Supplement to

A THEORY ON CONSTRUCTING 2^{n-m} DESIGNS WITH GENERAL MINIMUM LOWER ORDER CONFOUNDING

Pengfei Li^{1}, Shengli Zhao ${ }^{2}$ and Runchu Zhang ${ }^{*, 3,4}$
${ }^{1}$ University of Alberta, ${ }^{2}$ Qufu Normal University, ${ }^{3}$ Northeast Normal University and ${ }^{4}$ Nankai University

Appendix: Proof of Theorem 1

The global line of proving the theorem is that, firstly we prove Part (a) and then use the result of Part (a) to prove Part (b), finally use the result of Part (b) to prove Part (c).

For convenience of presentation below, we introduce the notation $Q_{1} \times Q_{2}=\left\{d_{1} d_{2}: d_{1} \in Q_{1}\right.$, $\left.d_{2} \in Q_{2}\right\}$, where $Q_{1}, Q_{2} \subset H_{q}$. Particularly, denote $d Q=\{d\} \times Q$ for $d \in H_{q}$ and $Q \subset H_{q}$.

Proof of Part (a)
Note that, when $r=q$, Part (a) of the theorem is obviously valid, since any design S with s factors from H_{q}, satisfying $2^{q-1} \leq s \leq 2^{q}-1$, has exactly q independent factors and $S \subset H_{q}$. So, we only need to consider the case $r \leq q-1$.

Suppose that $S_{1} \subset H_{q}$ is a design with s factors, where $2^{r-1} \leq s \leq 2^{r}-1$ for some $r \leq q-1$, and has $h+1(r \leq h \leq q-1)$ independent factors. Let a denote the factor q. Under isomorphism, we can assume $a \in S_{1}$ and S_{1} can be represented as

$$
\begin{equation*}
S_{1}=Q \cup\left\{a, a b_{1}, a b_{2}, \ldots, a b_{l}\right\}, \tag{1}
\end{equation*}
$$

where Q is a subset of H_{h} and has h independent factors, and $\left\{b_{1}, \ldots, b_{l}\right\} \subset H_{h}$. Without loss of generality, we assume that $\left\{b_{1}, \ldots, b_{t}\right\} \subset Q$ and $\left\{b_{t+1}, \ldots, b_{l}\right\} \subset H_{h} \backslash Q$, and consider another set

$$
\begin{equation*}
S_{2}=Q \cup\left\{a, a b_{1}, \ldots, a b_{t}\right\} \cup\left\{b_{t+1}, \ldots, b_{l}\right\} . \tag{2}
\end{equation*}
$$

We have the following lemma.
Lemma 6. Suppose that S_{1} and S_{2} are defined in (1) and (2) respectively, then $\bar{g}\left(S_{2}\right) \leq \bar{g}\left(S_{1}\right)$.
Proof. Denote $Q_{1}=\left\{a, a b_{1}, a b_{2}, \ldots, a b_{t}\right\}$ and $Q_{2}=\left\{a b_{t+1}, \ldots, a b_{l}\right\}$. Then we have $S_{1}=$ $Q \cup Q_{1} \cup Q_{2}$ and $S_{2}=Q \cup Q_{1} \cup a Q_{2}$. Let $P=H_{q} \backslash\left(S_{1} \cup S_{2}\right)$, where $S_{1} \cup S_{2}=Q \cup Q_{1} \cup Q_{2} \cup a Q_{2}$ in which the four sets are mutually exclusive. According to the definitions of $\bar{g}\left(S_{1}\right)$ and $\bar{g}\left(S_{2}\right)$, we get

$$
\bar{g}\left(S_{1}\right)=\#\left\{\gamma: \gamma \in P, B_{2}\left(S_{1}, \gamma\right)>0\right\}+\#\left\{\gamma: \gamma \in a Q_{2}, B_{2}\left(S_{1}, \gamma\right)>0\right\} \triangleq g_{11}+g_{12}
$$

[^0]and
$$
\bar{g}\left(S_{2}\right)=\#\left\{\gamma: \gamma \in P, B_{2}\left(S_{2}, \gamma\right)>0\right\}+\#\left\{\gamma: \gamma \in Q_{2}, B_{2}\left(S_{2}, \gamma\right)>0\right\} \triangleq g_{21}+g_{22}
$$

For any $\gamma \in Q_{2}, \gamma=a(a \gamma)$, where $a \in Q_{1} \subset S_{2}$ and $a \gamma \in a Q_{2} \subset S_{2}$, we have $B_{2}\left(S_{2}, \gamma\right)>0$. From the definition of g_{22}, we get $g_{22}=\#\left\{Q_{2}\right\}$. Similarly, $g_{12}=\#\left\{a Q_{2}\right\}$ follows. We can check that $\#\left\{Q_{2}\right\}=\#\left\{a Q_{2}\right\}$, which leads to $g_{12}=g_{22}$.

Now we pick-up the three sets:

$$
\begin{aligned}
& P_{1}=\left\{\gamma: \gamma \in P, B_{2}\left(S_{1}, \gamma\right)>0 \text { and } B_{2}\left(S_{2}, \gamma\right)>0\right\}, \\
& P_{2}=\left\{\gamma: \gamma \in P, B_{2}\left(S_{1}, \gamma\right)>0 \text { and } B_{2}\left(S_{2}, \gamma\right)=0\right\}, \\
& P_{3}=\left\{\gamma: \gamma \in P, B_{2}\left(S_{1}, \gamma\right)=0 \text { and } B_{2}\left(S_{2}, \gamma\right)>0\right\} .
\end{aligned}
$$

Then, P_{1}, P_{2} and P_{3} are mutually exclusive and we have $g_{11}=\#\left\{P_{1}\right\}+\#\left\{P_{2}\right\}$ and $g_{21}=$ $\#\left\{P_{1}\right\}+\#\left\{P_{3}\right\}$. So, to finish the proof, it suffices to show the result $\#\left\{P_{2}\right\} \geq \#\left\{P_{3}\right\}$ or a stronger result: if $\gamma \in P_{3}$ then $a \gamma \in P_{2}$.

To do this, we note that, if $\gamma \in P_{3}$, then γ must not be an interaction of any two factors in $Q \cup Q_{1} \cup Q_{2}$ but an interaction of some two factors in $Q \cup Q_{1} \cup a Q_{2}$. Therefore, γ must be an interaction of two factors with one coming from $a Q_{2}$ and the other coming from Q or Q_{1}. If $\gamma \in a Q_{2} \times Q_{1}=Q_{2} \times a Q_{1} \subset Q_{2} \cup\left(Q_{2} \times Q\right)$ or $\gamma \in a Q_{2} \times\left\{b_{1}, \ldots, b_{t}\right\}=Q_{2} \times\left\{a b_{1}, \ldots, a b_{t}\right\} \subset$ $Q_{2} \times Q_{1}$, where $\left\{b_{1}, \ldots, b_{t}\right\} \subset Q$, then $\gamma \notin P$ or $B_{2}\left(S_{1}, \gamma\right)>0$, which contradicts the assumption $\gamma \in P_{3}$. So, we must have $\gamma \in a Q_{2} \times\left(Q \backslash\left\{b_{1}, \ldots, b_{t}\right\}\right) \subset H_{h}$. Because of this, we get $a \gamma \in$ $Q_{2} \times\left(Q \backslash\left\{b_{1}, \ldots, b_{t}\right\}\right)$, which implies $B_{2}\left(S_{1}, a \gamma\right)>0$. The remainder is to prove that, for the $a \gamma$, we have $a \gamma \in P$ and $B_{2}\left(S_{2}, a \gamma\right)=0$. For the former, it is easy to be validated. We only show $B_{2}\left(S_{2}, a \gamma\right)=0$ below.

We use the reduction to absurdity to prove the point. Suppose $B_{2}\left(S_{2}, a \gamma\right)>0$. Since $\gamma \in H_{h}$, we have $a \gamma \in a H_{h}$ and $a \gamma \in Q_{1} \times\left(Q \cup a Q_{2}\right)$. Thus, there are only the following two possibilities: $a \gamma \in Q_{1} \times Q$ or $a \gamma \in Q_{1} \times a Q_{2}$. However, if $a \gamma \in Q_{1} \times Q$, then $\gamma \in a Q_{1} \times Q \subset Q \cup(Q \times Q)$, or if $a \gamma \in Q_{1} \times a Q_{2}$, then $\gamma \in Q_{1} \times Q_{2}$. Any one of the two cases implies that $\gamma \notin P$ or $B_{2}\left(S_{1}, \gamma\right)>0$, which contradicts the assumption $\gamma \in P_{3}$. Lemma 6 is proved.

Lemma 6 indicates that, if the design S_{1} is transformed into the design S_{2}, i.e. the elements $a b_{t+1}, \ldots, a b_{l}$ in S_{1}, which are out of H_{h}, are substituted by the elements b_{t+1}, \ldots, b_{l}, which are in H_{h}, then $\bar{g}\left(S_{2}\right) \leq \bar{g}\left(S_{1}\right)$.

In the following study, we join Q and $a Q_{2}$ together and still denote it by Q. Without loss of generality, we assume that S_{2} has the form

$$
\begin{equation*}
S_{2}=Q \cup\left\{a, a b_{1}, \ldots, a b_{t}\right\}, \tag{3}
\end{equation*}
$$

where $Q \subset H_{h}$ and has h independent factors, and $\left\{b_{1}, \ldots, b_{t}\right\} \subset Q$. When $2^{r-1} \leq s \leq 2^{r}-1$, the number of factors in Q is smaller than $2^{r}-1$. Therefore there are at least two factors c_{1} and c_{2} in Q such that $c=c_{1} c_{2} \notin Q$. Under isomorphism, we can assume that there is some t_{0}
such that

$$
\left\{c, c b_{1}, c b_{2}, \ldots, c b_{t_{0}}\right\} \subset H_{h} \backslash Q \text { and }\left\{c b_{t_{0}+1}, \ldots, c b_{t}\right\} \subset Q
$$

Denote

$$
\begin{equation*}
S_{3}=Q \cup\left\{c, c b_{1}, c b_{2}, \ldots, c b_{t_{0}}\right\} \cup\left\{a b_{t_{0}+1}, \ldots, a b_{t}\right\} . \tag{4}
\end{equation*}
$$

We have one more result as follows.
Lemma 7. Suppose that S_{2} and S_{3} are defined in (3) and (4) respectively. Then $\bar{g}\left(S_{3}\right) \leq \bar{g}\left(S_{2}\right)$. Especially, if $t_{0}=t$ the strict inequality $\bar{g}\left(S_{3}\right)<\bar{g}\left(S_{2}\right)$ is valid.

Proof. Let $Q_{1}=\left\{a, a b_{1}, a b_{2}, \ldots, a b_{t_{0}}\right\}$ and $Q_{2}=\left\{a b_{t_{0}+1}, \ldots, a b_{t}\right\}$. Then $S_{2}=Q \cup Q_{1} \cup Q_{2}$ and $S_{3}=Q \cup a c Q_{1} \cup Q_{2}$. Also denote $P=H_{q} \backslash\left(S_{2} \cup S_{3}\right)$, where $S_{2} \cup S_{3}=Q \cup Q_{1} \cup a c Q_{1} \cup Q_{2}$ in which the four parts are mutually exclusive. According to the definitions of $\bar{g}\left(S_{2}\right)$ and $\bar{g}\left(S_{3}\right)$, we have

$$
\bar{g}\left(S_{2}\right)=\#\left\{\gamma: \gamma \in P, B_{2}\left(S_{2}, \gamma\right)>0\right\}+\#\left\{\gamma: \gamma \in a c Q_{1}, B_{2}\left(S_{2}, \gamma\right)>0\right\} \triangleq g_{21}+g_{22}
$$

and

$$
\bar{g}\left(S_{3}\right)=\#\left\{\gamma: \gamma \in P, B_{2}\left(S_{3}, \gamma\right)>0\right\}+\#\left\{\gamma: \gamma \in Q_{1}, B_{2}\left(S_{3}, \gamma\right)>0\right\} \triangleq g_{31}+g_{32}
$$

Now let

$$
\begin{aligned}
& P_{1}=\left\{\gamma: \gamma \in P, B_{2}\left(S_{2}, \gamma\right)>0 \text { and } B_{2}\left(S_{3}, \gamma\right)>0\right\}, \\
& P_{2}=\left\{\gamma: \gamma \in P, B_{2}\left(S_{2}, \gamma\right)>0 \text { and } B_{2}\left(S_{3}, \gamma\right)=0\right\}, \\
& P_{3}=\left\{\gamma: \gamma \in P, B_{2}\left(S_{2}, \gamma\right)=0 \text { and } B_{2}\left(S_{3}, \gamma\right)>0\right\} .
\end{aligned}
$$

Then, P_{1}, P_{2} and P_{3} are mutually exclusive, $g_{21}=\#\left\{P_{1}\right\}+\#\left\{P_{2}\right\}$, and $g_{31}=\#\left\{P_{1}\right\}+\#\left\{P_{3}\right\}$.
If $t_{0}=t$, then $Q_{2}=\emptyset$, the empty set, and $S_{3} \subset H_{h}$. As a result, for any $\gamma \in Q_{1}$, we have $B_{2}\left(S_{3}, \gamma\right)=0$ and hence $g_{32}=0$. On the other hand, because there is $c \in a c Q_{1}$ such that $B_{2}\left(S_{2}, c\right)>0$, it leads to $g_{22} \geq 1$. Thus, to prove $\bar{g}\left(S_{3}\right)<\bar{g}\left(S_{2}\right)$, it suffices to show that $\#\left\{P_{2}\right\} \geq \#\left\{P_{3}\right\}$ or a stronger result: if $\gamma \in P_{3}$ then $a c \gamma \in P_{2}$. By the same argument as in proving Lemma 6, we can show that if $\gamma \in P_{3}$ then $\gamma \in a c Q_{1} \times Q \subset H_{h}$. From this, it directly follows that $a c \gamma \in Q_{1} \times Q$, then we can verify $B_{2}\left(S_{2}, a c \gamma\right)>0$ and $a c \gamma \in P$. Note that, $B_{2}\left(S_{3}, a c \gamma\right)=0$ is straightforward since $S_{3} \subset H_{h}$ and $a c \gamma \notin H_{h}$. In this way, the second half result of Lemma 7 follows.

In the following let us consider the case $t_{0}<t$. Actually the proof for this case is very similar to that for $t_{0}=t$. It only needs one more condition $a c Q_{2} \subset Q$, however it is just a simple fact from the definition of S_{3}.

To make it clear, let us take two steps. Firstly, we show the fact: for any $\gamma \in Q_{1}$, if $B_{2}\left(S_{3}, \gamma\right)>0$ then $B_{2}\left(S_{2}, a c \gamma\right)>0$ and hence $g_{32} \leq g_{22}$.

Note that, if $\gamma \in Q_{1}$ and $B_{2}\left(S_{3}, \gamma\right)>0$, then $\gamma \in Q_{2} \times\left(Q \cup a c Q_{1}\right)$. Based on this, the above fact immediately follows, since we have that, if $\gamma \in Q_{2} \times Q$ then $a c \gamma \in a c Q_{2} \times Q \subset Q \times Q$, or if $\gamma \in Q_{2} \times a c Q_{1}$ then $a c \gamma \in Q_{2} \times Q_{1}$, both lead to $B_{2}\left(S_{2}, a c \gamma\right)>0$.

Next, let us show the fact: for any $\gamma \in P_{3}$, then $a c \gamma \in P_{2}$ and hence $g_{31} \leq g_{21}$.
Again, note that for any $\gamma \in P_{3}$ we have $\gamma \in a c Q_{1} \times\left(Q \cup Q_{2}\right)$. From this, we can first conclude $\gamma \notin a c Q_{1} \times Q_{2}=Q_{1} \times a c Q_{2} \subset Q_{1} \times Q$, it is because if not then $B_{2}\left(S_{2}, \gamma\right)>0$, but under given $\gamma \in P_{3}$ it is impossible. So, we must have $\gamma \in a c Q_{1} \times Q \subset H_{h}$. On the other hand, we can validate $a c \gamma \in P$ and $a c \gamma \in Q_{1} \times Q$, or more precisely, $B_{2}\left(S_{2}, a c \gamma\right)>0$. Therefore, it is sufficient to show $B_{2}\left(S_{3}, a c \gamma\right)=0$.

We use the reduction to absurdity to prove the point above. Suppose $B_{2}\left(S_{3}, a c \gamma\right)>0$. Since $\gamma \in H_{h}$ and $a c \gamma \in P$, we have $a c \gamma \in a H_{h}$ and $a c \gamma \in Q_{2} \times\left(Q \cup a c Q_{1}\right)$, which yields $a c \gamma \in Q_{2} \times Q$ or $a c \gamma \in Q_{2} \times a c Q_{1}$. However, if $a c \gamma \in Q_{2} \times Q$ then $\gamma \in a c Q_{2} \times Q \subset Q \times Q$, or if $a c \gamma \in Q_{2} \times a c Q_{1}$ then $\gamma \in Q_{2} \times Q_{1}$. Both cases lead to $B_{2}\left(S_{2}, \gamma\right)>0$, contradicting the assumption $\gamma \in P_{3}$.

From the above two steps, the two inequalities $g_{31} \leq g_{21}$ and $g_{32} \leq g_{22}$ are proved and hence we get $\bar{g}\left(S_{3}\right) \leq \bar{g}\left(S_{2}\right)$.

Lemma 7 tells us that, when we substitute design S_{2} by design S_{3}, i.e. the elements $a, a b_{1}, \ldots, a b_{t_{0}}$ in design S_{2}, which are out of H_{h}, are substituted by the elements $c, c b_{1}, \ldots, c b_{t_{0}}$, which are in H_{h}, the $\bar{g}(\cdot)$ value will be reduced. Especially, this procedure can continuously go on till that $t_{0}=t$, i.e. $S_{3} \subset H_{h}$, then S_{3} has h independent factors and $\bar{g}\left(S_{3}\right)<\bar{g}\left(S_{2}\right)$. If $h>r$, applying Lemma 6 to go the procedure in Lemma 6 but the H_{h-1} in this case has one less independent factor than the previous one. We can repeatedly and alternately go through the procedures of Lemmas 6 and 7 till we construct a design $S_{3}^{*} \subset H_{r}$. Then $\bar{g}\left(S_{3}^{*}\right)<\bar{g}\left(S_{3}\right)$ and S_{3}^{*} has exact r independent factors.

Now, let us return to the proof of Part (a) for the case $r \leq q-1$.
Suppose that S is a design with $2^{r-1} \leq s \leq 2^{r}-1$ factors and $\bar{g}(S)$ is minimized. Obviously, the S has at least r independent factors. If the S has $h(>r)$ independent factors, just like the statement in the paragraph after the proof of Lemma 7, we can construct a design S^{*} such that $\bar{g}\left(S^{*}\right)<\bar{g}(S)$ which contradicts the condition that $\bar{g}(S)$ is minimized. Therefore the S exactly has r independent factors. Noting that $S \subset H_{r}$ is obvious, the proof of Part (a) is then completed.

Proof of Part (b)

To prove Part (b) of Theorem 1, we need two more lemmas in the following.
Suppose that $S_{4} \subset H_{q}$ is a resolution $I V$ or higher design with s factors, where $2^{r-2}+1 \leq$ $s \leq 2^{r-1}$. With a suitable relabelling, we can assume $a \in S_{4}$. If S_{4} has $h+1(r \leq h \leq q-1)$ independent factors, then S_{4} has the form

$$
\begin{equation*}
S_{4}=Q \cup\left\{a, a b_{1}, \ldots, a b_{t}\right\} \tag{5}
\end{equation*}
$$

where $Q \subset H_{h}$ and has h independent factors, and $\left\{b_{1}, \ldots, b_{t}\right\} \subset H_{h}$. Since S_{4} has resolution at least $I V, a Q$ and $\left\{a, a b_{1}, \ldots, a b_{t}\right\}$ are mutually exclusive. Let

$$
\begin{equation*}
S_{5}=a Q \cup\left\{a, a b_{1}, \ldots, a b_{t}\right\} . \tag{6}
\end{equation*}
$$

Then we have the following result.
Lemma 8. Suppose that S_{4} and S_{5} are defined in (5) and (6), respectively. Then $\bar{g}\left(S_{5}\right) \leq \bar{g}\left(S_{4}\right)$.
Proof. Let $Q_{1}=\left\{a, a b_{1}, \ldots, a b_{t}\right\}$, then $S_{4}=Q \cup Q_{1}$ and $S_{5}=a Q \cup Q_{1}$. From $S_{5} \subset\left\{a, a H_{h}\right\}$ and the definition of $\bar{g}\left(S_{5}\right)$, we have

$$
\bar{g}\left(S_{5}\right)=\#\left\{\gamma: \gamma \in H_{h}, B_{2}\left(S_{5}, \gamma\right)>0\right\} .
$$

So, by the definition of $\bar{g}\left(S_{4}\right)$, it suffices to prove that, if $\gamma \in H_{h}$ and $B_{2}\left(S_{5}, \gamma\right)>0$, then $B_{2}\left(S_{4}, \gamma\right)>0$ and $\gamma \notin S_{4}$ or $B_{2}\left(S_{4}, a \gamma\right)>0$ and $a \gamma \notin S_{4}$.

Remind that, if $\gamma \in H_{h}$ and $B_{2}\left(S_{5}, \gamma\right)>0$, then we have $\gamma \in a Q \times a Q$, or $\gamma \in Q_{1} \times Q_{1}$, or $\gamma \in a Q \times Q_{1}$. Since S_{4} has resolution at least $I V$, when $\gamma \in a Q \times a Q(=Q \times Q)$ or $\gamma \in Q_{1} \times Q_{1}$, then $B_{2}\left(S_{4}, \gamma\right)>0$, which causes $\gamma \notin S_{4}$, and when $\gamma \in a Q \times Q_{1}$, then $a \gamma \in Q \times Q_{1}$ and $B_{2}\left(S_{4}, a \gamma\right)>0$, which causes $a \gamma \notin S_{4}$.

Lemma 8 tells us that, when we substitute design S_{4} by design S_{5}, i.e., the elements of part Q in design S_{4}, which is out of $F_{q(h+1)}$, are substituted by the elements $a Q$, which are in $F_{q(h+1)}$, the $\bar{g}(\cdot)$ value will be reduced.

The following lemma examines the structure of the design that has s factors, resolution $I V$ or higher, and r independent factors, where $2^{r-2}+1 \leq s \leq 2^{r-1}$.

Lemma 9. Let $S \subset H_{r}$ be a design having s factors and resolution IV or higher with $2^{r-2}+1 \leq$ $s \leq 2^{r-1}$, in which there are r independent factors. Then, if $A_{i}(S)>0$ for some odd number i, it must have that $A_{5}(S)>0$.

Proof. Suppose that i_{0} is the smallest odd number such that $A_{i_{0}}(S)>0$. Without loss of generality, we assume $b_{1} b_{2} \cdots b_{i_{0}}=I$, where $\left\{b_{1}, \ldots, b_{i_{0}}\right\} \subset S$ and I is the identity element.

Since S has resolution $I V$ or higher, we have $i_{0} \geq 5$. We use the reduction to absurdity to prove that surely $i_{0}=5$. Suppose $i_{0} \neq 5$, it implies $i_{0} \geq 7$, thus we can define the four sets

$$
\begin{array}{ll}
Q_{1}=\left(b_{1} b_{2} b_{3}\right) \times\left(S \backslash\left\{b_{1}, \ldots, b_{i_{0}}\right\}\right), & Q_{2}=\left(b_{1} b_{4} b_{5}\right) \times\left(S \backslash\left\{b_{1}, \ldots, b_{i_{0}}\right\}\right), \\
Q_{3}=\left(b_{2} b_{4} b_{6}\right) \times\left(S \backslash\left\{b_{1}, \ldots, b_{i_{0}}\right\}\right), & Q_{4}=\left\{b_{j} b_{k}, 1 \leq j<k \leq i_{0}\right\} .
\end{array}
$$

We firstly prove that S, Q_{1}, Q_{2}, Q_{3} and Q_{4} are mutually exclusive. If not, let us suppose that among the five sets there are some two of them the intersection of which is nonempty, say $S \cap Q_{1} \neq \emptyset$. Assume $b \in S \cap Q_{1}$, then there exists some $b^{\prime} \in S \backslash\left\{b_{1}, \ldots, b_{i_{0}}\right\}$ such that $b=b_{1} b_{2} b_{3} b^{\prime}$, which leads that $b b_{1} b_{2} b_{3} b^{\prime}$ is a defining word of S with length 3 (if $b=b^{\prime}$ or b_{1} or b_{2} or b_{3}) or 5 . However, this is impossible under the given assumption for i_{0}. If there are other two of them whose intersection is nonempty, similarly, we can also find a defining word the length of which is an odd number and smaller than i_{0}, which is still impossible. By the above arguments, we get

$$
\#\{S\}+\sum_{j=1}^{4} \#\left\{Q_{j}\right\}=s+3\left(s-i_{0}\right)+i_{0}\left(i_{0}-1\right) / 2=4 s+i_{0}\left(i_{0}-7\right) / 2 \geq 4 s \geq 2^{r}+4
$$

where the third and forth inequalities are from the assumptions $i_{0} \geq 7$ and $s \geq 2^{r-2}+1$, respectively. On the other hand, since $S \subset H_{r}, Q_{j} \subset H_{r}$ for $j=1,2,3,4$, and the five sets are mutually exclusive, we have $\#\{S\}+\sum_{j=1}^{4} \#\left\{Q_{j}\right\}<2^{r}$, the contradiction completing the proof of Lemma 9.

With the preparations above, we come to prove Part (b) of the theorem.
Suppose that S is a resolution at least $I V$ design with s factors and $\bar{g}(S)$ is minimized, where $2^{r-2}+1 \leq s \leq 2^{r-1}$ for some $r \leq q$. Firstly, we prove the first half of Part (b). Since any design $S \subset H_{q}$ satisfying $2^{q-2}+1 \leq s \leq 2^{q-1}$ and having resolution at least $I V$ has exactly q independent factors, the first half of Part (b) holds when $r=q$. We only need to consider $r \leq q-1$.

It is obvious that S has at least r independent factors. If S has $h+1$ independent factors with $r \leq h \leq q-1$, we assume that S has the form in (5). That is,

$$
S=Q \cup\left\{a, a b_{1}, \ldots, a b_{t}\right\},
$$

where Q and $\left\{a, b_{1}, \ldots, b_{t}\right\}$ satisfy the conditions as in (5). Let $Q_{1}=\left\{a, a b_{1}, \ldots, a b_{t}\right\}$ and define $S^{*}=a Q \cup Q_{1}$, then $S^{*} \subset F_{q(h+1)}$. Further let $S^{* *}=Q \cup\left\{b_{1}, \ldots, b_{t}\right\}$, then $S^{*}=\left\{a, a S^{* *}\right\}$ and $S^{* *} \subset H_{h}$. It leads that, $S^{* *}$ has $s-1$ factors with $2^{r-2} \leq s-1 \leq 2^{r-1}-1$ and among them there are h ones to be independent. Note that, when the range of S is over all the designs with resolution at least $I V$, then the range of $S^{* *}$ is over all the designs with $s-1$ factors. By the structure of $F_{q(h+1)}$, Lemma 8 and the condition of $\bar{g}(S)$ being minimized, we have

$$
\begin{aligned}
\bar{g}(S) & =\bar{g}\left(S^{*}\right)=\#\left\{\gamma: \gamma \in H_{q} \backslash S^{*}, B_{2}\left(S^{*}, \gamma\right)>0\right\} \\
& =\#\left\{\gamma: \gamma \in H_{h}, B_{2}\left(S^{*}, \gamma\right)>0\right\} \\
& =\#\left\{\gamma: \gamma \in H_{h} \backslash S^{* *}, B_{2}\left(S^{*}, \gamma\right)>0\right\}+\#\left\{\gamma: \gamma \in S^{* *}, B_{2}\left(S^{*}, \gamma\right)>0\right\} \\
& =\#\left\{\gamma: \gamma \in H_{h} \backslash S^{* *}, B_{2}\left(S^{* *}, \gamma\right)>0\right\}+(s-1) \\
& =\bar{g}\left(S^{* *}\right)+(s-1) .
\end{aligned}
$$

Thus, $\bar{g}\left(S^{* *}\right)$ is minimized too. According to Part (a) of the theorem, $S^{* *}$ can only have $r-1$ independent factors, contradicting to it having $h(\geq r)$ independent factors. This contradiction finishes the proof of the first half of Part (b).

Next, we consider the proof of the second half of Part (b). Now the S has r independent factors. Suppose the S has the form of (5) with $h=r-1$, and define S^{*} as above. Butler (2003) noticed that if $A_{i}(S)=0$ for all odd numbers i 's, then $S \subset F_{q r}$. Therefore, to finish the proof of the second half, it is sufficient to prove that $A_{i}(S)=0$ for all odd numbers i 's. If not, according to Lemma 9 and the assumption that S has resolution at least $I V$, we have $A_{5}(S)>0$. In the following we prove that if $A_{5}(S)>0$, then $\bar{g}\left(S^{*}\right)<\bar{g}(S)$ which is a contradiction to the assumption that $\bar{g}(S)$ is minimized. By Lemma 8 and its proof, it suffices to show that there exists a $\gamma \in H_{r-1}$ such that $B_{2}\left(S^{*}, \gamma\right)>0, \gamma \notin S$ with $B_{2}(S, \gamma)>0$ and $a \gamma \notin S$ with $B_{2}(S, a \gamma)>0$.

Without loss of generality, we assume the factor a appears in the defining word with length 5. By the structure of S, there are two possibilities for this defining word with length 5 : one is that, besides a one more factor is from Q_{1} and the other three factors are from Q, and the other is that, besides a three more factors are from Q_{1} and the other one factor is from Q. After a suitable relabelling, we denote these two possibilities as

$$
I=a\left(a b_{1}\right) d_{1} d_{2} d_{3}, \quad \text { where } a b_{1} \in Q_{1},\left\{d_{1}, d_{2}, d_{3}\right\} \subset Q
$$

and

$$
I=a\left(a b_{1}\right)\left(a b_{2}\right)\left(a b_{3}\right) d_{1}, \quad \text { where }\left\{a b_{1}, a b_{2}, a b_{3}\right\} \subset Q_{1}, d_{1} \in Q
$$

For the first case, let $\gamma=b_{1} d_{1}=d_{2} d_{3}$. We can verify that $B_{2}\left(S^{*}, \gamma\right)>0$ and $B_{2}(S, \gamma)>0$. Note that $a \gamma=\left(a b_{1}\right) d_{1}$, where $a b_{1} \in Q_{1} \subset S$ and $d_{1} \in Q \subset S$. Therefore, we have $B_{2}(S, a \gamma)>0$. Since the S has resolution $I V, \gamma \notin S$ and $a \gamma \notin S$. For the second case, let $\gamma=\left(a b_{1}\right)\left(a b_{2}\right)=b_{3} d_{1}$ and the proof is similar as the first case. Hence the claim that $S \subset F_{q r}$ is proved. Noting that $F_{q r}$ and T_{r} are isomorphic, then the second half of Part (b) follows.

Proof of Part (c)
We first prove that the four designs consisting of the first or last s columns of $F_{q r}$ or T_{r} are isomorphic. Suppose that $F_{q r}^{\prime}$ consists of the 2^{r-1} columns in $F_{q r}$ in a contrary order. Then we can easily validate

$$
F_{q r}=\left\{q, q H_{r-1}\right\} \text { and } F_{q r}^{\prime}=\left\{12 \cdots(r-1) q, 12 \cdots(r-1) q H_{r-1}\right\},
$$

which mean that, the design consisting of the first s columns of $F_{q r}$ and the one consisting of the last s columns of $F_{q r}$ are isomorphic. Similarly, the design consisting of the first s columns of T_{r} and the one consisting of the last s columns of T_{r} are isomorphic. When $F_{q r}$ and T_{r} are written in Yates order, from the structures of $F_{q r}$ and T_{r}, we have that the design consisting of the first s columns of T_{r} and the one consisting of the first s columns of $F_{q r}$ are isomorphic. Therefore the four designs consisting of the first or last s columns of $F_{q r}$ or T_{r} are isomorphic.

Suppose that S is a design with s factors and maximizes the sequence (2.4) among all the designs with resolution at least $I V$ and s factors, where $2^{r-2}+1 \leq s \leq 2^{r-1}$ for some $r \leq q$. By the above analysis, proving Part (c) is equivalent to showing that the unique choice of such S is the design consisting of the first s columns of $F_{q r}$. In the following we use the mathematical induction to prove this point.

Firstly, we show it holds for $r \leq 3$. According to the result of Part (b) just proved, we have $S \subset F_{q r}$. When $s=1,2,3$, under isomorphism, the unique choices of such S are $\{a\}$, $\{a, 1 a\}$ and $\{a, 1 a, 2 a\}$, respectively. Here we remind the mention in Section 2 about resolution at least $I V$ when all the s factors are independent even $s \leq 3$. When $s=4$, according to Part (b) proved above, the number of independent factors in such S is 3 and the choice of S is only $\{a, 1 a, 2 a, 12 a\}$. So, for the four cases of s, such design S is the only one that consists of the first s columns of $F_{q r}$. Thus the result follows for $r \leq 3$.

Next, assume that, for $r \leq k$, the fact that the design maximizing (2.4) in all the designs with s factors and resolution at least $I V$ uniquely consists of the first s columns in $F_{q r}$ is true, and come to prove that for $r=k+1$ the fact is true too. By Part (b) of the theorem, we have $S \subset F_{q(k+1)}$. Note that, by Lemma 1 (a) with q being taken as $k+1$ and the condition $2^{k-1}+1 \leq s \leq 2^{k}$, for any $\gamma \in H_{k}$, we have

$$
B_{2}(S, \gamma)=B_{2}\left(F_{q(k+1)} \backslash S, \gamma\right)+s-2^{k-1} \geq 1
$$

and hence $\bar{g}(S)=2^{k}-1$, which is a constant. Therefore, maximizing (2.4) is equivalent to maximizing ${ }_{2}^{\#} C_{2}(S)$. By Lemma 1 (c) with q being taken as $k+1$, we know that maximizing ${ }_{2}^{\#} C_{2}(S)$ is equivalent to maximizing the sequence

$$
\begin{equation*}
\left\{-\bar{g}\left(F_{q(k+1)} \backslash S\right),{ }_{2}^{\#} C_{2}\left(F_{q(k+1)} \backslash S\right)\right\} \tag{7}
\end{equation*}
$$

Note that, when $r=k+1$, by the assumptions in Part (c) we have $2^{k-1}+1 \leq s \leq 2^{k}$ and the number of factors in $F_{q(k+1)} \backslash S$ is smaller than 2^{k-1}. Applying the inductive assumption for $r \leq k$, if $F_{q(k+1)} \backslash S$ consists of the first $2^{k}-s$ columns in $F_{q(k+1)}$, it uniquely maximizes the sequence (7). As we already proved at the beginning of this part, the design consisting of the last $2^{k}-s$ columns in $F_{q(k+1)}$ columns and the one consisting the first $2^{k}-s$ columns in $F_{q(k+1)}$ columns are isomorphic. Therefore if we choose $F_{q(k+1)} \backslash S$ to be the one consisting of the last $2^{k}-s$ columns in $F_{q(k+1)}$, then it also maximizes the sequence (7). In this way, the unique choice of such S is the set of the first s columns in $F_{q(k+1)}$, which means that, the result is true for $r=k+1$ and hence it is true for all $r \leq q$ by the mathematical induction. This completes the proof of Part (c).

Up to now, the proofs of all the three parts of Theorem 1 are finished.

References

Butler, N. A. (2003). Some theory for constructing minimum aberration fractional factorial designs. Biometrika 90, 233-238.

Department of Mathematical and Statistical Sciences, University of Alberta Edmonton, AB T6G 2G1, Canada
E-mail: pengfei@stat.ualberta.ca
School of Mathematical Sciences, Qufu Normal University, Qufu 273165, China
E-mail: zhaoshli758@126.com
LPMC and School of Mathematical Sciences, Nankai University, Tianjin 300071, China
KLAS and School of Mathematics and Statistics, Northeast Normal University, Changchun 130024, China
E-mail: zhrch@nankai.edu.cn, rczhang@nenu.edu.cn

[^0]: * Corresponding author, Emails: zhrch@nankai.edu.cn, rczhang@nenu.edu.cn.

