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Appendix: Proof of Theorem 1

The global line of proving the theorem is that, firstly we prove Part (a) and then use the

result of Part (a) to prove Part (b), finally use the result of Part (b) to prove Part (c).

For convenience of presentation below, we introduce the notation Q1×Q2 = {d1d2 : d1 ∈ Q1,

d2 ∈ Q2}, where Q1, Q2 ⊂ Hq. Particularly, denote dQ = {d} × Q for d ∈ Hq and Q ⊂ Hq.

Proof of Part (a)

Note that, when r = q, Part (a) of the theorem is obviously valid, since any design S with

s factors from Hq, satisfying 2q−1 ≤ s ≤ 2q − 1, has exactly q independent factors and S ⊂ Hq.

So, we only need to consider the case r ≤ q − 1.

Suppose that S1 ⊂ Hq is a design with s factors, where 2r−1 ≤ s ≤ 2r −1 for some r ≤ q−1,

and has h+1 (r ≤ h ≤ q−1) independent factors. Let a denote the factor q. Under isomorphism,

we can assume a ∈ S1 and S1 can be represented as

S1 = Q ∪ {a, ab1, ab2, . . . , abl}, (1)

where Q is a subset of Hh and has h independent factors, and {b1, . . . , bl} ⊂ Hh. Without loss

of generality, we assume that {b1, . . . , bt} ⊂ Q and {bt+1, . . . , bl} ⊂ Hh\Q, and consider another

set

S2 = Q ∪ {a, ab1, . . . , abt} ∪ {bt+1, . . . , bl}. (2)

We have the following lemma.

Lemma 6. Suppose that S1 and S2 are defined in (1) and (2) respectively, then ḡ(S2) ≤ ḡ(S1).

Proof. Denote Q1 = {a, ab1, ab2, . . . , abt} and Q2 = {abt+1, . . . , abl}. Then we have S1 =

Q∪Q1∪Q2 and S2 = Q∪Q1 ∪ aQ2. Let P = Hq\(S1 ∪S2), where S1 ∪S2 = Q∪Q1 ∪Q2 ∪ aQ2

in which the four sets are mutually exclusive. According to the definitions of ḡ(S1) and ḡ(S2),

we get

ḡ(S1) = #{γ : γ ∈ P,B2(S1, γ) > 0} + #{γ : γ ∈ aQ2, B2(S1, γ) > 0}
△
= g11 + g12
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and

ḡ(S2) = #{γ : γ ∈ P,B2(S2, γ) > 0} + #{γ : γ ∈ Q2, B2(S2, γ) > 0}
△
= g21 + g22.

For any γ ∈ Q2, γ = a(aγ), where a ∈ Q1 ⊂ S2 and aγ ∈ aQ2 ⊂ S2, we have B2(S2, γ) > 0.

From the definition of g22, we get g22 = #{Q2}. Similarly, g12 = #{aQ2} follows. We can check

that #{Q2} = #{aQ2}, which leads to g12 = g22.

Now we pick-up the three sets:

P1 = {γ : γ ∈ P,B2(S1, γ) > 0 and B2(S2, γ) > 0},

P2 = {γ : γ ∈ P,B2(S1, γ) > 0 and B2(S2, γ) = 0},

P3 = {γ : γ ∈ P,B2(S1, γ) = 0 and B2(S2, γ) > 0}.

Then, P1, P2 and P3 are mutually exclusive and we have g11 = #{P1} + #{P2} and g21 =

#{P1} + #{P3}. So, to finish the proof, it suffices to show the result #{P2} ≥ #{P3} or a

stronger result: if γ ∈ P3 then aγ ∈ P2.

To do this, we note that, if γ ∈ P3, then γ must not be an interaction of any two factors

in Q ∪ Q1 ∪ Q2 but an interaction of some two factors in Q ∪ Q1 ∪ aQ2. Therefore, γ must be

an interaction of two factors with one coming from aQ2 and the other coming from Q or Q1. If

γ ∈ aQ2 × Q1 = Q2 × aQ1 ⊂ Q2 ∪ (Q2 × Q) or γ ∈ aQ2 × {b1, . . . , bt} = Q2 × {ab1, . . . , abt} ⊂

Q2×Q1, where {b1, . . . , bt} ⊂ Q, then γ /∈ P or B2(S1, γ) > 0, which contradicts the assumption

γ ∈ P3. So, we must have γ ∈ aQ2 × (Q\{b1, . . . , bt}) ⊂ Hh. Because of this, we get aγ ∈

Q2 × (Q\{b1, . . . , bt}), which implies B2(S1, aγ) > 0. The remainder is to prove that, for the aγ,

we have aγ ∈ P and B2(S2, aγ) = 0. For the former, it is easy to be validated. We only show

B2(S2, aγ) = 0 below.

We use the reduction to absurdity to prove the point. Suppose B2(S2, aγ) > 0. Since γ ∈ Hh,

we have aγ ∈ aHh and aγ ∈ Q1× (Q∪aQ2). Thus, there are only the following two possibilities:

aγ ∈ Q1×Q or aγ ∈ Q1×aQ2. However, if aγ ∈ Q1×Q, then γ ∈ aQ1 ×Q ⊂ Q∪ (Q×Q), or if

aγ ∈ Q1×aQ2, then γ ∈ Q1×Q2. Any one of the two cases implies that γ /∈ P or B2(S1, γ) > 0,

which contradicts the assumption γ ∈ P3. Lemma 6 is proved.

Lemma 6 indicates that, if the design S1 is transformed into the design S2, i.e. the elements

abt+1, . . . , abl in S1, which are out of Hh, are substituted by the elements bt+1, . . . , bl, which are

in Hh, then ḡ(S2) ≤ ḡ(S1).

In the following study, we join Q and aQ2 together and still denote it by Q. Without loss

of generality, we assume that S2 has the form

S2 = Q ∪ {a, ab1, . . . , abt}, (3)

where Q ⊂ Hh and has h independent factors, and {b1, . . . , bt} ⊂ Q. When 2r−1 ≤ s ≤ 2r − 1,

the number of factors in Q is smaller than 2r − 1. Therefore there are at least two factors c1

and c2 in Q such that c = c1c2 /∈ Q. Under isomorphism, we can assume that there is some t0
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such that

{c, cb1, cb2, . . . , cbt0} ⊂ Hh\Q and {cbt0+1, . . . , cbt} ⊂ Q.

Denote

S3 = Q ∪ {c, cb1, cb2, . . . , cbt0} ∪ {abt0+1, . . . , abt}. (4)

We have one more result as follows.

Lemma 7. Suppose that S2 and S3 are defined in (3) and (4) respectively. Then ḡ(S3) ≤ ḡ(S2).

Especially, if t0 = t the strict inequality ḡ(S3) < ḡ(S2) is valid.

Proof. Let Q1 = {a, ab1, ab2, . . . , abt0} and Q2 = {abt0+1, . . . , abt}. Then S2 = Q ∪ Q1 ∪ Q2

and S3 = Q ∪ acQ1 ∪ Q2. Also denote P = Hq\(S2 ∪ S3), where S2 ∪ S3 = Q ∪ Q1 ∪ acQ1 ∪ Q2

in which the four parts are mutually exclusive. According to the definitions of ḡ(S2) and ḡ(S3),

we have

ḡ(S2) = #{γ : γ ∈ P,B2(S2, γ) > 0} + #{γ : γ ∈ acQ1, B2(S2, γ) > 0}
△
= g21 + g22

and

ḡ(S3) = #{γ : γ ∈ P,B2(S3, γ) > 0} + #{γ : γ ∈ Q1, B2(S3, γ) > 0}
△
= g31 + g32.

Now let

P1 = {γ : γ ∈ P,B2(S2, γ) > 0 and B2(S3, γ) > 0},

P2 = {γ : γ ∈ P,B2(S2, γ) > 0 and B2(S3, γ) = 0},

P3 = {γ : γ ∈ P,B2(S2, γ) = 0 and B2(S3, γ) > 0}.

Then, P1, P2 and P3 are mutually exclusive, g21 = #{P1}+ #{P2}, and g31 = #{P1}+ #{P3}.

If t0 = t, then Q2 = ∅, the empty set, and S3 ⊂ Hh. As a result, for any γ ∈ Q1, we

have B2(S3, γ) = 0 and hence g32 = 0. On the other hand, because there is c ∈ acQ1 such

that B2(S2, c) > 0, it leads to g22 ≥ 1. Thus, to prove ḡ(S3) < ḡ(S2), it suffices to show that

#{P2} ≥ #{P3} or a stronger result: if γ ∈ P3 then acγ ∈ P2. By the same argument as

in proving Lemma 6, we can show that if γ ∈ P3 then γ ∈ acQ1 × Q ⊂ Hh. From this, it

directly follows that acγ ∈ Q1 ×Q, then we can verify B2(S2, acγ) > 0 and acγ ∈ P . Note that,

B2(S3, acγ) = 0 is straightforward since S3 ⊂ Hh and acγ /∈ Hh. In this way, the second half

result of Lemma 7 follows.

In the following let us consider the case t0 < t. Actually the proof for this case is very

similar to that for t0 = t. It only needs one more condition acQ2 ⊂ Q, however it is just a

simple fact from the definition of S3.

To make it clear, let us take two steps. Firstly, we show the fact: for any γ ∈ Q1, if

B2(S3, γ) > 0 then B2(S2, acγ) > 0 and hence g32 ≤ g22.

Note that, if γ ∈ Q1 and B2(S3, γ) > 0, then γ ∈ Q2 × (Q∪acQ1). Based on this, the above

fact immediately follows, since we have that, if γ ∈ Q2 ×Q then acγ ∈ acQ2 ×Q ⊂ Q×Q, or if

γ ∈ Q2 × acQ1 then acγ ∈ Q2 × Q1, both lead to B2(S2, acγ) > 0.
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Next, let us show the fact: for any γ ∈ P3, then acγ ∈ P2 and hence g31 ≤ g21.

Again, note that for any γ ∈ P3 we have γ ∈ acQ1 × (Q ∪ Q2). From this, we can first

conclude γ /∈ acQ1 × Q2 = Q1 × acQ2 ⊂ Q1 × Q, it is because if not then B2(S2, γ) > 0, but

under given γ ∈ P3 it is impossible. So, we must have γ ∈ acQ1 × Q ⊂ Hh. On the other hand,

we can validate acγ ∈ P and acγ ∈ Q1 × Q, or more precisely, B2(S2, acγ) > 0. Therefore, it is

sufficient to show B2(S3, acγ) = 0.

We use the reduction to absurdity to prove the point above. Suppose B2(S3, acγ) > 0. Since

γ ∈ Hh and acγ ∈ P , we have acγ ∈ aHh and acγ ∈ Q2× (Q∪acQ1), which yields acγ ∈ Q2×Q

or acγ ∈ Q2×acQ1. However, if acγ ∈ Q2×Q then γ ∈ acQ2×Q ⊂ Q×Q, or if acγ ∈ Q2×acQ1

then γ ∈ Q2 × Q1. Both cases lead to B2(S2, γ) > 0, contradicting the assumption γ ∈ P3.

From the above two steps, the two inequalities g31 ≤ g21 and g32 ≤ g22 are proved and hence

we get ḡ(S3) ≤ ḡ(S2).

Lemma 7 tells us that, when we substitute design S2 by design S3, i.e. the elements

a, ab1, . . . , abt0 in design S2, which are out of Hh, are substituted by the elements c, cb1, . . . , cbt0 ,

which are in Hh, the ḡ(·) value will be reduced. Especially, this procedure can continuously

go on till that t0 = t, i.e. S3 ⊂ Hh, then S3 has h independent factors and ḡ(S3) < ḡ(S2). If

h > r, applying Lemma 6 to go the procedure in Lemma 6 but the Hh−1 in this case has one

less independent factor than the previous one. We can repeatedly and alternately go through

the procedures of Lemmas 6 and 7 till we construct a design S∗
3 ⊂ Hr. Then ḡ(S∗

3) < ḡ(S3) and

S∗
3 has exact r independent factors.

Now, let us return to the proof of Part (a) for the case r ≤ q − 1.

Suppose that S is a design with 2r−1 ≤ s ≤ 2r −1 factors and ḡ(S) is minimized. Obviously,

the S has at least r independent factors. If the S has h (> r) independent factors, just like

the statement in the paragraph after the proof of Lemma 7, we can construct a design S∗ such

that ḡ(S∗) < ḡ(S) which contradicts the condition that ḡ(S) is minimized. Therefore the S

exactly has r independent factors. Noting that S ⊂ Hr is obvious, the proof of Part (a) is then

completed.

Proof of Part (b)

To prove Part (b) of Theorem 1, we need two more lemmas in the following.

Suppose that S4 ⊂ Hq is a resolution IV or higher design with s factors, where 2r−2 + 1 ≤

s ≤ 2r−1. With a suitable relabelling, we can assume a ∈ S4. If S4 has h + 1 (r ≤ h ≤ q − 1)

independent factors, then S4 has the form

S4 = Q ∪ {a, ab1, . . . , abt}, (5)

where Q ⊂ Hh and has h independent factors, and {b1, . . . , bt} ⊂ Hh. Since S4 has resolution

at least IV, aQ and {a, ab1, . . . , abt} are mutually exclusive. Let

S5 = aQ ∪ {a, ab1, . . . , abt}. (6)
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Then we have the following result.

Lemma 8. Suppose that S4 and S5 are defined in (5) and (6), respectively. Then ḡ(S5) ≤ ḡ(S4).

Proof. Let Q1 = {a, ab1, . . . , abt}, then S4 = Q ∪ Q1 and S5 = aQ ∪ Q1. From S5 ⊂ {a, aHh}

and the definition of ḡ(S5), we have

ḡ(S5) = #{γ : γ ∈ Hh, B2(S5, γ) > 0}.

So, by the definition of ḡ(S4), it suffices to prove that, if γ ∈ Hh and B2(S5, γ) > 0, then

B2(S4, γ) > 0 and γ /∈ S4 or B2(S4, aγ) > 0 and aγ /∈ S4.

Remind that, if γ ∈ Hh and B2(S5, γ) > 0, then we have γ ∈ aQ × aQ, or γ ∈ Q1 × Q1, or

γ ∈ aQ×Q1. Since S4 has resolution at least IV, when γ ∈ aQ× aQ (= Q×Q) or γ ∈ Q1 ×Q1,

then B2(S4, γ) > 0, which causes γ /∈ S4, and when γ ∈ aQ × Q1, then aγ ∈ Q × Q1 and

B2(S4, aγ) > 0, which causes aγ /∈ S4.

Lemma 8 tells us that, when we substitute design S4 by design S5, i.e., the elements of part

Q in design S4, which is out of Fq(h+1), are substituted by the elements aQ, which are in Fq(h+1),

the ḡ(·) value will be reduced.

The following lemma examines the structure of the design that has s factors, resolution IV

or higher, and r independent factors, where 2r−2 + 1 ≤ s ≤ 2r−1.

Lemma 9. Let S ⊂ Hr be a design having s factors and resolution IV or higher with 2r−2 +1 ≤

s ≤ 2r−1, in which there are r independent factors. Then, if Ai(S) > 0 for some odd number i,

it must have that A5(S) > 0.

Proof. Suppose that i0 is the smallest odd number such that Ai0(S) > 0. Without loss of

generality, we assume b1b2 · · · bi0 = I, where {b1, . . . , bi0} ⊂ S and I is the identity element.

Since S has resolution IV or higher, we have i0 ≥ 5. We use the reduction to absurdity to

prove that surely i0 = 5. Suppose i0 6= 5, it implies i0 ≥ 7, thus we can define the four sets

Q1 = (b1b2b3) × (S\{b1, . . . , bi0}), Q2 = (b1b4b5) × (S\{b1, . . . , bi0}),

Q3 = (b2b4b6) × (S\{b1, . . . , bi0}), Q4 = {bjbk, 1 ≤ j < k ≤ i0}.

We firstly prove that S, Q1, Q2, Q3 and Q4 are mutually exclusive. If not, let us suppose

that among the five sets there are some two of them the intersection of which is nonempty,

say S ∩ Q1 6= ∅. Assume b ∈ S ∩ Q1, then there exists some b′ ∈ S\{b1, . . . , bi0} such that

b = b1b2b3b
′, which leads that bb1b2b3b

′ is a defining word of S with length 3 (if b = b′ or b1 or b2

or b3) or 5. However, this is impossible under the given assumption for i0. If there are other two

of them whose intersection is nonempty, similarly, we can also find a defining word the length of

which is an odd number and smaller than i0, which is still impossible. By the above arguments,

we get

#{S} +
4

∑

j=1

#{Qj} = s + 3(s − i0) + i0(i0 − 1)/2 = 4s + i0(i0 − 7)/2 ≥ 4s ≥ 2r + 4,
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where the third and forth inequalities are from the assumptions i0 ≥ 7 and s ≥ 2r−2 + 1,

respectively. On the other hand, since S ⊂ Hr, Qj ⊂ Hr for j = 1, 2, 3, 4, and the five sets are

mutually exclusive, we have #{S} +
∑4

j=1 #{Qj} < 2r, the contradiction completing the proof

of Lemma 9.

With the preparations above, we come to prove Part (b) of the theorem.

Suppose that S is a resolution at least IV design with s factors and ḡ(S) is minimized,

where 2r−2 + 1 ≤ s ≤ 2r−1 for some r ≤ q. Firstly, we prove the first half of Part (b). Since

any design S ⊂ Hq satisfying 2q−2 + 1 ≤ s ≤ 2q−1 and having resolution at least IV has exactly

q independent factors, the first half of Part (b) holds when r = q. We only need to consider

r ≤ q − 1.

It is obvious that S has at least r independent factors. If S has h + 1 independent factors

with r ≤ h ≤ q − 1, we assume that S has the form in (5). That is,

S = Q ∪ {a, ab1, . . . , abt},

where Q and {a, b1, . . . , bt} satisfy the conditions as in (5). Let Q1 = {a, ab1, . . . , abt} and define

S∗ = aQ ∪ Q1, then S∗ ⊂ Fq(h+1). Further let S∗∗ = Q ∪ {b1, . . . , bt}, then S∗ = {a, aS∗∗} and

S∗∗ ⊂ Hh. It leads that, S∗∗ has s − 1 factors with 2r−2 ≤ s − 1 ≤ 2r−1 − 1 and among them

there are h ones to be independent. Note that, when the range of S is over all the designs with

resolution at least IV, then the range of S∗∗ is over all the designs with s − 1 factors. By the

structure of Fq(h+1), Lemma 8 and the condition of ḡ(S) being minimized, we have

ḡ(S) = ḡ(S∗) = #{γ : γ ∈ Hq\S
∗, B2(S

∗, γ) > 0}

= #{γ : γ ∈ Hh, B2(S
∗, γ) > 0}

= #{γ : γ ∈ Hh\S
∗∗, B2(S

∗, γ) > 0} + #{γ : γ ∈ S∗∗, B2(S
∗, γ) > 0}

= #{γ : γ ∈ Hh\S
∗∗, B2(S

∗∗, γ) > 0} + (s − 1)

= ḡ(S∗∗) + (s − 1).

Thus, ḡ(S∗∗) is minimized too. According to Part (a) of the theorem, S∗∗ can only have r − 1

independent factors, contradicting to it having h (≥ r) independent factors. This contradiction

finishes the proof of the first half of Part (b).

Next, we consider the proof of the second half of Part (b). Now the S has r independent

factors. Suppose the S has the form of (5) with h = r − 1, and define S∗ as above. Butler

(2003) noticed that if Ai(S) = 0 for all odd numbers i’s, then S ⊂ Fqr. Therefore, to finish the

proof of the second half, it is sufficient to prove that Ai(S) = 0 for all odd numbers i’s. If not,

according to Lemma 9 and the assumption that S has resolution at least IV, we have A5(S) > 0.

In the following we prove that if A5(S) > 0, then ḡ(S∗) < ḡ(S) which is a contradiction to the

assumption that ḡ(S) is minimized. By Lemma 8 and its proof, it suffices to show that there

exists a γ ∈ Hr−1 such that B2(S
∗, γ) > 0, γ /∈ S with B2(S, γ) > 0 and aγ /∈ S with

B2(S, aγ) > 0.
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Without loss of generality, we assume the factor a appears in the defining word with length

5. By the structure of S, there are two possibilities for this defining word with length 5: one is

that, besides a one more factor is from Q1 and the other three factors are from Q, and the other

is that, besides a three more factors are from Q1 and the other one factor is from Q. After a

suitable relabelling, we denote these two possibilities as

I = a(ab1)d1d2d3, where ab1 ∈ Q1, {d1, d2, d3} ⊂ Q

and

I = a(ab1)(ab2)(ab3)d1, where {ab1, ab2, ab3} ⊂ Q1, d1 ∈ Q.

For the first case, let γ = b1d1 = d2d3. We can verify that B2(S
∗, γ) > 0 and B2(S, γ) > 0. Note

that aγ = (ab1)d1, where ab1 ∈ Q1 ⊂ S and d1 ∈ Q ⊂ S. Therefore, we have B2(S, aγ) > 0.

Since the S has resolution IV, γ /∈ S and aγ /∈ S. For the second case, let γ = (ab1)(ab2) = b3d1

and the proof is similar as the first case. Hence the claim that S ⊂ Fqr is proved. Noting that

Fqr and Tr are isomorphic, then the second half of Part (b) follows.

Proof of Part (c)

We first prove that the four designs consisting of the first or last s columns of Fqr or Tr are

isomorphic. Suppose that F ′
qr consists of the 2r−1 columns in Fqr in a contrary order. Then we

can easily validate

Fqr = {q, qHr−1} and F ′

qr = {12 · · · (r − 1)q, 12 · · · (r − 1)qHr−1},

which mean that, the design consisting of the first s columns of Fqr and the one consisting of

the last s columns of Fqr are isomorphic. Similarly, the design consisting of the first s columns

of Tr and the one consisting of the last s columns of Tr are isomorphic. When Fqr and Tr are

written in Yates order, from the structures of Fqr and Tr, we have that the design consisting

of the first s columns of Tr and the one consisting of the first s columns of Fqr are isomorphic.

Therefore the four designs consisting of the first or last s columns of Fqr or Tr are isomorphic.

Suppose that S is a design with s factors and maximizes the sequence (2.4) among all the

designs with resolution at least IV and s factors, where 2r−2 + 1 ≤ s ≤ 2r−1 for some r ≤ q. By

the above analysis, proving Part (c) is equivalent to showing that the unique choice of such S

is the design consisting of the first s columns of Fqr. In the following we use the mathematical

induction to prove this point.

Firstly, we show it holds for r ≤ 3. According to the result of Part (b) just proved, we

have S ⊂ Fqr. When s = 1, 2, 3, under isomorphism, the unique choices of such S are {a},

{a, 1a} and {a, 1a, 2a}, respectively. Here we remind the mention in Section 2 about resolution

at least IV when all the s factors are independent even s ≤ 3. When s = 4, according to Part

(b) proved above, the number of independent factors in such S is 3 and the choice of S is only

{a, 1a, 2a, 12a}. So, for the four cases of s, such design S is the only one that consists of the

first s columns of Fqr. Thus the result follows for r ≤ 3.
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Next, assume that, for r ≤ k, the fact that the design maximizing (2.4) in all the designs

with s factors and resolution at least IV uniquely consists of the first s columns in Fqr is true,

and come to prove that for r = k + 1 the fact is true too. By Part (b) of the theorem, we

have S ⊂ Fq(k+1). Note that, by Lemma 1 (a) with q being taken as k + 1 and the condition

2k−1 + 1 ≤ s ≤ 2k, for any γ ∈ Hk, we have

B2(S, γ) = B2(Fq(k+1)\S, γ) + s − 2k−1 ≥ 1

and hence ḡ(S) = 2k − 1, which is a constant. Therefore, maximizing (2.4) is equivalent to

maximizing #
2C2(S). By Lemma 1 (c) with q being taken as k + 1, we know that maximizing

#
2C2(S) is equivalent to maximizing the sequence

{

− ḡ(Fq(k+1)\S), #
2C2(Fq(k+1)\S)

}

. (7)

Note that, when r = k + 1, by the assumptions in Part (c) we have 2k−1 + 1 ≤ s ≤ 2k and

the number of factors in Fq(k+1)\S is smaller than 2k−1. Applying the inductive assumption for

r ≤ k, if Fq(k+1)\S consists of the first 2k − s columns in Fq(k+1), it uniquely maximizes the

sequence (7). As we already proved at the beginning of this part, the design consisting of the

last 2k − s columns in Fq(k+1) columns and the one consisting the first 2k − s columns in Fq(k+1)

columns are isomorphic. Therefore if we choose Fq(k+1)\S to be the one consisting of the last

2k − s columns in Fq(k+1), then it also maximizes the sequence (7). In this way, the unique

choice of such S is the set of the first s columns in Fq(k+1), which means that, the result is true

for r = k + 1 and hence it is true for all r ≤ q by the mathematical induction. This completes

the proof of Part (c).

Up to now, the proofs of all the three parts of Theorem 1 are finished.

References

Butler, N. A. (2003). Some theory for constructing minimum aberration fractional factorial designs.

Biometrika 90, 233-238.

Department of Mathematical and Statistical Sciences, University of Alberta Edmonton, AB T6G 2G1,

Canada

E-mail: pengfei@stat.ualberta.ca

School of Mathematical Sciences, Qufu Normal University, Qufu 273165, China

E-mail: zhaoshli758@126.com

LPMC and School of Mathematical Sciences, Nankai University, Tianjin 300071, China

KLAS and School of Mathematics and Statistics, Northeast Normal University, Changchun 130024, China

E-mail: zhrch@nankai.edu.cn, rczhang@nenu.edu.cn


