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Abstract: In practice, some coefficients in generalised varying coefficient models may

be constant. We pay a price on the variance side of an estimator when constant

coefficients are treated as special functions. This prompts the question of how to

identify the constant coefficients. This is basically a model selection problem. In

this paper, we use cross-validation (CV) as a criterion for model selection to identify

the constant coefficients. We investigate the asymptotic properties of the proposed

CV-based model selection approach. We report on a simulation study conducted

to show how well the proposed method works when sample size is finite. Finally,

the proposed method is used to analyse a data set from China about contraceptive

use, which leads to some interesting findings.
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1. Introduction

Semiparametric modelling is a promising modelling strategy, it makes use
of the prior information through its parametric component and the flexibility
of model specification is enhanced by the nonparametric ingredient. Among
many semiparametric models, the varying coefficient models are appealing due to
their flexibility and interpretability. There is much literature addressing varying
coefficient models, to include Fan and Huang (2005), Fan and Zhang (1999, 2000),
Fan, Huang and Li (2007), Li and Liang (2008), Qu and Li (2006), Wang, Li,
and Huang (2008), Wang and Xia (2009), Wang, Kai, and Li (2009), Sentürk
and Müller (2006), Sun, Zhang and Tong (2007), Xia and Li (1999), Zhang, Lee,
and Song (2002), and the references therein.

Varying coefficient models extend naturally to generalised varying coeffi-
cient models, for which there is strong demand from practice. In particular,
these models are used in the analysis of the data set that stimulates this paper.
The data set is from China about contraceptive use there during January 1980
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to July 1988, when women were encouraged to use contraceptives to postpone
giving birth. The womens attitude towards contraceptive use in China is vary-
ing across different age groups, levels of education, occupations, ethnic groups.
Also, whether a woman previously used the contraceptive may affect her rate of
contraceptive failure. Age, education, occupation, and ethnic group are some of
the many factors contributing to the failure rate of contraceptive in China. To
explore how the factors affect the failure rate, logistic regression models are tra-
ditionally employed. However, these may not work well when coefficients, which
can be interpreted as the impacts of the factors concerned, are assumed to be
constant when they are not. China has been changing, and the impacts of the
factors involved likely change over time. To take time into account, for example,
the simplest way is to replace the constant coefficients in the traditional logis-
tic regression models by functions of time; this leads to the varying coefficient
logistic regression model

log
π(U, X)

1 − π(U, X)
= XTa(U), (1.1)

where X is the vector of all factors concerned, U is time, and π(U, X) is the
failure rate of contraceptive given X and U . The model (1.1) is a specific case of
the generalised varying coefficient models that are, in turn, a specific case of the
generalised semivarying-coefficient models defined by (1.3), with q = 0.

It can of course be the case that the impacts of some factors may not change
over time at all, which means some components of a(·) in (1.1) may be constant.
We formulate this problem as that of identifying the constant components in the
class of models

log
π(U, X, Z)

1 − π(U, X, Z)
= XTa(U) + ZTβ, (1.2)

where X is the vector of the factors whose impacts change, Z is the vector of the
factors whose impacts are constant.

To make our models more general, from now on, we take U as a scalar,
not necessarily time, X = (x1, . . . , xp)T is a p-dimensional covariate, and Z =
(z1, . . . , zq)T is a q-dimensional covariate. The log conditional density function of
the response variable y given U , X and Z is

`
[
g−1

{
XTa(U) + ZTβ

}
, y

]
, (1.3)

where a(·) = (a1(·), . . . , ap(·))T and β = (β1, . . . , βq)T are unknowns to be esti-
mated, g(·) is a known link function, and `(·, ·) is known as well; (Ui, XT

i , ZT
i , yi),

i = 1, . . . , n, is a i.i.d. sample from (U, XT, ZT, y). We term (1.3) a generalised
semivarying coefficient model. This is a large class of models that includes many
common models like generalised linear models, generalised varying coefficient
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models, varying coefficient models, semivarying coefficient models, and partially-
linear models (Ma, Chiou and Wang (2006)).

We are going to use cross-validation (CV) as a model selection criterion to
identify the constant components in (1.3). We propose two algorithms to im-
plement the CV-based model selection procedure without computing the CVs of
all 2p+q models, and show the procedure consistent. We also conduct simulation
study to show how well the CV-based model selection works with finite samples.

The paper is organised as follows. Section 2 describes an estimation pro-
cedure that can be used to estimate the unknown functional coefficients and
constant coefficients in model (1.3). In Section 3 we show how to construct the
CV for (1.3) and describe two algorithms to implement the CV-based model se-
lection procedure. Asymptotic properties of the CV-based model selection are
presented in Section 4. The performance of the CV-based model selection when
sample size is finite is assessed by a simulation study in Section 5. In Section 6,
we explore how the impacts of several factors on the failure rate of contraceptive
in China change over time, based on the proposed model selection and estimation
procedure.

2. Estimation Procedure

Our estimation procedure is based on local maximum likelihood estimation.
We estimate the constant coefficients first, then the functional coefficients. After
obtaining the estimators of the constant coefficients, we estimate the functional
coefficients based on the model with the constant coefficients replaced by their
estimators.

2.1. Estimation of the constant coefficients

The estimation of the constant coefficient, β, consists of two-steps: the local
maximum likelihood estimator, β̃(Ui), of β is obtained at each Ui, i = 1, . . . , n;
β̃(Ui) is averaged over i = 1, . . . , n to get the final estimator of β. Details are as
follows.

For any given u, let ȧ(u) be the first derivative of a(u). By a Taylor’s expan-
sion, we have a(Ui) ≈ a(u) + ȧ(u)(Ui − u) when Ui is in a small neighbourhood
of u; this leads to the local log likelihood function

n∑
i=1

`
[
g−1

{
XT

i a + XT
i b(Ui − u) + ZT

i β
}

, yi

]
Kh1(Ui − u), (2.1)

where Kh1(·) = K(·/h1)/h1, K(·) is a kernel function and h1 is a bandwidth.
Maximise (2.1) with respect to (aT, bT, βT), and denote the maximiser by

(ãT(u), b̃
T
(u), β̃

T
(u)). β̃(u) is the local maximum likelihood estimator of β and,
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because it only makes use of the information provided by the data in a small
neighbourhood of u, it has large variance. To reduce the variance and get the
final estimator of β, we compute β̃(u) at each Ui, i = 1, . . . , n, and average β̃(Ui)
over i = 1, . . . , n to get β̂ = (1/n)

∑n
i=1 β̃(Ui) as the final estimator of β.

The proposed estimation procedure for β is easy to implement, and the
estimator is asymptotic normal with convergence rate of order O(n−1/2) when
the bandwidth h1 is properly selected, see Zhang and Peng (2010).

Theorem.(Zhang and Peng (2010)) Under the conditions (1)−(5) in the Ap-
pendix, if h1 → 0 and nh2

1/(− log h1) → ∞, then
√

n
(
β̂q − βq

)
D−→ N(0, σ2),

where σ2 = E
(
eT
p+q,p+q

[
E

{
ρ(U, Z)ZZT |U

}]−1
ep+q,p+q

)
, ek,k is an unit vec-

tor of length k with the kth component being 1, Z = (XT, ZT)T, ρ(U, Z) =
−Q2[g{E(y|U, Z)}, E(y|U, Z)], and Qk(t, y) = ∂k`

{
g−1(t), y

}
/∂tk.

From the theorem, we see that the selection of the bandwidth h1 is not an
issue, the convergence rate of β̂ is of order O(n−1/2) as long as h1 −→ 0 and
nh2

1/ log h1 −→ ∞. This indicates that any bandwidth in a fairly wide range
would work well; in practice, we select h1 by cross-validation, see Zhang and
Peng (2010).

2.2. Estimation of the functional coefficients

After the estimator β̂ of β is obtained, substituting β̂ for β in (2.1) leads to

n∑
i=1

`
[
g−1

{
XT

i a + XT
i b(Ui − u) + ZT

i β̂
}

, yi

]
Kh(Ui − u). (2.2)

Maximise (2.2) with respect to (aT, bT), and denote the maximiser by (âT, b̂
T
).

The estimator â(u) of a(u) is taken to be â. As the estimator β̂ is of convergence
rate O(n−1/2), the asymptotic behavior of the estimator â(u) is the same as that
of the estimator of a(u) obtained when β is known.

After β in the model (1.3) is replaced by β̂, (1.3) becomes a generalised vary-
ing coefficient model; the optimal bandwidth for the estimation of a(u) should
be of order O(n−1/5). In practice, we could use cross-validation to select an ini-
tial bandwidth h∗; because the bandwidth selected by cross-validation tends to
narrower than it should be, we use h = 1.1h∗.

Note that another estimator of a(u) can be obtained during the estimation
of the constant coefficient β, the part of the maximiser of (2.1) corresponding
to a. The convergence rate of this estimator is the same as that of the pro-
posed estimator, but they do not share the same asymptotic bias or variance.
Theoretically speaking, the proposed estimator is better. Zhang, Lee, and Song
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(2002) had a detailed discussion on this issue for semivarying coefficient models,
a special case of the models addressed in this paper.

3. Model Selection

In this section, we present the criterion for model selection, the algorithms
to implement the model selection procedure, and a brief discussion of bandwidth
selection in the model selection.

3.1. Criterion of selection

We use cross-validation (CV) as the criterion for model selection. The CV for
model (1.3) is constructed as follows: for each i, i = 1, . . . , n, we delete the ith ob-
servation and estimate a(Ui) and β based on the other observations by the estima-

tion procedure of Section 2. Denote the resulting estimators by â\i(Ui) and β̂
\i

,
respectively. A natural estimator of the log conditional density function of y at
yi given U = Ui, X = Xi, and Z = Zi is Li = `

[
g−1

{
XT

i â
\i(Ui) + ZT

i β̂
\i}

, yi

]
,

and the cross-validation sum is

CV = −n−1
n∑

i=1

Li. (3.1)

Our formal model selection procedure is: for each possible model, compute its CV
by (3.1); the selected model is the one with the smallest CV among all possible
models.

3.2. Algorithms

To compute the CVs of all possible models is not practically feasible, with
L covariates, there are 2L possible models. In this section, we present two algo-
rithms to reduce the computational burden.

Let L be the number of the coefficients in the model, and the coefficients
in the model be α(·) =

(
α1(·), . . . , αL(·)

)
, the model with coefficients αil(·),

l = 1, . . . , k, being functional, others being constant by {i1, . . . , ik}.

3.2.1. Backward elimination

Instead of computing the CVs of all models, we use backward elimination to
find the chosen model. Details are as follows.

(1) Start with the full model, {1, . . . , L}, and compute its CV by (3.1). Denote
the full model by ML, its CV by CVL.

(2) For any integer k, suppose the current model is Mk = {i1, . . . , ik} with CV
given by CVk. Take Mk−1 to be the model with the smallest residual sum
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of squares (RSS) among the models {i1, . . . , ij−1, ij+1, . . . , ik}, j = 1, . . . , k.
If CVk < CVk−1, the chosen model is Mk, and the model selection is ended;
otherwise, continue to compute Ml and CVl until either CVl < CVl−1 or
l = 0.

3.2.2. Discrepancy from average

A more aggressive way to reduce the computation involved in the model
selection procedure is based on the discrepancy of the estimated function from
its average. Explicitly, we first treat all αi(·), i = 1, . . . , L, as functional. For
each i, i = 1, . . . , L, we compute the discrepancy of the estimated function α̂i(·)
from its average:

Si =
n∑

k=1

{α̂i(Uk) − ᾱi}2 , ᾱi = n−1
n∑

k=1

α̂i(Uk), i = 1, . . . , L.

We sort Si, i = 1, . . . , L, in an increasing order, say Si1 ≤ · · · ≤ SiL , then
compute the CVs for the models {ik, . . . , iL} from k = 1 to the turning point k0

where the CV starts to increase. The chosen model is {ik0 , . . . , iL}.
The algorithm based on the discrepancy from average is much faster than

the backward elimination based algorithm; however, from simulations, we find it
less accurate.

3.3. Bandwidth issue

The bandwidth used for model selection is different than that used for es-
timation. From the asymptotic properties of the proposed CV in Section 4, we
can see the increment in CV is of order O(1) if we mistakenly treat a functional
coefficient as constant, and the increment is of order O

(
(nh)−1

)
if we mistakenly

treat a constant coefficient as functional. To avoid mistakenly treating a constant
coefficient as functional, we use a bandwidth as small as possible. Although it is
understandable that we may risk mistakenly treating some functional coefficients
as constant if the bandwidth is too small, this is not a big problem since we risk
O(1) on bias side with a gain on variance side of order O

(
(nh)−1

)
, and this is

small compared with the loss on bias side. So, we do not risk mistakenly treat a
functional coefficient as constant as long as nh −→ ∞.

We conclude that, as far as the model selction is concerned, the bandwidth
selection is not as crucial as that in estimation procedure; any reasonably small
bandwidth would work well. This conclusion held up in our simulation studies.
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4. Asymptotic Properties

Before presenting the asymptotic properties of the proposed CV, we in-
troduce some notation. Let f(u) be the density function of U , ai = a(Ui),
µi =

∫
uiK(u)du, and νi =

∫
uiK2(u)du. We denote the second derivative of

a(u) by ä(u).

Theorem 1. Under Conditions (1)−(6) in the Appendix, if the working model
is the true model (1.3), the asymptotic form of the CV is

CV = −n−1
n∑

i=1

`
[
g−1

(
XT

i ai + ZT
i β

)
, yi

]
+ 2−3µ2

2h
4E

[
ζ

{
XTä(U)

}2
]

−2−1ν0(nh)−1E
{
f(U)−1ζXTΛ−1X

}
+ oP (n−1h−1 + h4),

where ζ = Q2 (XTa(U) + ZTβ, y) , Λ = E (ζXXT|U) .

In the asymptotic form of the CV, the first term represents the random
error, the second term reflects the asymptotic bias, and the third term reflects
the asymptotic variance.

We next consider the CV when the working model mistakenly treats some
constant coefficients as functional, say we assume β1 in the model is mistakenly
treated as functional.

Theorem 2. Under Conditions (1)−(6) in the Appendix, if the working model
mistakenly treats β1 as functional, the asymptotic form of the CV is

CV = −n−1
n∑

i=1

`
[
g−1

(
XT

i ai + ZT
i β

)
, yi

]
+ 2−3µ2

2h
4E

[
ζ

{
XTä(U)

}2
]

−2−1ν0(nh)−1E
{
f(U)−1ζXTΛ−1

∗ X
}

+ oP (n−1h−1 + h4),

where X = (XT, z1)T, and Λ∗ = E (ζXXT|U) .

Remark. From Theorems 1 and 2, we can see the increment in CV due to the
working model mistakenly treating β1 as functional is

2−1ν0(nh)−1E
{
f(U)−1ζ

(
XTΛ−1X −XTΛ−1

∗ X
)}

.

By simple calculation,

XTΛ−1X −XTΛ−1
∗ X

= −
{
E(ζz2

1 |U)−E(ζz1X
T|U)Λ−1E(ζz1X|U)

}−1{
XTΛ−1E(ζz1X|U)−z1

}2
<0.

So, E
{
f(U)−1ζ

(
XTΛ−1X −XTΛ−1

∗ X
)}

> 0, which implies that the increment
in CV due to the working model mistakenly treating a constant coefficient as



1920 WENYANG ZHANG

functional is detectable up to O
(
(nh)−1

)
. By standard arguments, we have

the increment in CV caused by mistakenly treating a functional coefficient as
constant is OP (1). This means that a model selection procedure based on CV is
sensible since O

(
(nh)−1

)
is the dominant term aside from random error, which

does not change with the model.

Theorem 3. Under Conditions (1)−(6) in the Appendix, lim
n→∞

P (S∗ = S0) = 1,

where S0 is the true model, and S∗ is the model with the smallest CV.

5. Simulation Study

In this Section, we use simulations to examine how well our proposed pro-
cedure works. We compare the two algorithms of Section 3.2, and we examine
how well the hypothesis test-based model selection procedure works.

Example 1. We generated a sample (yi, Xi, Ui), i = 1, . . ., 1,500, from the
logistic regression model

log
{

P (y = 1|X, U)
1 − P (y = 1|X, U)

}
= x1a1(U) + x2a2(U) + x3a3 + x4a4.

Here the Xi = (xi1, xi2, xi3, xi4)T were independently generated from a normal
distribution N(0, I4), and the Ui were independently generated from a uniform
distribution U(0, 1). We set a1(u) = sin(2πu), a2(u) = cos(2πu), a3 = 2, and
a4 = 1. The Epanechnikov kernel K(t) = 0.75(1−t2)+ was used in the estimation
procedure, and the bandwidth was taken to be 0.03 for the model selection.

As the computation involved is expensive, we only carried out 100 simula-
tions. We found, in the 100 simulations, the ratio of picking the right model was
chosen 95% of the time by the best subset approach, 92% of the time by the
backward elimination approach, and 81% of the time by the discrepancy from
average approach. This backward elimination worked reasonably well, and better
than the discrepancy from average approach.

Among the 100 simulations we conducted, there were no chosen models mis-
takenly taking any functional coefficient as constant; all wrong models mistakenly
took some constant coefficient as functional. This is in line with the theoretical
analysis in Section 3.3.

For assessing the performance of the hypothesis test-based model selection,
the generalised maximum likelihood ratio test developed in Zhang and Peng
(2010), coupled with the backward elimination algorithm, was used. We used
the significant levels 0.01, 0.05 and 0.1. Among 100 simulations, the hypothesis
test-based model selection chose the right model 82% of the time when the sig-
nificant level was 0.01, 74% of the time when the significant level was 0.05, and



MODEL SELECTION IN GSVCM 1921

Table 1. The MSEs or MISEs of the Estimators.

Estimator â1(·) â2(·) Estimator â3 â4

MISE 0.039 0.036 MSE 0.018 0.007

59% of the time when the significant level was 0.1. Thus, regardless of the signif-
icant level, the CV-based model selection procedure always worked better than
the hypothesis test-based one. Performance of the hypothesis test-based model
selection did depend on the selection of significant level, and presents a problem
as to the appropriate level. The solution may come back to cross-validation.
Then too, if a reasonable significance level is identified, the hypothesis test may
still need calibration lest the power be actual power rather than nominal power.

To examine the performances of the proposed estimation for functional co-
efficients and the proposed estimation for constant coefficients, we use mean
squared error (MSE) to assess the accuracy of an estimator of a constant coef-
ficient, and mean integrated squared error (MISE) to assess the accuracy of an
estimator of a functional coefficient. We used the same bandwidth, 0.20, to esti-
mate both functional coefficients and constant coefficients. The MSEs or MISEs
of the estimators are reported in Table 1

To examine the robustness of the proposed estimation for constant coeffi-
cients against bandwidth selection, we also computed the MSEs of the estimators
of the constant coefficients at different bandwidths. Our results show the MSE
of â3 was always less than 0.02 and the MSE of â4 was always less than 0.0075,
as long as the bandwidth was in the interval [0.17, 0.5]. This suggests that our
estimation for constant coefficients works well as long as the bandwidth is in a
reasonable range, and undersmoothing is not necessary. This is in line with the
theory in Section 2.1.

6. Data Analysis

We return to the data set from China about the contraceptive use in China.
Interest is focused on the following factors affecting contraceptive use: age, region
of residence, education, occupation, ethnicity, previous use of a contraceptive,
previous failure in use of a contraceptive, and motivation to contraceptive use.

Age is grouped as “less than 24”, “25 to 29” (x2), “30 to 34” (x3) and “over
35” (x4). We take “less than 24” as reference, and the difference in the impact
on contraceptive use among different age groups are modelled by the dummy
variables xi, i = 2, 3, 4. We take “urban” as reference, the difference between
urban and rural is modelled by a dummy variable x5; education is categorised
as “primary -” or “junior +”, we take “primary -” as reference, and the differ-
ence between “primary -” or “junior +” is modelled by a dummy variable x6;
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occupation is “agriculture”, “industry” (x7), “service” (x8), “professional” (x9),
or “other non-agriculture” (x10), we take “agriculture” as reference, and the
difference among different occupations as modelled by the dummy variables xi,
i = 7, . . . , 10; we take “non-Han” as reference, the difference between “Han” and
“non-Han” as modelled by a dummy variable x11; we use dummy variables x12

and x13 to model “previous use of contraceptive” and “previous failure of con-
traceptive”, respectively; motivation to contraceptive use is categorised as “self
motivated” or “response to campaign”, we take “self motivated” as reference,
and use x14 to model the difference between “self motivated” and “response to
campaign”. Chronological time is denoted by U , and we set x1 = 1 to incor-
porate an intercept into the modelling. The dependent variable, Y , is 1 if the
contraceptive fails, 0 otherwise. The sample size is 14, 639.

For the identification of which coefficients are constant, which are functional,
we use the Epanechnikov kernel as the kernel function, and take the bandwidth
to be 1% of the range of U . The backward elimination algorithm is used to
implement the model selection procedure, and it appears that only the coefficient
of x4 is constant.

The model (1.2) with X = (x1, x2, x3, x5, . . . x14)T and Z = x4 is now used
to fit the data set. The estimation procedure in Section 2 is used to estimate the
constant coefficient and functional coefficients. The kernel function is still the
Epanechnikov kernel, but the bandwidth is taken to be 15% of the range of U .
The obtained estimate of the constant coefficient is −2.001, and the estimates of
the functional coefficients are presented in Figure 1.

From Figure 1, one sees that the failure rate of contraceptive in China was
decreasing with time in general, and from 1986 to 1988 saw a very sharp decrease.
This is generally attributed to more and more effective contraceptive methods
being introduced in China during those years.

The obtained results also indicate women aged less than 24 were significantly
more likely to have contraceptive failure than the women in other age groups,
and that women aged over 35 had the smallest rate of contraceptive failure.
The difference in failure rate between women aged less than 24 and women aged
between 30 to 34 was increasing until 1981, then began to decrease, reaching a
minimum in 1986, before increasing again.

While a sophisticated analysis of relevant factors is hardly possible here, it is
noticeable that before 1987 women with prior contraceptive use were less likely
to fail, after 1987 they became more likely to do so.

The impact of motivation is interesting. There was little difference in the
rate of contraceptive failure between the women self-motivated to use contra-
ceptives and those that responsed to the campaigns before 1985, which suggests
the campaigns to encourage women using contraceptive did have some effects on
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Figure 1. Occupations 1, 2, 3, and 4 represent industry, service, professional,
and other non-agriculture, respectively.

women’s attitude towards contraceptive use before 1985. However, the picture
after 1985 is quite different. After 1985, the difference increased steadily, women
using contraceptives in response to the campaigns were more and more likely to
fail than self-motivated women during the later period.

Appendix

Throughout, we use 0p×q to denote a matrix of size p× q with each entry 0,
and 0p to denote 0p×p. Let bi = ȧ(Ui), äi = ä(Ui).
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The following technical conditions are to be imposed.

(1) The function Q2(s, y) < 0 for s ∈ R and y in the range of the response
variable.

(2) f(u) is positive on its support, [0, 1]; f(u) and a(·) have continuous second
derivatives; the link function g(·) has a continuous third derivative.

(3) E(XXT|U) > 0 and E(ZZT|U) > 0.

(4) The kernel function K(·) is a symmetric density function, and is absolutely
continuous on its support set [−A, A].

(4a) K(A) 6= 0 or

(4b) K(A) = 0, K(t) is absolutely continuous, and K2(t) and K̇2(t) are
integrable on (−∞, +∞).

(4c) the function t3K(t) and t3K̇(t) are bounded and
∫

t4K̇(t) < ∞.

(5) For some s > 2, E(|X|2s|U) < ∞ is continuous and E(Y 2s|U, X) < ∞.

(6) h = o(n−1/6), nh −→ ∞, h1 = O(n−1/4).

Lemma 1. Let (ξ1, η1), . . . , (ξn, ηn) be i.i.d. random vectors, where the ηi’s are
scalars. Suppose E|η1|s < ∞ and sup

x

∫
|y|sG(x, y)dy < ∞, where G denotes the

joint density of (ξ1, η1), and let K be a bounded positive function with bounded
support, satisfying a Lipschitz condition. Then

sup
x∈D

|n−1
n∑

i=1

{Kh(ξi − x)ηi − E[Kh(ξi − x)ηi]}| = OP

[{ nh

log(1/h)

}−1/2]
provided n2ε−1h −→ ∞ for some ε < 1 − s−1.

Proof. This follows immediately from a result in Mack and Silverman (1982).

Proof of Theorem 1. With

∆ = n−1
n∑

i=1

(
`
[
g−1

(
XT

i ai + ZT
i β

)
, yi

]
− `

[
g−1

{
XT

i â
\i(Ui) + ZT

i β̂
\i}

, yi

])
,

the cross-validation term can be written as

CV = −n−1
n∑

i=1

`
[
g−1

(
XT

i ai + ZT
i β

)
, yi

]
+ ∆.

With a Taylor expansion and Theorem 2 in Zhang and Peng (2010), we have

∆ = n−1
n∑

i=1

Q1

(
XT

i ai + ZT
i β, yi

) [
XT

i

{
ai − â\i(Ui)

}
+ ZT

i

(
β − β̂

\i)]
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+(2n)−1
n∑

i=1

Q2

(
XT

i ai + ZT
i β, yi

) [
XT

i

{
ai − â\i(Ui)

}
+ ZT

i

(
β − β̂

\i)]2

+OP

{
(nh)−3/2(− log h)3/2

}
4
= ∆1 + ∆2 + OP

{
(nh)−3/2(− log h)3/2

}
.

Let ei = Q1 (XT
i ai + ZT

i β, yi) . By simple calculation, we have E(∆1) = 0, and

Var (∆1) = n−2
n∑

i=1

n∑
j=1

E
{

eiejZ
T
i

(
β − β̂

\i)
ZT

j

(
β − β̂

\j)}
+2n−2

n∑
i=1

n∑
j=1

E
[
eiejX

T
i

{
ai − â\i(Ui)

}
ZT

j

(
β − β̂

\j)]
+n−2

n∑
i=1

n∑
j=1

E
[
eiejX

T
i

{
ai − â\i(Ui)

}
XT

j

{
aj − â\j(Ui)

}]
4
= V1,1 + V1,2 + V1,3.

Applying a Taylor expansion to (2.2), and using the Theorems 1 and 2 in Zhang
and Peng (2010), we have

ai − â\i(Ui)

= (Ip, 0p)H−1
i

∑
j 6=i

Q1

{
XT

j ai + XT
j bi(Uj − Ui) + ZT

j β, yj

}
Kh(Uj − Ui)

×
(

Xj

(Uj − Ui)Xj

)
(1 + oP (1)),

where

Hi =
∑
j 6=i

Q2

{
XT

j ai+XT
j bi(Uj−Ui) + ZT

j β, yj

}
Kh(Uj−Ui)

(
1 Uj−Ui

Uj−Ui (Uj−Ui)2

)
⊗XjX

T
j .

By standard arguments and Lemma 1 we have, uniformly,

Hi = nf(Ui)E
{
Q2

(
XTai + ZTβ, y

)
diag(1, µ2) ⊗ XXT|U = Ui

}
(1 + oP (1)).

Let ζj be the ζ with (U, XT, ZT, y) replaced by (Uj , XT
j , ZT

j , yj). With a
Taylor expansion and Theorem 2 in Zhang and Peng (2010), we have∑

j 6=i

Q1

{
XT

j ai + XT
j bi(Uj − Ui) + ZT

j β, yj

}
Kh(Uj − Ui)

(
Xj

(Uj − Ui)Xj

)
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=
∑
j 6=i

ejKh(Uj − Ui)
(

Xj

(Uj − Ui)Xj

)

−2−1
∑
j 6=i

ζjX
T
j äiKh(Uj − Ui)

(
(Uj − Ui)2Xj

(Uj − Ui)3Xj

)
(1 + oP (1)).

Let Λi be the Λ with U being replaced by Ui. We have then, uniformaly,

ai − â\i(Ui) = {nf(Ui)}−1Λ−1
i

∑
j 6=i

ejKh(Uj − Ui)Xj(1 + oP (1))

−{2nf(Ui)}−1Λ−1
i

∑
j 6=i

ζjX
T
j äi(Uj−Ui)2XjKh(Uj−Ui)(1 + oP (1)).

By a similar, more tedious calculation, we have

β − β̂
\i

= n−2
∑
k 6=i

f(Uk)−1Γk

∑
j 6=i

ejKh1(Uj − Uk)
(

Xj

Zj

)
(1 + oP (1))

−2−1n−2
∑
k 6=i

f(Uk)−1Γk

∑
j 6=i

ζjX
T
j äk(Uj−Uk)2

(
Xj

Zj

)
Kh1(Uj−Uk)(1+oP (1))

= n−1
∑
j 6=i

ejGj(1 + oP (1)) − 2−1n−1
∑
j 6=i

µ2ζjX
T
j äjh

2
1Gj(1 + oP (1)),

where

Γj = (Γ1,j , Γ2,j), Gj = (Γ1,jXj + Γ2,jZj) , Γ1,j = −Γ2,jD
T
1,2,jΛ

−1
j ,

Γ2,j =
(
D2,2,j − DT

1,2,jΛ
−1
j D1,2,j

)−1
,

D1,2,j = E
{
Q2

(
XTaj + ZTβ, y

)
XZT|U = Uj

}
,

D2,2,j = E
{
Q2

(
XTaj + ZTβ, y

)
ZZT|U = Uj

}
.

Calculation, Theorem 1 in Zhang and Peng (2010), and condition (6) yield

V1,1 = 2n−2
n∑

i=1

n∑
j=i+1

E
{

eiejZ
T
i

(
β − β̂

\i)
ZT

j

(
β − β̂

\j)}
+ OP (n−2)

= 2n−4
n∑

i=1

n∑
j=i+1

∑
k 6=i

∑
l 6=j

E
{
eiejekelZ

T
i GkZ

T
j Gl

}
+2−1n−4µ2

2h
4
1

n∑
i=1

n∑
j=i+1

∑
k 6=i

∑
l 6=j

E
{
eiejζkζlX

T
k äkX

T
l älZ

T
i GkZ

T
j Gl

}
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−2n−4µ2h
2
1

n∑
i=1

n∑
j=i+1

∑
k 6=i

∑
l 6=j

E
{
eiejekζlX

T
l älZ

T
i GkZ

T
j Gl

}
+ OP (n−2)

= OP (n−2).

Similarly, V1,2 = OP (n−2h−1/2 + n−3/2h2), and V1,3 = OP (n−2h−1 + n−1h4).
Thus, ∆1 = oP (n−1h−1).

We can write

∆2 = (2n)−1
n∑

i=1

ζi

[
XT

i

{
ai−â\i(Ui)

}]2

+n−1
n∑

i=1

ζiX
T
i

{
ai−â\i(Ui)

}
ZT

i

(
β−β̂

\i)
+(2n)−1

n∑
i=1

ζi

{
ZT

i

(
β−β̂

\i)}2

4
= ∆2,1 + ∆2,2 + ∆2,3.

By Theorems 1 and 2 in Zhang and Peng (2010), ∆2,2 = OP (n−1h−1/2 log n)
= oP (n−1h−1), and ∆2,3 = OP (n−1) = oP (n−1h−1). Obviously,

∆2,1 = 2−1n−3
n∑

i=1

f(Ui)−2ζi

XT
i Λ−1

i

∑
j 6=i

ejKh(Uj − Ui)Xj


2

(1 + oP (1))

−2−1n−3
n∑

i=1

f(Ui)−2ζiX
T
i Λ−1

i

∑
j 6=i

ejKh(Uj − Ui)Xj

×XT
i Λ−1

i

∑
l 6=i

ζlX
T
l äi(Ul − Ui)2XlKh(Ul − Ui)

 (1 + oP (1))

+(2n)−3
n∑

i=1

f(Ui)−2ζi

XT
i Λ−1

i

∑
j 6=i

ζjX
T
j äi(Uj−Ui)2XjKh(Uj − Ui)


2

×(1 + oP (1))
4
= ∆2,1,1 − ∆2,1,2 + ∆2,1,3.

By standard arguments, we have

∆2,1,1 = 2−1n−3
n∑

i=1

f(Ui)−2ζi

∑
j 6=i

e2
jK

2
h(Uj − Ui)

(
XT

i Λ−1
i Xj

)2 (1 + oP (1))

= −2−1ν0(nh)−1E
{
f(U)−1ζXTΛ−1X

}
(1 + o(1)).
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It is easy to see

∆2,1,2 = 2−1n−3
n∑

j=1

ej

∑
i 6=j

∑
l 6=i

{
f(Ui)−2ζiX

T
i Λ−1

i Xj

×ζlX
T
i Λ−1

i XlX
T
l äi(Ul − Ui)2Kh(Ul − Ui)Kh(Uj − Ui)

}
(1 + oP (1)).

By tedious calculation and Lemma 1, E(∆2,1,2) = O(n−1h), and Var (∆2,1,2)
= O(n−1h4), ∆2,1,2 = oP (n−1h−1).

By standard arguments, from

∆2,1,3 = (2n)−3
n∑

i=1

f(Ui)−2ζi

XT
i Λ−1

i

∑
j 6=i

ζjX
T
j äi(Uj − Ui)2XjKh(Uj − Ui)


2

×(1 + oP (1))

= 2−3µ2
2h

4n−1
n∑

i=1

ζi

[
XT

i Λ−1
i E

{
ζXTä(U)X|U = Ui

}]2 (1 + oP (1))

= 2−3µ2
2h

4E
(
ζ

[
XTΛ−1E

{
ζXTä(U)X|U

}]2
)

(1 + o(1))

= 2−3µ2
2h

4E
[
ζ

{
XTä(U)

}2
]
(1 + o(1)),

CV = −n−1
n∑

i=1

`
[
g−1

(
XT

i ai + ZT
i β

)
, yi

]
+ 2−3µ2

2h
4E

[
ζ

{
XTä(U)

}2
]

−2−1ν0(nh)−1E
{
f(U)−1ζXTΛ−1X

}
+ oP (n−1h−1 + h4).

Proof of Theorem 2. Theorem 2 follows straightforwardly from Theorem 1.

Proof of Theorem 3. If Sk, k = 1, . . . , 2p+q − 1, are the incorrect models, we
have

{S∗ 6= S0} =
2p+q−1∪

k=1

{CV(Sk) < CV(S0)},

where CV(Sk) is the CV of model Sk. From the remark following Theorem 2, we
have

P{CV(Sk) < CV(S0)} ≤ P
{∣∣oP (n−1h−1)

∣∣ > C0n
−1h−1

}
−→ 0,

where C0 is a positive constant. This leads to

P (S∗ 6= S0) ≤
2p+q−1∑

k=1

P{CV(Sk) < CV(S0)} −→ 0,



MODEL SELECTION IN GSVCM 1929

which implies P (S∗ = S0) −→ 1.
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