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Abstract: Socio-economic variables are often measured on a discrete scale or rounded

to protect confidentiality. Nevertheless, when exploring the effect of a relevant co-

variate on the outcome distribution of a discrete response variable, virtually all

common quantile regression methods require the distribution of the covariate to

be continuous. This paper departs from this basic requirement by presenting an

algorithm for nonparametric estimation of conditional quantiles when both the re-

sponse variable and the covariate are discrete. Moreover, we allow the variables

of interest to be pairwise correlated. For computational efficiency, we aggregate

the data into smaller subsets by a binning operation, and make inference on the

resulting prebinned data. Specifically, we propose two kernel-based binned condi-

tional quantile estimators, one for untransformed discrete response data and one for

rank-transformed response data. We establish asymptotic properties of both esti-

mators. A practical procedure for jointly selecting band- and binwidth parameters

is also presented. Simulation results show excellent estimation accuracy in terms

of bias, mean squared error, and confidence interval coverage. Typically prebin-

ning the data leads to considerable computational savings when large datasets are

under study, as compared to direct (un)conditional quantile kernel estimation of

multivariate data. With this in mind, we illustrate the proposed methodology with

an application to a large dataset concerning US hospital patients with congestive

heart failure.

Key words and phrases: Binning, bootstrap, confidence interval, jittering, nonpara-

metric.

1. Introduction

Nonparametric estimation of the conditional cumulative distribution func-
tion (CDF) of a response variable given a covariate has been well studied for
continuous data. Given a sample conditional CDF, sample conditional quantiles
are often computed to characterize the distribution. There are situations, how-
ever, where it is necessary to calculate sample conditional quantiles from data
having a discrete distribution. For example, in studying the relationship be-
tween monthly unemployment spell and experience-education profile (in years),
policymakers want to know whether higher education reduces unemployment
spell between the 25th and 75th quantiles of the response variable as a function

http://dx.doi.org/10.5705/ss.2010.061


1612 JAN G. DE GOOIJER AND AO YUAN

of the covariate. Another example concerns the need for better management of
hospital care by describing the shape of the conditional distribution of the length
of hospital stay, a variable often considered as a measure of patients’ recovery,
given covariates like patients age, sex, gender, ethnicity, or severity of disease.

Methods for unconditional quantile estimation for discrete data have been
proposed by González-Barrios and Rueda (2001), Chen and Lazar (2010), and
Frydman and Simon (2007), among others. Machado and Santos Silva (2005)
introduced a variant of quantile regression for mixed discrete-continuous vari-
ables. More recently, Li and Racine (2008) considered nonparametric estimation
of conditional CDFs for mixed discrete (categorical)–continuous random vari-
ables. The latter two approaches are restricted by the continuous assumption of
the covariates but, as with the examples above, in practice there may not exist
continuously distributed covariates. In this paper we consider a setting where
both the response variable and the covariate are assumed discrete. Moreover, we
allow the variables of interest to be pairwise correlated. For efficient and effective
smoothing, we aggregate the data into smaller subsets by a binning operation,
and make inference on the resulting prebinned data. This set-up may offer new
insights as to the nature of the relationship between a response and potential
covariates, possibly with interesting implications to the issue at hand.

As an illustration, Figure 1 displays a scatterplot of a discrete-valued re-
sponse variable “Length of hospital stay” (in days) versus “Severity of disease”
(measured on a 7-point scale) for a dataset of 20, 631 patients; see Section 7 for
more details. In addition, Figure 1 shows some selected conditional percentiles
using a “naive” method that takes the data as continuous. Kendall’s rank cor-
relation coefficient indicates, at a two-tailed significance level of 1%, that the
variables are positively correlated. Note that the conditional percentiles diverge
noticeably toward the high end of the severity scale. For instance, the interquar-
tile range at the value 5 of the covariate, is 8 days, it is 22 days when the covariate
takes the value 7. On the other hand, when unconditional percentiles are com-
puted, ignoring correlations between the response variable and the covariate, the
interquartile range of the response variable is 10 days. Clearly the conditional
percentiles convey more information about the data than do unconditional per-
centiles.

Note that the above dataset is large, which is common in many areas of
science. In analyzing data with large sample size n one often needs to reduce
the amount of storage space and computing time. Thus, computing a standard
kernel-smoothed density estimator at m evaluation points for continuously dis-
tributed data requires nm kernel evaluations; see, e.g., Fan and Marron (1994).
A number of methods are available to address this problem, and most work with
the idea of binning the data first. The binning operation leads to substantial
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Figure 1. Some selected population conditional percentiles for the discrete-
valued response variable “Length of hospital stay” versus the covariate
“Severity of disease”, based on 20,631 observations.

computational savings since calculations are based on the number of bins, rather
than the number of data points, with the total number of operations directly
proportional to the expected number of nonempty bins. Moreover, it has been
shown (cf., González-Manteiga, Sánchez-Sellero, and Wand (1996), and Holm-
ström (2000)) that the estimation error of the binned kernel-smoothed density
estimator is essentially the same as that of the standard kernel estimator for
continuous data.

With a strong view toward analysing large datasets, we propose a kernel-
based, nonparametric approach to conditional quantile estimation of correlated
discrete bivariate data by binning the response variable. Binning has been studied
in the case of unconditional kernel-based density estimation and local polynomial
kernel estimation of continuous data. Its application to estimating conditional
quantiles for data from bivariate discrete distributions has not been a topic of
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research, as far as we know. While binning can be viewed as providing a discrete
approximation to the continuum, our use of binning brings in data under study.
In that sense, binning is well motivated.

With discrete variables asymptotic theory breaks down due to the fact that
the sample conditional CDF is not absolutely continuous with respect to Lebesgue
measure. To circumvent this problem we propose a conditional quantile estimator
by linearly interpolating between the jumps of the conventional binned sample
CDF. In fact, we consider two variants of the estimator: one for untransformed
discrete data, and one that can be used for rank-transformed response data. In
both cases we establish, under mild regularity conditions, asymptotic normality
and consistency. In addition, we formulate a data-driven algorithm for jointly
selecting the band- and binwidths of the proposed conditional quantile estimators.

The paper proceeds as follows. In Section 2, we present the binning principle
in its simplest form. In Section 3, we define two binned kernel-based conditional
quantile estimators, and Section 4 presents their asymptotic properties. Various
practical issues related to the two estimators are discussed in Section 5. In Section
6 we provide numerical simulations of the performance of the estimators for
correlated bivariate discrete random variables. Section 7 contains an illustrated
application of the proposed method to a real dataset. Finally, Section 8 presents
some concluding remarks. We relegate all technical arguments to an Appendix.

2. Binning

Let Z = {Z1, . . . , Zn} be a dataset in [a, b] (−∞ < a < b < ∞). To bin
the data, we divide the support set into M intervals (bins) {Aj}M

j=1, with Aj =
[aj−1, aj) (j = 1, . . . ,M−1), AM = [aM−1, aM ], and a = a0 < a1 < · · · < aM = b.
For notational simplicity, take the lengths of the intervals (binwidths), δ = (aj −
aj−1) to be fixed across the intervals. We refer to g` ≡ `δ (` = 0, 1, . . . ,M) as
grid points. Then a binning rule in its simplest form may be represented by a
sequence of weights {w`(z, δ); ` = 0, 1, . . . ,M}, with

∑M
`=0 w`(z, δ) = 1, such that

the data are replaced by the weights attached to each grid point according to a
certain rule. Thus a new data value is created as c`(z) =

∑n
i=1 w`(Zi, δ) (grid

count) at grid point g`. Here we adopt linear binning (Jones and Lotwick (1983))
for which

c`(z) =
n∑

i=1

(1 − |δ−1Zi − `|)+, (2.1)

with x+ = max(0, x). Thus, data values Zi closer to g` contribute more weight,
while Zi’s with distance > δ contribute zero weight. Hall and Wand (1996)
showed that, in terms of approximation error, linear binning is more accurate
than simple binning, where each observation is assigned to its nearest grid point.
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3. Binned Conditional Quantiles for Discrete Distributions

3.1. Untransformed data

Our analysis concerns a pair of random variables X (covariate) and Y (re-
sponse) taking values in the space N1 × N0 according to a joint probability
distribution function F (x, y) = Pr(X ≤ x, Y ≤ y), with N1 the set of posi-
tive integers and N0 the set of non-negative integers. Then the α-conditional
quantile (α ∈ (0, 1)) is the value θα(x) that solves F (θα(x)|x) = α, where
F (y|x) = Pr(Y ≤ y|X = x), or alternatively θα(x) = minη∈N1{F (η|x) ≥ α}.
Let (X1, Y1), . . . , (Xn, Yn) denote a random sample of size n from F (x, y). As-
sume that the raw data {Yi} are arranged in increasing order, giving rise to the
data {Y(1), . . . , Y(n)} with {X̃i} denoting the corresponding rearranged Xi’s.

To obtain a binned estimator of F (y|x), the dataset {X̃i, Y(i)} is split up
into m disjoint subsets with m denoting the number of distinct values x∗

u (u =
1, . . . ,m) taken on by the Xi’s (i = 1, . . . , n). Suppose a subset contains nu =∑n

i=1 I(X̃i = x∗
u) (nu > 0; u = 1, . . . ,m) observations, with I(A) the indicator

function for set {A}. In addition, let the grid count at grid point g`, conditioning
on the covariate X = x∗

u (u = 1, . . . ,m; ` = 0, 1, . . . ,M − 1), be given by

cu,`(y|x) =
n∑

i=1

I(X̃i = x∗
u)(1 − |δ−1Y(i) − (` − 1)|)+. (3.1)

Note that (3.1) is a rescaled version of (2.1) with I(X̃i = x∗
u) representing the

conditioning on X = x in F (y|x). The rescaling allows for the case cu,0(y|x) = 0.
Given (3.1), and assuming nu 6= 0, the relative cumulated grid counts at each
grid point g` conditional on each value x∗

u can be computed.
The basic idea is to position the bin weights in a matrix with rows corre-

sponding to bins and columns to conditioning values, then to kernel smooth the
rows. This requires three steps. Summarize the relative cumulated grid counts
cu,`(·) into an M × m matrix C with

Cv,u(y|x) =


0 if u = 1, . . . ,m; v = 1,

1
nu

v−1∑
`=1

cu,`(y|x) if u = 1, . . . ,m; v = 2, . . . ,M.

Next, compute an m × m kernel weighting matrix W with

Wu,j(h) =
nuKd((xj − x∗

u)/h)∑m
u=1 nuKd((xj − x∗

u)/h)
,

where Kd(·) is a kernel function on the discrete sample space [1,∞], with band-
width h (h ∈ N1). Finally, multiply C and W to obtain an M ×m matrix CW



1616 JAN G. DE GOOIJER AND AO YUAN

with binned kernel-smoothed empirical conditional CDFs, and with (v, j)th ele-
ment (v = 1, . . . ,M ; j = 1, . . . ,m) given by

Fn(y|x) =
1∑m

u=1 nuKd((xj − x∗
u)/h)

m∑
u=1

nuKd

(xj − x∗
u

h

)
Cv,u(y|x). (3.2)

Note (3.2) may be considered as a binned discrete analogue of the Nadaraya-
Watson conditional CDF estimator when (X,Y ) is continuously distributed.

Using (3.2), it may be shown that the binned conditional quantile estimator
is not consistent if α is at a plateau of F (y|x), i.e. F (y|x) = α and F (y|x) is flat
in a right-neighborhoud of θα(x); see Section 4. A way around this difficulty is
to define a new conditional CDF, say F̃ (y|x), from F (y|x) by linear interpolation
at successive grid points:

F̃ (y|x) = F (gL|x) +
(y − gL

δ

)[
F (gL+1|x) − F (gL|x)

]
, (3.3)

where L is chosen such that gL ≤ y < gL+1. The corresponding conditional quan-
tile is then θc

α(x) = infη∈R{F̃ (η|x) ≥ α}, where the superscript c highlights the
fact that (3.3) is a continuous CDF (see Section 4 for our choice of interpolation).

Given (3.3), and making use of (3.2), an estimator Fn(y|x) of F̃ (y|x) at a
general point x∗

u (u = 1, . . . ,m), can be obtained as a linear interpolation between
successive grid points. More precisely, the binned kernel-smoothed empirical
conditional CDF is

F̃n(y|x∗
u) = Fn(gL|x∗

u) +
(y − gL

δ

)[
Fn(gL+1|x∗

u) − Fn(gL|x∗
u)

]
. (3.4)

Hence the binned smoothed conditional quantile estimator of θα(x) is defined by

θ̂c
α(x∗

u) =


(

α−Fn(gL|x∗
u)

Fn(gL+1|x∗
u)−Fn(gL|x∗

u)

)
gL+

(
Fn(gL+1|x∗

u)−α
Fn(gL+1|x∗

u)−Fn(gL|x∗
u)

)
gL+1, ifnu 6= 0,

θ0 ifnu = 0,
(3.5)

where θ0 is an arbitrary value, and where L is chosen such that
∑L

v=1 Fn(gv|x∗
u) ≤

α <
∑L+1

v=1 Fn(gv|x∗
u).

The binned conditional quantile estimator θ̂α(·) of F (y|x) can be obtained
from (3.5) by using the transformation

θ̂α(x∗
u) = dθ̂c

α(x∗
u) − 1e, (3.6)

where d·e is the ceiling function that returns the smaller integer greater than, or
equal to its argument; see Machado and Santos Silva (2005, Thm. 2). Clearly,
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the advantage of binning stems essentially from the fact that the grid counts need
to be computed only once.

3.2. Rank-transformed data

In practice one may encounter a situation with highly skewed empirical con-
ditional CDFs (see Section 7). This gives rise to many empty bins and a few
bins containing a large proportion of the observations. A rank transformation of
Yi avoids this problem. Hence, we now introduce a binned conditional quantile
estimator for rank-transformed discrete-valued data. The proposed estimator is
similar in spirit to the kernel-smoothed binned conditional quantile estimator
for bivariate continuously distributed random variables introduced by Magee,
Burridge, and Robb (1991).

Ranks can be assigned to data in several ways. Here, we rank the entire set of
observations {Yi} from smallest to largest, giving rise to the dataset {R1, . . . , Rn}
with {X̃i} the corresponding rearranged Xi’s. In the case of ties we order tied
observations at random. Then, following the same setup as introduced in Sub-
section 3.1, the dataset {X̃i, Ri} is split up into m disjoint subsets each con-
taining nu (u = 1, . . . ,m) observations. From the ranking of the response data
we conclude that g0 = 0 and gM = n + 1. Then, similar to (3.1), we assume
that the grid count at grid point g`, conditioning on the covariate X = x∗

u

(u = 1, . . . ,m; ` = 0, 1, . . . ,M − 1), is given by

c̃u,`(y|x) =
n∑

i=1

I(X̃i = x∗
u)(1 − |δ−1Ri − (` − 1)|)+, (3.7)

where δ = (n+1)/M denotes the corresponding binwidth. Thus, in analogy with
(3.2), a typical element of the M ×m matrix CW with binned rank-transformed
empirical CDFs is given by

FR
n (y|x) =

1∑m
u=1 nuKd((j − u)/h)

m∑
u=1

nuKd

(j − u

h

)
C̃v,u(y|x), (3.8)

where

C̃v,u(y|x) =


0 if u = 1, . . . ,m; v = 1,

1
nu

v∑
`=1

c̃u,`(y|x) if u = 1, . . . ,m; v = 2, . . . ,M.

Using (3.8), the αth smoothed conditional quantile estimator θ̃α(x∗
u) for the

binned rank-transformed data, at a general point x∗
u (u = 1, . . . ,m), can be

obtained as a linear interpolation between two known successive grid points.
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More precisely, the binned kernel-smoothed empirical conditional CDF is given
by

F̃R
n (y|x∗

u) = FR
n (y|x∗

u) +
( y − gL

gL+1 − gL

)
[FR

n (y + 1|x∗
u) − FR

n (y|x∗
u)], (3.9)

where L is such that gL < y < gL+1, and y + 1 denotes the smallest rank in the
data bigger than y. Hence, the binned kernel-smoothed quantile estimator for
the rank-transformed observations is given by

θ̃α(x∗
u) =

{(
α−F R

n (y|x∗
u)

F R
n (y+1|x∗

u)−F R
n (y|x∗

u)

)
gL+

(
F R

n (y+1|x∗
u)−α

F R
n (y+1|x∗

u)−F R
n (y|x∗

u)

)
gL+1 ifnu 6=0,

θ0 ifnu =0,
(3.10)

where L is chosen such that
∑L

v=1 FR
n (y|x∗

u) ≤ α <
∑L+1

v=1 FR
n (y|x∗

u), and θ0 is
an arbitrary value. Transforming (3.10) back into the original observations, and
assuming nu 6= 0, results in the following binned kernel-smoothed estimator of
θα(x∗

u):

θ̃
y
α(x∗

u) = [1 − (θ̃α(x∗
u) − bθ̃α(x∗

u)c)]Ỹ(u,bθ̃α(x∗
u)c)

+ (θ̃α(x∗
u) − bθ̃α(x∗

u)c)Ỹ(u,bθ̃α(x∗
u)c+1), (3.11)

where b·c is the floor function returning the greatest integer less than or equal
to its argument, and where {Ỹ(u,1), . . . , Ỹ(u,nu)} is the ordered (increasing order)
values of {Yi} when X̃i = x∗

u (i = 1, . . . , n; u = 1, . . . ,m). Then, similar to
the transformation in (3.6), the discrete conditional binned quantile estimator of
θα(·) is given by

θ̃α(x∗
u) = dθ̃yα(x∗

u) − 1e. (3.12)

4. Asymptotic Results

To study the asymptotic properties of θ̂α(·) we use the method of jittering;
see, e.g., Machado and Santos Silva (2005). With this method, a continuous
distribution is constructed which coincides with the discrete distribution up to
interpolation. Asymptotic properties of the conditional quantile estimator in the
continuous case are easily obtained using existing theory, and then asymptotic
results for the discrete case follow from (3.6). Asymptotic properties of (3.12)
are based on theorems for linear rank statistics given by Hájek, Šidák, and Sen
(1999).
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4.1. Untransformed data

Without loss of generality, we take the support of Y |x as composed of con-
secutive integers in {0, 1, 2, . . .}. Let pi = P (Y = yi|x) and Pj = P (Y ≤ yj |x) =∑

i≤j pi. We add small jitters ei to Yi, Zi = Yi + ei (i = 1, . . . , n), say, where the
ei are independent uniforms on [0, 1). If FJ(z|x) is the distribution of the Zi’s,
then FJ(k|x) = F (k|x), (k = 0, 1, 2, . . .). Here FJ(·|x) is a continuous distribu-
tion that linearly interpolates F (·|x), and F̃ (y|x) given in (3.3) is exactly the
conditional distribution function of the binned version based on the Zi’s, Fn(y|x)
in (3.4) is the corresponding empirical version, θ̂c

α(·) is the corresponding condi-
tional quantile estimate, and the relationship between θ̂α(·) and θ̂c

α(·) is given in
(3.6).

As in Chen and Lazar (2010), we consider two cases.

(i) Pk−1 < α < Pk for some k ∈ {1, 2, . . .}, α is not at a plateau of F̃ (·|x).
Using results for continuous distribution, we have θ̂c

α(·) a.s.→ θc
α(·) and, since

the function dt− 1e is continuous at t = θc
α(·), consequently we have θ̂α(·) =

dθ̂c
α(·) − 1e a.s.→ dθc

α(·) − 1e = θα(·).
(ii) If α = Pk for some k, then θα(·) is an integer, the function dt−1e has a jump

at t = θα(·). Consequently, although θ̂c
α(·) a.s.→ θc

α(·), dθ̂c
α(·)−1e a.s.→ dθc

α(·)−1e
fails because of the discontinuity. So for such α, θ̂α(·) is not consistent for
θα(·). As implied in Serfling (1980, p.77), in this case, for large n, θ̂α(·) ≥
θα(·) + 1 with probability approximately 0.5.
The theoretical results are derived under the following assumptions.

A.1 h = hn → 0 and
∑

n≥1 exp(−Cnhn) < ∞ for all C > 0.

A.2 δ = δn → 0.

A.3 K(·) has bounded continuous third derivative.

A.4 h = o(n−1/5) and δ = O((nh)−1/4).

Let L2→ stands for convergence in squared mean, D→ for convergence in distribution,
B(p) is the Bernoulli distribution with p = P (X = 1), p(x) is the pmf of X, and
p(x, y) is the joint pmf of (X,Y ).

Theorem 1. Under A.1−A.3, as n → ∞, we have supy E(Fn(y|x)−F (y|x))2 →
0 and supy E(F̃n(y|x) − F̃ (y|x))2 → 0.

Theorem 2. Under A.1−A.3, as n → ∞, we have

(i) θ̂c
α(x) L2→ θc

α(x), ∀α ∈ (0, 1);

(ii) θ̂α(x) L2→ θα(x), ∀α ∈ (0, 1) \ {Pk : k ∈ N0}.
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Theorem 3. Under A.3 and A.4, as n → ∞, the following hold.

(i) ∀α ∈ (0, 1) \ {Pk : k ∈ N0},
√

nh(θ̂c
α(x) − θc

α(x)) D→ N(0, σ2), (4.1)

with σ2 = α(1 − α)p(x)
∫

K2(v)dv/p2(x, θc
α(x)).

(ii) If α = Pk for some k ∈ N1,
√

nh(θ̂c
α(x) − θc

α(x)) D→ N+(0, σ2
k,+) + N−(0, σ2

k,−), (4.2)

where σ2
k,+ = α(1 − α)pk

∫
K2(v)dv/[pkp(θc

α(x)|x)]2, σ2
k,− = α(1 − α)pk−1∫

K2(v)dv/[pk−1p(θc
α(x)|x)]2, and N+(0, σ2

1) + N−(0, σ2
2) denotes the two-

piece normal distribution function Φ(σ1t)I(t > 0) + Φ(σ2t)I(t < 0), with
Φ(·) the distribution function of N(0, 1).

(iii)∀α ∈ (0, 1) \ {Pk : k ∈ N0}, or α ∈ {Pk : k ∈ N0}, θ̂α(x) − θα(x) D→ B(0); or
θ̂c
α(x) − θc

α(x) D→ B(0.5).

In practice, the unknown quantities pk, p(x), and p(x, θc
α(x)) for given α can

be estimated by

p̂k = ]{i : (Xi, Yi) = (x, k)}/n, p̂(x) = ]{i : Xi = x}/n, and p(x, θ̂c
α(x)),

where θ̂c
α(x) is given by (3.5). Let σ̂2 be an estimator of σ2 with p(x) and

p(x, θc
α(x)) replaced by p̂(x) and p(x, θ̂c

α(x)). Set σ̂2
k,+ and σ̂2

k,− accordingly. For
fixed x, let nx be the number of values x taken on by the Xi’s, nk|x be the number
of (Yi, Xi)’s with Xi = x and Yi = k.

Corollary 1. If A.1−A.4 hold, nx → ∞ and nk|x → ∞ as n → ∞, then Theorem
3 holds with σ2, σ2

k,+, and σ2
k,− replaced by σ̂2

k,+ and σ̂2
k,−, respectively.

4.2. Rank-transformed data

Since F̃R
n (v|j) = FR

n (v|j) for all v (v = 1, . . . ,M ; j = 1, . . . ,m), F̃R
n (·|j) →

F̃ (·|j) iff FR
n (·|j) → F (·|j). We impose the conditions:

B.1 nh → ∞, with h > 0;

B.2 δ → 0;

B.3
∫

K2(t)dt < ∞;

B.4 δ = o((nh)−1/2).

Theorem 4. Under B.1−B.3, FR
n (y|x) P→ F (y|x) and F̃R

n (y|x) P→ F̃ (y|x).

Theorem 5. Under B.1−B.3, we have
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(i) θ̃R
α (x) P→ θc

α(x), ∀α ∈ (0, 1);

(ii) θ̃α(x) P→ θα(x), ∀α ∈ (0, 1) \ {Pk : k ∈ N0}.

Theorem 6. Under B.1, B.3, and B.4, the following hold.

(i)
√

nh(F̃R
n (y|x) − F̃ (y|x)) D→ N(0, σ2

1), with σ2
1 = F̃ (y|x)(1 − F̃ (y|x))p−1(x)∫

K2(v)dv.

(ii) ∀α ∈ (0, 1) \ {Pk : k ∈ N0},
√

nh(θ̃α(x) − θα(x)) D→ N(0, σ2),

with σ2 = (1 − α)
∫

K2(v)dv/p2(x, θα(x)).

(iii) If α = Pk for some k ∈ N1,

√
nh(θ̃α(x) − θα(x)) D→ N+(0, σ2

k,+) + N−(0, σ2
k,−),

where σ2
k,+ = α(1−α)

∫
K2(v)dv/[pkp(θc

α(x)|x)]2, σ2
k,−=α(1−α)

∫
K2(v)dv/

[pk−1p(θc
α(x)|x)]2.

(iv) ∀α ∈ (0, 1) \ {Pk : k ∈ N0}, or α ∈ {Pk : k ∈ N0}, we have θ̃α(x) − θα(x) D→
B(0); or θ̃α(x) − θα(x) D→ B(0.5).

Proofs of these theorems can be found in the Appendix.

In practice, F̃ (y|x) is estimated by F̃R
n (y|x), σ2

1 by σ̂2
1 with F̃ (y|x) and p−1(x)

replaced by p̂−1(x) and F̃R
n (y|x). Denote σ̂2 accordingly, with θα(x) and θc

α(x)
replaced by θ̃α(x) and θ̃R

α (x), and p̂(x) and p(x, θ̂α(x)) as in Corollary 1.

Corollary 2. Under B.1−B.4 and the conditions on nx and nk|x of Corollary 1,
the conclusion of Theorem 6 holds.

5. Practical Issues

5.1. Kernel selection
It is well-known that the bias of kernel estimates of pmfs for cells near the

boundary of the sample space can incur increased bias. Reduced bias can be
achieved by using boundary corrected kernel estimators. For discrete data, a
kernel function devised to correct for boundary effects has been proposed by
Rajagopalan and Lall (1995). The general form of this kernel is given by

Kd(uj) = au2
j + b, |uj | ≤ 1, (5.1)

where uj = (i − j)/h (i, j ∈ N1) with i the point at which the kernel function is
evaluated. The parabolic shape of (5.1) was inspired by the Epanechnikov kernel
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Table 1. Expressions for the coefficients a and b for the discrete quadratic
kernel Kd(uj) = au2

j + b, |uj | ≤ 1, where uj = (i − j)/h with i the point at
which the kernel is evaluated.

Coefficients
Region a b

i > h + 1 3h
1−4h2

−3h
1−4h2

1 < i ≤ h + 1 −6h2

(i−1+h)(i−2+h)(i−3+h)
3(2−h+h2−3i+i2)

(i−1−h)(i−2+h)(i−3+h)

i = 1 (h > 1) −6h
h2−1

3
h+1

Note: Based on Rajagopalan and Lall (1995), with corrections for their expressions for a and b

for the regions i > h + 1 and 1 < i ≤ h + 1; their expressions for a and b with i = 1 have been

simplified.

in the continuous case, which enjoys some optimality properties as opposed to
other commonly used kernels. The coefficients a and b are functions of h. They
can be obtained by solving i) Kd(uj) = 0 for |uj | ≥ 1, ii)

∑j=i+h
j=i−h Kd(uj) = 1,

and iii)
∑j=i+h

j=i−h Kd(uj)uj = 0. Expressions for a and b are given in Table 1.
Throughout the paper we adopt (5.1), but in the initial phase of the simulation
study we experimented with (5.1), a triangular, and a rectangular kernel func-
tion. In the latter two cases, the bias of the conditional quantile estimators was
problematic for near-boundary bins with n ≤ 10, 000.

5.2. Grid size, band- and binwidth selection

To obtain good nonparametric estimates, we used cross-validation (CV) for
jointly selecting band- and binwidth parameters, adapting the CV-approach used
by Magee, Burridge, and Robb (1991). As an example, consider estimating
(3.12). Given a fixed value of δ a value of h can be obtained by minimizing the
loss function L(h) =

∑m
u=1

∑n
i=1 I(X̃i = x∗

u)ρα(Yi − θ̃
(−i)
α (x∗

u)), where ρα(u) =
αuI(u > 0) + (α − 1)uI(u < 0) is the so-called “check” function, and θ̃(−j)(·) is
the “delete-one” conditional quantile estimate.

To avoid summing over n terms, it is convenient to subtract L∗ = ρα(Yi −
θ̆α(x∗

u)) from L(h), where θ̆α(x∗
u) is some quantile estimate at x∗

u that does
not vary with h. Let n1u (n4u) be the number of observations with Yi <

min{θ̃α(x∗
u), θ̆α(x∗

u)} (Yi > max{θ̃α(x∗
u), θ̆α(x∗

u)}), when I(X̃i = x∗
u) = 1. Simi-

larly, let n2u and n3u denote the number of observations falling in the interval
(min{θ̃α(x∗

u), θ̆α(x∗
u)},max{θ̃α(x∗

u), θ̆α(x∗
u)}) when, respectively, θ̃α(x∗

u) > θ̆α(x∗
u)

and θ̃α(x∗
u) < θ̆α(x∗

u) with I(X̃i = x∗
u) = 1. Then, rewriting L(h) − L∗ and
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replacing Yi by Ȳu = (θ̃α(x∗
u) + θ̆α(x∗

u))/2, gives the loss function

m∑
u=1

[n1u(1 − α){θ̃α(x∗
u) − θ̆α(x∗

u)} + n2uI(θ̃α(x∗
u) > θ̆α(x∗

u))(αθ̆α(x∗
u)

−Ȳu + (1 − α)θ̃α(x∗
u)) + n3uI(θ̃α(x∗

u) < θ̆α(x∗
u))(−(1 − α)θ̆α(x∗

u)

−αθ̃α(x∗
u) + Ȳu) + n4uα{θ̆α(x∗

u) − θ̃α(x∗
u)}]. (5.2)

A practical band- and binwidth approach involves the following steps.

1. Consider the CV criterion

CV(δ) =
n∑

i=1

ρα(Y(i) − θ̆(−i)
α (x∗

u)),

where θ̆
(−j)
α (·) is an unsmoothed estimator of θα(·) given the sample {(X̃i, Ri)

| 1 ≤ i ≤ n, i 6= j}. Select a prespecified range of grid sizes M , giving rise to
a set of binwidth values D. Choose the binwidth δCV = arg minδ∈D{CV (δ)}.

2. Given δCV from Step 1, choose the bandwidth parameter to minimize (5.2).

3. Repeat Steps 1 and 2 with hCV obtained from Step 2, and with the unsmoothed
estimator of the CDF in Step 1 replaced by the binned kernel-smoothed con-
ditional CDF (3.9).

6. Simulations

In this section we report on the simulation of the performance of θ̂α(·) using
uncorrelated and positively correlated, uniformly distributed discrete bivariate
random variables X and Y , using a bivariate Gaussian copula with a given
correlation parameter ρ. Assume that X (Y ) is distributed over the support
Sx = {1, 2, . . . , Ix} (Sy = {1, 2, . . . , Iy}), with Ix (Iy) a positive integer, ac-
cording to the pmf p(x) = 1/Ix (p(y) = 1/Iy) for x ∈ Sx (y ∈ Sy) and zero
elsewhere. The support of (X,Y ) is Sx × Sy. Then it may be deduced from
results in Nelsen (1987) that the maximum feasible correlation between X and
Y is (Iy/Ix){(I2

x − 1)/(I2
y − 1)}1/2. Hence, with Xi ∼ U [1, 10] and Yi ∼ U [1, 100],

the correlation parameter becomes 0.995. For each choice of n we generated
R = 10, 000 random samples, and for each n conditioning is based on each
X̃ = x∗

u value. Values for ρ were set at ρ = 0, 0.2, 0.4, and 0.6, reflecting com-
mon circumstances. This setup resembles the empirical application in Section
7, with a small number of distinct covariates as opposed to a relatively larger
number of response values. Figure 2 shows boxplots of the conditional distribu-
tion of Y given values of X for a typical simulated dataset of size n = 10, 000
with ρ = 0.6. It can be seen that the conditional distribution of Y is skewed to



1624 JAN G. DE GOOIJER AND AO YUAN

Figure 2. Boxplots of a simulated correlated dataset with X ∼ U [1, 10] and
Y ∼ U [1, 100]; n = 10, 000, ρ = 0.6.

Table 2. Ratios of the empirical MSEs (averaged over R = 10, 000 replica-
tions) of θ̂0.5(x∗

u) relative to the CQR estimator and, in parentheses, relative
to the “naive” estimator; X ∼ U [1, 10], Y ∼ U [1, 100], M = 40.

ρ = 0 ρ = 0.2

x∗
u n = 5, 000 n = 10, 000 n = 20, 000 n = 5, 000 n = 10, 000 n = 20, 000

1 2.44(0.95) 2.13(0.90) 1.81(0.85) 0.80(0.97) 0.49(0.95) 0.26(0.95)

2 3.24(0.94) 2.64(0.91) 2.14(0.86) 3.13(0.93) 2.58(0.89) 2.00(0.84)

3 4.21(0.94) 3.29(0.91) 2.39(0.86) 2.62(0.95) 1.73(0.94) 1.08(0.91)

4 5.20(0.94) 3.88(0.91) 2.62(0.85) 6.06(0.94) 4.92(0.90) 3.58(0.85)

5 6.05(0.94) 4.46(0.92) 2.62(0.85) 8.41(0.94) 6.94(0.91) 5.87(0.84)

6 5.90(0.95) 4.31(0.91) 2.67(0.85) 4.19(0.96) 2.68(0.91) 1.55(0.87)

7 4.96(0.94) 4.03(0.91) 2.47(0.86) 1.89(0.95) 1.14(0.90) 0.62(0.86)

8 4.15(0.93) 3.35(0.90) 2.37(0.86) 1.02(0.92) 0.61(0.87) 0.35(0.82)

9 3.21(0.93) 2.72(0.91) 2.05(0.85) 1.34(0.94) 0.80(0.92) 0.45(0.85)

10 2.45(0.94) 2.14(0.90) 1.79(0.86) 1.79(0.90) 1.39(0.85) 1.08(0.80)

ρ = 0.4 ρ = 0.6

1 0.30(0.96) 0.17(0.95) 0.09(0.93) 0.18(0.98) 0.10(0.99) 0.06(0.98)

2 1.05(0.86) 0.60(0.92) 0.34(0.86) 0.55(0.90) 0.31(0.83) 0.18(0.76)

3 0.87(0.93) 0.48(0.95) 0.26(0.92) 0.66(0.91) 0.36(0.84) 0.21(0.77)

4 1.77(0.96) 0.98(0.96) 0.54(0.94) 1.81(0.90) 1.01(0.86) 0.61(0.80)

5 9.31(0.95) 8.42(0.87) 8.06(0.80) 7.20(0.95) 4.31(0.92) 2.49(0.92)

6 4.21(0.90) 2.44(0.94) 1.40(0.94) 1.68(0.91) 0.98(0.86) 0.54(0.78)

7 0.73(0.84) 0.43(0.86) 0.24(0.78) 0.65(0.96) 0.33(0.94) 0.18(0.91)

8 0.44(0.95) 0.25(0.85) 0.14(0.79) 0.31(0.95) 0.16(0.93) 0.08(0.90)

9 0.48(0.94) 0.26(0.86) 0.15(0.81) 0.26(0.94) 0.14(0.91) 0.08(0.88)

10 0.65(0.92) 0.42(0.79) 0.28(0.70) 0.45(0.78) 0.32(0.70) 0.25(0.65)

the right (left) for X taking values at the lower (higher) boundary region. For
ρ = 0.2 skewness of the underlying conditional distribution is less pronounced,
but still present.
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6.1. Performance of the untransformed quantile estimator

To abstract from the issue of binwidth selection, we evaluated the precision
of θ̂α(·) by taking grid sizes M = 30, 40, and 50. So in Step 1 of the CV-algorithm
δ was held constant, while in Step 2 we selected the value of hCV from the set
{2, 3, . . . , 20}. We only report simulation results for α = 0.5 (median), because a
pilot study showed that similar conclusions could be reached with other quantile
values. Overall, the optimal CV-selected bandwidth value was not very sensitive
to the choice of n with a maximum average (across all R = 10, 000 replications)
value of about 11 and a maximum average standard deviation of about 6. With
ρ = 0, θ0.5(x∗

u) = 50 for all values x∗
u = {1, 2, . . . , 10}. For ρ = 0.2, 0.4, and 0.6,

θ0.5(·)’s were calculated on the basis of 10,000 independently sampled, but paired
correlated uniformly distributed discrete random variables with samples of size
30,000. These “theoretical” quantiles are included in Table 3, columns 2 and 9.

Our measure of precision is the empirical mean squared error (MSE) of the
untransformed conditional quantile estimates averaged over all replications. We
considered two estimators: (a) the conditional quantile regression (CQR) esti-
mator of Machado and Santos Silva (2005), for discrete-continuous data; (b) the
unsmoothed “naive” conditional quantile estimator, that groups the data accord-
ing to the values of the covariates and assumes that the underlying distribution
for each resulting dataset is continuous. Thus the numbers in Table 2 repre-
sent the relative improvement attained by θ̂0.5(·) relative to the CQR estimator
and, in parentheses, the relative improvement attained by θ̂0.5(·) relative to the
“naive” estimator. To conserve space, Table 2 only contains results for M = 40.

The results show that across all covariates X and sample sizes n, the CQR
estimator achieved the lowest empirical MSE when ρ = 0. However, when both ρ

and n increase in value, the θ̂0.5(·) estimator performed markedly better than the
CQR estimator, apart for covariate values in the range [4, 6]. In particular, the
MSE of the CQR estimator was dominated by increased positive bias when X

took values at the lower boundary region. As an example, Figure 3 shows the bias
of both conditional quantile estimators for n = 5, 000. We see that, for all values
ρ and x∗

u 6= 5, the absolute bias of the CQR estimator was substantially higher
than the absolute bias of θ̂0.5(·). At x∗

u = 5, however, the difference between
both estimators was minimal, suggesting that the CQR estimator is only feasible
if the conditional distribution of Y , given values of X, is not too skewed.

A much clearer picture about the usefulness of θ̂0.5(·) emerges from the rel-
ative improvement attained by this estimator relative to the infeasible “naive”
estimator. In each case, the numbers in parentheses in Table 2 show that θ̂0.5(·)
had lower empirical MSE than the “naive” estimator. In cases where n = 5, 000,
the difference was minor across almost all values of ρ. But, as n increased, the
difference was quite substantial. The largest gains were for ρ = 0.4, and 0.6 at
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Figure 3. Bias of the CQR estimator (black circles) and the binned con-
ditional quantile estimator θ̂0.5(·) (white circles) averaged over R = 10, 000
replications; X ∼ U [1, 10], Y ∼ U [1, 100], M = 40, n = 5, 000.

x∗
u = 10, when n = 20, 000. Thus meaningful improvements in estimation effi-

ciency can be expected when using the untransformed binned conditional quantile
estimator if data are correlated and the sample size is large.

6.2. Confidence intervals and coverage probabilities

Theorems 3 and 6 can be used to construct large-sample confidence interval
(CIs) for θα(·) at a given confidence level ξ. Here we focus on the practicality of
the asymptotic result (4.1). For K(·) we selected the Gaussian kernel. There is
no simple rule for choosing the bandwidth h. Its choice depends on the sample
size, the value of the covariate, and the shape of the empirical (a)symmetric
distribution of the data. We simply replaced h by ĥ = Cn−1/5σY |X/ log(n) with
C = 0.01, 0.02, . . . , 1 a set of constants, and with σY |X the conditional variance
of Y |X = x. This choice of h satisfies Condition A.4.

Note that for ρ = 0, we have σY |X =
√

(I2
y − 1)/12. For ρ 6= 0, the “theoret-

ical” values of σY |X , p(x) and p(x, y) were, as before, based on R = 10, 000 inde-
pendently sampled, but paired correlated uniformly distributed discrete random
variables with samples of size 30,000. Let zξ denote the 100(1 − ξ) percentile of
the standard normal distribution. Now for each pair (x∗

u, θα(x∗
u)) (u = 1, . . . , 10),
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correlation parameter ρ, sample size n, and value C, the performance of the
CIs was assessed by recording the proportion of times the theoretical conditional
quantiles θα(·) were contained in the interval

θ̂α(x∗
u) ±

zξ

√
α(1 − α)p(x∗

u)
∫

K2(v)dv/p2(x∗
u, θα(x∗

u))√
nĥ

.

Let P̂ (θα(x∗
u)) denote the resulting proportion. Then, for each ρ and n, the

“best” theoretical coverage probability (denoted by “True” in Table 3) is chosen
as minC∈[0.01, 1.00]

∑10
u=1 |P̂ (θα(x∗

u))−0.95|, with α = 0.5. The corresponding val-
ues of C vary between the ranges [0.37, 0.54] (ρ = 0, n = 5, 000) and [0.63, 0.65]
(ρ = 0.6, n = 10, 000). On balance, the coverage probabilities were satisfactory,
with values very close to the nominal level for all values of ρ and n. Based on the
above results, we conclude that a value of C in the range [0.47, 0.57] can result
in good theoretical coverage probabilities across all values of ρ and n.

An alternative approach to compute empirical coverage probabilities and
CIs is to use the bootstrap. Guerra, Polansky, and Schucany (1997) intro-
duced this method for discrete univariate datasets. Here, as an example, we
employ the sequence of bootstrap realizations of θ̂α(x∗

u), {θ̂†bα (x∗
u)}B

b=1, to esti-
mate P (θ̂α(x∗

u) ≤ θα(x∗
u)). We can do so by defining the bootstrap statistic

P̂ (θ̂†α(x∗
u) ≤ θα(x∗

u)) =
1
B

B∑
b=1

I(θ̂†bα (x∗
u) ≤ θ̂α(x∗

u)). (6.1)

Thus a two-sided (1 − ξ) CI can be based on finding the largest θU
α (x∗

u) and
smallest θL

α(x∗
u) in a fixed and countable set of estimated conditional quantiles

such that both P (θ̂†α(x∗
u) ≤ θL

α(x∗
u)) ≤ ξ/2 and P (θ̂†α(x∗

u) ≤ θU
α (x∗

u)) ≥ 1 − ξ/2
hold. In other words, given the discrete nature of the conditional quantiles,
the set S(x∗

u) = [θL
α(x∗

u), θU
α (x∗

u)] is the narrowest interval such that P (θ̂†α(x∗
u) ∈

S(x∗
u)) ≥ 1 − ξ.
The bootstrapping took place as follows. At each simulation run (i) generate

a random sample (X∗
i , Y ∗

i ) of size n with replacement from the empirical joint
distribution of (X,Y ), (ii) compute θ̂α(·), (iii) compute (6.1) based on B = 500
bootstrap samples drawn from the original sample, (iv) calculate the lower- and
upper CI bounds, using a nominal level ξ and (6.1). Repeat this procedure over
1,000 independent runs. To save space, we only report results for the parameter
configurations listed in Table 2.

Table 3 summarizes the averages of the empirical coverage probabilities ob-
tained from (6.1) and averaged over 1,000 runs, and averages of the confidence
sets S(·) (given in squared brackets). Recall that, by construction, we required
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Table 3. Theoretical conditional quantile values θ0.5(·), averages of cov-
erage probabilities of θ̂0.5(·) based on Theorem 3(i) (“True”), averages of
bootstrapped coverage probabilities of θ̂0.5(·) with corresponding averages of
upper- and lower CI limits in squared brackets; X ∼ U [1, 10], Y ∼ U [1, 100],
M = 40, R = 1, 000, B = 500, 1 − ξ = 0.95.

ρ = 0 ρ = 0.2

n = 5, 000 n = 10, 000 n = 5, 000 n = 10, 000

x∗
u θ0.5 True Boot S(·) True Boot S(·) θ0.5 True Boot S(·) True Boot S(·)
1 50 0.959 0.955 [45, 53] 0.973 0.975 [46, 52] 37 0.976 0.950 [32, 39] 0.922 0.962 [33, 38]

2 50 0.957 0.969 [45, 53] 0.973 0.950 [46, 52] 42 0.965 0.966 [37, 45] 0.979 0.953 [39, 44]

3 50 0.962 0.957 [45, 53] 0.972 0.980 [46, 52] 45 0.965 0.971 [40, 48] 0.978 0.977 [41, 47]

4 50 0.957 0.958 [45, 53] 0.973 0.970 [46, 52] 47 0.961 0.958 [42, 50] 0.976 0.977 [43, 49]

5 50 0.955 0.955 [45, 53] 0.977 0.953 [46, 52] 49 0.959 0.964 [44, 52] 0.975 0.951 [45, 51]

6 50 0.960 0.960 [45, 53] 0.972 0.967 [46, 52] 51 0.956 0.955 [46, 54] 0.979 0.955 [47, 53]

7 50 0.959 0.961 [45, 53] 0.973 0.956 [46, 52] 53 0.960 0.961 [48, 56] 0.977 0.962 [50, 56]

8 50 0.960 0.969 [45, 53] 0.974 0.974 [46, 52] 55 0.964 0.972 [50, 58] 0.974 0.977 [51, 57]

9 50 0.957 0.951 [45, 53] 0.972 0.950 [46, 52] 58 0.965 0.968 [53, 61] 0.979 0.957 [55, 61]

10 50 0.958 0.962 [44, 53] 0.975 0.958 [46, 52] 63 0.972 0.974 [59, 66] 0.979 0.977 [60, 65]

ρ = 0.4 ρ = 0.6

1 27 0.977 0.974 [24, 30] 0.975 0.965 [24, 28] 21 0.967 0.963 [19, 23] 0.918 0.973 [18, 21]

2 36 0.932 0.979 [32, 40] 0.936 0.962 [32, 37] 32 0.954 0.961 [29, 35] 0.949 0.956 [29, 33]

3 41 0.973 0.975 [37, 45] 0.919 0.953 [38, 44] 38 0.927 0.968 [35, 42] 0.920 0.972 [35, 40]

4 45 0.968 0.972 [41, 49] 0.983 0.968 [40, 46] 43 0.973 0.969 [39, 47] 0.914 0.976 [40, 45]

5 48 0.962 0.967 [44, 52] 0.974 0.967 [45, 51] 48 0.974 0.962 [44, 52] 0.985 0.962 [45, 51]

6 52 0.963 0.953 [47, 55] 0.981 0.954 [47, 53] 52 0.971 0.973 [48, 56] 0.979 0.961 [49, 54]

7 55 0.962 0.968 [51, 59] 0.977 0.955 [52, 57] 57 0.980 0.968 [53, 61] 0.923 0.963 [53, 58]

8 59 0.969 0.976 [55, 63] 0.979 0.960 [56, 61] 62 0.934 0.952 [58, 65] 0.939 0.966 [59, 64]

9 64 0.929 0.983 [60, 68] 0.925 0.971 [61, 66] 68 0.959 0.956 [65, 71] 0.960 0.952 [65, 69]

10 73 0.967 0.966 [70, 76] 0.955 0.958 [70, 74] 79 0.940 0.953 [76, 81] 0.836 0.979 [77, 80]

that the empirical bootstrapped coverage probabilities are ≥ 0.95. Nonetheless,
we may conclude that the empirical coverages were quite close to the nominal
coverage probability. In addition, in all cases the CIs contained the true condi-
tional quantile value. As expected, the length of S(·) decreased as n increased
from n = 5, 000 to n = 10, 000, from a maximum average of about 9 to 6. In
that case the minimum average length of S(·) went down from about 8 to 3. At
n = 25, 000, with ρ = 0.6, the average CI encompassed approximately 2 or 3
observations. Hence, the simulation evidence for θ̂0.5(·) confirms the implications
of the asymptotic results in Theorem 3. To provide a contrast, we also computed
CIs for the rank-transformed conditional quantile estimator θ̃0.5(·). In all cases
the interval lengths were longer, containing on average 2 additional observations.
From Theorem 6 we know that θ̃α(·) is less efficient, in the sense that its variance
is bigger than the asymptotic variance of θ̂α(·). Our simulation results confirm
this result.
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Figure 4. Conditional frequency distributions of Y “Length of stay” (LOS)
as a function of the covariate X “Severity”.
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7. Empirical Illustration

We illustrate the method with an application using a large US database
about hospital patients who have congestive heart failure and are transferred to
a tertiary facility. About 96% of these patients are living in New York state.
The total dataset contains information on all medical conditions being identified
by the medical staff for each of the years 2003–2005 (n = 20, 631). We assume
that the dataset has the nature of a population, and hence empirical conditional
quantiles are considered as population quantities. One key response variable Y is
“Length of stay” (Los), measured in days. This variable is used for management
of hospital care, quality control, appropriateness of hospital use, and hospital
planning. A suitable covariate X is “Severity”, measured on a 7-point scale.
This latter variable is largely a function of how complex the initial condition of a
patient is. Increments of one are added for each confounding condition presented.
Of course, if two conditions are present and both are life threatening the result
could be four, but this is unusual. Similarly, a secondary condition like diabetes
may not raise the variable “Severity” if it is generally associated with the primary
condition like a heart attack. Figure 4 shows conditional frequency distributions
for each covariate. Skewness (kurtosis) ranges between 2.9 (15.6) at x = 3 and
6.0 (83.9) at x = 4. The probability masses are fairly concentrated around the
values of the conditional median, with large outliers at x = 6 and x = 7.

The empirical illustration of the performance of θ̂α(·) and θ̃α(·) is based on
R = 10, 000 random samples of size n = 5, 000 drawn without replacement from
the full dataset. For both θ̂α(·) and θ̃α(·) the optimal bandwidth values were
chosen using the CV-criterion in Subsection 5.2 with M running from 55 to 200,
and with hCV in the range [2, 31]. The accuracy of each estimator was assessed by
the average bias computed over the entire range of conditional quantile estimates.
Table 4 shows these result for the first three conditional quartiles. Columns 2, 5,
and 8 contain the “population” conditional quantiles. For this particular dataset
these latter quantile estimates are the same as the values obtained by the “naive”
quantile estimator, and plotted in Figure 1.

Note that across all values of x and α, the conditional quantile estimators
performed well in terms of the highest percentage of zero bias. The effects on
the bias of the estimators vary substantially with different values of the covariate
X and quartiles α, showing both under- and overestimation. As an example,
consider the case x = 1. At α = 0.75 we see that both conditional quantile
estimators had good performance, but this was not the case at α = 0.25. On the
other hand, at x = 7 and α = 0.75, the ranked-based conditional quantile esti-
mator performed worse than the untransformed conditional quantile estimator.
Clearly, the shape of the conditional distribution has an impact on the perfor-
mance of the estimators. However, removing five outlying observations at x = 7
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Table 4. Average bias for θ̂α(·) and, in parentheses, θ̃α(·); n = 5, 000, θα(·)
are “population” conditional quantiles.

x θα(·) α = 0.25 θα(·) α = 0.50 θα(·) α = 0.75
1 4 -0.658 (-0.506) 5 0.356 (0.439) 8 -0.015 (0.005)
2 4 -0.102 (0.002) 6 0.123 (0.166) 9 0.241 (0.247)
3 4 0.124 (0.180) 7 -0.338 (-0.105) 10 -0.045 (-0.046)
4 5 -0.439 (-0.173) 7 0.035 (0.040) 11 -0.049 (-0.029)
5 5 -0.047 (-0.000) 8 -0.213 (-0.055) 12 0.220 (0.243)
6 6 0.056 (0.054) 10 0.027 (0.045) 16 0.337 (0.303)
7 11 0.152 (0.227) 19 -0.251 (-0.287) 32 -0.260 (-0.829)

from the sample, we noticed no improvement in the bias results. Basically, the
above observations also apply to samples of size n = 10, 000 although, in the
latter case, the bias of the conditional quantile estimators was in general smaller
than the bias of these estimators when n = 5, 000.

When we estimated the full dataset, without resampling, both conditional
quantile estimators showed zero bias results for almost all values of x and α. For
θ̂α(·) the agreement between “population” and estimation results was less good
at x = 1, α = 0.50, at x = 2, α = 0.75, and at x = 6, α = 0.75. In all cases we
noted a positive bias of one observation. For θ̃α(·) we obtained a negative bias
of one observation at x = 1, α = 0.25, and at x = 31, α = 0.75.

8. Conclusions

In this paper, we offer two kernel-based methods for estimating conditional
quantiles of pairwise correlated, discrete random variables. Both methods make
use of the local structure through pre-binning the data. Since grid counts need
to be computed only once for the life of a dataset, large gains in computational
efficiencies can be achieved. In particular, jointly with the introduction of a
practical band- and binwidth selection procedure, we showed that our kernel
methods can be applied to the large datasets that appear in practice.

Results from simulations showed that the untransformed binned conditional
quantile estimator achieved excellent estimation accuracy in terms of bias, MSE,
and CI coverage. However, for long-tailed right skewed distributions, the rank-
transformed conditional quantile estimator also produced good nonparametric
estimates, having the advantage of distributing the data more evenly across the
set of bins. In addition, compared to the CQR estimator and the “naive” estima-
tor, the gains in using the binned conditional quantile estimators can be consid-
erable when dealing with large correlated bivariate discrete datasets. Moreover,
our explicit asymptotic CIs for both conditional quantile estimates can be used
for fast computation of the intervals.
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Appendix: Proofs

For ease of notation, we write x ≡ x∗
u throughout the Appendix. Unless

otherwise stated, all summations are from 1 to n.

Proof of Theorem 1. Let F̂n(y|x) be the Nadaraya-Waston estimator of
F̃ (y|x) based on the original data Zi’s, i.e. F̂n(y|x) =

∑
i K((x − Xi)/h)I(Zi ≤

y)/
∑

i K((x−Xi)/h) with y ∈ R. Since F̃ (y|x) = F (y|x) and F̃n(y|x) = Fn(y|x)
for all y ∈ N1, we have

(Fn(y|x) − F (y|x))2 = (F̃n(y|x) − F̃ (y|x))2

≤ (F̃n(y|x) − F̂n(y|x))2 + 2|F̃n(y|x) − F̂n(y|x)||F̂n(y|x) − F (y|x)|
+(F̂n(y|x) − F (y|x))2.

By (A.1) and Theorem 1 in Stute (1986), supy |F̂n(y|x) − F (y|x)| a.s.→ 0, which
implies supy E(F̂n(y|x)−F (y|x))2 → 0, and supy E(|F̃n(y|x)−F̂n(y|x)||F̂n(y|x)−
F (y|x)|) → 0.

Note that the definition of cu,`(z|x) does not depend on the ordered data.
So

(F̃n(y|x) − F̂n(y|x))2 =
(L̃n − L̂n)2

[(nh)−1
∑

i K((x − Xi)/h)]2

:=

(
(nh)−1

∑
i K((x−Xi)/h)Ci,u(z|x)−(nh)−1

∑
i K((x−Xi)/h)I(Zi ≤ y)

)2

[(nh)−1
∑

i K((x − Xi)/h)]2
.

Since (nh)−1
∑

i K((x−Xi)/h) a.s.→ p(x) > 0, (nh)−1
∑

i K((x−Xi)/h) > p(x)/2
(a.s.) for large n. In L̃n the Xi’s are the original data; let Ln be the counter
part of L̃n based on the binned Xi’s with binwidth δ. Then E(L̃n − L̂n)2 ≤
E(Ln − L̂n)2.

Thus under A.2 and A.3, as in Theorem 1 of González-Manteiga, Sánchez-
Sellero, and Wand (1996), we have

E(F̃n(y|x) − F̃ (y|x))2 ≤ 4
p2(x)

E(L̃n − L̂n)2

≤ 4
p2(x)

E(Ln − L̂n)2 =
4

p2(x)
[O(h2) + o(δ2)].
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The right hand side above is independent of y, which gives the desired result.

Proof of Theorem 2. (i) For ε > 0, we have F̃ (θc
α(x) − ε|x) < α < F̃ (θc

α(x) +

ε|x). Let S be the set of all events on which the results in Theorem 1 hold. Then

for large n, on S we have

F̃n(θc
α(x) − ε|x) < α < F̃n(θc

α(x) + ε|x).

Since F̃ (z|x) ≥ t iff z ≥ F̃−1(t|x), we have, on S for all large n, that θc
α(x)− ε ≤

θ̂c
α(x) ≤ θc

α(x)+ε. Since θ̂c
α(x) is bounded on S for large n, and ε > 0 is arbitrary,

the conclusion holds.

(ii) It is a consequence of (i), as in the discussion of (ii) before Condition A.1.

Proof of Theorem 3. (i) Let F̂n(y|x) be as given in the proof of Theorem

1. Note A.4 implies A.1 and A.2, so as in the proof of Theorem 1, F̃n(y|x) =

F̂n(y|x) + oP ((hn)−1/2), thus we have

P

(√
nh(θ̂c

α(x) − θc
α(x)) ≤ t

)
= P

(
θ̂c
α(x) ≤ θc

α(x) + (nh)−1/2t

)
= P

(
F̃n(θc

α(x) + (nh)−1/2t|x) ≥ α

)
= P

(
F̂n(θc

α(x) + (nh)−1/2t|x)≥α + o((hn)−1/2)
)

= P

(
1
nh

∑
i

K(
x − Xi

h
)I(Zi ≤ θc

α(x) + (nh)−1/2t)

≥ α
1

nh

∑
i

K(
x − Xi

h
) + o((hn)−1/2)

)
= P

(
1
n

∑
i

1
h

K(
x − Xi

h
)[I(Zi ≤ θc

α(x) + (nh)−1/2t) − α] ≥ o((hn)−1/2)
)

:= P

(
1
n

∑
i

An,i ≥ o((hn)−1/2)
)

.

Note that by A.4, nh → ∞ and h = o((nh)−1/2). Also, P (Z < θc
α(x)|x) = α, so
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we have

E(An,i) =
1
h

∫ ∫
K(

y − x

h
)[I(z < θc

α(x) + (nh)−1/2t) − α]F (dy, dz)

=
∫ ∫

K(v)[I(z < θc
α(x) + (nh)−1/2t) − α]p(x + hv, dz)dv

=
∫

[I(z < θc
α(x) + (nh)−1/2t) − α]p(x, dz)(1 + O(h))

= P (Z < θc
α(x)|x)p(x) + p(x, θc

α(x))(nh)−1/2t − αp(x) + o((nh)−1/2)

= p(x, θc
α(x))(nh)−1/2t + o((nh)−1/2),

V ar(An,i) = E(A2
n,i) − E2(An,i) ∼ E(A2

n,i)

= h−1

∫ ∫
K2(v)[I(z < θc

α(x) + (nh)−1/2t)

− 2αI(z < θc
α(x) + (nh)−1/2t) + α2]p(x + hv, dz)dv

=
1
h

α(1 − α)p(x)
∫

K2(v)dv + o(h−1) :=
1
h

σ2
0 + o(h−1).

Thus by the Central Limit Theorem, we get

P

(
1
n

∑
i

An,i ≥ o((hn)−1/2)
)

= P

(
−

√
nhσ−1

0

1
n

∑
i

(An,i − E(An,i)) ≤ σ−1
0 p(x, θc

α(x))t + o(1)
)

→ Φ(σ−1
0 p(x, θc

α(x))t).

Thus
√

nh(θ̂c
α(x) − θc

α(x)) D→ N(0, σ2) with σ2 = α(1 − α)p(x)
∫

K2(v)dv/p2(x,

θc
α(x)).

(ii) In this case, for t > 0, E(An,i) = pkp(θc
α(x)|x)(nh)−1/2t + o((nh)−1/2), and

V ar(An,i) ∼ h−1α(1 − α)pk

∫
K2(v)dv; for t < 0, E(An,i) = pk−1p(θc

α(x)|x)(n ×
h)−1/2t, and V ar(An,i) ∼ h−1α(1 − α)pk−1

∫
K2(v)dv. The rest of the proof is

the same as in (i).
(iii) This is a direct result of the discussion before Theorem 1.

Proof of Corollary 1. By the given condition we have p̂k → pk (a.s.), p̂(x) →
p(x) (a.s.) and, by Theorem 2, θ̂c

α(x) L2→ θc
α(x). The above convergences are

all stronger than those in probability. Thus the results in Theorem 3 hold by
Slutsky’s Theorem.

Proof of Theorem 4. We only prove consistency for FR
n (y|x) to F (y|x), that

for F̃R
n (y|x) follows by the comment before Theorem 4. Rewrite FR

n (y|x) :=
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FR
n (v|j), for Rv being the smallest rank such that Y(Rv) ≤ y, and with X̃(Rv) = j,

as the standard form of a linear rank statistic FR
n (v|j) =

∑
i cn,ia(Ri) with

cn,i =
∑

u n−1
u I(Xi = u)wn,u, wn,u = K((j − u)/h)/

∑
u K((j − u)/h), and

a(Ri) =
∑v

`=1(1 − |δ−1Ri − (` − 1)|)+. In the above we used the fact that∑m
u=1 nuK((j − u)/h) =

∑
u K((j − u)/h).

We use the method and results in Hájek, Šidák, and Sen (1999). Let

cn =
1
n

∑
i

cn,i, a =
1
n

∑
i

a(i), σ2
a =

1
n − 1

∑
i

(a(i) − a)2.

Note that (1− |δ−1i− `|)+ = [δ − (δ(`− 1)− i)]/δ for δ(`− 2) ≤ i < δ(`− 1)
is [δ − (i − δ(` − 1))]/δ for δ(` − 1) ≤ i < δ`; and is 0 elsewhere. So if i ∈
((k−1)δ, (k+1)δ) for some k ≤ v, then a(i) =

∑v
l=1(1−|δ−1i−`|)+ = [(kδ− i)+

(i−(k−1)δ)]/δ = 1 = a2(i), and a(i) = 0 for i > v. We have a = (v/n)+O(n−1),
σ2

a = (v/n)(1 − (v/n)) + O(vn−2), and
∑

i cn,i =
∑

u wn,u
1

nu

∑
i I(Xi = u) =∑

u wn,u = 1. Since Rv is the smallest rank with Y(Rv) ≤ y and with X̃(Rv) = x,
v is the number of the Yi’s with Yi ≤ y and with Xi = x, so we have

a =
1
n

∑
i

I(Yi ≤ y|Xi = x) + O(1/n) a.s.→ F (y|x), σ2
a

a.s.→ F (y|x)(1 − F (y|x)).

Also, with j = x,

∑
i

(cn,i − c)2 =
∑

u

w2
n,u

1
n2

u

(
∑

i

I(Xi = u))2 − c2 =
∑

u

w2
n,u − 1

n

= (nh)−1 (nh)−1
∑

u K2((j − u)/h)(
(nh)−1

∑
u K((j − u)/h)

)2 − 1
n

.

By standard results on kernel estimation we have (nh)−1
∑

u K((j − u)/h) =
p(x) + o(1), (nh)−1

∑
u K2((j − u)/h) = p(x)

∫
K2(v)dv + o(1). So we get, as

1/n = o((nh)−1),

∑
i

(cn,i − c)2 = (nh)−1 p(x)
∫

K2(v)dv + o(1)
p2(x) + o(1)

− 1
n

= (nh)−1p−1(x)
∫

K2(v)dv + o((nh)−1).
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Thus, by Theorem 3.3.3 in Hájek, Šidák, and Sen (1999, p.61),

E(FR
n (v|j)) = E(a

n∑
i=1

cn,i) = E(
v

n
) + O(

1
n

) → F (y|x),

V ar(FR
n (v|j)) = σ2

a

n∑
i=1

(cn,i − c)2

= (nh)−1F (y|x)(1 − F (y|x))p−1(x)
∫

K2(v)dv + o((nh)−1).

Now we have, ∀ε > 0,

P

(
|FR

n (y|x) − F (y|x)| ≥ ε

)
≤ P

(
|FR

n (y|x) − E[FR
n (y|x)]| ≥ ε

2

)
≤ 4

ε2
V ar(FR

n (y|x)) ∼ 4
ε2nh

F (y|x)(1 − F (y|x))p−1(x)
∫

K2(v)dv → 0.

This complete the proof of Theorem 4.

Proof of Theorem 5. The proof is similar to that of Theorem 2.

Proof of Theorem 6. We use the notations in the proof of Theorem 4.

(i) Let ϕ(t) = 1 if t ≤ F̃ (y|x) and 0 otherwise. Then it is easy to check that
limn

∫ 1
0 [a(1 + [tn]) − ϕ(t)]2dt = 0. Also

∫ 1
0 ϕ2(t)dt < ∞,

∫ 1
0 [ϕ(t) − ϕ]2dt =

F̃ (y|x)(1 − F̃ (y|x)) > 0, where ϕ =
∫ 1
0 ϕ(t)dt = F̃ (y|x). By definition we

have F̃R
n (y|x) = FR

n (y|x) + O(δ), and O(δ) = o((nh)−1) by B.4. Thus by
the linear rank statistic form of FR

n (y|x) as given in the proof of Theorem 4,
Theorem 6.6.1 in Hájek, Šidák, and Sen (1999, p.194), and the relationship
F̃R

n (y|x) = FR
n (y|x) + o((nh)−1), we have that F̃R

n (y|x) is asymptotically
normal (µn, σ2

n) with µn = EF̃R
n (y|x) = a+o((nh)−1/2), and σ2

n = [
∑

u(cn,u−
c)2]

∫ 1
0 [ϕ(t) − ϕ]2dt. Using results on a and

∑
u(cn,u − c)2 from the proof of

Theorem 4, we get
√

nh(F̃R
n (y|x) − F̃ (y|x)) D→ N(0, σ2

1),

with σ2
1u = F̃ (y|x)(1 − F̃ (y|x))p−1(x)

∫
K2(v)dv.

(ii) As in the proof of Theorem 3, we have

P

(√
nh(θ̃α(x) − θα(x)) ≤ t

)
= P

(
F̃R

n (θα(x) + (nh)−1/2t|x) ≥ α

)
.

As in the proof of Theorem 4, we have, with p(y|x) being the density of
F̃ (y|x),

E(F̃R
n (θα(x) + (nh)−1/2t|x)) = F̃ (θα(x) + (nh)−1/2t|x) + O(1/n)

= F̃ (θα(x)|x) + p(θα(x)|x)(nh)−1/2t + o((nh)−1/2) + O(1/n)
= α + p(θα(x)|x)(nh)−1/2t + o((nh)−1/2),
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Var (F̃R
n (θα(x) + (nh)−1/2t|x)) = (nh)−1F̃ (θα(x) + (nh)−1/2t|x)

×(1 − F̃ (θα(x) + (nh)−1/2t|x))p−1(x)
∫

K2(v)dv + o((nh)−1)

= (nh)−1α(1 − α)p−1(x)
∫

K2(v)dv + o((nh)−1).

Applying Theorem 6.6.1 in Hájek, Šidák, and Sen (1999, p.194) again to
the linear rank statistic form of F̃R

n (θα(x) + (nh)−1/2t|x), as in the proof of
Theorem 4, we get

P

(
F̃R

n (θα(x) + (nh)−1/2t|x) ≥ α

)
= P

(
E(F̃R

n (θα(x) + (nh)−1/2t|x)) − F̃R
n (θα(x) + (nh)−1/2t|x)√

V ar(F̃R
n (θα(x) + (nh)−1/2t))

≤ p(θα(x)|x)t
[α(1 − α)p−1(x)

∫
K2(v)dv]1/2

+ o(1)
)

→ Φ
(

p(x)p(θα(x)|x)
[α(1 − α)

∫
K2(v)dv]1/2

t

)
,

so that
√

nh(θ̃α(x)−θα(x)) D→ N(0, σ2), with σ2 = α(1−α)
∫

K2(v)dv/p2(x,
θα(x)).

(iii) and (iv) Proofs are similar to those of (ii) and (iii) in Theorem 3.

Proof of Corollary 2. Since by Theorems 4 and 5, F̃R
n (y|x) P→ F̃ (y|x), θ̃R

α (x) P→
θc
α(x) and θ̃α(x) P→ θα(x). The rest of the proof is similar to that of Corollary 1.
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