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Abstract: We consider the problem of estimating the derivative of the expected

response in nonlinear regression models. It is demonstrated that in many cases the

optimal designs for estimating the derivative have either on m or m − 1 support

points, where m denotes the number of unknown parameters in the model. It is

also shown that the support points and weights of the optimal designs are analytic

functions, and this result is used to construct a numerical procedure for the calcu-

lation of the optimal designs. The results are illustrated in exponential regression

and rational regression models.
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1. Introduction

Nonlinear regression models are widely used to describe the dependencies
between a response and an explanatory variable (see e.g., Ratkowsky (1983)). In
these models the problem of experimental design has found considerable inter-
est. Many authors have discussed the problem of determining optimal designs for
parameter estimation in nonlinear regression models (see for example Chernoff
(1953) for an early, and He, Studden and Sun (1996) for a recent reference). Ro-
bust design strategies have been proposed by Chaloner and Larntz (1989), Dette
(1997) and Müller and Pázman (1998) using a Bayesian or minimax approach.
Most of the literature concentrates on optimal designs maximizing a functional of
the Fisher information matrix for the parameters in the model, which is related
to the problem of estimating the response function most precisely.

The present paper is devoted to the problem of optimal designing of ex-
periments for estimating the derivative of the expected response in a nonlinear
regression model. Some motivation for this problem can be found in the pioneer-
ing work of Atkinson (1970), and the problem has subsequently been taken up
by many other authors (see e.g., Murty and Studden (1972), Mukerjee and Huda
(1985), and Melas, Pepelyshev and Cheng (2003), among others). While most
of these papers consider linear regression models, we take a closer look at design
problems of this type in the context of nonlinearity. In particular we consider the
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problem of constructing locally optimal designs for a class of nonlinear regression
models of the form

Y = η(t, a, b) + ε =
k∑

i=1

aiϕ(t, bi) + ε , (1.1)

where ϕ is a known function, the explanatory variable t varies in an interval
T ⊂ R, ε denotes a random error with mean zero and constant variance, and
λ = (a1, . . . , ak, b1, . . . , bk)T ∈ R2k denotes the vector of unknown parameters
in the model. The problem of designing experiments for models of the form
(1.1) has been studied by Melas (2006) and Dette, Melas and Pepelyshev (2006),
who considered the case of exponential models. Another popular class is that of
rational regression models because of their appealing approximation properties
(see Petrushev and Popov (1987) for some theoretical properties, and Ratkowsky
(1983) for an application of this model). Optimal design problems for estimation
of all parameters have been discussed in Dette, Melas and Pepelyshev (2004a).

The present work considers the problem of designing experiments for the
estimation of the derivative of the expected response, at a given point x, in models
of the form (1.1). In Section 2 we present some general results for this problem.
It is shown that the support points and weights of the locally optimal designs
in the regression model (1.1) are analytic functions of the point x where the
derivative has to be estimated. This result is used to provide a Taylor expansion
for the weights and support points as functions of x, which can easily be used
for numerical calculation of the optimal designs. Section 3 considers the case of
exponential regression models, while rational functions are discussed in Section
4. We use a general method to determine numerically the optimal design for
estimating the derivative, and study their properties. In particular, it is shown
that the optimal designs for estimating the derivative of the expected response at
the point x have either 2k or 2k−1 support points. Moreover, the locally optimal
designs are rather robust with respect to changes in the nonlinear parameters.

2. Optimal Designs for Estimating the Derivative

Consider the regression model at (1.1), where the design space is the interval
T = [T0, T1], T1 ∈ (0,∞) and 0 ≤ T0 < T1. We assume that for each t ∈ T

an observation Y could be made, where different observations are assumed to
be independent with the same variance, say σ2 > 0. We call any probability
measure ξ = {t1, . . . , tn−1, tn; ω1, . . . , ωn−1, ωn} with finite support t1, . . . , tn ∈ T,

ti 6= tj(i 6= j), and masses ωi > 0,
∑n

i=1 ωi = 1 an experimental design. If N

experiments can be performed, a rounding procedure is applied to obtain the
samples sizes Ni ≈ wiN at the experimental conditions ti, i = 1, . . . , n such that
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i=1 Ni = N (see e.g., Pukelsheim (1993)). The information matrix of a design

ξ for the model (1.1) is

M(ξ, λ) =
∫

T
f(t, λ)fT (t, λ)dξ(t) , (2.1)

where

f(t, λ) =
∂η(t, λ)

∂λ
= (f1(t, λ), . . . , f2k(t, λ))T (2.2)

is the vector of partial derivatives of the response function with respect to the
parameter λ = (a1, . . . , ak, b1, . . . bk)T . It is well known that for uncorrelated
observations (obtained from approximate designs using an appropriate rounding
procedure) the covariance matrix of the least squares estimator for the param-
eter λ is approximately proportional to the inverse of the information matrix.
Consequently, an optimal design maximizes (or minimizes) an appropriate con-
cave (or convex) function of the information matrix or its inverse, and there are
numerous optimality criteria that can be used to discriminate among competing
designs (see Pukelsheim (1993)).

Most optimality criteria reflect the problem of efficient parameter estimation.
If the estimation of the derivative η′(x, λ), i.e., the gradient of η(t, λ) with respect
to t at the point t = x, is of interest, a common estimate is η̂ = η′(x, λ̂), where
λ̂ denotes the nonlinear least squares estimate. A straightforward application of
the delta method now shows that the variance of this estimate is approximately

Var(η̂) =
σ2

N

(
f ′(x, λ)

)T
M−(ξ, λ)f ′(x, λ) · (1 + o(1)),

where it is assumed that the vector f ′(x, λ) = (f ′
1(x, λ), . . . , f ′

2k(x, λ))T is es-
timable by the design ξ, i.e. f ′(x, λ) ∈ Range (M(ξ, λ)) and f ′(x, λ) = ∂

∂xf(x, λ).
Throughout, we take

Φ(x, ξ, λ) =

{
(f ′(x, λ))T M−(ξ, λ)f ′(x, λ) if f ′(x, λ) ∈ Range (M(ξ, λ)),

∞ else.
(2.3)

as the term depending on the design ξ in this expression, and call a design ξ∗

minimizing Φ(x, ξ, λ) in the class of all (approximate) designs satisfying f ′(x, λ) ∈
Range (M(ξ, λ)) optimal for estimating the derivative of the expected response
in model (1.1). Note that the criterion (2.3) corresponds to a c-optimal design
problem in the linear regression model θT f(t, λ), which has found considerable
interest in the literature. In particular, it follows that there always exists an
optimal design for estimating the expected derivative with at most 2k support
points (Fellmann (1974), Pukelsheim (1993, Chap. 8.3)). Moreover, the criterion
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depends on the parameter λ and, following Chernoff (1953), we assume that a
preliminary guess for this parameter vector is available.

Throughout this paper we assume that the functions f1, . . . , f2k constitute
a Chebyshev system on the interval T (see Karlin and Studden (1966)). Recall
that a set of functions g1, . . . , gm : T → R is called a weak Chebyshev system (on
the interval T ) if there exists an ε ∈ {−1, 1} such that

ε ·

∣∣∣∣∣∣∣
g1(t1) . . . g1(tm)

...
. . .

...
gm(t1) . . . gm(tm)

∣∣∣∣∣∣∣ ≥ 0 (2.4)

for all t1, . . . , tm ∈ T with t1 < . . . < tm. If the inequality in (2.4) is strict, then
{g1, . . . , gm} is called Chebyshev system. It is well known (see Karlin and Studden
(1966, Thm. II 10.2)) that if {g1, . . . , gm} is a weak Chebyshev system, then
there exists a unique function

∑m
i=1 c∗i gi(t) = c∗T g(t), gT (t) = (g1(t), . . . , gm(t)),

satisfying

|c∗T g(t)| ≤ 1 ∀ t ∈ T, (2.5)

there exist m points s1 < . . . < sm such that c∗T g(si)=(−1)i i=1, . . . ,m. (2.6)

The function c∗T g(t) is called Chebyshev polynomial, the points s1, . . . , sm are
called Chebyshev points and need not be unique. They are unique if 1 ∈
span{g1, . . . , gm},m ≥ 1 and T is a bounded and closed interval, where in this
case s1 = mint∈T t, sm = maxt∈T t. It is well-known (see Studden (1968)) that in
many cases c-optimal designs are supported at Chebyshev points.

To formulate one of our basic results we need the concept of an extended
Chebyshev system of order 2. For this purpose let t1 ≤ . . . ≤ tm denote m points
in T , where equality occurs at most at two consecutive points. Consider the
determinant

U∗
(

1 . . . m

t1 . . . tm

)
= det(g(t1), . . . , g(tm)),

where the two columns g(ti), g(ti+1) are replaced by g(ti), g′(ti+1) if the points ti
and ti+1 coincide. The functions g1(t), . . . , gm(t) generate an extended Chebyshev
system of order 2 on the set T if and only if

U∗
(

1 . . . m

t1 . . . tm

)
> 0

for all t1 ≤ · · · ≤ tm (tj ∈ T ; j = 1, . . . ,m), where equality occurs at most at two
consecutive points tj . Note that under this assumption any linear combination
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i=1 αigi(t) (α1, . . . , αm ∈ R,

∑m
i=1 α2

i 6= 0) has at most m − 1 roots in T ,
where multiple roots are counted twice regardless of multiplicity (see Karlin and
Studden (1966, Chap. 1)).

We begin with the result that the optimal design for estimating the deriva-
tive in the nonlinear regression model (1.1) only depends on the “nonlinear”
parameters b1, . . . , bk of the model. The proof is straightforward and therefore
omitted.

Lemma 1. In the nonlinear regression model (1.1) the optimal design for esti-
mating the derivative of the expected response at a point x does not depend on
the parameters a1, . . . , am.

Our next result specifies the number of support points of the locally optimal
design for estimating the derivative of the expected response in the nonlinear
regression model (1.1). A proof of this result is omitted because it can be obtained
by exactly the arguments in Dette, Melas and Pepelyshev (2009), who proved a
similar result.

Theorem 1. Assume that the functions f1, . . . , f2k defined in (2.2) form an
extended Chebyshev system of order 2 on the interval T , then the number of
support points of any optimal design for estimating the derivative of the expected
response in the nonlinear regression model (1.1) is at least 2k − 1. Moreover, if
the number of support points is 2k, then these points must be Chebyshev points
with at least one point that coincides with a boundary of the design interval. If the
constant function is an element of span{f1, . . . , f2k} then the number of support
points is at most 2k .

Remark 1. If the design has 2k support points it follows by standard argu-
ments of optimal design theory (see for example Pukelsheim and Torsney (1991),
Pukelsheim (1993)) that the weights at the support points are

ω∗
i =

|eT
i F−1f ′(x, λ)|∑2m

i=1 |eT
i F−1f ′(x, λ)|

, i = 1, . . . , 2k, (2.7)

where eT
1 = (1, 0, . . . , 0), . . . , eT

2k = (0, . . . , 0, 1) denote the standard basis of R2k,
the 2k × 2k matrix F is given by F = (f(s1, λ), . . . , f(s2k, λ)), and s1, . . . , s2k

denote the support points of the optimal design. Moreover, it follows from The-
orem 1 that the support points do not depend on the particular point x where
the estimation of the derivative has to be performed.

For the construction of the locally optimal designs for estimating the deriva-
tive we use the functional approach, described in Melas (2006), that allows us to
calculate support points and weights of the optimal design ξ∗x for estimating the
derivative as a function of the point x. We assume that the number of support
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points of the design ξ∗x is constant, say n ∈ N, for all x contained in some interval,
say [a∗, b∗). Then either n = 2k − 1 or 2k, and the smallest or largest support
point of the design can be a boundary point of the design space T , a total of
eight possible scenarios. All cases can be studied in a similar fashion.

To be specific, take the smallest support point to be the left endpoint, t1 =
T0, and the largest support point to be an interior point of [a∗, b∗). We write the
design ξ∗x as the vector

Θ = Θ(ξ∗x) = (t2, . . . , tn, ω1, . . . , ωn−1)T .

Note that since ωn = 1 −
∑n−1

i=1 ωi there is one-to-one correspondence between
designs with t1 = T0 and vectors Θ. Fix λ, let Ψ(x,Θ) = Φ−1(x, ξ∗x, λ), and
consider the system of equations

∂Ψ(x,Θ)
∂Θ

= 0. (2.8)

Clearly the optimal design ξ∗x is a solution of the system (2.8). The Jacobi matrix
of the system is

J(x,Θ) =
(

∂2

∂Θi∂Θj
Ψ(x,Θ)

)2n−2

i,j=1

∈ R(2n−2)×(2n−2). (2.9)

If the Jacobi matrix is nonsingular, at some point x0, then, by a straightfor-
ward application of the Implicit Function Theorem (see e.g., Gunning and Rossi
(1965)), in a neighbourhood of this point there exists an analytic function Θ∗(x)
that is a solution at (2.8) and the locally optimal design for estimating the deriva-
tive in the nonlinear regression model. Moreover, if one is able to find a solution
Θ∗(x0) of this system at a particular point x = x0, then one can construct a
Taylor expansion for the support points and weights of Θ∗(x) of the optimal
design for all x in a neighbourhood of x0. The coefficients of this expansion can
be determined recursively, as proved by Dette, Melas and Pepelyshev (2004b).

Theorem 2. If the Jacobi matrix at (2.9) is nonsingular at x0 ∈ (−∞,∞) with
Θ = Θ∗(x0), then the coefficients Θ∗(j, x0) of the Taylor expansion

Θ∗(x) = Θ∗(x0) +
∞∑

j=1

1
j!

· Θ∗(j, x0)(x − x0)j

in the neighbourhood of x0 can be obtained recursively as

Θ∗(s + 1, x0) = −J−1(x0,Θ∗(x0))
(

d

dx

)s+1

h(Θ̃∗
(s)(x), x) |x=x0 , s = 0, 1, . . . ,
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where

Θ̃∗
(s)(x) = Θ∗(x0) +

s∑
j=1

1
j!

· Θ∗(j, x0)(x − x0)j ,

h(Θ̃, x) =
∂

∂Θ
Ψ(x,Θ) |

Θ=eΘ
.

From the next result, we get that the coefficients in the Taylor expansion
of the function Θ∗(x), which represents the support points and weights of the
locally optimal design for estimating the derivative of the expected response at
the point x, can be obtained by the recursive formulas of Theorem 2. The result
is proved in the Appendix.

Theorem 3. The Jacobi matrix at (2.8) is nonsingular, whenever the optimal
design for estimating the derivative in the nonlinear regression model (1.1) has
n = 2k or 2k − 1 support points.

If the assumptions of Theorem 2 and Theorem 3 are satisfied, the functional
approach can be easily used for constructing any optimal design for estimating
the derivative in the nonlinear regression model (1.1). In the following sections
we illustrate this with two examples.

3. Optimal Designs for Estimating the Derivative in Exponential Re-
gression Models

For the special choice ϕ(t, bi) = exp(bit) the nonlinear regression model re-
duces to the exponential regression model

Y = η1(t, λ) + ε =
k∑

i=1

ai exp(bi t) + ε, (3.1)

where λ = (a1, b1, a2, b2, . . . , ak, bk)T denotes the vector of unknown parameters,
and we assume that the explanatory variable varies in the interval T = [0, T1].
It is easy to see that this model satisfies the assumptions of Theorem 3.

To illustrate our general procedure, we considered (3.1) for k = 2, and con-
structed locally optimal designs for estimating the derivative in this model by the
functional approach. The vector of parameters is given by λ = (1, 0.5, 1, 1)T and
the design interval is T = [0, 1]. There are two types of optimal designs: a design
with four support points including the boundary points of the design space; a
design with three support points 0 ≤ t∗1(x) < t∗2(x)) < t∗3(x) ≤ 1. To begin with,
we take x0 = 0. The optimal design ξ∗(0) has masses 0.3509, 0.4438, 0.1491, and
0.0562 at the points 0, 0.3011, 0.7926, and 1, respectively.
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Figure 1. The points (left) and weights (right) of the optimal design for
estimating the derivative of the expected response in the nonlinear regression
model (3.1) at the point x ∈ [0, 2.7]. The design interval is [0, 1], k = 2, and
the vector of parameters is λ = (1, 0.5, 1, 1)T .

By Theorem 2 the design is of this form in a neighbourhood of the point x0,
where the support remains unchanged. We can then use the representation of
the weights. See Remark 2.1 to determine the point where the type of the design
changes. Thus the minimal point x1 > x0 = 0 such that one of the equations
ω∗

i = 0, (i = 1, . . . , 4) is satisfied, ω∗
i as at (2.7) is x1 = 0.1457; in the interval

I0 = [x0, x1) the Jacobi matrix is non-singular and we can use Theorem 2 to
determine the coefficients in the Taylor expansion of the function Θ∗(x). Note
that there is an interval I1 = (x1, x2) such that, for x ∈ I1, the optimal design for
estimating the derivative in the exponential regression model (3.1) at the point
x has only three support points. The points and weights are now obtained by a
further Taylor expansion and the procedure is continued for the other intervals.
The weights and points are depicted in Figure 1 as a function of x, where the
derivative is to be estimated. We observe that the type of design changes several
times, when x varies in the interval [0, 2.7]. In particular, there are four support
points if x ∈ [0, 0.1457] ∪ [0.5001, 0.5875] ∪ [0.9092, 2.7]

In this example the vector of parameters required for the calculation of the
locally optimal design was fixed and we have varied x. We also studied the
sensitivity of the locally optimal design with respect to the choice of the initial
parameters and found the locally optimal designs to be rather robust with respect
to changes in the initial parameter b1 and b2.

The D-optimal design is efficient for estimating the parameters. By the
Equivalence Theorem of Kiefer and Wolfowitz (1960), it is also (minimax-) effi-
cient for estimating the expected response. We look at its efficiency for estimating
the derivative of the expected response. Let

eff(x, ξ1, ξ2, λ) =
Φ(x, ξ2, λ)
Φ(x, ξ1, λ)

, (3.2)
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Figure 2. The efficiency of the D-optimal design relative to the optimal
design for estimating the derivative of the expected response. The design
interval is [0, 1], k = 2, and the vector of parameters is λ = (1, 0.5, 1, 1). Left
panel: the exponential model (3.1) for x ∈ [0, 2.7]; right panel: the rational
model (4.1) for x ∈ [0, 6.2].

be the efficiency of the design ξ1 relative to the design ξ2. These efficiencies
depend on the particular point x where the estimation of the derivative is per-
formed, and on the nonlinear parameters in the model. We first fix the vector
of parameters at λ = (1, 0.5, 1, 1)T and vary the point x. The corresponding
efficiencies of the D-optimal design are depicted in the left part of Figure 2. We
observe that the efficiency is first decreasing to values smaller than 55%, but for
larger x the D-optimal design is rather efficient. It is interesting to note that
the lowest efficiencies are obtained for those values of x where the type of the
design changes. Corresponding results for a fixed x = 0 and various combinations
of the nonlinear parameters (b1, b2) are shown in Table 1. We observe that the
efficiencies are approximately 72% and do not change substantially with (b1, b2).

4. Optimal Designs for Estimating the Derivative in Rational Regres-
sion Models

For ϕ(t, bi) = 1/(bi + t), the nonlinear regression model (1.1) reduces to the
rational regression model

Y = η2(t, λ) + ε =
k∑

i=1

ai

t + bi
+ ε, (4.1)

where λ = (a1, b1, a2, b2 . . . , ak, bk)T are the unknown parameters, and the ex-
planatory variable varies in the interval T = [0, T1]. This model satisfies the
assumptions of Theorem 3. Again we consider k = 2, and construct locally op-
timal designs for estimating the derivative of the expected response using the
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Table 1. The efficiency of the D-optimal design relative to the optimal design
for estimating the derivative of the expected response in the exponential
model (3.1) at the point x = 0. The design interval is [0, 1], k = 2, and
various combinations of the nonlinear parameters (b1, b2) are considered.

b1/b2 0.1 0.2 0.3 0.4 0.5 1 1.5 2 5
0.1 - 0.7234 0.7235 0.7233 0.7233 0.7230 0.7223 0.7212 0.7015
0.2 0.7228 - 0.7226 0.7233 0.7232 0.7235 0.7230 0.7222 0.7049
0.3 0.7233 0.7241 - 0.7238 0.7239 0.7239 0.7238 0.7232 0.7071
0.4 0.7232 0.7233 0.7234 - 0.7220 0.7243 0.7245 0.7241 0.7102
0.5 0.7231 0.7235 0.7237 0.7261 - 0.7248 0.7251 0.7251 0.7126
1 0.7230 0.7235 0.7239 0.7244 0.7248 - 0.7282 0.7295 0.7240

1.5 0.7224 0.7230 0.7238 0.7244 0.7252 0.7281 - 0.7328 0.7287
2 0.7212 0.7222 0.7232 0.7241 0.7251 0.7295 0.7333 - 0.7163
5 0.7015 0.7049 0.7072 0.7102 0.7126 0.7240 0.7287 0.7163 -

functional approach. The design interval is [0, 1]. The locally optimal designs
are either three or four point designs where, in the latter case, observations
have to be taken at 0 and 1. For λ = (1, 0.5, 1, 1)T and x = 0, the locally
optimal design ξ∗(0) for estimating the derivative of the expected response in
the model (4.1) has weights 0.3509, 0.4419, 0.1479, and 0.0597 at the points
0, 0.0952, 0.4707, and 1, respectively. For x < 0.0574 the optimal design is of
the same structure, but for x > 0.0574 a three point design is optimal as long
as x < 0.1973. The weights and points of the optimal design for estimating the
derivative in the rational regression model (4.1) are depicted in Figure 3. We
observe that the type of design changes several times. In particular the opti-
mal design for the rational regression model (4.1) is supported at four points
whenever x ∈ [0, 0.0574] ∪ [0.1973, 0.2801] ∪ [0.6973, 3.0176] ∪ [4.4786,∞).

A study of the sensitivity of the locally optimal design to the initial parame-
ters b1 and b2 shows similar results as in the exponential case. We observe again
that the design is rather stable with respect to the changes in the parameters.

Finally we consider the efficiency of the D-optimal design for estimating
the derivative of the expected response in the regression model (4.1). First we
fix λ = (1, 0.5, 1, 1)T and take x ∈ [0, 6.2]. The efficiencies are depicted in
the right part of Figure 2. For values of x where the type of design changes,
efficiencies are smaller than 50%, while the largest efficiencies are approximately
80%. The efficiencies of the D-optimal design when x = 0 for various values of
the parameters b1 and b2 show a similar behaviour as in the case of exponential
regression. All efficiencies vary between 70% and 75%.
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Figure 3. The points (left) and weights (right) of the optimal design for
estimating the derivative of the expected response in the rational model
(4.1) at a point x ∈ [0, 7]. The design interval is [0, 1], k = 2, and λ =
(1, 0.5, 1, 1)T .
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Appendix: Proof of Theorem 3

We only consider the case n = 2k−1 and t∗1 = T0, the other cases are treated
similarly. An application of Cauchy’s inequality yields

Φ(x, ξ, λ)=f ′(x, λ)T M−(ξ, λ)f ′(x, λ)= sup
q∈R2m

(qT f ′(x, λ))2

qT M(ξ, λ)q
=

(q∗(ξ)Tf ′(x, λ))2

q∗(ξ)TM(ξ, λ)q∗(ξ)
,

where the last identity defines the vector q∗ in an obvious manner and, without
loss of generality, q∗2k = 1.

Let

Φ̄−1(x, q, ξ, λ) =
qT M(ξ, λ)q
(qT f ′(x, λ))2

, q ∈ R2k,

Θ̂ = (q1, . . . , q2k−1, t2, . . . , t2k−1, ω2, . . . , ω2k−1)T ,

Θ = (t2, . . . , t2k−1, ω2, . . . , ω2k−1)T .
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Note that we consider the case where the point a is a support point of the
optimal design. Note also that Φ(x, ξ, λ) = Ψ(x, q, ξ, λ), where q = q∗(ξ). Fix λ
and write Ψ̄(x, Θ̄) = Φ̄−1(x, q, ξ, λ). Denote by J the Jacobi matrix of the system
of equations in (2.8) and by Ĵ the Jacobi matrix of the system

∂Ψ̄(x, Θ̄)

∂Θ̂
= 0. (A.1)

Note that the non-singularity of J follows from the non-singularity of Ĵ .

More precisely, we have that J = GT ĴG, where GT = (I
...R) ∈ R4k−4×6k−5, I is

the identity matrix of size (4k − 4) × (2k − 4), and R is a (4k − 4) × (2k − 1)
matrix.

Note that G has full rank. Therefore if Ĵ is nonsingular, J is also nonsingular.
To show that Ĵ is nonsingular we use the formulas

∂2

∂x2

(
U(x, y)
V (x)

)
=

∂2U(x,y)
∂x2

V (x)
− 2

∂U(x,y)
∂x

∂V (x)
∂x

V (x)2
+ 2

U(x, y)
(

∂V (x)
∂x

)2

V (x)3

−
U(x, y)∂2V (x,y)

∂x2

V (x)2
,

∂

∂x

(
U(x, y)
V (x)

)
=

∂U(x,y)
∂x

V (x)
−

U(x, y)∂V (x)
∂x

V (x)2
,

∂2

∂x∂y

(
U(x, y)
V (x)

)
=

∂2U(x,y)
∂x∂y

V (x)
−

∂U(x,y)
∂y

∂V (x)
∂x

V (x)2
.

With the notation U(q,Θ) = qT M(ξ, λ)q, V (q) = (qT f ′(x, λ))2,
c1 = (V (q∗(ξ∗)))−1, and c2 = U(q∗(ξ∗), Θ∗)c1, and observing the condition

∂

∂q

(
U(q, Θ)
V (q)

) ∣∣∣∣
q=q∗

= 0

we obtain the identity

∂2

∂q2

(
U(q, Θ)
V (q)

)
|q=q∗ =

∂2U(q,Θ)
∂q2

V (q)
−

U(q, Θ)∂2V (q,Θ)
∂q2

V (q)2

∣∣∣∣
q=q∗

.

Similarly, the condition

∂

∂Θ

(
U(q,Θ)
V (q)

) ∣∣∣∣
Θ=Θ∗

=
∂U(q,Θ)

∂Θ

V (q)

∣∣∣∣
Θ=Θ∗

= 0

yields
∂2

∂q∂Θ

(
U(q,Θ)
V (q)

) ∣∣∣∣
bΘ=bΘ∗

= c1
∂2U(q, Θ)

∂q∂Θ

∣∣∣∣
bΘ=bΘ∗

,
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The derivatives can now be easily calculated, namely

∂2

∂q2

(
U(q,Θ)
V (q)

) ∣∣∣∣
bΘ=bΘ∗

= c1M(ξ∗, λ) − c2c1f
′(x)f ′(x)T .

We now prove that this matrix is nonnegative definite. Note that for any vector
p such that p 6= q∗(ξ∗) and pT f ′(x)f ′(x)T p 6= 0,

pT (c1M(ξ∗, λ) − c2c1f
′(x)f ′(x)T )p = c1(pT f ′(x))2

(
pT M(ξ∗, λ)p
(pT f ′(x))2

− c2

)
> 0.

In particular, if p = q∗(ξ∗) then it follows that

c1q
∗(ξ∗)T M(ξ∗, λ)q∗(ξ∗) − c2c1(q∗(ξ∗)T f ′(x))2 = c2 − c2 = 0.

Consequently, the Jacobi matrix is given by

Ĵ =

 D c1B
T
1 c1B

T
2

c1B1 c1E 0
c1B2 0 0

 ,

where D is obtained from the matrix D̂ = c1(M(ξ∗, λ) − c2f
′(x)f ′(x)T ) ≥ 0 by

deleting the last column and row, and B1, B2, and E are the same as in Dette,
Melas and Pepelyshev (2004b, p.208). In that paper a polynomial regression is
considered, but all arguments require only the Chebyshev properties of polyno-
mials.

Repeating the arguments from that paper we find that Ĵ is a nonsingular
matrix. The assertion of the theorem follows.
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