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Abstract: In missing data analysis, there is often a need to assess the sensitivity

of key inferences to departures from untestable assumptions regarding the miss-

ing data process. Such sensitivity analysis often requires specifying a missing data

model that commonly assumes parametric functional forms for the predictors of

missingness. In this paper, we relax the parametric assumption and investigate

the use of a generalized additive missing data model. We also consider the possi-

bility of a nonlinear relationship between missingness and the potentially missing

outcome, whereas the existing literature commonly assumes a more restricted lin-

ear relationship. To avoid computational complexity, we adopt an index approach

for local sensitivity. We derive explicit formulas for the resulting semiparametric

sensitivity index. The computation of the index is simple, and completely avoids

the need to repeatedly fit the semiparametric nonignorable model. Only estimates

from the standard software analysis are required, with a moderate amount of ad-

ditional computation. Thus, the semiparametric index provides a fast and robust

method to adjust the standard estimates for nonignorable missingness. An ex-

tensive simulation study is conducted to evaluate the effects of misspecifying the

missing data model and to compare the performance of the proposed approach with

the commonly used parametric approaches. The simulation study suggests that the

proposed method helps reduce bias that might arise from the misspecification of the

functional forms of predictors in the missing data model. We illustrate the method

in a Wage Offer dataset.

Key words and phrases: Generalized additive model, MNAR, nonignorability, semi-
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1. Introduction

Missing data arise frequently in studies across different disciplines, including
public health, medicine, economics, business, and the social sciences. Missing-
ness can be due to nonresponse in household surveys, attrition in longitudinal
studies, or patient noncompliance in experimental studies and clinical trials. In
missing data analysis, ignorability has been a standard assumption regarding
the missing data mechanism (Rubin (1976)). Under ignorability, a valid likeli-
hood/Bayesian inference can ignore modeling the missing data mechanism. In
the likelihood/Bayesian inference, ignorability holds under the assumptions of
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missing-at-random (MAR) and parameter distinctness (Rubin (1976), Heitjan
and Rubin (1991)).

Although ignorability is a convenient and useful assumption, it is usually an
approximation to reality when missingness is not by design. There are important
situations in which this assumption is questionable. In the analysis of potentially
nonignorable missing data, the selection model is a popular class of models in
which one augments the model for the complete data with a missing data model.
In practice, a parametric binary regression model has been commonly employed
for modeling the missing data process. When there are continuous missingness
predictors, misspecifying the functional forms of these predictors by the paramet-
ric model can lead to severe bias in the inference of the primary parameters of
interest. In this paper, we propose a data-driven procedure to adaptively choose
the functional forms of the continuous predictors. Specifically, we propose using
the generalized additive model (GAM) to relax the linearity assumptions in the
missing data model.

One can perform a direct estimation of such a semiparametric joint selection
model (Chen and Ibrahim (2006)). The direct estimation can yield valid infer-
ences when the model is correctly specified, although its computation is heavy
and requires specialized programming. More importantly, such a joint selection
model is often weakly or non-identified (Little (1995), Troxel (1998), Troxel,
Harrington and Lipsitz (1998), Chen and Ibrahim (2006), and the results can be
highly sensitive to untestable model assumptions (Kenward (1998)). To tackle
this problem, the use of a nonignorable selection model has been proposed as
a tool for assessing sensitivity of inference to nonignorable missingness (Little
(1995), Vach and Blettner (1995), Copas and Li (1997), Scharfstein, Rotnizky
and Robins (1999), Copas and Eguchi (2001)). A global sensitivity analysis usu-
ally involves repeatedly fitting the nonignorable model for a range of magnitudes
of nonignorability, which can be computationally burdensome. To avoid the com-
putational burden, we utilize an index approach to local sensitivity (Troxel, Ma
and Heitjan (2004)) that uses a Taylor series expansion to approximate the es-
timates in the neighborhood of the MAR model. The index method has been
applied in various settings (Xie and Heitjan (2004, 2009), Ma, Troxel and Heitjan
(2005), Xie (2008, 2009) Xie and Qian (2010), Zhang and Heitjan (2006, 2007)).

The local sensitivity method proposed in the literature utilizes the linear
logistic regression for modeling the missing data process. In this article we re-
lax the linearity assumption and investigate the usage of a generalized additive
model for a more robust and flexible modeling of the missing data mechanism.
Further, the proposed method is computationally less complex than the alter-
native global sensitivity method. Specifically, our approach avoids fitting any
complicated semiparametric joint selection model. Only estimates from a MAR
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analysis of the outcome model and a MAR GAM for the missing data process are
required to evaluate sensitivity. Both estimates can be obtained using standard
software packages such as SAS or S-Plus/R. For instance, the MAR GAM for the
missing data process can be fitted using PROC GAM in SAS or the S-Plus/R
function gam. In summary, the proposed approach renders sensitivity analysis
for nonignorable missingness simple to perform by avoiding excessive additional
computation, and robust to model misspecification by automatically adjusting
for potentially complex missing data mechanisms.

The rest of the paper is organized as follows. In Section 2 we describe the
semiparametric joint selection model. In Section 3 we review the ISNI (index of
local sensitivity to nonignorability) methodology. In Section 4 we investigate the
use of GAM to model the missing data process; we also consider the possibil-
ity of a nonlinear relationship between missingness and the potentially missing
outcome, and present specific formulas for the sensitivity index in the Appendix
when the relationship follows a quadratic form. In Section 5 we report on simu-
lation studies to compare the performance of the parametric and semiparametric
approaches for modeling the missing data process with respect to their ability
to reduce the bias of the MAR estimates. In Section 6 we apply the methodol-
ogy to an application on estimating a wage offer function. We conclude with a
discussion in Section 7.

2. Selection Model for Nonignorable Missingness

Consider data (Yi, Xi, Zi, Gi) from the unit i, i = 1, . . . , n. The under-
lying ideal outcome, Yi, arises independently from a distribution with density
fθ(Yi|Xi), where Xi contains a set of fully observed covariates. We are interested
in drawing inferences on θ or a subset of it. For our purpose here, we restrict
attention to the case in which Yi is univariate. For various reasons, Yi is subject
to missingness. Let Gi be 1 if yi is observed and 0 if yi is missing. We assume the
missing data model fγ(gi|yi, zi), where Gi|Yi, Zi ∼ Bernoulli(Pγ(Gi = 1|Yi, Zi))
and

Pγ(Gi = 1|Yi = yi, Zi = zi) = h(ηγ0(zi) + ηγ1(yi)), (2.1)

h is the inverse of a monotonic link function, Zi is a set of fully observed predictors
for missingness, ηγ0(·) and ηγ1(·) are smooth functions, and their functional forms
are as yet unspecified. Let γ = (γ0, γ1) in which γ0 is a vector of parameters that
associates the probability of missingness with observed data, and γ1 associates
the probability of missingness with potentially unobserved data. In the model,
ηγ1(y) represents the form of nonignorable missingness: when ηγ1(y) is constant
in y, the missing data mechanism is MAR; when ηγ1(y) depends on y, it becomes
missing not at random (MNAR).
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Let (Y,X,Z,G) be the data stacked over all the units. We rewrite Y as
(Yobs, Ymis), where Yobs refers to the observed components of Y and Ymis refers to
the missing components of Y . The covariates X and Z are considered fixed, and
the conditioning on them in fθ(yi|xi) and fγ(gi|yi, zi) is suppressed for notational
simplicity. The data to be modeled are thus (Yobs, G). The correct log-likelihood
of the model parameters is

LC(θ, γ; yobs, g) ∝ ln fθ,γ(yobs, g)

= ln
∫

fγ(g|yobs, ymis) fθ(yobs, ymis) dymis. (2.2)

Under the MAR condition, fγ(g|yobs, ymis) = fγ(g|yobs), and can be moved out
of the integral. With the parameter distinctness, this results in a simpler log-
likelihood for θ,

LI(θ; yobs) ∝ ln fθ(yobs) = ln
∫

fθ(yobs, ymis) dymis. (2.3)

In practice, LI is often used because it avoids modeling the missing data mech-
anism. However, in the general case of nonignorable missingness, LI is not pro-
portional to LC and the inference based on LI is potentially biased.

3. ISNI Methodology

As indicated above, for a dataset with missingness the correct log-likelihood
is LC(θ, γ; yobs, g). We define

(θ̂(γ1), γ̂0(γ1)) = argmax
θ∈Ωθ,γ0∈Ωγ0

LC(θ, γ0, γ1 ; yobs, g) for a fixed γ1.

One can then vary γ1 in a plausible range and investigate how the other parameter
estimates in the model are affected. In the existing literature, such sensitivity
analysis commonly assumes a linear binary regression model for the missing data
process, that is, a restriction that ηγ0(zi) = γT

0 zi and ηγ1(yi) = γ1yi. Here the
likelihood LC(θ, γ0; γ1) is proportional in θ to the likelihood LI(θ) for all θ ∈ Ωθ

when γ1 = 0; θ̂(0) is then the MLE of θ in the ignorable model. The difference
between θ̂(0) and θ̂(γ1) is a measure of the sensitivity of the MLE when γ1 is
perturbed around the ignorable model. The idea of a local sensitivity analysis is
to approximate θ̂(γ1) by a Taylor series expansion as

θ̂(γ1) ≈ θ̂(0) +
∂θ̂(γ1)
∂γ1

∣∣∣∣∣
γ1=0

× γ1, (3.1)
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where ∂θ̂(γ1)
∂γ1

∣∣∣
γ1=0

measures the changing rate of θ̂ as a function of γ1, and is

referred to as the index of local sensitivity to nonignorability (ISNI) (Troxel, Ma
and Heitjan (2004)) In this approximation, θ̂(0) is obtained by maximizing the
simpler log-likelihood LI . As shown in Troxel, Ma and Heitjan (2004), a simple

formula for ∂θ̂(γ1)
∂γ1

∣∣∣
γ1=0

is

ISNI =
∂θ̂(γ1)
∂γ1

∣∣∣∣∣
γ1=0

= −∇2L−1
θ,θ∇

2Lθ,γ1 , (3.2)

with

∇2Lθ,θ =
∂2LC

∂θ∂θT

∣∣∣∣
θ̂(0),γ̂0(0),γ1=0

; ∇2Lθ,γ1 =
∂2LC

∂θ∂γ1

∣∣∣∣
θ̂(0),γ̂0(0),γ1=0

.

The first term ∇2Lθ,θ is the observed Hessian matrix of the ignorable model that
is usually readily available; the second term evaluates the orthogonality of θ and
γ1. One limitation of ISNI, as a local sensitivity method, is that the local approx-
imation in (3.1) might not be sufficiently accurate for extreme nonignorability
(i.e., |γ1| is large). Thus, ISNI is most useful for moderate nonignorability (e.g.,
a rich set of observed predictors for missingness has been conditioned on so that
the remaining nonignorability is not extreme).

4. Extending ISNI Using a Generalized Additive Model

When some components of Z are continuous, a linear predictor, as considered
above, may not be adequate, and the misspecification of the functional forms
for Z may lead to severe bias in the estimation of θ, the parameter of primary
interest. It is thus desirable to use extended models that describe a wider range of
selection mechanisms. In this section we investigate the use of GAM for a robust
and flexible modeling of the missingness probability. Rather than prespecifying
ηγ0(Zi) as a linear form, we let ηγ0(Zi) follow a GAM (Hastie and Tibshirani
(1990)):

ηγ0(Zi) = γ00 + η01(Zi1) + η02(Zi2) + ... + η0m(Zim),

where Zi is composed of m missingness predictors, (Z1, . . . , Zm), and η0j is an
arbitrary smooth and mean zero function for the jth covariate Zj , j = 1, . . . ,m.
Because of the additivity in the nonparametric component, the model is termed
a generalized additive model.

Another important modeling decision is to specify ηγ1(yi). Note that yi

is missing whenever Gi = 0, and thus an attempt to estimate ηγ1(yi) would



1886 HUI XIE, YI QIAN AND LEMING QU

inevitably require imposing untestable assumptions or using external data. Be-
cause of the lack of information from the data at hand for identification, a feasible
approach is to perform sensitivity analysis with respect to ηγ1(yi). In the existing
literature, it is common to assume a linear form for ηγ1(yi), i.e., ηγ1(yi) = γ1yi.
One benefit of this parametrization is the ease of interpreting the sensitivity anal-
ysis result. Although the linearity assumption is reasonable in many practical
applications, it is by no means universally applicable. Thus, we base our devel-
opment on a more general functional form of ηγ1(yi) as

∑Q
q=1 γ1qy

q
i , where Q is

a user-specified order.
One can consider using the following penalized log-likelihood of the resulting

semi-parametric nonignorable selection model for sensitivity analysis:

LP
C(θ, γ00, η01, . . . , η0m, γ1; yobs, g)

= ln
[∫

fγ(g|γ00, η01, . . . , η0m, γ1, yobs, ymis)fθ(yobs, ymis)dymis

]
−1

2

m∑
j=1

λj

∫
η′′0j(u)2du,

where λj ≥ 0 is a smoothing parameter whose value can be adjusted to avoid
overfitting. The sensitivity of inference with respect to nonignorable missingness
can then be assessed by calculating (θ̂(γ1), γ̂0(γ1)) for a plausible range of values
for γ1. For any given value of γ1, we must obtain (θ̂(γ1), γ̂0(γ1)) by maximizing
LP

C over (θ, γ0). An algorithm such as the EM algorithm can be used, but the
optimization can be heavy (e.g., take a long time to converge) and requires spe-
cialized programming. Moreover, it needs to be repeatedly performed for a range
of γ1 values, which further compounds the computational burden.

In contrast, the ISNI method substantially reduces the computational work-
load. As the parameters γ0 = (γ00, η01, . . . , η0m) in the missing data model are
orthogonal to the parameter θ in the complete data model when γ1 = 0 ( i.e.,
missingness is MAR), one can show that for a vector γ1 = (γ11, . . . , γ1Q), we have

∂θ̂(γ1)
∂γT

1

∣∣∣∣∣
γ1=0

= −∇2L−1
θ,θ∇

2Lθ,γ1 ,

with

∇2Lθ,θ =
∂2LP

C

∂θ∂θT

∣∣∣∣
θ̂(0),γ̂0(0),γ1=0

=
∂ ln fθ(Yobs)

∂θ∂θT

∣∣∣∣
θ̂(0)

,

∇2Lθ,γ1 =
∂2LP

C

∂θ∂γT
1

∣∣∣∣
θ̂(0),γ̂0(0),γ1=0

= − hi

(
∂Eθ(Yi)

∂θ
, . . . ,

∂Eθ(Y
Q
i )

∂θ

)∣∣∣∣∣
θ̂(0),γ̂0(0),γ1=0

, (4.1)
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where hi = h(γ̂00 +
∑m

j=1 η̂0j(Zij)) is the predicted probability of being observed
under the MAR model, and h(·) is the inverse of the logit link. The above
calculation requires only the MAR estimates, which are obtained by optimizing
the log-likelihood

LP
I (θ, γ00, η01, . . . , η0m, γ1 = 0; yobs, g)

= ln fθ(yobs) + ln fγ0,γ1=0(g|yobs) −
1
2

m∑
j=1

λj

∫
η′′0j(u)2du.

In particular, the calculation of the extended ISNI requires the estimation
of η0(Z) under the MAR model, i.e., γ1 = 0. The fit maximizes the penalized
log-likelihood

PELL(γ00, η01, . . . , η0m; g) = ln fγ0,γ1=0(g|yobs) −
1
2

m∑
j=1

λj

∫
η′′0j(u)2du.

The conventional algorithm for the estimation of a GAM is the local scoring
procedure (Hastie and Tibshirani (1990)), which maximizes the PELL. Equation
(4.1) shows that a missing observation is given more weight in the calculation
of the ISNI if its predicted probability of nonmissingness, hi, is large (i.e., unex-
pected missingness). The quantity hi is related to the missing data mechanism
and plays an important role in assessing the sensitivity. Using a generalized ad-
ditive model to describe the missing data mechanism is useful here because we
need accurate and robust estimates of these probabilities of being observed.

For ease of interpretation, one can reparameterize ηγ1(y) = γ11
∑Q

q=1 rqy
q,

where rq = γ1q/γ11, and then define

ISNIr =
∂θ̂(γ11, r)

∂γ11

∣∣∣∣∣
γ11=0

=
∂θ̂(γ1)
∂γT

1

∣∣∣∣∣
γ1=0

∂γ1

∂γ11

∣∣∣∣
γ1=γ11·r

=
∂θ̂(γ1)
∂γT

1

∣∣∣∣∣
γ1=0

r, (4.2)

where r = (r1, . . . , rQ)T . Given a user-specified r, one can approximate the
potential change of θ̂(γ1) when γ11 is perturbed from 0 to a given value as

θ̂(γ1) − θ̂(0) ≈ ∂θ̂(γ1)
∂γT

1

∣∣∣∣∣
γ1=0

γ1 = ISNIr ∗ γ11. (4.3)

Using the extended ISNI method, it is convenient for a data analyst to enter-
tain plausible choices of Q and r to explore the sensitivity with respect to the
functional forms of ηγ1(y). In the Appendix we derive explicit ISNIr formulas for
Q = 2 (i.e., a quadratic function) when the outcome is modeled by a generalized
linear model.
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5. A Comparison Using Simulated Data

In this section we report on simulation studies to compare the performance
of the parametric and semiparametric approaches for modeling the missing data
process. Specifically, we simulated data from both linear and nonlinear missing
data models, and then investigated whether the ISNI based on a GAM missing
data model provided a more faithful and robust adjustment of an MAR estimate
than those based on various linear logistic missing data models. We followed the
steps below to perform the simulation studies.
Step 1: Generate the hypothetical complete data, (Yi, Xi), independently from
the bivariate normal distribution[

Yi

Xi

]
∼ BV N

[(
0
0

)
;
[
1 ρ

ρ 1

]]
,

where i = 1, . . . , n, and the sample size n = 500. The parameter ρ takes the
value -0.5, 0, or 0.5. We are interested in the conditional distribution of Yi|Xi,
which is N(β0 + β1xi, σ

2), where β1 = ρ is the parameter of interest.
Step 2: Generate the missingness pattern. Yi is subject to missingness with the
probability of nonmissingness given by the missing data model

logit(Pγ(Gi = 1|Yi = yi, Xi = xi)) = ηγ0(xi) + γ1yi, (5.1)

According to the exact form of ηγ0(x), we have the following configurations

• Case 1.

• 1. Linear Function. logit(Pγ(G = 1|X = x, Y = y)) = 1 + x + γ1y.

• 2. Quadratic Function. logit(Pγ(G = 1|X = x, Y = y)) = 1+x+x2+γ1y.

• 3. Cubic Function. logit(Pγ(G = 1|X = x, Y = y)) = 1+x+x2+x3+γ1y.

• 4. Sine Function. logit(Pγ(G = 1|X = x, Y = y)) = 2 sin(2x) + γ1y.

• Case 2.

• 1. Linear Function. logit(Pγ(G = 1|X = x, Y = y)) = 1 + x + γ1y.

• 2. Quadratic Function. logit(Pγ(G = 1|X = x, Y = y)) = 1 − (x − 1)2 +
γ1y.

• 3. Cubic Function. logit(Pγ(G = 1|X = x, Y = y)) = 1 − (x − 1)2 + (x −
1)3 + γ1y.

• 4. Sine Function. logit(Pγ(G = 1|X = x, Y = y)) = 2 sin(2(x+1.5))+γ1y.
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We vary γ1 in (−1,−0.5,−0.1, 0.1, 0.5, 1). The proportion of missingness in Y

ranges from 15% to 65% in the generated datasets.
Step 3: With each generated dataset, compute the MAR estimate, β̂1(0), by
applying the least-square fitting of the regression model, using only the cases
with observed yi. Based on (3.1), calculate three ISNI-adjusted estimates as

β̂1L(γ1) = β̂1(0) + ISNIL × γ1, β̂1P (γ1) = β̂1(0) + ISNIP × γ1,

β̂1G(γ1) = β̂1(0) + ISNIG × γ1. (5.2)

We use, ISNIL, ISNIP , and ISNIG, in order of increasing generality, to model the
missing data process. The most constrained is ISNIL, whose calculation assumes
a priori that ηγ0(xi) at (5.1) is linear in xi, and ηγ0(xi) = γ00 + γ01xi. The
more flexible ISNIP adds higher-order polynomial terms for xi (i.e., quadratic
term, cubic term, · · · ). This process stops when adding the next higher-order
term of xi to the missing data model does not significantly improve the model
fit at the 0.05 level, where the improvement in model fitness is measured by
the difference in model deviance. This analysis strategy represents a common
parametric approach to more acceptable models for the missing data mechanism.
The most general one, ISNIG, uses the GAM method to estimate the missing data
model. It uses a nonparametric scatterplot smoother, such as a smoothing spline
method, for the estimation of ηγ0(xi) and lets data speak to the functional form
of xi. As compared with ISNIP , ISNIG enjoys two advantages: GAM is clearly
more general; it is an automatic procedure that avoids the manual increase of
model complexity.

For our simulation model, the formula for ISNI is

−σ̂2
( ∑

i:gi=1

x̃ix̃
T
i

)−1 ∑
i:gi=0

hix̃i.

Here σ̂2 =
∑

i:gi=1(yi − β̂0(0) − β̂1(0)xi)2/
∑

i 1(gi = 1) is the MAR estimate of
the residual variance, and β̂0(0) and β̂1(0) are the MAR estimates of the β0

and β1, respectively; x̃i = [1, xi]T is the vector of predictors for the unit i;
hi is the predicted probability of Gi = 1 under the MAR model. For ISNIL,
hi = h(γ̂00(0)+ γ̂01(0)xi). For ISNIP , hi = h(γ̂00(0)+

∑J
j=1 γ̂0j(0)xJ

i ), where J is
the selected order of the polynomial function of xi. For ISNIG, hi = h(γ̂00(0) +
η̂γ01(xi)), where η̂γ01(xi) is adaptively estimated by a smoothing spline under the
MAR assumption. The gam function in S-Plus with a default degree of freedom
of 4 is used for smoothing.

In practical applications, one can calculate the ISNI-adjusted estimates at
(5.2) for a plausible range of γ1 values, and investigate the sensitivity of the MAR
estimates to nonignorable missingness. In the simulation studies, we plug in the



1890 HUI XIE, YI QIAN AND LEMING QU

true value of γ1. The performance of these ISNI-adjusted estimates can then
be evaluated in terms of their ability to reduce bias of the MAR estimates for
various scenarios of missing data mechanisms.
Step 4: Repeat Step 1 to Step 3 300 times for the same values of ρ and
γ1. Using the resulting sample of estimates, compute the mean squared error
(MSE), bias, and standard deviation (SD) for each of the four estimators of β1:
β̂1(0), β̂1L(γ1), β̂1P (γ1), and β̂1G(γ1). Repeat Step 4 for other configurations of ρ

and γ1.
Figure 1 plots the bias when β1 = ρ = 0. The results on SDs and MSEs can

be found in Web Supplement Tables 1 and 2 and Figures 1 and 2. As shown there,
the SDs of the adjusted estimates are almost the same as the SDs of the MAR
estimates and, as a result, the differences in the MSE among these estimates
are mainly determined by the differences in the size of the bias. Therefore, in
Figure 1 we plot only the bias for the purpose of comparison. The plots for other
values of ρ lead to qualitatively similar conclusions and are reported as the Web
Supplement Figures 3 to 6. As shown in the figures, the MAR estimate β̂1(0)
is biased. A general pattern is that the larger the size of γ1, the larger the size
of the bias in β̂1(0). This can be readily seen from the V-shaped bias function
of β̂1(0) (as a function of γ1) in Figure 1. When ηγ0(x) is a linear function, all
three adjusted estimates, β̂1L(γ1), β̂1P (γ1), and β̂1G(γ1), are capable of removing
the bias of the MAR estimate β̂1(0) under Cases 1 and 2. This can be seen in
Figure 1, as the bias functions of the three adjusted estimates are all flat at a
close-to-zero value over γ1 values for the linear functions. This indicates that
ISNI is an accurate sensitivity index and can effectively reduce the bias of the
MAR estimate when the missing data mechanism is correctly specified.

Though all three adjusted estimates remove the bias of the MAR estimator
when ηγ0(x) is linear in x, the effectiveness in doing this can be very different
for the other forms of ηγ0(x). We study the simulation results in the three key
aspects. (1) If ηγ0(x) is actually quadratic or cubic, β̂1L(γ1) has a significant
amount of bias under Case 2. This can be seen from the V-shaped bias function
of β̂1L(γ1) for Quadratic and Cubic in Figure 1(b). In contrast, both β̂1P (γ1)
and β̂1G(γ1) perform much better in removing the bias, as shown by their flat
bias functions at a close-to-zero value in these figures. This shows that the
misspecification of the missing data model can lead to large bias for the adjusted
parameter estimates in the complete data model, and it can be important to
choose a proper missing data model. (2) Interestingly, in Case 1 the bias of
β̂1L(γ1) is almost the same as those of β̂1P (γ1) and β̂1G(γ1), even for the quadratic
and cubic forms of ηγ0(xi). This shows that β̂1L(γ1) has a certain degree of
robustness with respect to the misspecification of the missing data model. (3)
When ηγ0(xi) follows a sine form, both β̂1L(γ1) and β̂1P (γ1) have sizable biases
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Figure 1. (a) Upper Panel: Plot of bias of four estimates for case 1 and
β1 = ρ = 0.
(b): Lower panel: Plot of bias of four estimates for case 2 and β1 = ρ = 0.
The thick solid line: the MAR estimate β̂1(0).
The dotted line: the adjusted estimate using the linear predictor β̂1L(γ1).
The dashed line: the adjusted estimate using the polynomial predictor
β̂1P (γ1).
The thin solid line: the adjusted estimate using the smoothing spline pre-
dictor β̂1G(γ1).

and β̂1G(γ1) performs best. This shows that it can be important to use a data-
driven approach, such as a GAM, to model the continuous predictors in the
missing data model.

These findings from the simulation studies suggest that the adjusted esti-
mator based on ISNIL, which assumes a linear logistic regression, has a certain
degree of robustness to misspecification of the missing data mechanism. There
can, however, be situations in which ISNIL is seriously affected by the misspeci-
fication of functional forms in the missing data model. In this case, both ISNIP
and ISNIG can protect one from having a misleading assessment of the poten-
tial changes in the estimates. In particular, ISNIG performs better because of
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its more robust and automated process to discover the complex missing data
process. Because of the availability of standard software for fitting a GAM, the
success of ISNIG in reducing the bias of the MAR estimates depends less on the
experience of the data analyst to detect model misspecification than does ISNIP .

6. An Application

Mroz (1987), used a wage offer dataset to demonstrate the sensitivity of
empirical econometric analysis to various economic and statistical assumptions.
Many of these assumptions, though useful, are often untestable, and thus it
is insufficient to base conclusions solely on a single analysis. A more prudent
approach is to compare the analysis with those obtained under alternative as-
sumptions. If conclusions are reasonably robust, one has more confidence in the
conclusions drawn. To demonstrate our method, we mainly focus on the potential
misspecification of functional forms in the missing data mechanism.

The aim is to estimate the wage offered to a married woman as a function
of education level and experience, after controlling for her other observed char-
acteristics. That is, we are interested in estimating the linear regression model

lwagei = (Intecept, educ, exper, expersq, age, nwifeinc, kidslt6, kidsge6)t
iβ + εi,

(6.1)
where i = 1, . . . , 753, lwage is the logarithm of the wife’s wage, educ is the wife’s
years of schooling, exper is the wife’s labor market experience and expersq is
the square term of exper, age is the wife’s age; nwifeinc is the non-wife family
income, kidslt6 is the number of children less than 6 years, and kidsge6 is the
number of children between 6 and 18 inclusive.

Not every married woman in the sample had her wage outcome observed.
Among the 753 married women in the sample, 325 did not participate in the labor
force and as a result their potential wage outcomes, if employed, were missing. It
is possible that the participation of a married woman in the labor force depends
on her potential wage outcome, even after conditioning on the other observed
variables. In order to account for this potential nonignorability, we assume the
following model for self-selection to employment:

logit(P (Gi = 1)) = γ00 + η1(educi) + η2(experi) + η3(agei) + η4(nwifeinci)

+kidslt6iγ05 + kidsge6iγ06 + lwageiγ1,

where Gi is the indicator variable for participation in the labor force. As a
comparison, we also consider the linear logistic labor participation model

logit(P (Gi = 1)) = (intercept, educ, exper, age, nwifeinc, kidslt6, kidsge6)T
i γ0

+lwageiγ1.
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Table 1. ISNIs for Parameter Estimates in the Wage Offer Dataset.

MAR Linear Logistic GAM + Linear ηγ1(y)
Predictor Est. S.E. ISNI c MAR Est. ISNI c MAR Est.

+ISNI/σ +ISNI/σ

Intercept -0.36000 0.32000 -0.26000 0.87 -0.72000 -0.19000 1.20 -0.6200
educ 0.10000 0.01500 0.01900 0.57 0.12600 0.01800 0.61 0.1240
exper 0.04000 0.01300 0.02400 0.40 0.07300 0.01600 0.57 0.0640
expersq -0.00075 0.00039 -0.00050 0.60 -0.00150 -0.00022 1.29 -0.0010
nwifeinc 0.00570 0.00330 -0.00350 0.67 0.00079 -0.00170 1.43 0.0034
kidslt6 -0.05600 0.08800 -0.12000 0.53 -0.22100 -0.12000 0.53 -0.2200
kidsge6 -0.01800 0.02800 0.00700 2.76 -0.00770 0.00400 4.92 -0.0120
age -0.00350 0.00500 -0.00600 0.67 -0.01100 -0.00700 0.57 -0.0130

Table 1 presents the MAR analysis that shows that education level and
experience have statistically significant positive effects on the wage offer after
adjustment by the other variables. Table 1 also presents the ISNI values that
evaluate the effect of nonignorable missingness of wage outcome on the model
estimates. When Y is continuous, the ISNI value depends on the scale of Y . Thus,
to better gauge the sensitivity, we use the sensitivity transformation statistic
c = |S.E./{ISNI/σ}|, where S.E. is the standard error of a parameter estimate
under the MAR model and σ is the standard deviation of Y . Thus, for ISNI to
be equal to one S.E., |γ1| needs to be at least c/σ which, under the logit link,
corresponds to a magnitude of nonignorability such that a change of σ/c in Y
is associated with a change of e1 = 2.7 in the odds of being observed. Thus,
the c statistic represents the critical magnitude of nonignorability above which
the bias due to nonignorable missingness is larger than the sampling error and
therefore causes concern. The smaller the c statistic, the larger the sensitivity
to nonignorability. Following Troxel, Ma and Heitjan (2004), we suggest using
c = 1 as a cutoff value for important sensitivity as this implies that the bias is
the same size as the sampling error for a nonignorability where a change of one
σ in Y is associated with a change of 2.7 in the odds of being observed.

The c statistics summarized in Table 1 show that the MAR estimates of both
educ and exper are sensitive to nonignorable missingness in the outcome. Both
MAR estimates have c statistics less than 1, and this is so when the missing data
model is either logistic or GAM. Thus, the conclusions regarding the sensitivity
of these two estimates are robust to the choice of missing data model. The con-
clusions regarding expersq and nwifeinc, however, depend on the missing data
model chosen. With the linear logistic model, we find that the MAR estimates for
expersq and nwifeinc have c statistics less than 1, indicating that both MAR es-
timates are sensitive to nonignorable selection for labor force participation. With
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the GAM model, these MAR estimates have c statistics larger than 1, indicating
that these two MAR estimates are not sensitive to nonignorability.

Using ISNI, we can also calculate the adjusted estimates when γ1, the pa-
rameter for nonignorable selection, is perturbed from zero. A positive value of γ1

is plausible because it is highly unlikely that one would decline a job offer when
the offered wage was high. Here we consider γ1 = 1/σ. This corresponds to a
magnitude of nonignorability where a change of one standard deviation in lwage

corresponds to the odds ratio of labor force participation of 2.7. In the wage offer
dataset, the MAR estimate of σ is 0.72. Therefore, as the offered wage changes
by a factor of e0.72 = 2.1, the odds of labor force participation change by 2.7.
This seems to be a moderate nonignorability. The resulting adjusted estimates
for this moderate nonignorability are reported under the column “MAR Est. +
ISNI/σ” in Table 1. With this γ1 value, we see that the adjusted estimates for
educ and exper become larger than the corresponding MAR estimates, which im-
plies that the MAR estimates likely underestimate the true effects of education
and experience. It is also important to note that the adjusted estimate (-0.0015)
for expersq under the linear logistic model is almost 50% larger in size than that
(-0.0010) under the GAM for missing data process. This can be a significant
difference in estimating the effect of working experience on the wage outcome.

To explore possible reasons for the discrepancy in ISNI values between the
linear logistic and the GAM labor participation model we plot, in Figure 2, the
smooth fitted functions of the four continuous predictors for labor force partic-
ipation obtained from the GAM model. The figure shows that the relationship
between experience and labor force participation is nonlinear. A chi-square test
shows that this nonlinear trend is statistically significant (p-value= 0.01). It
is plausible that this nonlinear relationship between experience and labor force
participation drives the difference in the ISNI values.

The above ISNI analysis assumes that a logit transformation of the probabil-
ity of missingness depends on lwage in a linear form. In Section S.1 of the Web
Supplement, we conduct additional analyses in which the missingness depends on
lwage in a quadratic form. The analysis shows smaller assessments of sensitivity
for some parameter estimates.

7. Discussion

In this article, we propose using a semiparametric approach to adaptively
choose the functional form of the continuous predictors for missingness. We have
investigated the consequences of misspecifying a nonignorable missing data model
through a simulation study and the analysis of a wage offer dataset. Specifically,
we investigated the performance of ISNI, a recently proposed local sensitivity
index of nonignorability, under the misspecification of missing data model. We
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Figure 2. Plots of smooth terms in a generalized additive model for la-
bor force participation in the Wage Offer data. The dashed lines are 95%
pointwise confidence intervals.

found that it has some robustness to misspecification of the functional form of
the predictors for missingness. There are, however, important situations in which
the consequences of misspecification in the missing data mechanism are signifi-
cant. In these cases, using more flexible missing data models can help protect the
analysis. We recommend the semiparametric sensitivity index that uses a GAM
approach for modeling the missing data process because of its modeling gener-
ality and the automatic nature of the procedure. In particular, the automation
of the procedure is also an important benefit, especially when many continuous
predictors for missingness exist and the way they affect missingness is not well
understood. In these situations, it is cumbersome, if not infeasible, to manu-
ally choose proper higher-order terms and/or transformation for each continuous
predictor. The more automated fitting of the missing data mechanism that uses
a GAM substantially reduces the time and effort invested. This is particularly
helpful in light of the fact that modeling missing data mechanism is usually not
of primary interest, but has to be properly dealt with in order to draw correct
conclusions about the main interest of a study.

The sample sizes in our analyses are reasonably large, of the sort commonly
observed in practice. When data are sparse, GAM, as a nonparametric method,
might not perform well. Then, one might consider using recently developed sparse



1896 HUI XIE, YI QIAN AND LEMING QU

additive model techniques (Ravikumar et al. (2009)) that combine the ideas from
sparse modeling and additive non-parametric regression.

The proposed semiparametric index is substantially easier to compute than
global sensitivity because there is no need to fit any nonignorable model. Thus,
it can be ideal for quickly and robustly measuring the sensitivity of a standard
analysis to nonignorable missingness. If the sensitivity is small, then the standard
analysis is considered trustworthy; otherwise, one might need to collect more
data to better understand the missing data mechanism (Hirano, Ridder and
Rubin (2001), Qian (2007)). The semiparametric index can be useful to robustly
identify situations in which one may need to take that route.

We have extended ISNI to situations in which missingness depends on the
missing outcome through a polynomial function, and have derived explicit ISNI
formulas when the nonignorable missingness follows a quadratic form. This ex-
tension makes the index applicable to a broader range of applications in which
investigators suspect that the nonignorable missingness might be of a complex
relationship and would like to investigate sensitivity under such a belief.

The proposed method can be generalized to multivariate outcomes with non-
ignorable missingness. Xie and Qian (2010) develop local sensitivity methods for
various types of longitudinal data with both dropout and intermittent missing-
ness, resulting in a general pattern of missingness. In their application, the
predictors for the missingness are categorical variables. In other longitudinal
applications in which the missingness predictors contain continuous variables, a
linear logistic missing data model may lead to erroneous conclusions. In this case,
the proposed semiparametric index method can be extended to provide a more
robust way to measure the impact of nonignorable missingness in longitudinal
data analysis.
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Appendix: ISNI for GLM when ηγ1(y) Is of a Quadratic Form

In this Appendix, we derive explicit ISNI formulas when ηγ1(y) = γ11y +
γ12y

2. Specifically, we develop these formulas when the outcome Yi follows a
generalized linear model (GLM) that assumes that Yi is independent with density

fθ(yi) = exp
{

yiλi(β) − b(λi(β))
a(τ)

+ c(yi, τ)
}

,
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where λi is the canonical parameter, functions b(·) and c(·, ·) determine a par-
ticular distribution in the exponential family, and a(τ) = τ/w, where τ is the
dispersion parameter and w is a known weight. Because the quadratic does not
apply to binary outcomes, we derive the ISNI formulas for other common cases
of GLM. In the derivation, we write ηγ1(y) = γ11(y + r2y

2), where r2 = γ12/γ11.
The ISNI formula for a linear ηγ1(y) can be obtained by setting r2 = 0.

Normal Distribution
For a normal linear model, Yi ∼ N(xT

i β, τ), where τ = σ2. Then E(Y 2) =
E2(Y ) + τ and, according to (4.2), for a given value of r2 the index for the
regression parameter is

ISNIr = −τ̂(
∑

i:gi=1

xix
T
i )−1

∑
i:gi=0

(1 + 2r2µ̂i)xihi,

where µ̂i = xT
i β̂, and β̂ and τ̂ are the MAR estimates of β and τ , respectively.

Poisson Distribution
For Poisson outcome, we have E(Y 2)=E2(Y ) + E(Y ). With the canonical

log link: lnE(Yi) = lnµi = xT
i β, and the dispersion parameter τ = 1, according

to (4.2) for a given value of r2, the index for the regression parameter is

ISNIr = −(
∑

i:gi=1

exp(xT
i β̂)xix

T
i )−1

∑
i:gi=0

(1 + r2 + 2r2µ̂i) exp(xT
i β̂)xihi,

where µ̂i = exp(xT
i β̂), and β̂ is the MAR estimate of β.

Gamma Distribution
If the dispersion parameter τ = ν−1, then τ is also the constant coefficient

of variation. For the Gamma distribution, we have E(Y 2) = ((ν + 1)/ν)E(Y )2.
With the canonical reciprocal link (E(yi))−1 = µ−1

i = xT
i β then, according to

(4.2), for a given value of r2, the index for the regression parameter is

ISNIr =
1
ν̂

(
∑

i:gi=1

(xT
i β̂)−2xix

T
i )−1

∑
i:gi=0

(1 + 2r2µ̂i
ν̂ + 1

ν̂
)(xT

i β̂)−2xihi,

where µ̂i = 1/xT
i β̂, and β̂ and ν̂ are the MAR estimates of β and ν, respectively.

Inverse Gaussian Distribution
For the inverse Gaussian distribution, E(Y 2) = E(Y )2 + τE(Y )3, where

a(τ) = 1/τ . With the canonical link E(Yi)−2 = µ−2
i = xT

i β then, according to
(4.2), for a given value of r2, the index for the regression parameter is

ISNIr = 2τ̂(
∑

i:gi=1

(xT
i β̂)−3/2xix

T
i )−1

∑
i:gi=0

(1 + 2r2µ̂i + 3r2τ̂ µ̂2
i )(x

T
i β̂)−3/2xihi,

where µ̂i = (xT
i β̂)−2, and β̂ and τ̂ are the MAR estimates of β and τ , respectively.
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