0.75 0.06 0.004 0.009 5.6
GARCH-LS 0.80 0.04 0.004 0.023 23.2
GARCH-NL 0.81 0.04 0.005 0.025 22.6

3000 GARCH(1,1) 0.77 0.02 0.001 0.005 11.8
GJR 0.77 0.02 0.001 0.006 19.0
GARCH-ADD 0.76 0.04 0.002 0.008 8.0
GARCH-LS 0.80 0.03 0.004 0.017 32.0
GARCH-NL 0.81 0.03 0.005 0.019 32.8

B 1000 GARCH(1,1) 0.76 0.06 0.004 0.015 3.6
GJR(1,1) 0.76 0.03 0.001 0.009 6.2
GARCH-ADD 0.76 0.09 0.009 0.141 2.6
GARCH-LS 0.82 0.06 0.010 0.066 11.1
GARCH-NL 0.84 0.04 0.010 0.058 11.2

2000 GARCH(1,1) 0.76 0.02 0.001 0.013 6.1
GJR(1,1) 0.76 0.02 0.001 0.006 12.3
GARCH-ADD 0.78 0.06 0.005 0.060 5.2
GARCH-LS 0.82 0.04 0.007 0.035 21.0
GARCH-NL 0.83 0.04 0.008 0.039 20.7

3000 GARCH(1,1) 0.76 0.02 0.001 0.012 11.4
GJR(1,1) 0.76 0.02 0.001 0.005 15.9
GARCH-ADD 0.79 0.04 0.004 0.033 7.8
GARCH-LS 0.82 0.03 0.006 0.028 31.0
GARCH-NL 0.83 0.02 0.007 0.030 30.4

In all our simulation experiments, the proposed GARCH-ADD method worked
quickly, and we provide the time in seconds for all the methods in the last column
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Table 4. Fitting the BMW daily returns

Model −Log-likelihood Volatility prediction error
GARCH(1,1) 3394.667 22.589
GJR(1,1) 3387.449 22.065
GARCH-ADD 3387.310 21.759

in Table 3. The proposed GARCH-ADD method only needs to solve a moderate
number of linear least squares and a simple univariate nonlinear optimization; so
in most cases one can see that the GARCH-ADD worked much faster compared
to its competitors that require high-dimensional nonlinear optimization.

5. Application

In this section, we investigate the news impact curve on BMW daily stock
return series to discover the relationship between past return shocks and con-
ditional volatility. We collected the samples of daily percentage returns on the
BMW share price from June 1st 1986 to January 30th 1994, a total of 2,000
observations. We truncated Yt by its 0.01 and 0.99 quantiles.

For comparison, we also fitted the classical GARCH(1,1) and GJR(1,1)
models. We compared the goodness-of-fit of our model with these two mod-
els in terms of volatility prediction error (1/n)

∑T
t=J+1

(
σ̂2

t − Y 2
t

)2 and the log-
likelihood −

∑T
t=J+1 log

{
σ̂−1

t ϕ (Yt/σ̂t)
}

with Jfit = 50. Clearly, the semipara-
metric method had an edge over the two parametric models in terms of predic-
tion error and log-likelihood. One can see from Table 4 that the leverage effects
of the GJR model can be further enhanced by a nonlinear link to yield a much
better volatility fit.

To examine the validity of the GARCH and GJR models, we constructed the
spline bootstrap confidence band. Figure 2 plots the GARCH, GJR, GARCH-
ADD fits with 95% confidence bands. From Figure 2, we see that the spline
estimated news impact curve stands in obvious contrast to the GARCH(1,1) fit,
that shows strong evidence of the asymmetry of the news impact curve. It does
seem that all three models can be fully covered by the bootstrap band.

For diagnostic purposes, we show the estimated autocorrelation function
(ACF) of the daily standardized residuals ε̂2 with 95% Bartlett intervals, and
one sees that the autocorrelation in the daily returns series is very small.

6. Discussion

Non/semi-parametric methods enhance the flexibility of the volatility models
that practitioners use. However, due to the limitations in either interpretability,
computational complexity, or theoretical reliability, most of the nonparametric
stochastic volatility models have not been widely used as general tools in volatility
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(a)

(b)

Figure 1. BMW daily returns: (a) original series; (b) the estimated volatility
function.

analysis. In this paper, we have advanced semiparametric methods as flexible,
computationally efficient and theoretically attractive tools for studying financial
volatility.

We propose approximating the functional component in an additive volatility
model by B-splines, which can be done by running OLS operations once the
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Figure 2. Analysis of BMW daily returns: (a) estimated news impact curve;
(b) the estimated ACF using GARCH-ADD along with 95% Bartlett inter-
vals for ε̂2.

spline basis is chosen. Thus our method is particularly computationally efficient
compared to its competitors that have to solve large system equations or optimize
high-dimensional nonlinear functions. In addition, we introduced two alternative
methods taking into account the model structure. These alternative methods are
supposed to be more efficient in principle, but obtaining the asymptotics is likely
to be difficult; we leave this as future research work. All the proposed estimators
are easily implemented in commonly used software/package such as lm() in R.

There is other future work ahead. For example, it is interesting to consider
the issue of model misspecification. Here, instead of estimating the true dynamic
coefficient for J = ∞, we estimate a parameter β0 that approximates the true
parameter by using some finite J . If J = ∞, β0 would not be the true dynamic
coefficient anymore. The asymptotic results for the misspecified case has yet to
be fully explored.
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Appendix

Throughout this section, c and C are any positive constants, without distinc-
tion. Let ‖φ‖2 be the L2 norm of a function φ on [a, b], ‖φ‖2

2 =
∫ b
a φ2 (y) f (y) dy,

and take the empirical L2 norm as ‖φ‖2
2,n = n−1

∑n
i=1 φ2 (Yi). The corre-

sponding inner products are 〈φ, ϕ〉2 =
∫ b
a φ (y) ϕ (y) f (y) dy and 〈φ, ϕ〉2,n =

n−1
∑n

i=1 φ (Yi) ϕ (Yi).

Define the centered version spline basis

b∗j,k (y) = bj,k (y) −
E(bj,k)

E(bj,k−1)
bj,k−1 (y) , j = 1, . . . , J, k = 1 − p, . . . , N,

with the standardized version, given for any j = 1, . . . , J , k = 1 − p, . . . , N ,

Bj,k (y) =
b∗j,k (y)
‖b∗j,k‖2

. (A.1)

In practice, basis {bj,k, j = 1, . . . , J, k = −p, . . . , N}T is used for data analysis,
and the mathematically equivalent expression (A.1) is convenient for asymptotic
analysis. Let x = (x1, . . . , xJ)T. For a J-dimensional vector Xt = (Yt−1, . . .,
Yt−J)T, define

B (x) = {1, B1−p,1 (x1) , . . . , BJ,N (xJ)}T , B = {B (XJ+1) , . . . ,B (XT )}T .

Let mt = c +
∑J

j=1 βj−1
0 m1(Yt−j) and consider the signal vector m =

{mJ+1, . . . ,mT }T and the noise vector ε = {εJ+1, . . . , εT }T. Let

Λj = diag{0, . . . , 0, 1, . . . , 1︸ ︷︷ ︸,
from (N+p)(j−1)+2 to (N+p)j+1

0, . . . , 0}

be a diagonal matrix. Based on the relation Y 2
t = mt + εt, one defines the signal

spline smoothers and the noise spline components by

m̃j (y) = B (y)T Λj (BTB)−1 B Tm − 1
n
1T

nBΛj ( BTB)−1 BTm,
(A.2)

ε̃j (y) = B (y)T Λj (B TB)−1 BTε − 1
n
1 T

n BΛj (BT B)−1 BTε,

where 1n is a length n dimensional vector with all elements 1.
With Z =

{
Y 2

J+1, . . . , Y
2
T

}
, we can rewrite m̂j (y) in (2.3) as

m̂j (y) = B (y)T Λj (BTB)−1 B TZ − 1
n
1T

nBΛj ( BTB)−1 BTZ.

Then one has the crucial decomposition for proving Theorem 1,

m̂j (y) = m̃j (y) + ε̃j (y) , j = 1, . . . , J. (A.3)

To prove Theorems 1 and 2, we need a lemma on the L2 convergence rate of
the one-step spline estimator m̂1 to m1.
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Lemma A.1. Under (A1)−(A5), as n → ∞,

‖m̂1 − m1‖2,n + ‖m̂1 − m1‖2 = Oa.s.

(
hp +

log n√
nh

)
. (A.4)

Proof. Using page 149 of de Boor (2001), we have ‖m̃1 − m1‖2 = O (hp), and
‖m̃1 − m1‖2,n = O (hp). According to Lemma A.6 of Wang and Yang (2007),
‖ε̃‖2 = Oa.s.(log n/

√
nh) and ‖ε̃‖2,n = Oa.s.(log n/

√
nh). The result in Lemma

A.1 follows from the decomposition in (A.3).

A corollary relates the asymptotic property of m̂∗
1 given in (2.5) to m1.

Corollary A.1. Under (A1)−(A5), as n → ∞,

‖m̂∗
1 − m1‖2,n + ‖m̂∗

1 − m1‖2 = OP

(
hp +

log n√
nh

)
.

Proof. The proof is quite straightforward from the lemma and Theorem 2.

‖m̂∗
1−m1‖2 =

∥∥∥∥∥ 1
J∑

j=1
β̂2(j−1)

{ J∑
j=1

β̂(j−1)(m̂j −mj)+
J∑

j=1

β̂j−1(βj−1
0 − β̂j−1)m1

}∥∥∥∥∥
2

.

For any 1 ≤ j ≤ J , ‖m̂j − mj‖2 has order OP (hp + log n/
√

nh). Combined
with the result that

∑J
j=1 β̂j−1(βj−1

0 − β̂j−1) = OP (n−1/2) = oP (hp +log n/
√

nh)
from Theorem 2, one has that ‖m̂∗

1 − m1‖2 is OP (hp + log n/
√

nh), and so is
‖m̂∗

1 − m1‖2,n.

A.1. Proof of Theorem 1

Note that the risk function R(β) given in (2.2) is locally convex in β and,
hence, consistency for β is implied by supβ∈[β1,β2] |R̂(β)−R(β)| → 0 a.s., where
R̂(β) is given in (2.4). Note that

R̂(β) =
J∑

j=1

∥∥m̂j − mj + βj−1m1 − βj−1m̂1

∥∥2

2,n
+

J∑
j=1

∥∥mj − βj−1m1

∥∥2

2,n

+
J∑

j=1

2
〈
mj − βj−1m1, m̂j − mj + βj−1m1 − βj−1m̂1

〉
2,n

= P1(β) + P2(β) + P3(β).

By (A.4), we have supβ∈[β1,β2] P1(β) = Oa.s.(h2p + log2 n/nh), and

sup
β∈[β1,β2]

P3(β)

≤ 2J max
1≤j≤J

{∥∥m̂j − mj + βj−1m1 − βj−1m̂1

∥∥
2,n

sup
x∈[a,b]

∣∣mj (x) − βj−1m1 (x)
∣∣} ,
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which is of the order Oa.s.

(
hp + log n/

√
nh

)
. Thus,

sup
β∈[β1,β2]

∣∣∣R̂(β) − P2(β)
∣∣∣ = Oa.s.

(
hp +

log n√
nh

)
.

And

sup
β∈[β1,β2]

|P2(β) − R(β)|

≤
∣∣∣∣ 1n

T∑
t=J+1

{ J∑
j=1

m2
j (Yt)

}
− E

{ J∑
j=1

m2
j (Yt)

}∣∣∣∣
+

2(1 − β2J
2 )

1 − β2
2

∣∣∣∣ 1n
T∑

t=J+1

{ J∑
j=1

mj(Yt)m1(Yt)
}
− E

{ J∑
j=1

mj(Yt)m1(Yt)
}∣∣∣∣

+
1 − β2J

2

1 − β2
2

∣∣∣∣∣ 1n
T∑

t=J+1

m2
1(Yt) − Em2

1(Yt)

∣∣∣∣∣ .

By a strong law of large numbers for mixing processes, supβ∈[β1,β2] |P2(β) − R(β)|
= oa.s.(1). Thus

sup
β∈[β1,β2]

∣∣∣R̂(β)−R(β)
∣∣∣ ≤ sup

β∈[β1,β2]

∣∣∣R̂(β)−P2(β)
∣∣∣+ sup

β∈[β1,β2]
|P2(β) − R(β)| = oa.s.(1),

and β̂ converges to β0 almost surely.

A.2. Proof of Theorem 2

Write

√
n

d

dβ
R̂

(
β̂
)

=
√

n
d

dβ
R̂ (β)

∣∣∣∣
β=β0

+
d2

dβ2
R̂ (β)

∣∣∣∣
β=β̃

√
n

(
β̂ − β0

)
,

where β̃ is between β̂ and β0. Then one has

√
n

(
β̂ − β0

)
=

√
n
{ d2

dβ2
R̂ (β)

∣∣∣∣
β=β̃

}−1{ d

dβ
R̂

(
β̂
)
− d

dβ
R̂ (β)

∣∣∣∣
β=β0

}
= −

√
n
{ d2

dβ2
R̂ (β)

∣∣∣∣
β=β̃

}−1 d

dβ
R̂ (β)

∣∣∣∣
β=β0

. (A.5)

We need the two lemmas to deal with −
√

n d
dβ R̂ (β)

∣∣∣
β=β0

and d2

dβ2 R̂ (β).
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Lemma A.2. Under (A1)−(A5),

−
√

n

2
d

dβ
R̂ (β)

∣∣∣∣
β=β0

= n−1/2
T∑

t=J+1

εtH(β0,m1(Yt)), (A.6)

where H(β0, m1(Yt)) is given in (A.9).

Proof. Note that

−
√

n

2
d

dβ
R̂ (β)

∣∣∣∣
β=β0

=
1√
n

T∑
t=J+1

J∑
j=1

(j − 1)βj−2
0

{
m̂j(Yt) − βj−1

0 m̂1(Yt)
}

m̂1 (Yt)

=
1√
n

T∑
t=J+1

J∑
j=1

(j − 1)βj−2
0

{
m̂j(Yt) − βj−1

0 m̂1(Yt)
}

[m̂1 (Yt) − m1 (Yt)]

+
1√
n

T∑
t=J+1

J∑
j=1

(j − 1)βj−2
0

{
m̂j(Yt) − βj−1

0 m̂1(Yt)
}

m1 (Yt)

= I + II.

Here the first term I can be written as

I =
1√
n

T∑
t=J+1

J∑
j=1

(j − 1)βj−2
0 {m̂j(Yt) − mj(Yt)} {m̂1 (Yt) − m1 (Yt)}

− 1√
n

T∑
t=J+1

J∑
j=1

(j − 1)β2j−3
0 {m̂1 (Yt) − m1 (Yt)}2

= I1 + I2.

As in the proof of Theorem 1, both I1 and I2 are of order Oa.s.(h2p + log2 n/nh).
With the order of h in (A5), I = Oa.s.

{
n1/2

(
h2p + log2 n/(nh)

)}
= oa.s.(1). For

II, noting that ‖m̃1 − m1‖2,n = O(hp) a.s., by (A.3) and Assumption (A5), one
can write II as

1√
n

T∑
t′=J+1

J∑
j=1

(j−1)βj−2
0

{
m̃j(Yt′) + ε̃j(Yt′)−βj−1

0 m̃1(Yt′)−βj−1
0 ε̃1(Yt′)

}
m1 (Yt′)

=
1√
n

T∑
t′=J+1

J∑
j=1

(j−1)βj−2
0

{
ε̃j(Yt′)−βj−1

0 ε̃1(Yt′)
}

m1 (Yt′) + oa.s. (1) .
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Let

V̂ =

(
1 0
0

〈
Bj,k, Bj′,k′

〉
2,n

)
1≤j,j′≤J,

1−p≤k,k′≤N

, V =
(

1 0
0

〈
Bj,k, Bj′,k′

〉
2

)
1≤j,j′≤J,

1−p≤k,k′≤N

.

With ε̃j defined in (A.2), the main term in II is

n−1/2
T∑

t′=J+1

J∑
j=1

[
(j − 1)βj−2

0 m1 (Yt′)
{
B (Yt′)Λj −

1
n
1T

nBΛj − βj−1
0

×
(
B (Yt′)Λ1 −

1
n
1T

nBΛ1

)}
V̂

−1
{ 1

n

T∑
t=J+1

Bj,k(Yt)εt

}
j,k

]
. (A.7)

According to Lemma A.10 in Wang and Yang (2007), we can replace V̂ by V in
(A.7) with a negligible error term Oa.s.

{
n−1/2N(log n)2

}
. Next we interchange

the indices t and t′ of (A.7) to find the main term in II approximated by

n−1/2
T∑

t=J+1

J∑
j=1

[
(j − 1)βj−2

0 εt

{
B (Yt)Λj −

1
n
1T

nBΛj − βj−1
0

×
(
B (Yt)Λ1 −

1
n
1T

nBΛ1

)}
V −1

{ 1
n

T∑
t′=J+1

Bj,k(Yt′)m1 (Yt′)
}

j,k

]
. (A.8)

Let

H(β0,m1(Yt))

=
J∑

j=1

[
(j − 1)βj−2

0

{
B (Yt)Λj −

1
n
1T

nBΛj − βj−1
0

×
(
B (Yt)Λ1−

1
n
1T

nBΛ1

)}
V −1

{ 1
n

T∑
t′=J+1

Bj,k(Yt′)m1 (Yt′)
}

j,k

]
, (A.9)

so that (A.8) can be written as n−1/2
∑T

t=J+1 εtH(β0,m1(Yt)), which leads to
(A.6).

Lemma A.3. Under (A1)−(A5), d2

dβ2 R̂ (β) = Em2
1(Yt)

∑J
j=2

{
(j − 1)β(j−2)

}2
+

oa.s.(1).
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Proof. Note that

d2

dβ2
R̂ (β) = n−1

T∑
t=J+1

J∑
j=2

m̂2
1(Yt)

{
(j − 1)β(j−2)

}2

+n−1
T∑

t=J+1

J∑
j=2

(j − 1) (j − 2)βj−3m̂1 (Yt)
{
m̂j(Yt) − βj−1m̂1(Yt)

}
= I1 + I2,

where I2 = oa.s.(1), as for I in Lemma (A.2), and for I1,

1
n

T∑
t=J+1

m̂2
1(Yt) −

1
n

T∑
t=J+1

m2
1(Yt) (A.10)

=
1
n

T∑
t=J+1

{m̂1(Yt) − m1(Yt)} {m̂1(Yt) + m1(Yt)}

≤

{
1
n

T∑
t=J+1

(m̂1(Yt) − m1(Yt))
2

}1/2 {
1
n

T∑
t=J+1

(m̂1(Yt) + m1(Yt))
2

}1/2

≤ ‖m̂1 − m1‖2,n sup
x

∣∣∣√6m1(x)
∣∣∣ = Oa.s.

(
hp +

log n√
nh

)
= oa.s.(1). (A.11)

By a law of large numbers, n−1
∑T

t=J+1 m2
1(Yt) → E

[
m2

1(Yt)
]
as n goes to infinity.

Combined with (A.11), we have limn→∞ n−1
∑T

t=J+1 m̂2
1(Yt) = E

[
m2

1(Yt)
]
.

For the proof of Theorem 2, combine (A.5), (A.6), and Lemma A.3, and note
that as n → ∞,

∑J
j=2(j − 1)2β̃2j−4 →

∑J
j=2(j − 1)2β2j−4

0 a.s.. Then

n1/2
(
β̂−β0

)
= n−1/2

∑
t

εtH(β0, m1(Yt))
{ J∑

j=2

(j − 1)2β2j−4
0 E

[
m2

1(Yt)
] }−1

+oa.s.(1).

Asymptotic normality of n1/2(β̂−β0) follows from a Slutsky theorem and a central
limit theorem for strongly mixing sequences (see, e.g., Bosq (1996, Thm. 1.7)).
We have to verify that for some ν > 2, E |εtH(β0,m1(Yt))|υ < ∞, which can be
obtained from (A2) and (A4).
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